JPH06295727A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH06295727A
JPH06295727A JP5106046A JP10604693A JPH06295727A JP H06295727 A JPH06295727 A JP H06295727A JP 5106046 A JP5106046 A JP 5106046A JP 10604693 A JP10604693 A JP 10604693A JP H06295727 A JPH06295727 A JP H06295727A
Authority
JP
Japan
Prior art keywords
electrode
storage battery
negative electrode
alkaline storage
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5106046A
Other languages
Japanese (ja)
Inventor
Seiji Ishizuka
清司 石塚
Kazuo Furushima
和夫 古嶋
Hiroshi Suzuki
博士 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP5106046A priority Critical patent/JPH06295727A/en
Publication of JPH06295727A publication Critical patent/JPH06295727A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline storage battery which is excellent in the cycle service life and has a high industrial value. CONSTITUTION:An electrode group is constituted through a separator between a negative electrode and a paste type positive electrode where paste formed by kneading an active material mainly composed of nickel hydroxide, a thickener and water is filled in a metallic porous body, and this electrode group is charged in a battery container. In this storage battery, polyvinyl alcohol is added to both poles of the positive electrode and the negative electrode. This negative electrode may be a paste type negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はニッケルカドミウム蓄電
池、ニッケル水素蓄電池等の密閉式アルカリ蓄電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery such as a nickel-cadmium storage battery or a nickel-hydrogen storage battery.

【0002】[0002]

【従来の技術】従来から用いられている密閉式アルカリ
蓄電池としては、ニッケルカドミウム蓄電池、最近注目
されているニッケル水素蓄電池などがある。この種の蓄
電池においては、正極と負極をセパレータを介して渦巻
状に捲き介された電極群を有し、この電極群を電池容器
内に装填した円筒密閉型アルカリ蓄電池とか、正極と負
極をセパレータを介して積層状に積み重ねて電極群と
し、この電極群を電池容器に装填した角密閉型アルカル
蓄電池などがある。特に近年正極や負極の製造方法は従
来の焼結式よりも密閉式アルカリ蓄電池の高容量化を進
める上で大変有利なペースト方式の方が主流になりつつ
ある。
2. Description of the Related Art Conventional sealed alkaline storage batteries include nickel-cadmium storage batteries and nickel-hydrogen storage batteries, which have recently received attention. This type of storage battery has an electrode group in which a positive electrode and a negative electrode are spirally wound via a separator, and a cylindrical sealed alkaline storage battery in which this electrode group is loaded in a battery container, or a positive electrode and a negative electrode are separated by a separator. There is an angle-sealed Alcal storage battery in which a battery container is loaded with the electrode group by stacking the electrode groups in a stacked manner via the. In particular, in recent years, the paste method, which is very advantageous in promoting a higher capacity of a sealed alkaline storage battery, is becoming the mainstream of the manufacturing method of the positive electrode and the negative electrode than the conventional sintering method.

【0003】[0003]

【発明が解決しようとする問題点】しかし、焼結式電極
で構成された蓄電池と比較してペースト式電極で構成さ
れた蓄電池は、サイクル寿命の信頼性の点でまだまだ焼
結式電極には及ばないという問題点が残されている。こ
れは焼結式電極と比較してペースト式電極は物理的強度
が弱いため、長期にわたって電極容量を維持するのが困
難であること、また蓄電池の充放電に伴いペースト式正
極が膨潤してセパレータ中の電解液を取り込むため見か
け上の液渇れを起こし、結局蓄電池としてのサイクル寿
命が尽きてしまうことによる。
However, in comparison with a storage battery composed of a sintered electrode, a storage battery composed of a paste type electrode is still not suitable as a sintered type electrode in terms of reliability of cycle life. The problem that it does not reach is left. This is because it is difficult to maintain the electrode capacity for a long period of time because the paste type electrode has a weaker physical strength than the sintered type electrode. This is because the electrolyte taken in causes an apparent liquid depletion and eventually the cycle life of the storage battery is exhausted.

【0004】本発明は前記課題を考慮してなされたもの
で、従来の密閉式アルカリ蓄電池、高容量タイプの密閉
式アルカリ蓄電池において、サイクル寿命の優れた工業
的価値の高い密閉式アルカリ蓄電池の提供を目的とす
る。
The present invention has been made in consideration of the above-mentioned problems, and provides a sealed alkaline storage battery of high industrial value with excellent cycle life in the conventional sealed alkaline storage battery and high capacity type sealed alkaline storage battery. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は負極と、水酸化
ニッケルを主とした活物質と増粘剤と水とを混練したペ
ーストを金属多孔体に充填したペースト式正極との間
に、セパレータを介して電極群を構成し、該電極群を電
池容器内に装填する密閉式アルカリ蓄電池において、該
正極と負極との両極にポリビニルアルコールを添加する
ことを特徴とする密閉式アルカリ蓄電池である。また、
該負極がペースト式負極であってもよい。
According to the present invention, a negative electrode and a paste type positive electrode having a metal porous body filled with a paste obtained by kneading an active material mainly containing nickel hydroxide, a thickener and water are provided. A sealed alkaline storage battery, which comprises an electrode group via a separator and which is loaded into a battery container, wherein polyvinyl alcohol is added to both the positive electrode and the negative electrode. . Also,
The negative electrode may be a paste type negative electrode.

【0006】[0006]

【作用】これまでにも負極に結着剤としてのポリビニル
アルコールを添加することはいくつか提案されてきた
が、いずれも電極の物理的強度の向上をはかることがで
きたに留まり、密閉式アルカリ蓄電池のサイクル寿命を
充分に向上させるには至らなかった。これは充放電に伴
うペースト式正極の膨潤によるセパレータ中の電解液の
取り込みを防ぐことができなかったためと考えられる。
[Function] There have been several proposals to add polyvinyl alcohol as a binder to the negative electrode, but all of them have only been able to improve the physical strength of the electrode, and a sealed alkaline It has not been possible to sufficiently improve the cycle life of the storage battery. It is considered that this is because it was not possible to prevent the electrolytic solution from being taken into the separator due to the swelling of the paste-type positive electrode due to charge / discharge.

【0007】また、ペースト式正極にのみポリビニルア
ルコールを添加した場合には、ペースト式負極の物理的
強度が充分でないため、充放電に伴い負極極板活物質が
脱落してしまい、電極容量の減少を生じるために、やは
り密閉式アルカリ蓄電池のサイクル寿命が尽きてしま
う。しかし、アルカリ電解液中で膨潤しにくいポリビニ
ルアルコールを正極と負極両方同時に添加することによ
り、長期にわたり電解液の取り込みによるセパレータ中
の電解液の枯渇をも防ぐことができ、結局密閉式アルカ
リ蓄電池のサイクル寿命が長くなる。
Further, when polyvinyl alcohol is added only to the paste type positive electrode, the physical strength of the paste type negative electrode is not sufficient, so that the negative electrode plate active material falls off with charge and discharge, and the electrode capacity decreases. As a result, the cycle life of the sealed alkaline storage battery is exhausted. However, by adding polyvinyl alcohol, which is less likely to swell in the alkaline electrolyte, to both the positive electrode and the negative electrode at the same time, it is possible to prevent the exhaustion of the electrolytic solution in the separator due to the uptake of the electrolytic solution for a long period of time. Long cycle life.

【0008】[0008]

【実施例】以下、実施例により本発明を詳細に説明す
る。 実施例1 水酸化ニッケル粉末90重量部に対して、酸化コバルト
10重量部と、増粘剤としてカルボキシメチルセルロー
ス、そして結着剤としてポリビニルアルコールを水と共
に混練しペースト状として、これを多孔度95%、平均
孔径200μmのニッケル・メッキ金属多孔体に充填
し、乾燥、成形することによって、本発明に用いるペー
スト式ニッケル正極aを得た。
The present invention will be described in detail below with reference to examples. Example 1 90 parts by weight of nickel hydroxide powder, 10 parts by weight of cobalt oxide, carboxymethyl cellulose as a thickener, and polyvinyl alcohol as a binder were kneaded together with water to form a paste, which had a porosity of 95%. The paste type nickel positive electrode a used in the present invention was obtained by filling a nickel-plated metal porous body having an average pore diameter of 200 μm, drying and molding.

【0009】また酸化カドミウム90重量部とニッケル
粉末10重量部と繊維とを、カルボキシルメチルセルロ
ースのエチレングリコール溶液と、ポリビニルアルコー
ルのエチレングリコール溶液とを混練りして得た活物質
ペーストを、集電体であるニッケルメッキを施したパン
チド基板に塗工し、約120℃で2時間乾燥して酸化カ
ドミウム塗工板を得た。次に金属カドミウムとニッケル
粉末とカルボキシルメチルセルロースとポリビニルアル
コールとフッ素樹脂ディスパージョンとイオン交換水と
の混合物を混練りして金属カドミウムペーストを得た。
このペーストを先の酸化カドミウムの塗工板の両面に塗
工し約150℃で乾燥することにより本発明に用いるカ
ドミウム負極bを得た。
An active material paste obtained by kneading 90 parts by weight of cadmium oxide, 10 parts by weight of nickel powder and fibers with an ethylene glycol solution of carboxymethyl cellulose and an ethylene glycol solution of polyvinyl alcohol was prepared as a current collector. Was coated on a nickel-plated punched substrate and dried at about 120 ° C. for 2 hours to obtain a cadmium oxide coated plate. Next, a mixture of metal cadmium, nickel powder, carboxymethyl cellulose, polyvinyl alcohol, fluororesin dispersion and ion-exchanged water was kneaded to obtain a metal cadmium paste.
This paste was applied to both sides of the above cadmium oxide coated plate and dried at about 150 ° C. to obtain a cadmium negative electrode b used in the present invention.

【0010】一方本発明と比較するために、ポリビニル
アルコールだけを添加せず、あとは先の本発明に用いた
ペースト式ニッケル正極aと同様に作製したペースト式
ニッケル正極c、ポリビニルアルコールだけを添加せ
ず、あとは先の本発明に用いたペースト式カドミウム負
極bと同様に作製したペースト式カドミウム負極dを得
た。
On the other hand, for comparison with the present invention, only polyvinyl alcohol was not added, and only the pasted nickel positive electrode c prepared in the same manner as the pasted nickel positive electrode a used in the present invention and polyvinyl alcohol were added. A paste type cadmium negative electrode d was prepared in the same manner as the paste type cadmium negative electrode b used in the present invention.

【0011】ここでペースト式ニッケル正極aとペース
ト式カドミニウム負極bを用いた本発明による電池A、
比較例としてのポリビニルアルコールを添加しなかった
ペースト式ニッケル正極cとペースト式カドミウム負極
bを用いて作製した電池B、またペースト式ニッケル正
極aとポリビニルアルコールを添加しなかったペースト
式カドミウム負極dを用いた電極C、さらにポリビニル
アルコールを添加しなかったペースト式ニッケル正極c
とポリビニルアルコールを添加しなかったペースト式カ
ドミウム負極dを用いた電池Dを作製した。
Here, a battery A according to the present invention using a paste type nickel positive electrode a and a paste type cadmium negative electrode b,
As a comparative example, a battery B prepared by using a paste type nickel positive electrode c without adding polyvinyl alcohol and a paste type cadmium negative electrode b, and a paste type nickel positive electrode a and a paste type cadmium negative electrode d without adding polyvinyl alcohol were prepared. Electrode C used, and paste type nickel positive electrode c without addition of polyvinyl alcohol
A battery D was prepared using the paste type cadmium negative electrode d to which polyvinyl alcohol was not added.

【0012】これらの電池を充放電したときのサイクル
に対する各電池の電池容量の変化と内部抵抗の変化を図
1に示した。電池Aが最もサイクル寿命が長く長期にわ
たり安定した容量を示し、内部抵抗もそれほど変化して
いない。ところが電極のどちらか一方にのみポリビニル
アルコールを添加した電池B、Cはサイクルの進行とと
もに容量が減少してしまった。特に電池Bは内部抵抗が
徐々に高くなり電池内の液渇れが生じていると考えられ
る。電池Dにおいては一度も安定した容量を示すことな
く容量減少を示し、それと同時に内部抵抗も高くなっ
た。
FIG. 1 shows changes in battery capacity and internal resistance of each battery with respect to cycles when these batteries were charged and discharged. Battery A has the longest cycle life and shows a stable capacity for a long time, and the internal resistance does not change so much. However, in batteries B and C in which polyvinyl alcohol was added to only one of the electrodes, the capacity decreased as the cycle progressed. In particular, it is considered that the internal resistance of the battery B is gradually increased and the liquid in the battery is dry. In Battery D, the capacity decreased without showing a stable capacity even once, and at the same time, the internal resistance also increased.

【0013】また充放電が300サイクル経過した時点
で各電池の断面から正極部分の厚みを実測し電極作製時
の初度厚みと比較した正極厚み膨潤度を表1に示した。
電池B、電池Dのペースト式ニッケル正極が表1で著し
く膨潤していることと、図1での内部抵抗の上昇とか
ら、ペースト式ニッケル正極に結着剤であるポリビニル
アルコールを添加しない場合は、充放電サイクルにとも
ない電極自体が膨潤して電解液を取り込みセパレータ中
の液渇れが進行したと考えられる。
The thickness of the positive electrode portion was measured from the cross section of each battery after 300 cycles of charging / discharging, and the positive electrode thickness swelling degree compared with the initial thickness at the time of electrode preparation is shown in Table 1.
When the paste type nickel positive electrodes of the batteries B and D are significantly swollen in Table 1 and the internal resistance is increased in FIG. 1, when the polyvinyl alcohol as the binder is not added to the paste type nickel positive electrodes, It is considered that the electrode itself swelled with the charging / discharging cycle to take in the electrolytic solution and the liquid in the separator became dry.

【0014】一方ペースト式ニッケル正極に結着剤であ
るポリビニルアルコールを添加した場合には、電極の膨
潤度が低いことと、充放電サイクルにともなう内部抵抗
の変化が緩やかであることから、少なくともセパレータ
中の液は保持されていると考えられる。それにもかかわ
らず容量減少した電池Cの場合は、ペースト式カドミウ
ム負極の活物質脱落による容量減少が起こり負極規制に
なったと考えられる。
On the other hand, when polyvinyl alcohol, which is a binder, is added to the paste type nickel positive electrode, at least the separator is used because the degree of swelling of the electrode is low and the change in internal resistance with charge / discharge cycles is gradual. The liquid inside is considered to be retained. In the case of the battery C whose capacity has decreased nevertheless, it is considered that the capacity was decreased due to the loss of the active material of the paste-type cadmium negative electrode, which resulted in the negative electrode regulation.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例2 ニッケル水素吸蔵合金負極を用いて実施例1と同様の試
験をおこなった結果を図2および表2に示した。本発明
による効果は全く同等であることがわかった。
Example 2 The results of the same test as in Example 1 using the nickel-hydrogen storage alloy negative electrode are shown in FIG. 2 and Table 2. It has been found that the effects of the present invention are exactly the same.

【0017】[0017]

【表2】 [Table 2]

【0018】なおこれらのことから、本発明は円筒密閉
型アリカリ蓄電池に限らず角密閉型アルカリ蓄電池にお
いても、同様に効果を得られることが容易に予測でき
る。
From the above, it can be easily predicted that the present invention can be similarly applied to not only the cylindrical sealed alkaline storage battery but also the angular sealed alkaline storage battery.

【0019】[0019]

【発明の効果】このように本発明によれば、従来の密閉
式アルカリ蓄電池や高容量タイプの密閉式アルカリ蓄電
池において、サイクル寿命の優れた工業的価値の高い密
閉式アルカリ蓄電池を供給することが可能となった。
As described above, according to the present invention, it is possible to supply a conventional sealed alkaline storage battery or a high-capacity sealed alkaline storage battery having a high cycle value and a high industrial value. It has become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】ニッケルカドミウム蓄電池の容量維持率と内部
抵抗とのサイクル変化を示す図である。
FIG. 1 is a diagram showing a cycle change of a capacity retention rate and an internal resistance of a nickel-cadmium storage battery.

【図2】ニッケル水素蓄電池の容量維持率と内部抵抗と
のサイクル変化を示す図である。
FIG. 2 is a diagram showing a cycle change of a capacity maintenance ratio and an internal resistance of a nickel-hydrogen storage battery.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 負極と、水酸化ニッケルを主とした活物
質と増粘剤と水とを混練したペーストを金属多孔体に充
填したペースト式正極との間に、セパレータを介して電
極群を構成し、該電極群を電池容器内に装填する密閉式
アルカリ蓄電池において、該正極と負極との両極にポリ
ビニルアルコールを添加することを特徴とする密閉式ア
ルカリ蓄電池。
1. An electrode group is provided with a separator between a negative electrode and a paste type positive electrode in which a paste obtained by kneading an active material mainly containing nickel hydroxide, a thickener and water is filled in a metal porous body. A sealed alkaline storage battery comprising the electrode group in a battery container, wherein polyvinyl alcohol is added to both the positive electrode and the negative electrode of the sealed alkaline storage battery.
【請求項2】 該負極がペースト式負極であることを特
徴とする請求項1記載の密閉式アルカリ蓄電池。
2. The sealed alkaline storage battery according to claim 1, wherein the negative electrode is a paste type negative electrode.
JP5106046A 1993-04-09 1993-04-09 Sealed alkaline storage battery Pending JPH06295727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5106046A JPH06295727A (en) 1993-04-09 1993-04-09 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5106046A JPH06295727A (en) 1993-04-09 1993-04-09 Sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH06295727A true JPH06295727A (en) 1994-10-21

Family

ID=14423697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5106046A Pending JPH06295727A (en) 1993-04-09 1993-04-09 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH06295727A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545392A (en) * 1994-03-22 1996-08-13 Inco Limited Process for producing nickel hydroxide from elemental nickel
CN105143519A (en) * 2013-02-01 2015-12-09 恩塞尔技术股份有限公司 Coated iron electrode and method of making same
US10319982B2 (en) 2013-02-01 2019-06-11 Encell Technology, Inc. Coated iron electrode and method of making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545392A (en) * 1994-03-22 1996-08-13 Inco Limited Process for producing nickel hydroxide from elemental nickel
CN105143519A (en) * 2013-02-01 2015-12-09 恩塞尔技术股份有限公司 Coated iron electrode and method of making same
JP2016509351A (en) * 2013-02-01 2016-03-24 エンセル テクノロジー、インコーポレイテッド Coated iron electrode and method for producing the iron electrode
US10319982B2 (en) 2013-02-01 2019-06-11 Encell Technology, Inc. Coated iron electrode and method of making same
US10804523B2 (en) 2013-02-01 2020-10-13 Encell Technology Inc. Coated iron electrode and method of making same

Similar Documents

Publication Publication Date Title
WO2004010526A1 (en) Control valve type lead battery
JPH06295727A (en) Sealed alkaline storage battery
US5788720A (en) Method for manufacturing positive electrode plates for an alkaline storage battery
JPWO2011077640A1 (en) Control valve type lead acid battery
US6946222B2 (en) Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2530281B2 (en) Alkaline storage battery
JPH08138658A (en) Hydrogen storage alloy-based electrode
JP4531874B2 (en) Nickel metal hydride battery
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery
JPS5933758A (en) Sealed nickel cadmium battery
JP3490858B2 (en) Non-sintered cadmium negative electrode for alkaline storage batteries
KR100216257B1 (en) Method producing nickel electrode for alkaline condenser
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JP2589750B2 (en) Nickel cadmium storage battery
JPH0737587A (en) Non-sintered nickel pole for alkaline storage battery
JPH09199160A (en) Sealed alkaline storage battery
JP2000228190A (en) Sintered nickel positive electrode for alkaline storage battery and alkaline storage battery using it
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery
JPH05314982A (en) Alkaline storage battery and manufacture thereof
JPH05198312A (en) Manufactuer of sealed alkaline storage battery
JPH0430145B2 (en)
JPH10302733A (en) Alkaline storage battery jar and alkaline storage battery using same