JPH09199160A - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery

Info

Publication number
JPH09199160A
JPH09199160A JP7330861A JP33086195A JPH09199160A JP H09199160 A JPH09199160 A JP H09199160A JP 7330861 A JP7330861 A JP 7330861A JP 33086195 A JP33086195 A JP 33086195A JP H09199160 A JPH09199160 A JP H09199160A
Authority
JP
Japan
Prior art keywords
battery
electrode plate
separator
electrolytic solution
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7330861A
Other languages
Japanese (ja)
Inventor
Hitoshi Kato
人士 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP7330861A priority Critical patent/JPH09199160A/en
Publication of JPH09199160A publication Critical patent/JPH09199160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a rise of the internal pressure of a battery and make the reduction of the capacity of the battery hardly occur by specifying the ratio of an electrolyte allocated to separators at the time of assembling of the sealed alkaline storage battery. SOLUTION: An electrode group provided with separators between positive electrodes and negative electrodes is sealed in a can body together with an alkaline electrolyte to form this sealed alkaline storage battery. In assembling this alkaline battery, 50wt.% or above of the injected electrolyte is held by the separators, and the upper limit value is preferably set to 80wt.%. If 30wt.% or above of the electrolyte is allocated to the separators when the complete discharge of this battery is finished, the battery has more excellent internal pressure characteristic and life characteristic and is preferable. A nonwoven fabric made of polyolefin resin fibers applied with a sulfonation process on the surface is used for the separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は密閉式アルカリ蓄電
池に関し、更に詳しくは、内圧特性と寿命特性のいずれ
もが優れている密閉式アルカリ蓄電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed alkaline storage battery, and more particularly to a sealed alkaline storage battery having excellent internal pressure characteristics and life characteristics.

【0002】[0002]

【従来の技術】密閉式アルカリ蓄電池は、通常、集電体
シートに正極活物質を担持させて成る正極板と、同じく
集電体シートに負極活物質を担持させて成る負極板の間
に、電気絶縁性でかつ保液性を有するセパレータを介在
させて極板群を構成し、この極板群を負極端子も兼ねる
導電性の有底缶体の中に収容し、またそこに所定のアル
カリ電解液を注液したのち、前記缶体上部を正極端子も
兼ねる封口板で密封した構造になっている。
2. Description of the Related Art A sealed alkaline storage battery usually has an electrical insulation between a positive electrode plate having a current collector sheet supporting a positive electrode active material and a negative electrode plate having a current collector sheet supporting a negative electrode active material. And a liquid-retaining separator are interposed to form an electrode plate group, and the electrode plate group is housed in a conductive bottomed can that also serves as a negative electrode terminal, and a predetermined alkaline electrolyte solution is also placed therein. After the liquid is injected, the upper part of the can is sealed with a sealing plate which also serves as a positive electrode terminal.

【0003】例えば、ニッケル・水素蓄電池の場合、正
極板に担持されている活物質は所定粒径のNi(OH)
2 粉末であり、負極板には所定粒径の水素吸蔵合金粉末
が担持されている。したがって、正極板、負極板のいず
れも、担持されているNi(OH)2 粉末の層や水素吸
蔵合金粉末の層には空隙が存在し、そこに電解液が滲透
して電池反応を実現することになる。そして、セパレー
タとしては、通常、ポリアミド樹脂の繊維やポリプロピ
レン樹脂のようなポリオレフィン樹脂の繊維で構成され
る不織布が広く用いられている。
For example, in the case of a nickel-hydrogen storage battery, the active material carried on the positive electrode plate is Ni (OH) having a predetermined particle size.
Two powders, and the negative electrode plate carries a hydrogen storage alloy powder having a predetermined particle size. Therefore, in both the positive electrode plate and the negative electrode plate, voids exist in the layer of Ni (OH) 2 powder and the layer of hydrogen storage alloy powder that are carried, and the electrolytic solution permeates there to realize the battery reaction. It will be. As the separator, a non-woven fabric composed of fibers of polyamide resin or fibers of polyolefin resin such as polypropylene resin is generally widely used.

【0004】前記極板群が収容されている有底缶体に電
解液を注液すると、電解液は、いずれも多孔構造になっ
ている正極板、負極板、およびセパレータに所定の割合
で配分される。そして、ある比率でバランスをとった状
態でそれぞれに保液される。そして、この電解液バラン
スが崩れると、電池は正規の機能を発揮することが困難
になる。
When an electrolytic solution is poured into a bottomed can body accommodating the electrode plate group, the electrolytic solution is distributed at a predetermined ratio to the positive electrode plate, the negative electrode plate, and the separator, each of which has a porous structure. To be done. Then, the liquid is retained in a balanced state at a certain ratio. When the balance of the electrolytic solution is lost, it becomes difficult for the battery to exert its normal function.

【0005】ところで、近年、電子機器の小型化・軽量
化の進展に伴い、その駆動源である電池に対しては、小
型化・高容量化の要求が強まっている。このような要求
に対しては、概ね、缶体の肉厚を薄くして内容積を大き
くすることにより収容する前記極板群の占有率を高めた
り、また電池容量に寄与しないセパレータの厚みを薄く
して極板群における正極板と負極板の占有率を高めたり
する対策が講じられている。
By the way, in recent years, with the progress of miniaturization and weight reduction of electronic equipment, there is an increasing demand for miniaturization and high capacity of a battery as a driving source thereof. In order to meet such requirements, generally, the occupancy of the electrode plate group to be accommodated is increased by reducing the wall thickness of the can body and increasing the internal volume, and the thickness of the separator that does not contribute to the battery capacity is reduced. Measures have been taken to reduce the thickness to increase the occupancy of the positive electrode plate and the negative electrode plate in the electrode plate group.

【0006】しかしながら、後者の対策、すなわちセパ
レータの厚みを薄くするという対策を講ずると、組み立
てた電池では次のような問題が発生してくる。まず、セ
パレータを薄くすると、当該セパレータが保持する電解
液の量が減少することになる。そのため、電池の充放電
サイクルを継続したときに、比較的早期の段階でセパレ
ータにおける液枯れ現象が起こり、電池機能が停止す
る。
However, if the latter measure is taken, that is, the separator is made thinner, the assembled battery will have the following problems. First, when the thickness of the separator is reduced, the amount of electrolytic solution held by the separator is reduced. Therefore, when the charge / discharge cycle of the battery is continued, the liquid depletion phenomenon in the separator occurs at a relatively early stage, and the battery function is stopped.

【0007】とくに、正極活物質がNi(OH)2 から
成るニッケル・水素二次電池の場合は、充放電の過程
で、正極板の膨張や変形が起こりやすく、そのため、セ
パレータに保持されていた電解液が正極板に搾取されて
液枯れ現象を起こしやすいという問題がある。この電池
寿命の劣化という問題は、電解液の注液量を増加するこ
とによって解消することができる。しかし、電解液を増
量すると、他方では充放電時における電池内圧の上昇が
進んで、電解液の漏洩が起こりやすくなるという問題が
発生してくる。このような問題も、電池内の極板群にお
ける電解液のバランスを崩すことになり、結局は、電池
寿命の劣化を招く。
Particularly, in the case of a nickel-hydrogen secondary battery in which the positive electrode active material is Ni (OH) 2 , the positive electrode plate is likely to expand or deform during the charging / discharging process, so that it is held by the separator. There is a problem that the electrolyte solution is squeezed out by the positive electrode plate and the liquid is likely to run out. This problem of deterioration of battery life can be solved by increasing the amount of electrolyte injected. However, if the amount of the electrolytic solution is increased, on the other hand, there is a problem that the internal pressure of the battery increases during charging / discharging, and the electrolytic solution easily leaks. Such a problem also impairs the balance of the electrolytic solution in the electrode plate group in the battery, and eventually leads to the deterioration of the battery life.

【0008】また、充放電が進む過程で正極板または負
極板にはデンドライド状の析出物が生じてくるが、セパ
レータが薄い場合には、この析出物がセパレータを破る
ことにより正極板と負極板が短絡するという事態が発生
しやすくなる。そして、このような内部短絡が起こる
と、電池の自己放電が大きくなって、電池寿命の劣化が
進むことになる。
Further, dendrite-like precipitates are formed on the positive electrode plate or the negative electrode plate in the process of charging and discharging, but when the separator is thin, the positive electrode plate and the negative electrode plate are broken by the precipitates. It is easy for a situation where a short circuit occurs. When such an internal short circuit occurs, the self-discharge of the battery becomes large and the battery life is deteriorated.

【0009】[0009]

【発明が解決しようとする課題】本発明は従来の密閉式
アルカリ蓄電池における上記問題を解決し、電池内圧の
上昇は抑制され、充放電サイクルを長期間継続した場合
であっても電池容量の低下が起こりづらくサイクル寿命
特性に優れている密閉式アルカリ蓄電池の提供、とく
に、ニッケル・水素蓄電池の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in the conventional sealed alkaline storage battery, suppresses the increase in the internal pressure of the battery, and reduces the battery capacity even when the charge / discharge cycle is continued for a long time. It is an object of the present invention to provide a sealed alkaline storage battery that has excellent cycle life characteristics, in particular, a nickel-hydrogen storage battery.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記した
目的を達成するために鋭意研究を重ねた結果、上記した
内圧特性や寿命特性は、電池組立時にセパレータに配分
された電解液の量と、完全放電時にセパレータが保持し
ている電解液の量によって影響されるとの知見を得た。
具体的には、組立時に、セパレータへの電解液の配分量
が注液された電解液の全量に対し50重量%であること
が必要であるとの知見である。更に、完全放電終了時
に、セパレータへの電解液の配分量が30重量%以上に
なるような状態の電池は、その内圧特性、寿命特性が一
層向上するとの知見である。
The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, the above-mentioned internal pressure characteristics and life characteristics of the electrolytic solution distributed to the separator during battery assembly were It was found that the amount and the amount of the electrolytic solution held by the separator at the time of complete discharge are affected.
Specifically, it is a finding that at the time of assembly, the distribution amount of the electrolytic solution to the separator needs to be 50% by weight with respect to the total amount of the injected electrolytic solution. Further, it is a finding that a battery in a state where the amount of the electrolyte solution distributed to the separator is 30% by weight or more at the end of complete discharge, the internal pressure characteristics and life characteristics are further improved.

【0011】本発明は、上記した知見に基づいてなされ
たものである。すなわち、本発明の密閉式アルカリ蓄電
池は、正極板と負極板の間にセパレータを介在させて成
る極板群がアルカリ電解液と一緒に缶体内に密封されて
いる密閉式アルカリ電池において、電池の組立て時点に
おける前記セパレータに配分された電解液の割合が、電
解液全量に対し、50重量%以上になっていることを特
徴とする密閉式アルカリ蓄電池である。
The present invention was made based on the above findings. That is, the sealed alkaline storage battery of the present invention is a sealed alkaline battery in which an electrode group formed by interposing a separator between a positive electrode plate and a negative electrode plate is sealed in a can together with an alkaline electrolyte, at the time of assembling the battery. In the sealed alkaline storage battery, the ratio of the electrolytic solution distributed to the separator is 50% by weight or more with respect to the total amount of the electrolytic solution.

【0012】[0012]

【発明の実施の形態】本発明の密閉式アルカリ蓄電池
は、前記した従来の密閉式アルカリ蓄電池と同じよう
に、極板群が電解液と一緒に缶体に収容され、全体が封
口板によって密封された構造になっている。そして、電
池の組立て時において、注液された電解液の50重量%
以上がセパレータに保持されているものである。
BEST MODE FOR CARRYING OUT THE INVENTION The sealed alkaline storage battery of the present invention, like the above-described conventional sealed alkaline storage battery, has an electrode plate group housed in a can body together with an electrolytic solution, and the whole is sealed by a sealing plate. It has a special structure. And, 50% by weight of the injected electrolyte solution when assembling the battery
The above is what is held by the separator.

【0013】組立て時におけるセパレータへの電解液の
配分量が電解液全量に対し50重量%より少ない電池の
場合は、電池内圧の上昇が大きくなり、また充放電サイ
クルが比較的早期の段階からセパレータの液枯れ現象や
内部短絡が発生しやすくなって、内圧特性と寿命特性に
優れた電池とはいいがたくなる。しかし、この配分量が
多くなりすぎると、余分に電解液を補充しなければなら
ず、経済性が悪くなる。また、正極板から発生する酸素
ガスの負極板への移動が起こりにくくなり、同時に、吸
収されない電解液が比較的多い場合には、脱落した活物
質粉末が酸素ガスや水素ガスによって吹き上がり、セパ
レータで遮蔽されていない両極リード部に堆積して短絡
を起こすこともあり、結局、電池の内圧上昇やサイクル
寿命特性も低下するようになるので、上限値は80重量
%に規制することが好ましい。より好ましい配分量は、
55〜65重量%である。
In the case of a battery in which the amount of electrolytic solution distributed to the separator during assembly is less than 50% by weight based on the total amount of electrolytic solution, the internal pressure of the battery rises significantly, and the separator becomes relatively early in the charging / discharging cycle. It is difficult to say that the battery has excellent internal pressure characteristics and life characteristics because the liquid drainage phenomenon and internal short circuit easily occur. However, if the distribution amount becomes too large, the electrolytic solution must be replenished excessively, resulting in poor economic efficiency. Further, it becomes difficult for oxygen gas generated from the positive electrode plate to move to the negative electrode plate, and at the same time, when a relatively large amount of electrolyte is not absorbed, the active material powder that has fallen off is blown up by oxygen gas or hydrogen gas, and the separator In some cases, short circuit may occur by depositing on the bipolar lead portions that are not shielded by, and eventually the internal pressure of the battery will rise and the cycle life characteristics will also decrease, so the upper limit is preferably regulated to 80% by weight. A more preferable allocation is
It is 55 to 65% by weight.

【0014】上記した電解液保持量を確保できるセパレ
ータとしては次のようなものを好適例としてあげること
ができる。すなわち、平均径が3〜9μmの繊維から成
り、目付重量は60〜70g/m 2 程度で、ダイヤルシ
ックネスゲージ(測定力:1.4N)で測定したときの厚
みが140〜250μmであり、また、0.5NのNaO
Hと1NのLiOHと7NのKOHから成るアルカリ水
溶液に30分間浸漬したときの保液率が重量比で300
%以上、好ましくは350%以上であり、同時に上記ア
ルカリ水溶液の吸液速度が20mm/30min、好ま
しくは25mm/30minの値を示す不織布である。
Separation capable of ensuring the above-mentioned holding amount of electrolyte
The following items are suitable examples of data
Can be. That is, it is composed of fibers having an average diameter of 3 to 9 μm.
The basis weight is 60 to 70 g / m TwoDial dial
Thickness when measured with a Kness gauge (measuring force: 1.4N)
Is 140 to 250 μm, and 0.5 N NaO
Alkaline water consisting of H, 1N LiOH and 7N KOH
The liquid retention rate when immersed in the solution for 30 minutes is 300 by weight.
% Or more, preferably 350% or more.
Absorption rate of Lucari aqueous solution is 20mm / 30min, preferred
Specifically, it is a non-woven fabric showing a value of 25 mm / 30 min.

【0015】なお、前記した不織布の保液率とは、前記
した条件下で不織布をアルカリ水溶液に浸漬したのちの
不織布全体の重量をW1 とし、浸漬前の不織布全体の重
量をW0 としたとき、次式: (W1 −W0 )×100/W0 (%) に基づいて算出される値をいう。この値が大きい不織布
であるほど、その不織布はアルカリ水溶液の保液性が優
れていることになる。
The liquid retention of the above-mentioned non-woven fabric means that the weight of the whole non-woven fabric after immersing the non-woven fabric in the alkaline aqueous solution under the above-mentioned conditions is W 1, and the weight of the whole non-woven fabric before immersion is W 0 . At this time, it means a value calculated based on the following formula: (W 1 −W 0 ) × 100 / W 0 (%). The larger this value is, the better the non-woven fabric has in retaining the alkaline aqueous solution.

【0016】また、吸液速度とは、不織布の下端を前記
したアルカリ水溶液に浸漬し、30分後に、アルカリ水
溶液が滲みあがったときの高さ(mm)である。この値
が大きい不織布であるほど、その不織布は短時間でアル
カリ水溶液を吸い込むことができる。このような不織布
は、電解液の保持性能が優れているとともに、引張強度
も大きいので、極板群を製造するときに好適である。と
くに、上記仕様を満たし、メルトブロー法で製造された
不織布は好適である。
The liquid absorption rate is the height (mm) at the time when the lower end of the nonwoven fabric is dipped in the alkaline aqueous solution and the alkaline aqueous solution oozes out after 30 minutes. The larger the value of the nonwoven fabric, the more quickly the nonwoven fabric can absorb the alkaline aqueous solution. Such a non-woven fabric has excellent electrolytic solution retention performance and high tensile strength, and is therefore suitable for manufacturing an electrode plate assembly. In particular, a non-woven fabric satisfying the above specifications and manufactured by the melt blow method is suitable.

【0017】この不織布を構成する繊維としては、6−
ナイロン、6,6−ナイロン、4,6−ナイロンのよう
なポリアミド樹脂から成る繊維や、ポリプロピレンやポ
リエチレンのようなポリオレフィン樹脂から成る繊維の
表面を例えば発煙硫酸で処理してスルホン化することに
より親水化した繊維を好適例としてあげることができ
る。しかし、ポリアミド樹脂の繊維のものは保液性に優
れているとはいえ電池の自己放電特性を低下させる傾向
があるので、表面をスルホン化したポリオレフィン樹脂
の繊維から成るものの方がより好適である。
The fibers constituting this non-woven fabric are 6-
The surface of a fiber made of a polyamide resin such as nylon, 6,6-nylon or 4,6-nylon or a fiber made of a polyolefin resin such as polypropylene or polyethylene is treated with fuming sulfuric acid to be sulfonated to be hydrophilic. The modified fiber can be mentioned as a suitable example. However, although fibers of polyamide resin have a tendency to deteriorate the self-discharge characteristics of the battery although they are excellent in liquid retention, those of fibers of polyolefin resin having a sulfonated surface are more preferable. .

【0018】また、本発明の電池の場合、完全放電の終
了時点で、電解液の30重量%以上がセパレータに配分
された状態になっていると、その電池は内圧特性と寿命
特性が一層優れたものになるので好適である。その場
合、残りの電解液は、正極板に15〜25重量%配分さ
れた状態にあり、負極板に15〜35重量%配分された
状態になっていることが好適である。
Further, in the case of the battery of the present invention, when 30% by weight or more of the electrolytic solution is distributed to the separator at the end of the complete discharge, the battery has further excellent internal pressure characteristics and life characteristics. It is suitable because it will become a problem. In that case, it is preferable that the remaining electrolytic solution is in a state of being distributed to the positive electrode plate in an amount of 15 to 25% by weight and in a state of being in an amount of being distributed to the negative electrode plate in an amount of 15 to 35% by weight.

【0019】[0019]

【実施例】【Example】

実施例1 スポンジ状ニッケルシートにNi(OH)2 を主成分と
する活物質ペーストを2.8g/ml充填して成り、気孔
率30%、厚み0.7mmの正極板を製造した。また、ア
ーク溶解法で組成:MmNi3.3 Co1.0 Mn0.4 Al
0.3 (Mm:ミッシュメタル)で示される水素吸蔵合金
を製造したのち、これを粉砕して150メッシュ下(タ
イラー篩、100μm以下)の合金粉末とし、ついで、
この合金粉末100重量部に対し、ポリビニリデン粉末
2重量部とニッケル粉(導電材)10重量部を混合し、
その混合粉末を1%カルボキシメチルセルロース(増粘
剤)水溶液20重量部に添加したのち撹拌して各種の合
金粉末スラリーを調製した。
Example 1 A positive electrode plate having a porosity of 30% and a thickness of 0.7 mm was manufactured by filling a sponge-like nickel sheet with 2.8 g / ml of an active material paste containing Ni (OH) 2 as a main component. In addition, the composition by the arc melting method: MmNi 3.3 Co 1.0 Mn 0.4 Al
After producing a hydrogen storage alloy represented by 0.3 (Mm: misch metal), it is pulverized to an alloy powder under 150 mesh (Tyler sieve, 100 μm or less), and then
To 100 parts by weight of this alloy powder, 2 parts by weight of polyvinylidene powder and 10 parts by weight of nickel powder (conductive material) are mixed,
The mixed powder was added to 20 parts by weight of a 1% carboxymethyl cellulose (thickener) aqueous solution and then stirred to prepare various alloy powder slurries.

【0020】この合金粉末スラリーに、開口率38%の
パンチングニッケルシート(厚み0.07mm,開口の径
1.5mm)を浸漬したのち引き上げ、ついで大気中で乾
燥し、2ton/cm2 の圧力で圧延して全体の厚みが
0.36mmである負極板を製造した。更に、セパレータ
としては、繊維の平均径が6.2μm、目付重量が60g
/m 2 、厚みが220μm、0.5NのNaOHと1Nの
LiOHと7NのKOHとから成る電解液の保液率が3
75%、吸液速度が25mm/30minであるスルホ
ン化ポリプロピレン不織布を用意した。
This alloy powder slurry has an opening ratio of 38%.
Punching nickel sheet (thickness 0.07mm, opening diameter
1.5mm), soak it up, and then dry it in the atmosphere.
Dried, 2 ton / cmTwoRolling with the pressure of
A negative electrode plate having a size of 0.36 mm was manufactured. Furthermore, the separator
As for, the average diameter of the fiber is 6.2μm, and the basis weight is 60g.
/ M Two, 220 μm thick, 0.5N NaOH and 1N
The electrolyte retention rate of LiOH and 7N KOH is 3
75%, sulfo having a liquid absorption rate of 25 mm / 30 min
Prepared polypropylene non-woven fabric.

【0021】上記負極板とセパレータと正極板をこの順
序で重ね合わせて巻回して極板群を形成したのち、これ
を円筒容器に収容し、0.5NのNaOHと1NのLiO
Hと7NのKOHとから成るアルカリ電解液を注液し、
全体を封口板で密封して、4/5Aサイズで定格容量1
200mAhの電池を組み立てた。この電池200個に
つき、下記の仕様で各種の特性を測定した。
The negative electrode plate, the separator, and the positive electrode plate are superposed in this order and wound to form an electrode plate group, which is then housed in a cylindrical container, and 0.5 N NaOH and 1 N LiO 2 are contained.
Inject an alkaline electrolyte consisting of H and 7N KOH,
The whole is sealed with a sealing plate and the rated capacity is 1 at 4 / 5A size.
A 200 mAh battery was assembled. Various characteristics of the 200 batteries were measured according to the following specifications.

【0022】電池内圧:電池にガス圧ゲージを取り付
け、温度0℃において、1200mAで2時間の充電、
1Ωの定抵抗に接続した状態で電池電圧が1.0Vになる
までの放電を1サイクルとする充放電サイクルを5サイ
クル行い、5サイクル終了時点で電池内圧を測定。 寿命特性:電池に対し、1200mAで1.5時間の充
電、1200mAで電池電圧が0Vの完全放電状態にな
るように1.25時間放電、休止0.25時間を1サイクル
とするサイクル寿命試験を1000サイクル行ない、そ
のときの放電容量を測定し、試験前の放電容量に対する
割合を容量保持率(%)として算出。
Battery internal pressure: A gas pressure gauge was attached to the battery and charged at 1200 mA for 2 hours at a temperature of 0 ° C.
Five cycles of charging and discharging with one cycle of discharging until the battery voltage reaches 1.0 V while connected to a constant resistance of 1Ω are performed, and the battery internal pressure is measured at the end of the five cycles. Life characteristics: Charge the battery for 1.5 hours at 1200mA, discharge the battery at 1200mA for 1.25 hours so that the battery voltage is 0V, and perform a cycle life test with 0.25 hours as one cycle. After 1000 cycles, the discharge capacity at that time was measured, and the ratio to the discharge capacity before the test was calculated as the capacity retention rate (%).

【0023】この値が大きいほど放電容量の低下は少な
く寿命特性に優れていることを表す。 組立て時におけるセパレータへの電解液の配分量:充放
電試験を行う前に、組み立てた電池の100個を分解し
て正極板、負極板、セパレータを取り出し、それぞれの
重量を測定してそれぞれに配分されている電解液の量を
測定し、注液した電解液の全量に対する百分率(%)と
して計算。 完全放電時のセパレータへの電解液配分量:1200m
Aで電池電圧が1.0Vになるまで放電し、更に1Ωの定
抵抗に接続した状態で1時間放電して電池電圧が0Vに
なる完全放電を行ったのち、電池を分解して正極板、負
極板、およびセパレータを取り出し、セパレータの重量
を測定して保持されている電解液の重量を算出し、電解
液全量に対する百分率を計算。
The larger this value is, the smaller the discharge capacity is, and the better the life characteristics are. Distributing amount of electrolyte to the separator during assembly: Before performing the charge / discharge test, disassemble 100 assembled batteries, take out the positive electrode plate, the negative electrode plate, and the separator, measure the weight of each, and distribute to each Measure the amount of electrolyte that has been filled, and calculate it as a percentage (%) with respect to the total amount of injected electrolyte. Amount of electrolyte distributed to the separator during complete discharge: 1200 m
A was discharged until the battery voltage became 1.0 V, and further discharged for 1 hour in a state of being connected to a constant resistance of 1 Ω, and the battery voltage was completely discharged to 0 V, then the battery was disassembled and the positive electrode plate, The negative electrode plate and the separator are taken out, the weight of the separator is measured to calculate the weight of the electrolytic solution retained, and the percentage of the total amount of the electrolytic solution is calculated.

【0024】以上の結果を表1に示した。 実施例2 セパレータとして、繊維の平均径が5.1μm、目付重量
が70g/m2 、厚みが175μm、0.5NのNaOH
と1NのLiOHと7NのKOHとから成る電解液の保
液率が360%、吸液速度が22mm/30minであ
る6,6−ナイロン不織布を用意した。
The above results are shown in Table 1. Example 2 As a separator, the average fiber diameter was 5.1 μm, the basis weight was 70 g / m 2 , the thickness was 175 μm, and 0.5 N NaOH was used.
A 6,6-nylon non-woven fabric having an electrolyte solution retention rate of 360% and a liquid absorption rate of 22 mm / 30 min was prepared from 1N LiOH and 7N KOH.

【0025】このセパレータと、実施例1で用いた正極
板および負極板とを組み合わせて極板群を製造し、電解
液としては、0.5NのNaOHと1NのLiOHと7N
のKOHとから成るアルカリ水溶液を用いて4/5Aサ
イズで定格容量800mAhの電池を組み立てた。この
電池200個につき、下記の仕様で電池特性を測定し
た。 電池内圧:充電電流が800mAであったこと、定抵抗
値が1.5Ωであったことを除いては、実施例1の場合と
同様にして測定。 寿命特性:充電電流および完全放電までの放電電流が8
00mAであったことを除いては、実施例1の場合と同
様に測定。 組立て時におけるセパレータへの電解液の配分量:実施
例1の場合と同様にして測定。 完全放電時のセパレータへの電解液配分量:放電電流が
800mAであったこと、定抵抗値が1.5Ωであったこ
とを除いては実施例1の場合と同様にして測定。
This separator was combined with the positive electrode plate and the negative electrode plate used in Example 1 to produce an electrode plate group. As an electrolytic solution, 0.5N NaOH, 1N LiOH and 7N were used.
A 4/5 A size battery having a rated capacity of 800 mAh was assembled using an alkaline aqueous solution containing KOH. The battery characteristics of the 200 batteries were measured according to the following specifications. Battery internal pressure: Measured in the same manner as in Example 1 except that the charging current was 800 mA and the constant resistance value was 1.5Ω. Lifetime characteristics: Charge current and discharge current until complete discharge is 8
Measured as in Example 1 except that it was 00 mA. Amount of electrolyte distributed to the separator during assembly: Measured in the same manner as in Example 1. Amount of electrolyte distributed to the separator during complete discharge: Measured in the same manner as in Example 1 except that the discharge current was 800 mA and the constant resistance value was 1.5Ω.

【0026】以上の結果を、表1に示した。 実施例3 セパレータ用の素材として、繊維の平均径が5.0μm、
目付重量が73g/m 2 、厚みが150μm、0.5Nの
NaOHと1NのLiOHと7NのKOHとから成る電
解液の保液率が391%、吸液速度が26mm/30m
inである、特開平1−132044号公報に記載され
ているスルホン化ポリオレフィン系樹脂の不織布を用意
した。
The above results are shown in Table 1. Example 3 As a material for a separator, the average fiber diameter was 5.0 μm,
The basis weight is 73 g / m TwoWith a thickness of 150 μm and 0.5 N
Electrode consisting of NaOH, 1N LiOH and 7N KOH
Liquid retention rate is 391%, liquid absorption rate is 26 mm / 30 m
described in Japanese Patent Application Laid-Open No. 1-132044
Prepared non-woven fabric of sulfonated polyolefin resin
did.

【0027】すなわち、前記ポリオレフィン系樹脂は、
特開平1−132044号公報に記載されているよう
に、外層はスルホン化しやすいポリエチレン層から成
り、内層はポリエチレン−ポリプロピレン共重合体の層
で構成されている。この不織布を、温度35℃、濃度2
0%の発煙硫酸中に役30分間浸漬して、繊維表面をス
ルホン化してセパレータとした。スルホン基の付着量は
全樹脂量1g当り1ミリグラム当量であった。
That is, the polyolefin resin is
As described in JP-A No. 1-132044, the outer layer is composed of a polyethylene layer which is easily sulfonated, and the inner layer is composed of a polyethylene-polypropylene copolymer layer. This non-woven fabric, temperature 35 ℃, concentration 2
The surface of the fiber was sulfonated by immersing it in 0% fuming sulfuric acid for 30 minutes to form a separator. The attached amount of sulfo group was 1 mg equivalent per 1 g of the total resin amount.

【0028】このセパレータと、実施例1で用いた正極
板および負極板とを組み合わせて極板群を製造し、電解
液としては、0.5NのNaOHと1NのLiOHと7N
のKOHとから成るアルカリ水溶液を用いて4/5Aサ
イズで定格容1200mAの電池を組み立てた。この電
池200個につき、実施例1の場合と同じ条件で電池特
性を測定した。
This separator was combined with the positive electrode plate and the negative electrode plate used in Example 1 to produce an electrode plate group. As an electrolytic solution, 0.5N NaOH, 1N LiOH and 7N were used.
A 4/5 A size battery having a rated capacity of 1200 mA was assembled using an alkaline aqueous solution composed of KOH. The battery characteristics of 200 batteries were measured under the same conditions as in Example 1.

【0029】その結果を表1に示した。 比較例1 セパレータとして、繊維の平均径が20μm、目付重量
が80g/m2 、厚みが230μm、0.5NのNaOH
と1NのLiOHと7NのKOHとから成る電解液の保
液率が236%、吸液速度が16mm/30minであ
る6,6−ナイロン不織布に対し、実施例3と同じ条件
下でスルホン化処理を行ったものを用意した。
The results are shown in Table 1. Comparative Example 1 As a separator, the average fiber diameter was 20 μm, the basis weight was 80 g / m 2 , the thickness was 230 μm, and 0.5 N NaOH was used.
A 6-nylon non-woven fabric having an electrolyte retention rate of 236% and an absorption rate of 16 mm / 30 min consisting of 1N LiOH and 7N KOH and having a liquid absorption rate of 16 mm / 30 min was sulfonated under the same conditions as in Example 3. Prepared.

【0030】このセパレータと、実施例1で用いた正極
板および負極板とを組み合わせて極板群を製造し、電解
液としては、実施例1と同じアルカリ水溶液を用いて4
/5Aサイズで定格容量1200mAhの電池を組み立
てた。この電池200個につき、実施例1の場合と同じ
条件で電池特性を測定した。その結果を表1に示した。
This separator was combined with the positive electrode plate and the negative electrode plate used in Example 1 to produce a plate group, and the same alkaline aqueous solution as in Example 1 was used as the electrolytic solution.
A / 5 A size battery having a rated capacity of 1200 mAh was assembled. The battery characteristics of 200 batteries were measured under the same conditions as in Example 1. The results are shown in Table 1.

【0031】比較例2 セパレータとして、繊維の平均径が24.3μm、目付重
量が83g/m2 、厚みが210μm、0.5NのNaO
Hと1NのLiOHと7NのKOHとから成る電解液の
保液率が263%、吸液速度が18mm/30minで
ある6,6−ナイロン不織布に対し、実施例3と同じ条
件下でスルホン化処理を行ったものを用意した。
Comparative Example 2 As a separator, the average fiber diameter was 24.3 μm, the basis weight was 83 g / m 2 , the thickness was 210 μm, and 0.5 N NaO was used.
Sulfonation of 6,6-nylon non-woven fabric having electrolyte retention rate of 263% and absorption rate of 18 mm / 30 min consisting of H, 1N LiOH and 7N KOH under the same conditions as in Example 3 The processed material was prepared.

【0032】このセパレータと、実施例1で用いた正極
板および負極板とを組み合わせて極板群を製造し、電解
液としては、実施例3のアルカリ水溶液を用いて4/5
Aサイズで定格容1200mAhの電池を組み立てた。
この電池200個につき、実施例1の場合と同じ条件で
電池特性を測定した。その結果を表1に示した。
This separator was combined with the positive electrode plate and the negative electrode plate used in Example 1 to produce an electrode plate group, and the alkaline aqueous solution of Example 3 was used as an electrolytic solution for 4/5.
A size A battery having a rated capacity of 1200 mAh was assembled.
The battery characteristics of 200 batteries were measured under the same conditions as in Example 1. The results are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1から明らかなように、組立て時におけ
るセパレータへの電解液の配分量が50重量%より多く
なると、電池内圧の上昇は小さくなり、また容量保持率
が著しく大きくなって寿命特性の向上が実現している。
また、完全放電終了時におけるセパレータへの電解液の
配分量が30重量%より少なくなると、その電池は、液
枯れ現象を起こし、内圧特性、寿命特性のいずれもが低
下している。
As is clear from Table 1, when the distribution amount of the electrolytic solution to the separator at the time of assembly is more than 50% by weight, the increase in the internal pressure of the battery is small, and the capacity retention rate is remarkably large, which leads to the deterioration of the life characteristics. Improvements have been realized.
When the amount of the electrolytic solution distributed to the separator at the end of complete discharge is less than 30% by weight, the battery undergoes a liquid depletion phenomenon, and both internal pressure characteristics and life characteristics are deteriorated.

【0035】[0035]

【発明の効果】以上の説明で明らかなように、本発明の
密封式アルカリ蓄電池は、組立て時に注液された電解液
の50重量%以上が配分されるセパレータを用いている
ので、電解液の注液量を増加することなく電池内圧の上
昇が抑制されており、またセパレータの液枯れ現象を起
こしづらく、そのサイクル寿命特性は非常に優れたもの
になっている。
As is clear from the above description, the sealed alkaline storage battery of the present invention uses the separator in which 50% by weight or more of the electrolyte injected at the time of assembly is distributed. The increase in the internal pressure of the battery is suppressed without increasing the amount of injected liquid, and the separator liquid is unlikely to run out, so that its cycle life characteristics are very excellent.

【0036】したがって、この構成は、密閉型のニッケ
ル・水素二次電池に適用してとくに有用である。正極活
物質がNi(OH)2 から成る上記電池の場合には、充
放電の過程で正極板の膨潤や変形が起こりやすく、その
ため、電解液バランスが崩れてセパレータの液枯れが発
生しやすいからである。
Therefore, this structure is particularly useful when applied to a sealed nickel-hydrogen secondary battery. In the case of the above battery in which the positive electrode active material is made of Ni (OH) 2 , the positive electrode plate is likely to swell or deform in the process of charging / discharging, so that the electrolyte balance is lost and the separator is easily drained. Is.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板の間にセパレータを介在
させて成る極板群がアルカリ電解液と一緒に缶体内に密
封されている密閉式アルカリ電池において、電池の組立
て時点における前記セパレータに配分された電解液の割
合が、電解液全量に対し50重量%以上になっているこ
とを特徴とする密閉式アルカリ蓄電池。
1. A sealed alkaline battery in which an electrode group consisting of a separator interposed between a positive electrode plate and a negative electrode plate is sealed in a can together with an alkaline electrolyte, and distributed to the separator at the time of assembling the battery. A sealed alkaline storage battery, characterized in that the proportion of the electrolytic solution is 50% by weight or more based on the total amount of the electrolytic solution.
【請求項2】 完全放電時において、前記セパレータに
保持されている電解液の量は、電解液全量に対し30重
量%以上の量になる請求項1の密閉式アルカリ蓄電池。
2. The sealed alkaline storage battery according to claim 1, wherein the amount of the electrolytic solution held in the separator is 30% by weight or more based on the total amount of the electrolytic solution at the time of complete discharge.
【請求項3】 前記正極板が集電体に水酸化ニッケルを
主体とする活物質合剤を担持させて成り、前記負極板が
集電体に水素吸蔵合金を担持させて成り、前記セパレー
タが表面にスルホン化処理を施したポリオレフィン樹脂
繊維の不織布から成り、かつ前記電解液が水酸化カリウ
ムと水酸化リチウムと水酸化ナトリウムを同時に含む電
解液である請求項1の密閉式アルカリ蓄電池。
3. The positive electrode plate comprises a current collector carrying an active material mixture mainly composed of nickel hydroxide, the negative electrode plate comprises a current carrier carrying a hydrogen storage alloy, and the separator comprises: The sealed alkaline storage battery according to claim 1, which is made of a non-woven fabric of polyolefin resin fibers whose surface is subjected to a sulfonation treatment, and wherein the electrolytic solution contains potassium hydroxide, lithium hydroxide and sodium hydroxide at the same time.
JP7330861A 1995-11-14 1995-12-19 Sealed alkaline storage battery Pending JPH09199160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7330861A JPH09199160A (en) 1995-11-14 1995-12-19 Sealed alkaline storage battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-295682 1995-11-14
JP29568295 1995-11-14
JP7330861A JPH09199160A (en) 1995-11-14 1995-12-19 Sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH09199160A true JPH09199160A (en) 1997-07-31

Family

ID=26560371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7330861A Pending JPH09199160A (en) 1995-11-14 1995-12-19 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH09199160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259846A (en) * 2009-08-04 2009-11-05 Panasonic Corp Rectangular nickel-hydrogen storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259846A (en) * 2009-08-04 2009-11-05 Panasonic Corp Rectangular nickel-hydrogen storage battery

Similar Documents

Publication Publication Date Title
US7169508B2 (en) Method of manufacturing anode compositions for use in rechargeable electrochemical cells
JPH0855618A (en) Sealed alkaline storage battery
JPH09199160A (en) Sealed alkaline storage battery
JP3209071B2 (en) Alkaline storage battery
JP4007745B2 (en) Alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP3263603B2 (en) Alkaline storage battery
JPH1173973A (en) Lithium ion battery
JP4049484B2 (en) Sealed alkaline storage battery
JP3456217B2 (en) Nickel-based secondary battery
JP3558082B2 (en) Nickel-cadmium secondary battery
JPH0935718A (en) Alkaline secondary battery
JPH09199159A (en) Sealed alkaline storage battery
JP2755634B2 (en) Alkaline zinc storage battery
JP4531874B2 (en) Nickel metal hydride battery
JP3316301B2 (en) Activation method of sealed nickel-hydrogen storage battery
JP3101622B2 (en) Nickel-hydrogen alkaline storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JPH06295727A (en) Sealed alkaline storage battery
JP2952272B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH09171837A (en) Nickel-hydrogen secondary battery
JPH028419B2 (en)
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH05225971A (en) Manufacture of nickel electrode
JPH0536395A (en) Sealed alkaline accumulator