JPS64787B2 - - Google Patents

Info

Publication number
JPS64787B2
JPS64787B2 JP55051195A JP5119580A JPS64787B2 JP S64787 B2 JPS64787 B2 JP S64787B2 JP 55051195 A JP55051195 A JP 55051195A JP 5119580 A JP5119580 A JP 5119580A JP S64787 B2 JPS64787 B2 JP S64787B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
powder
electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55051195A
Other languages
Japanese (ja)
Other versions
JPS56147367A (en
Inventor
Isao Matsumoto
Tsutomu Iwaki
Shoichi Ikeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5119580A priority Critical patent/JPS56147367A/en
Publication of JPS56147367A publication Critical patent/JPS56147367A/en
Publication of JPS64787B2 publication Critical patent/JPS64787B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 二次電池においては、自動車起動用電源等を主
用途とする鉛酸電池が生産、販売において主であ
るが、近年、多種の家電用機器、通信用、雑貨
用、事務機用および防災用などの用途が拡大傾向
にあり、高信頼性、小型で高性能を特徴とするア
ルカリ蓄電池が注目されている。この種の用途に
おいて、比較的小出力の場合は、通常のルクラン
シエ電池が用いられることが多いが、それ以外の
大部分にはアルカリ蓄電池のうちでも円筒密閉形
ニツケル−カドミウム蓄電池が使用されている。
Detailed Description of the Invention Among secondary batteries, lead-acid batteries, which are mainly used as power sources for starting automobiles, are mainly produced and sold. Alkaline storage batteries are attracting attention due to their high reliability, small size, and high performance, as their uses for office machines and disaster prevention are expanding. In this type of application, ordinary Lecrancier batteries are often used when the output is relatively low, but sealed cylindrical nickel-cadmium batteries are used among alkaline batteries for most other applications. .

この電池は、正極にニツケル極、負極にカドミ
ウム極を用いた電池であり、高信頼性、高出力密
度を有するが、比較的高価格である。その原因と
しては、とくにニツケル極において活物質とそれ
に関連する電極構成材が鉛電池などと比べて高価
格であるとともに、製法がやや複雑であることが
あげられる。また、各種の用途に用いられる上
で、さらに高性能および高容量が望まれているの
が現状である。
This battery uses a nickel electrode as the positive electrode and a cadmium electrode as the negative electrode, and has high reliability and high output density, but is relatively expensive. The reason for this is that the active material and related electrode constituent materials, especially in nickel electrodes, are more expensive than those in lead batteries, and the manufacturing method is somewhat complicated. Furthermore, the current situation is that even higher performance and higher capacity are desired for use in various applications.

従来、企業化されているニツケル極は、焼結ニ
ツケル基板に活物質塩を含浸し、ついで活物質に
転化する工程を約10回程度繰り返したり、活物質
塩中で活物質を電解により析出させるなど繁雑な
工程を採用している。他の企業化されている簡単
な製法の電極として、活物質粉末を微孔をする金
属製の袋に充填するポケツト式ニツケル極がある
が、この電極は、特性上焼結式電極に劣るととも
に渦巻状に加工することも本来不適である。
Traditionally, commercially available nickel electrodes involve impregnating a sintered nickel substrate with active material salt and then repeating the process of converting it into the active material about 10 times, or depositing the active material in the active material salt by electrolysis. It uses complicated processes such as Another easy-to-manufacture electrode that has been commercialized is the pocket-type nickel electrode, in which active material powder is filled into a metal bag with micropores, but this electrode has inferior characteristics to the sintered electrode. Processing into a spiral shape is also inherently inappropriate.

そこで、焼結式ニツケル極の低廉化と高容量化
をはかるため、スポンジ状ニツケル多孔体に活物
質を主とする粉末を直接充填する方法が提案され
ている。このスポンジ状ニツケルは、使用材料が
現在企業化されている焼結基板の1/3程度で、し
かも多孔度が焼結基板の約80%に対して約95%と
大きいので、活物質粉末を直接高密度に充てんで
きる特徴がある。
Therefore, in order to reduce the cost and increase the capacity of sintered nickel electrodes, a method has been proposed in which a sponge-like porous nickel material is directly filled with powder mainly containing an active material. This sponge-like nickel uses only one-third of the material used for sintered substrates currently commercially available, and its porosity is approximately 95%, compared to approximately 80% for sintered substrates. It has the characteristic that it can be directly filled with high density.

本発明は、電極の導電性支持体としてスポンジ
状金属多孔体を用いるケツケル電極の製造法に関
するもので、特に導電性支持体に充てんする活物
質粉末の製造法を改良するものである。
The present invention relates to a method for manufacturing a Koeckel electrode using a sponge-like porous metal material as a conductive support for the electrode, and particularly to improve a method for manufacturing an active material powder to fill the conductive support.

この種の電極に用いられる水酸化ニツケル活物
質の製造には、通常硫酸ニツケル水溶液もしくは
さらに炭素粉末を懸濁した溶液に水酸化ナトリウ
ム水溶液を加えて水酸化ニツケルを主とする活物
質粉末を生成させ、ついで熟成することによりそ
の粒子を大きくする方法を採用している。この理
由は、活物質の電極特性上および電極中の脱落強
度などを向上させるのに、活物質粒径が微細であ
ると好ましくなく、その粒径増大には、硫酸根と
ナトリウムイオンの存在が適しているからであ
る。しかし、この活物質を主とする粉末を電極に
用いても、その活物質利用率は、60〜70%が限度
である。そのため、この活物質粉末にさらにニツ
ケル粉末とコバルト粉末などを加える方法も提案
されているが、この場合の利用率は、コバルト添
加量約3重量%で約90%である。
To produce the nickel hydroxide active material used in this type of electrode, a sodium hydroxide aqueous solution is usually added to a nickel sulfate aqueous solution or a solution in which carbon powder is suspended to produce an active material powder mainly composed of nickel hydroxide. The method used is to increase the size of the particles by allowing the grains to ripen and then ripening. The reason for this is that in order to improve the electrode properties of the active material and the shedding strength in the electrode, it is undesirable for the active material particle size to be fine, and the presence of sulfate radicals and sodium ions is responsible for increasing the particle size. This is because it is suitable. However, even if a powder mainly composed of this active material is used for an electrode, the active material utilization rate is limited to 60 to 70%. Therefore, a method of adding nickel powder and cobalt powder to this active material powder has also been proposed, but the utilization rate in this case is about 90% when the amount of cobalt added is about 3% by weight.

本発明は、活物質の利用率をさらに向上すると
ともに導電性支持体に充てんすべき活物質合剤の
調整工程を簡略化することを目的とする。
An object of the present invention is to further improve the utilization rate of active materials and to simplify the process of preparing an active material mixture to be filled into a conductive support.

すなわち、本発明は、ニツケル粉末とコバルト
粉末もしくはコバルトイオンを含む硫酸ニツケル
溶液に水酸化ナトリウムを加えて水酸化ニツケル
を生成させ、こうして得られるニツケル粉末やコ
バルト粉末を含む水酸化ニツケルを活物質として
電極を構成することを特徴とするものである。
That is, the present invention adds sodium hydroxide to a nickel sulfate solution containing nickel powder and cobalt powder or cobalt ions to generate nickel hydroxide, and uses the thus obtained nickel powder or nickel hydroxide containing cobalt powder as an active material. It is characterized in that it constitutes an electrode.

本発明の方法により得られる水酸化ニツケル
は、ニツケル粉末およびコバルト粉末もしくはコ
バルトイオンより生成する水酸化コバルトと共析
状態で得られるので、これらの混合状態の均一性
がよく、ニツケル粉末共存下でのコバルト添加に
よる活物質利用率向上の効果が大きい。また、ニ
ツケル粉末やコバルトを混合する活物質合剤の調
合工程を省略することができる。また、さらに高
率放電を要望される場合は、炭素粉末などの導電
材の粉末を硫酸ニツケル溶液に加えておけばよ
い。
Since nickel hydroxide obtained by the method of the present invention is obtained in a eutectoid state with nickel powder and cobalt hydroxide produced from cobalt powder or cobalt ions, the uniformity of the mixing state of these is good, and the nickel hydroxide can be mixed in the presence of nickel powder. The addition of cobalt has a large effect on improving the active material utilization rate. Further, the step of preparing the active material mixture, which involves mixing nickel powder and cobalt, can be omitted. Furthermore, if a higher rate of discharge is desired, powder of a conductive material such as carbon powder may be added to the nickel sulfate solution.

なお、硫酸ニツケル溶液にコバルトイオンを加
えるには、コバルトの硫酸塩、硝酸塩または酢酸
塩を用いることができる。またニツケル粉末、コ
バルト粉末は、カーボニルニツケル、カーボニル
コバルトから得られるものが微粉末で好都合であ
る。
Note that in order to add cobalt ions to the nickel sulfate solution, cobalt sulfate, nitrate, or acetate can be used. Further, as the nickel powder and cobalt powder, those obtained from carbonyl nickel and carbonyl cobalt are preferably fine powders.

以下、本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例 1 濃度約2モル/、温度60℃の硫酸ニツケル水
溶液1にカーボニルニツケルから得たニツケル
粉末約20gとコバルト粉末6gを懸濁させ、この
懸濁液に1Nの水酸化ナトリウム水溶液を加えて
水酸化ニツケルを生成させる。ついで約30時間放
置して粒子の成長を行わせた後、水洗、乾燥を繰
り返す。こうして約87重量%の水酸化ニツケルと
約10重量%のニツケル粉末および約3重量%のコ
バルト粉末からなる混合物が得られる。
Example 1 Approximately 20 g of nickel powder obtained from carbonyl nickel and 6 g of cobalt powder were suspended in an aqueous solution of nickel sulfate at a concentration of approximately 2 mol/1 and a temperature of 60°C, and a 1N aqueous sodium hydroxide solution was added to this suspension. Produces nickel hydroxide. Then, after leaving it for about 30 hours to allow the particles to grow, it is washed with water and dried repeatedly. A mixture is thus obtained consisting of about 87% by weight of nickel hydroxide, about 10% by weight of nickel powder and about 3% by weight of cobalt powder.

この混合物に約0.5重量%のカルボキシメチル
セルロース水溶液を加えてペーストとし、これを
多孔度約95%、孔数20個/cm、厚さ約1mmのスポ
ンジ状ニツケル多孔体に押し込んで充てんし、つ
いで、フツ素樹脂懸濁液に浸せきした後乾燥し、
さらに加圧圧縮して厚さ約0.7mmのニツケル電極
とする。
Approximately 0.5% by weight of carboxymethyl cellulose aqueous solution is added to this mixture to form a paste, which is pressed into a sponge-like porous nickel material with a porosity of approximately 95%, 20 pores/cm, and a thickness of approximately 1 mm, and then, After soaking in fluororesin suspension and drying,
It is further compressed under pressure to form a nickel electrode with a thickness of approximately 0.7 mm.

実施例 2 実施例1におけるコバルト粉末の代わりに、コ
バルト金属6g相当の硫酸コバルトを用いた他
は、実施例1と同様にしてニツケル電極を得る。
Example 2 A nickel electrode is obtained in the same manner as in Example 1, except that cobalt sulfate equivalent to 6 g of cobalt metal is used instead of the cobalt powder in Example 1.

次に、実施例1と同様にして、水酸化ニツケル
とニツケル粉末との比を重量比で87:10と一定に
し、コバルト粉末の割合を種々変化させた活物質
粉末混合物を生成させ、これを用いて実施例1と
同様にしてニツケル電極を製作した。
Next, in the same manner as in Example 1, an active material powder mixture was produced in which the ratio of nickel hydroxide and nickel powder was kept constant at 87:10 by weight, and the proportion of cobalt powder was varied. A nickel electrode was produced in the same manner as in Example 1.

これらのニツケル電極のコバルト添加量と活物
質利用率との関係を第1図にaで示す。bは硫酸
ニツケル水溶液に水酸化ナトリウム水溶液を加え
て生成させた水酸化ニツケルにニツケル粉末とコ
バルト粉末を混合し、これを実施例1と同様にペ
ーストとしてスポンジ状ニツケルに充てんして構
成した電極の特性を示す。またcは焼結式ニツケ
ル電極で、活物質充てん後に硝酸コバルトを合浸
し、これを水酸化カリウム水溶液中で水酸化コバ
ルトに転化させた電極の特性を示す。
The relationship between the amount of cobalt added and the active material utilization rate of these nickel electrodes is shown by a in FIG. 1. b is an electrode constructed by mixing nickel powder and cobalt powder with nickel hydroxide produced by adding a sodium hydroxide aqueous solution to a nickel sulfate aqueous solution, and filling a sponge-like nickel with this as a paste in the same manner as in Example 1. Show characteristics. Further, c is a sintered nickel electrode, and shows the characteristics of an electrode in which cobalt nitrate is mixed in after being filled with an active material, and this is converted into cobalt hydroxide in an aqueous potassium hydroxide solution.

なお、活物質の利用率は、大きさ5×6cmのニ
ツケル電極をニツケルスクリーンの対極とともに
比重1.26の水酸化カリウム水溶液に浸漬し、0.1
cmAの電流で16時間充電し、0.2cmAで終止電圧
150mV vs.Hg/HgOまで放電して求めた容量
の理論容量に対する百分率で表した。
The utilization rate of the active material was determined by dipping a 5 x 6 cm nickel electrode together with a nickel screen counter electrode in a potassium hydroxide aqueous solution with a specific gravity of 1.26.
Charging with cmA current for 16 hours, final voltage at 0.2cmA
The capacity determined by discharging to 150 mV vs. Hg/HgO was expressed as a percentage of the theoretical capacity.

第1図から明らかなように、本発明によるニツ
ケル電極の特性は、予め生成された水酸化ニツケ
ルにニツケル粉末とコバルト粉末を加えた場合の
効果よりさらに向上している。これは、溶液状態
のニツケル塩にニツケル粉末とコバルト粉末を懸
濁させた混合液から水酸化ニツケルを生成させ、
粒子を成長させることにより、前者よりはるかに
均一にニツケルとコバルトが添加されるためと思
われる。
As is clear from FIG. 1, the properties of the nickel electrode according to the present invention are even better than those obtained by adding nickel powder and cobalt powder to previously produced nickel hydroxide. This involves producing nickel hydroxide from a mixture of nickel powder and cobalt powder suspended in nickel salt in solution.
This is probably because nickel and cobalt are added much more uniformly by growing the particles than in the former case.

第2図は前記の特性a,b,cに示した各電極
のうち、コバルト添加量3重量%に相当するニツ
ケル電極を公知のカドミウム電極と組み合わせて
構成した密閉式NR−C型電池を、20℃において
200mAの電流で17時間充電した後、2Aで放電し
たときの放電特性を示す。
Figure 2 shows a sealed NR-C type battery constructed by combining a nickel electrode with a cobalt content of 3% by weight with a known cadmium electrode among the electrodes shown in characteristics a, b, and c above. At 20℃
The discharge characteristics are shown when the battery is charged at a current of 200mA for 17 hours and then discharged at a current of 2A.

本発明の電極は密閉式電池に適用してもすぐれ
た特性を有することがわかる。しかも焼結式ニツ
ケル極を用いた場合と比較すると、放電容量に大
きく優れ、電圧においてはほぼ同等であつた。
It can be seen that the electrode of the present invention has excellent characteristics even when applied to a sealed battery. Furthermore, compared to the case using a sintered nickel electrode, the discharge capacity was significantly superior, and the voltage was almost the same.

以上のように、本発明によれば製法も簡単であ
り、活物質利用率が高く、高出力密度のアルカリ
電池用電極が得られる。
As described above, according to the present invention, an alkaline battery electrode with a simple manufacturing method, high active material utilization rate, and high output density can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は各種製法によるニツケル電極のコバル
ト添加量と活物質利用率との関係を示す図、第2
図はニツケル−カドミウム蓄電池の放電特性の比
較を示す。
Figure 1 is a diagram showing the relationship between the amount of cobalt added and the active material utilization rate of nickel electrodes made by various manufacturing methods.
The figure shows a comparison of the discharge characteristics of nickel-cadmium storage batteries.

Claims (1)

【特許請求の範囲】 1 ニツケル粉末とコバルト粉末もしくはコバル
トイオンを含む硫酸ニツケル溶液に水酸化ナトリ
ウムを加えて水酸化ニツケルを主とする混合物を
得る工程と、前記混合物をスポンジ状ニツケル多
孔体からなる導電性支持体へ充てんする工程を有
することを特徴とするアルカリ電池用ニツケル電
極の製造法。 2 ニツケル粉末がカーボニルニツケルから得た
ニツケル粉末である特許請求の範囲第1項記載の
アルカリ電池用ニツケル電極の製造法。 3 コバルト粉末がカーボニルコバルトから得た
コバルト粉末である特許請求の範囲第1項記載の
アルカリ電池用ニツケル電極の製造法。 4 コバルトイオンが硫酸コバルト、硝酸コバル
トおよび酢酸コバルトよりなる群から選ばれた塩
より与えられる特許請求の範囲第1項記載のアル
カリ電池用ニツケル電極の製造法。 5 前記硫酸ニツケル溶液が導電材粉末を混入し
ている特許請求の範囲第1項記載のアルカリ電池
用ニツケル電極の製造法。
[Claims] 1. A step of adding sodium hydroxide to a nickel powder and cobalt powder or a nickel sulfate solution containing cobalt ions to obtain a mixture mainly composed of nickel hydroxide, and converting the mixture into a sponge-like nickel porous body. A method for producing a nickel electrode for an alkaline battery, comprising a step of filling a conductive support. 2. The method for producing a nickel electrode for an alkaline battery according to claim 1, wherein the nickel powder is a nickel powder obtained from carbonyl nickel. 3. The method for producing a nickel electrode for an alkaline battery according to claim 1, wherein the cobalt powder is a cobalt powder obtained from carbonyl cobalt. 4. The method for producing a nickel electrode for an alkaline battery according to claim 1, wherein the cobalt ions are provided from a salt selected from the group consisting of cobalt sulfate, cobalt nitrate, and cobalt acetate. 5. The method for manufacturing a nickel electrode for an alkaline battery according to claim 1, wherein the nickel sulfate solution contains a conductive material powder.
JP5119580A 1980-04-17 1980-04-17 Preparation of nickel electrode for alkaline battery Granted JPS56147367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5119580A JPS56147367A (en) 1980-04-17 1980-04-17 Preparation of nickel electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5119580A JPS56147367A (en) 1980-04-17 1980-04-17 Preparation of nickel electrode for alkaline battery

Publications (2)

Publication Number Publication Date
JPS56147367A JPS56147367A (en) 1981-11-16
JPS64787B2 true JPS64787B2 (en) 1989-01-09

Family

ID=12880091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5119580A Granted JPS56147367A (en) 1980-04-17 1980-04-17 Preparation of nickel electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPS56147367A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916269A (en) * 1982-07-16 1984-01-27 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
JPS5918572A (en) * 1982-07-21 1984-01-30 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
JPS61133563A (en) * 1984-12-04 1986-06-20 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery
US5053292A (en) * 1989-09-18 1991-10-01 Toshiba Battery Co., Ltd. Nickel-metal hydride secondary cell
JPH10264125A (en) * 1997-03-28 1998-10-06 Ngk Insulators Ltd Ceramic honeycomb structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604149B2 (en) * 1977-06-10 1985-02-01 電気化学工業株式会社 Dry spray method

Also Published As

Publication number Publication date
JPS56147367A (en) 1981-11-16

Similar Documents

Publication Publication Date Title
US6156454A (en) Positive active material for alkaline electrolyte storage battery nickel electrodes
JPS64787B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0221098B2 (en)
JPH0243308B2 (en)
JPS6137733B2 (en)
JP2581362B2 (en) Electrodes for alkaline storage batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JPS60253156A (en) Nickel positive electrode for alkaline battery and its manufacturing method
JPS6097560A (en) Sealed type alkaline storage battery
JPH07235303A (en) Nickel pole for alkaline storage battery and its manufacture
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPH11238507A (en) Alkaline storage battery
JPH09147857A (en) Manufacture of positive electrode active material for alkaline storage battery
JP3250840B2 (en) Paste electrode for alkaline secondary battery
JP2615538C (en)
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JP2000228190A (en) Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery using it
JP2019040801A (en) Hydrogen storage alloy electrode
JPS5983343A (en) Manufacture of nickel electrode
JPH05151965A (en) Manufacture of nickel electrode for alkaline storage battery
JPH0326903B2 (en)
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery
JPS63164163A (en) Nickel positive electrode for alkaline storage battery