JP3316301B2 - Activation method of sealed nickel-hydrogen storage battery - Google Patents

Activation method of sealed nickel-hydrogen storage battery

Info

Publication number
JP3316301B2
JP3316301B2 JP07946794A JP7946794A JP3316301B2 JP 3316301 B2 JP3316301 B2 JP 3316301B2 JP 07946794 A JP07946794 A JP 07946794A JP 7946794 A JP7946794 A JP 7946794A JP 3316301 B2 JP3316301 B2 JP 3316301B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen storage
electrolyte
activation
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07946794A
Other languages
Japanese (ja)
Other versions
JPH07263021A (en
Inventor
礼造 前田
義人 近野
光造 野上
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07946794A priority Critical patent/JP3316301B2/en
Publication of JPH07263021A publication Critical patent/JPH07263021A/en
Application granted granted Critical
Publication of JP3316301B2 publication Critical patent/JP3316301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は水素吸蔵合金電極を負極
とする密閉型ニッケル−水素蓄電池の活性化処理方法に
係わり、詳しくは短時間で、効率良く水素吸蔵合金電極
を活性化することを可能にするための活性化処理時の電
解液量の改善に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for activating a sealed nickel-hydrogen storage battery using a hydrogen storage alloy electrode as a negative electrode, and more particularly to a method for efficiently activating a hydrogen storage alloy electrode in a short time. The present invention relates to an improvement in the amount of an electrolytic solution at the time of an activation process to make it possible.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
水素を可逆的に吸蔵及び放出することが可能な水素吸蔵
合金を負極に用いた密閉型ニッケル−水素蓄電池が、エ
ネルギー密度が高い、クリーンである、ニッケル−カド
ミウム蓄電池と電圧がほぼ同じであるために互換性を有
する、などの利点を有することから、次世代のアルカリ
蓄電池として注目されている。
2. Description of the Related Art In recent years,
Since the sealed nickel-hydrogen storage battery using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen for the negative electrode has a high energy density, is clean, and has substantially the same voltage as the nickel-cadmium storage battery. Because of its advantages such as compatibility with, it has attracted attention as a next-generation alkaline storage battery.

【0003】この密閉型ニッケル−水素蓄電池は、実用
に供す前に、予め充放電を行って、負極の水素吸蔵合金
を活性化させる必要がある。而して、従来は、この活性
化処理を全電解液量を注液した状態で行っていた。
[0003] Before this sealed nickel-hydrogen storage battery is put into practical use, it is necessary to perform charging and discharging in advance to activate the hydrogen storage alloy of the negative electrode. Conventionally, this activation process has been performed with the entire amount of the electrolyte injected.

【0004】しかしながら、この従来の活性化処理方法
には、活性化処理時の電解液量が多過ぎるために、高率
で急速充電した場合に電池内圧が上昇し、充電が十分に
なされなくなることに起因して、活性化が不十分とな
り、一方電池内圧の上昇を抑制して活性化を十分に行う
ために低率で充放電すると活性化処理に長時間を要する
という二律背反的な問題があった。
[0004] However, in this conventional activation treatment method, since the amount of the electrolyte during the activation treatment is too large, the internal pressure of the battery rises when the battery is rapidly charged at a high rate, and the battery cannot be sufficiently charged. As a result, the activation becomes insufficient, and on the other hand, there is a trade-off problem that the activation process takes a long time if charging and discharging at a low rate in order to suppress the rise in the internal pressure of the battery and perform the activation sufficiently. Was.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、密閉型ニッケル−
水素蓄電池内の水素吸蔵合金を、短時間で、効率良く活
性化するための方法を提供するにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sealed nickel-nickel alloy.
It is an object of the present invention to provide a method for efficiently activating a hydrogen storage alloy in a hydrogen storage battery in a short time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る密閉型ニッケル−水素蓄電池の活性化処
理方法(以下、「本発明方法」と称する。)は、最終的
に注液すべき全電解液量の35〜80体積%に相当する
電解液量で充放電を行うものである。
The method of activating a sealed nickel-metal hydride storage battery according to the present invention for achieving the above object (hereinafter referred to as "the method of the present invention") is intended to achieve the above object. The charge / discharge is performed with the amount of the electrolyte corresponding to 35 to 80% by volume of the total amount of the electrolyte to be performed.

【0007】本発明において活性化処理時の電解液量が
最終的に注液すべき全電解液量の35〜80体積%に規
制されるのは、35体積%未満であると、正負各電極板
に電解液が十分に行きわたらないために水素吸蔵合金電
極の活性化が不十分となり、一方80体積%を越える
と、短時間で電池内圧が上昇して充電不足となるために
活性化処理が不十分となったり(高率で充放電した場
合)、活性化に長時間を要したりするからである(低率
で充放電した場合)。
In the present invention, the amount of the electrolyte during the activation treatment is regulated to 35 to 80% by volume of the total amount of the electrolyte to be finally injected. Activation of the hydrogen storage alloy electrode becomes insufficient because the electrolyte does not sufficiently reach the plate. On the other hand, if it exceeds 80% by volume, the internal pressure of the battery rises in a short time, resulting in insufficient charging. Is insufficient (when charging and discharging at a high rate) or a long time is required for activation (when charging and discharging at a low rate).

【0008】本発明に係る活性化処理方法を実施した後
の残部の電解液(全電解液量の65〜20体積%)の注
液は、充放電サイクル開始前に行ってもよく、ある程度
充放電サイクルが経過した後に行ってもよい。また、こ
の活性化処理後の注液は、複数回に分けて行うことも可
能であり、活性化処理前に注液した電解液の濃度及び量
がある程度以上であれば水の補給だけで足りる場合もあ
る。
After the activation treatment method according to the present invention is carried out, the remaining electrolyte (65 to 20% by volume of the total electrolyte) may be injected before the start of the charge / discharge cycle. It may be performed after the discharge cycle has elapsed. Further, the injection after the activation treatment can be performed in a plurality of times. If the concentration and the amount of the electrolyte injected before the activation treatment are more than a certain level, it is sufficient to simply supply water. In some cases.

【0009】本発明に係る活性化処理方法は、電池内部
の空気の一部又は全部を酸素ガス又は水素ガスで置換し
た状態で行うことが好ましい。酸素ガス及び/又は水素
ガスで置換することにより、電池内部のこれらのガスの
分圧が高くなり、負極における酸素ガス吸収特性又は正
極における水素ガス吸収特性が向上し、これにより、電
池内圧の上昇が抑制され、活性化処理時の充電量が大き
くなるからである。酸素ガス及び/又は水素ガスでの電
池内部のガス置換量は、80〜100モル%が好まし
い。
The activation treatment method according to the present invention is preferably carried out in a state in which part or all of the air inside the battery is replaced with oxygen gas or hydrogen gas. By substituting with oxygen gas and / or hydrogen gas, the partial pressure of these gases inside the battery increases, and the oxygen gas absorption characteristics at the negative electrode or the hydrogen gas absorption characteristics at the positive electrode improve, thereby increasing the internal pressure of the battery. Is suppressed, and the charge amount during the activation process is increased. The gas replacement amount inside the battery with oxygen gas and / or hydrogen gas is preferably 80 to 100 mol%.

【0010】[0010]

【作用】活性化処理時の電解液量が全電解液量の80体
積%以下に規制されているので、活性化の際に電池系内
に発生するガスが電気化学的に速やかに消費されること
となり、電池内圧の上昇が抑制される。このため、活性
化処理における充電時の電流値を大きくすること、すな
わち急速充電することが可能となり、これにより活性化
処理を短時間で終了することができるとともに、充電深
度が深くなり水素吸蔵合金の活性化が極板内部まで十分
になされる。
The gas generated in the battery system at the time of activation is electrochemically quickly consumed because the amount of the electrolyte during the activation treatment is regulated to 80% by volume or less of the total amount of the electrolyte. As a result, an increase in battery internal pressure is suppressed. For this reason, it is possible to increase the current value at the time of charging in the activation process, that is, to perform rapid charging, whereby the activation process can be completed in a short time, and the charging depth is increased, so that the hydrogen storage alloy is increased. Is sufficiently activated to the inside of the electrode plate.

【0011】また、活性化処理時の電解液量が全電解液
量の35体積%以上に規制されているので、電解液不足
により、活性化が不十分となることもない。
Further, since the amount of the electrolyte during the activation treatment is regulated to 35% by volume or more of the total amount of the electrolyte, the activation is not insufficient due to the shortage of the electrolyte.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and may be carried out by appropriately changing the scope of the present invention. Is possible.

【0013】〔密閉型ニッケル−水素蓄電池の作製〕 (実施例1)市販のミッシュメタル(Mm)、ニッケ
ル、コバルト、アルミニウム及びマンガンを所定の割合
で秤量して混合し、アーク溶解炉を用いて溶融させた
後、冷却して、組成式:MmNi3.2 Co1.0 Al0.6
Mn0.2 で表される水素吸蔵合金塊を得、この合金塊を
機械的に粉砕して平均粒径50μmの水素吸蔵合金粉末
を作製した。
[Production of Sealed Nickel-Hydrogen Storage Battery] (Example 1) Commercially available misch metal (Mm), nickel, cobalt, aluminum and manganese are weighed and mixed at a predetermined ratio, and are mixed using an arc melting furnace. After being melted, it is cooled, and has a composition formula: MmNi 3.2 Co 1.0 Al 0.6
A hydrogen storage alloy lump represented by Mn 0.2 was obtained, and the alloy lump was mechanically pulverized to produce a hydrogen storage alloy powder having an average particle diameter of 50 μm.

【0014】次いで、この水素吸蔵合金粉末100重量
部に、0.5重量部のポリエチレンオキシドと分散媒と
しての水を加えて混練し、スラリーを調製した。
Next, 0.5 parts by weight of polyethylene oxide and water as a dispersion medium were added to 100 parts by weight of the hydrogen storage alloy powder and kneaded to prepare a slurry.

【0015】このスラリーを容器に流し込み、そのスラ
リー中にニッケルめっきしたパンチングメタルからなる
導電性の支持体を通過させて該支持体の両面に前記スラ
リーを塗布した後、乾燥し、加圧成形して、水素吸蔵合
金電極を作製した。
The slurry is poured into a container, passed through a conductive support made of punched metal plated with nickel, and the slurry is applied to both surfaces of the support. The slurry is dried and pressure-formed. Thus, a hydrogen storage alloy electrode was produced.

【0016】負極としての上記水素吸蔵合金電極と、公
知の焼結式ニッケル極とをポリアミド樹脂製の不織布か
らなるセパレータを介して渦巻き状に巻回して電極体と
し、この電極体を負極缶内に収納した後、水酸化カリウ
ム25重量%、水酸化ナトリウム2重量%及び水酸化リ
チウム1重量%を含む水溶液からなる電解液を2.00
cc(全電解液量3.50ccの約57%に相当)注液
し、封口して、AAサイズの密閉型ニッケル−水素蓄電
池A(理論容量:1000mAh)を組み立てた。
The above-mentioned hydrogen storage alloy electrode as a negative electrode and a well-known sintered nickel electrode are spirally wound through a separator made of a non-woven fabric made of a polyamide resin to form an electrode body. Then, an electrolyte containing an aqueous solution containing 25% by weight of potassium hydroxide, 2% by weight of sodium hydroxide and 1% by weight of lithium hydroxide was charged to 2.00%.
cc (corresponding to about 57% of the total electrolyte volume of 3.50 cc) was injected, sealed, and an AA size sealed nickel-hydrogen storage battery A (theoretical capacity: 1000 mAh) was assembled.

【0017】図1は、組み立てた密閉型ニッケル−水素
蓄電池Aの模式的断面図であり、同図に示す電池Aは、
正極1及び負極2、これら両電極を離間するセパレータ
3、正極リード4、負極リード5、正極外部端子6、負
極缶7などからなる。負極缶7の底面には、活性化処理
後に電解液を補液するための先端にゴム栓8を有する補
液用パイプ9が取り付けられており、ゴム栓8にはテー
プ10が張り付けられてゴム栓8が補液用パイプ9から
脱落しないようにしてある。正極1及び負極2はセパレ
ータ3を介して渦巻き状に巻回されて負極缶7内に収納
されており、正極1は正極リード4を介して正極外部端
子6に、負極2は負極リード5を介して負極缶7に接続
され、密閉型ニッケル−水素蓄電池Aの内部に生じた化
学エネルギーを電気エネルギーとして外部へ取り出し得
るようになっている。
FIG. 1 is a schematic sectional view of an assembled sealed nickel-hydrogen storage battery A. The battery A shown in FIG.
It comprises a positive electrode 1 and a negative electrode 2, a separator 3, which separates these electrodes, a positive electrode lead 4, a negative electrode lead 5, a positive electrode external terminal 6, a negative electrode can 7, and the like. On the bottom surface of the negative electrode can 7, a replacement fluid pipe 9 having a rubber stopper 8 at the tip for replenishing the electrolyte solution after the activation treatment is attached. Is prevented from dropping from the replacement fluid pipe 9. The positive electrode 1 and the negative electrode 2 are spirally wound via a separator 3 and housed in a negative electrode can 7. The positive electrode 1 is connected to a positive electrode external terminal 6 via a positive electrode lead 4, and the negative electrode 2 is connected to a negative electrode lead 5. The battery is connected to the negative electrode can 7 via the anode, so that the chemical energy generated inside the sealed nickel-hydrogen storage battery A can be taken out as electric energy.

【0018】この密閉型ニッケル−水素蓄電池Aについ
て、補液用パイプ9のゴム栓8を取り外して、替わりに
圧力センサーを取り付け、0.05Cで、30時間以内
に電池内圧が2.5気圧に達しなかった場合は30時
間、又は、30時間以内に電池内圧が2.5気圧に達し
た場合は電池内圧が2.5気圧に達するまで充電し、6
0°Cで24時間休止し、0.1Cで1Vまで放電し
て、活性化処理を行った。次いで、電池を上下逆にして
圧力センサーを取り外し、電解液を1.50cc補液し
た後、補液用パイプ9にゴム栓8を取り付けて封口し
た。この電池を電池A1と記す。
With respect to this sealed nickel-hydrogen storage battery A, the rubber plug 8 of the replacement fluid pipe 9 is removed, and a pressure sensor is attached instead. At 0.05 C, the battery internal pressure reaches 2.5 atm within 30 hours. If the battery pressure did not reach 30 hours, or if the battery pressure reached 2.5 atm within 30 hours, charge the battery until the battery pressure reached 2.5 atm.
After halting at 0 ° C. for 24 hours, discharge was performed at 0.1 C to 1 V to perform an activation process. Then, the battery was turned upside down, the pressure sensor was removed, and 1.50 cc of the electrolyte solution was replaced. Then, a rubber stopper 8 was attached to the replacement solution pipe 9 and sealed. This battery is referred to as battery A1.

【0019】(実施例2)実施例1と同様にして密閉型
ニッケル−水素蓄電池Aの活性化処理を行った。ただ
し、活性化処理後の電解液(1.50cc)の補液を、
充放電サイクル開始前ではなく、500サイクル目に行
った。この電池を電池A2と記す。
(Example 2) In the same manner as in Example 1, activation of the sealed nickel-hydrogen storage battery A was performed. However, the replacement solution of the electrolyte solution after activation (1.50 cc)
The test was performed not at the start of the charge / discharge cycle but at the 500th cycle. This battery is referred to as battery A2.

【0020】(実施例3)電解液の注液後であって、活
性化処理する前に、電池缶内を酸素ガスで置換したこと
以外は実施例1と同様にして、密閉型ニッケル−水素蓄
電池Aの活性化処理を行った。この電池を電池A3と記
す。
Example 3 A sealed nickel-hydrogen battery was prepared in the same manner as in Example 1 except that the inside of the battery can was replaced with oxygen gas after the injection of the electrolytic solution and before the activation treatment. The activation process of the storage battery A was performed. This battery is referred to as battery A3.

【0021】(比較例1)実施例1と同様にして密閉型
ニッケル−水素蓄電池Aの活性化処理を行った。ただ
し、活性化処理後の電解液(1.50cc)の補液を行
わなかった。この電池を電池B1と記す。
(Comparative Example 1) The activation process of the sealed nickel-hydrogen storage battery A was performed in the same manner as in Example 1. However, replacement of the electrolytic solution (1.50 cc) after the activation treatment was not performed. This battery is referred to as battery B1.

【0022】(比較例2)全電解液(3.50cc)で
活性化処理したこと以外は実施例1と同様にして密閉型
ニッケル−水素蓄電池Aの活性化処理を行った。この電
池を電池B2と記す。
(Comparative Example 2) The activation process of the sealed nickel-hydrogen storage battery A was performed in the same manner as in Example 1 except that the activation process was performed with the whole electrolyte (3.50 cc). This battery is referred to as battery B2.

【0023】〔活性化処理における充電時の電池内圧〕
電池A1〜A3,B1及びB2について、活性化処理に
おける充電時の電池内圧の上昇度合いを調べた。結果を
図2に示す。図2は、縦軸に電池内圧(気圧)を、また
横軸に充電容量(Ah)をとって示したグラフであり、
同図に示すように、全電解液量の一部(約57%)を用
いて活性化処理した電池A1,A2,B1では充電容量
が約1.00Ahに達するまでは電池内圧の上昇が緩や
かであり1.20Ah程度まで充電可能であるのに対し
て、電解液の全量を用いて活性化処理した電池B2で
は、充電開始直後から電池内圧が急上昇するため充電が
十分に行われない。これは、電池B2では活性化処理時
の電解液量が多いため、充電時に正極で発生した酸素ガ
スが電解液が多いためにセパレータを通過しにくいため
である。また、電池内部のガスを酸素ガスで置換して活
性化処理した電池A3では、活性化処理時の電池内圧の
上昇が最も緩やかである。電池内部の酸素ガスの分圧が
高くなったため負極での酸素ガス消費反応が速やかに進
行したことによる。この電池A3では、活性化処理時の
電池内圧の上昇が緩やかであるため、活性化処理時の充
電を簡便な時間カット方式で行うことができる。
[Battery internal pressure during charging in activation process]
Regarding the batteries A1 to A3, B1 and B2, the degree of increase in the battery internal pressure during charging in the activation process was examined. The results are shown in FIG. FIG. 2 is a graph showing the battery internal pressure (atmospheric pressure) on the vertical axis and the charging capacity (Ah) on the horizontal axis.
As shown in the figure, in the batteries A1, A2, and B1 activated by using a part (about 57%) of the total amount of the electrolyte, the internal pressure of the battery gradually increases until the charging capacity reaches about 1.00 Ah. In contrast, the battery can be charged to about 1.20 Ah, whereas the battery B2, which has been activated by using the entire amount of the electrolytic solution, does not charge sufficiently because the internal pressure of the battery rapidly increases immediately after the start of charging. This is because, in the battery B2, the amount of the electrolyte during the activation process is large, and the oxygen gas generated at the positive electrode during charging is difficult to pass through the separator due to the large amount of the electrolyte. Further, in the battery A3 in which the gas inside the battery was replaced with oxygen gas and the activation process was performed, the internal pressure of the battery during the activation process rose most slowly. This is because the oxygen gas consumption reaction at the negative electrode progressed quickly because the partial pressure of oxygen gas inside the battery increased. In the battery A3, the rise in the internal pressure of the battery during the activation process is moderate, so that the charging during the activation process can be performed by a simple time-cut method.

【0024】〔活性化処理後の初期(1サイクル目)の
放電容量〕電池A1〜A3,B1及びB2について、
0.1Cで、12時間以内に電池内圧が2.5気圧に達
しなかった場合は12時間、又は、12時間以内に電池
内圧が2.5気圧に達した場合は電池内圧が2.5気圧
に達するまで充電した後、0.1Cで1Vまで放電し
て、活性化処理後の初期の放電容量を調べた。結果を表
1に示す。
[Initial (First Cycle) Discharge Capacity After Activation] For batteries A1 to A3, B1 and B2,
At 0.1C, 12 hours if the battery internal pressure does not reach 2.5 atm within 12 hours, or 2.5 atm if the battery internal pressure reaches 2.5 atm within 12 hours , And then discharged to 1 V at 0.1 C, and the initial discharge capacity after the activation treatment was examined. Table 1 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、活性化処理における充
電が1.20Ah程度まで行われ、水素吸蔵合金電極の
活性化が十分になされた電池A1,A2,B1では、活
性化処理後の初期の放電容量が1.00Ah以上となっ
ているのに対して、活性化処理における充電が十分に行
われず、水素吸蔵合金電極の活性化が不十分であった電
池B2では、活性化処理後の初期の放電容量が0.65
5Ahと小さい。また、電池内圧の上昇が小さかったた
めに活性化処理における充電が1.50Ah以上なされ
た電池A3では、活性化処理後の初期の放電容量が1.
030Ahと最も大きい。
As shown in Table 1, in the batteries A1, A2, and B1 in which the charging in the activation process was performed up to about 1.20 Ah and the activation of the hydrogen storage alloy electrode was sufficiently performed, the initial state after the activation process was performed. Is not more than 1.00 Ah, whereas the battery in B2, in which the charging in the activation process was not sufficiently performed and the activation of the hydrogen storage alloy electrode was insufficient, was performed after the activation process. The initial discharge capacity is 0.65
It is as small as 5Ah. Further, in the battery A3 in which the charging in the activation process was performed at 1.50 Ah or more because the rise in the battery internal pressure was small, the initial discharge capacity after the activation process was 1.
030 Ah, which is the largest.

【0027】〔充放電サイクル特性〕本発明電池A1〜
A3及び比較電池B1,B2について、2Cで11分間
充電し、1時間休止し、2Cで1Vまで放電した後、1
時間休止する工程を1サイクルとするサイクル試験を行
って、50サイクル毎の各電池の放電容量を求めた。5
0サイクル毎の各電池の放電容量は、0.1Cで、12
時間以内に電池内圧が2.5気圧に達しなかった場合は
12時間、又は、12時間以内に電池内圧が2.5気圧
に達した場合は電池内圧が2.5気圧に達するまで充電
した後、0.1Cで1Vまで放電して求めたものであ
る。結果を図3に、また1001サイクル目の放電容量
を先の表1に示す。
[Charge / Discharge Cycle Characteristics]
A3 and comparative batteries B1 and B2 were charged at 2C for 11 minutes, paused for 1 hour, discharged at 2C to 1V,
A cycle test was performed in which the time-pausing step was defined as one cycle, and the discharge capacity of each battery was determined every 50 cycles. 5
The discharge capacity of each battery at every 0 cycle is 0.1 C
12 hours if the battery internal pressure does not reach 2.5 atm within the time, or after charging the battery internal pressure reaches 2.5 atm if the battery internal pressure reaches 2.5 atm within 12 hours , And 0.1 C and discharged to 1 V. FIG. 3 shows the results, and Table 1 shows the discharge capacity at the 1001th cycle.

【0028】図3及び表1に示すように、電池B1で
は、500サイクル経過後に容量低下が始まり、初期の
放電容量1.005Ahが1001サイクル目には0.
675Ahにまで低下しており、また電池B2では、初
期の放電容量が0.655Ah、1001サイクル目の
放電容量が0.730Ahと、いずれも低い。これに対
して、電池A3では、1001サイクル目においても電
池容量が全く低下しておらず放電容量が1.030Ah
に維持されている。また、電池A1では、充放電サイク
ルの経過とともに放電容量が漸増し500サイクル目以
降は電池A3の放電容量と同等になっており、500サ
イクル目に電解液を補液した電池A2では、補液前の放
電容量は初期の放電容量よりも若干低下していたが(補
液前は電池B1と全く同じ充放電サイクル特性を示
す)、補液後次第に容量回復してやがて電池A3の放電
容量と同等になった。
As shown in FIG. 3 and Table 1, the capacity of the battery B1 begins to decrease after 500 cycles, and the initial discharge capacity of 1.005 Ah reaches 0.1 at the 1001th cycle.
675 Ah, and in the battery B2, the initial discharge capacity is 0.655 Ah, and the discharge capacity in the 1001 cycle is 0.730 Ah, which are all low. On the other hand, in the battery A3, even at the 1001th cycle, the battery capacity did not decrease at all and the discharge capacity was 1.030 Ah.
Has been maintained. In the battery A1, the discharge capacity gradually increased with the lapse of the charge / discharge cycle, and became equal to the discharge capacity of the battery A3 after the 500th cycle. In the battery A2 in which the electrolyte was replaced at the 500th cycle, the battery A2 before the replacement was used. Although the discharge capacity was slightly lower than the initial discharge capacity (showing exactly the same charge / discharge cycle characteristics as the battery B1 before the replacement), the capacity gradually recovered after the replacement and eventually became equivalent to the discharge capacity of the battery A3. .

【0029】このように、活性化処理時に少量の電解液
を用い、活性化処理後に補液しない場合(電池B1)
は、初期の放電容量は大きいもののサイクル寿命が短
く、一方活性化処理時に多量の電解液を用い、活性化処
理後に補液しない場合(電池B2)は、サイクル寿命は
長いものの放電容量が終始小さくなることから、活性化
処理を全電解液の一部で実施し、残部の電解液は充放電
サイクル開始後を含む活性化処理後に補液することが、
放電容量が大きく、しかもサイクル寿命の長い密閉型ニ
ッケル−水素蓄電池を得る上で、必要であることが分か
る。
As described above, in the case where a small amount of the electrolytic solution is used during the activation process and the replacement is not performed after the activation process (battery B1)
Means that although the initial discharge capacity is large, the cycle life is short, while a large amount of electrolyte is used at the time of the activation treatment and no replenishment is performed after the activation treatment (battery B2), the discharge capacity is long but the discharge capacity becomes small throughout. Therefore, the activation treatment is performed on a part of the entire electrolyte, and the remaining electrolyte is replaced after the activation treatment including after the start of the charge / discharge cycle,
It can be seen that this is necessary for obtaining a sealed nickel-hydrogen storage battery having a large discharge capacity and a long cycle life.

【0030】〔活性化処理時の電解液量〕活性化処理時
の電解液量及び活性化処理後(充放電サイクル開始前)
の補液量を種々変えたこと以外は実施例1と同様にし
て、密閉型ニッケル−水素蓄電池C1〜C9を作製し、
先の〔充放電サイクル特性〕の項で述べたと同じ条件で
サイクル試験を行い、各電池の1001サイクル目の放
電容量を調べた。また、活性化処理時の電解液量を2.
75ccとし、活性化処理後(充放電サイクル開始前)
に純水を0.75cc補液した電池C10についても、
1001サイクル目の放電容量を調べた。結果を表2に
示す。
[Amount of Electrolyte Solution During Activation Process] Amount of electrolyte solution during activation process and after activation process (before start of charge / discharge cycle)
In the same manner as in Example 1 except that the replacement fluid amount was variously changed, sealed nickel-hydrogen storage batteries C1 to C9 were produced.
A cycle test was performed under the same conditions as described in the section of [Charge / Discharge Cycle Characteristics], and the discharge capacity at the 1001th cycle of each battery was examined. In addition, the amount of the electrolytic solution at the time of the activation treatment is set to 2.
75 cc, after activation (before start of charge / discharge cycle)
The battery C10 in which 0.75 cc of pure water was supplemented to
The discharge capacity at the 1001th cycle was examined. Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示すように、最終的に注液すべき全
電解液量(3.50cc)の35〜80体積%の電解液
量で活性化処理を行った場合には、1001サイクル目
の放電容量が0.95〜1.02Ahと大きいのに対し
て、この範囲を外れると同放電容量が小さくなる。この
ことから、サイクル寿命の長い電池を得る上で、全電解
液量の35〜80体積%の電解液量で活性化処理する必
要があることが分かる。
As shown in Table 2, when the activation treatment was performed with an electrolyte amount of 35 to 80% by volume of the total electrolyte amount (3.50 cc) to be finally injected, the 1001 cycle Has a large discharge capacity of 0.95 to 1.02 Ah, but outside of this range, the discharge capacity decreases. This indicates that in order to obtain a battery having a long cycle life, it is necessary to perform the activation treatment with an electrolyte amount of 35 to 80% by volume of the total electrolyte amount.

【0033】また、活性化処理後に純水を0.75cc
補液した電池C10の1001サイクル目の放電容量が
1.00Ahであり、電解液を0.75cc補液した電
池C8の放電容量(1.02Ah)とほぼ同等であるこ
とから、この場合活性化処理後の補液は純水によること
も可能であることが分かる。
After the activation treatment, 0.75 cc of pure water is added.
Since the discharge capacity at the 1001 cycle of the refilled battery C10 is 1.00 Ah, which is almost equivalent to the discharge capacity (1.02 Ah) of the battery C8 replenished with 0.75 cc of the electrolyte, in this case, after the activation treatment, It can be seen that the replacement fluid can be made of pure water.

【0034】[0034]

【発明の効果】活性化処理を全電解液量の一部で行うこ
ととしているので、活性化処理における充電時に電池内
圧が上昇しにくく、水素吸蔵合金電極を十分に活性化し
得る。また、活性化処理後において残部の電解液又は水
が補液されるので、サイクル寿命の短命化を招くことも
ない。
According to the present invention, since the activation treatment is performed with a part of the total amount of the electrolyte, the internal pressure of the battery hardly rises during charging in the activation treatment, and the hydrogen storage alloy electrode can be sufficiently activated. In addition, the remaining electrolyte or water is replaced after the activation treatment, so that the cycle life is not shortened.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で組み立てた密閉型ニッケル−水素蓄電
池の模式的断面図である。
FIG. 1 is a schematic cross-sectional view of a sealed nickel-hydrogen storage battery assembled in an example.

【図2】活性化処理時の充電容量と電池内圧との関係を
示すグラフである。
FIG. 2 is a graph showing a relationship between a charging capacity and a battery internal pressure during an activation process.

【図3】本発明電池及び比較電池のサイクル特性を示す
グラフである。
FIG. 3 is a graph showing cycle characteristics of the battery of the present invention and a comparative battery.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 昭51−38632(JP,A) 特開 昭61−7574(JP,A) 特開 昭61−7575(JP,A) 特開 昭59−132574(JP,A) 特開 平3−246871(JP,A) 特開 平4−82170(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/30 H01M 10/44 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Nishio, Inventor 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-2, Keihanhondori, Moriguchi-shi, Osaka No. 5 Inside Sanyo Electric Co., Ltd. (56) References JP-A-51-38632 (JP, A) JP-A-61-7574 (JP, A) JP-A-61-7575 (JP, A) JP-A-59-7575 132574 (JP, A) JP-A-3-246871 (JP, A) JP-A-4-82170 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/30 H01M 10 / 44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金電極を負極とする密閉型ニッ
ケル−水素蓄電池の活性化処理方法であって、最終的に
注液すべき全電解液量の35〜80体積%に相当する電
解液量で充放電を行うことを特徴とする活性化処理方
法。
1. A method for activating a sealed nickel-hydrogen storage battery having a hydrogen storage alloy electrode as a negative electrode, wherein the electrolyte corresponds to 35 to 80% by volume of the total electrolyte to be finally injected. An activation treatment method characterized by performing charge / discharge in an amount.
【請求項2】電池内部のガスを酸素ガス及び/又は水素
ガスで一部又は全部置換して充放電を行う請求項1記載
の活性化処理方法。
2. The activation treatment method according to claim 1, wherein charging and discharging are performed by partially or entirely replacing the gas inside the battery with oxygen gas and / or hydrogen gas.
JP07946794A 1994-03-25 1994-03-25 Activation method of sealed nickel-hydrogen storage battery Expired - Fee Related JP3316301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07946794A JP3316301B2 (en) 1994-03-25 1994-03-25 Activation method of sealed nickel-hydrogen storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07946794A JP3316301B2 (en) 1994-03-25 1994-03-25 Activation method of sealed nickel-hydrogen storage battery

Publications (2)

Publication Number Publication Date
JPH07263021A JPH07263021A (en) 1995-10-13
JP3316301B2 true JP3316301B2 (en) 2002-08-19

Family

ID=13690697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07946794A Expired - Fee Related JP3316301B2 (en) 1994-03-25 1994-03-25 Activation method of sealed nickel-hydrogen storage battery

Country Status (1)

Country Link
JP (1) JP3316301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112072188B (en) * 2020-09-25 2022-09-20 包头昊明稀土新电源科技有限公司 Nickel-hydrogen battery pack for railway vehicle and operation method thereof

Also Published As

Publication number Publication date
JPH07263021A (en) 1995-10-13

Similar Documents

Publication Publication Date Title
JPH0645003A (en) Manufacture of sealed storage battery by using hydrogen storage electrode and hydrogen storage alloy for this electrode
JP3482606B2 (en) Sealed alkaline storage battery
JP3389252B2 (en) Alkaline storage battery and charging method thereof
JP3079303B2 (en) Activation method of alkaline secondary battery
JP3316301B2 (en) Activation method of sealed nickel-hydrogen storage battery
JPH09115543A (en) Alkaline storage battery
JP3183073B2 (en) Active material for nickel electrode and method for producing the same
JP2537084B2 (en) Hydrogen storage alloy electrode
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP4049484B2 (en) Sealed alkaline storage battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3362400B2 (en) Nickel-metal hydride storage battery
JPH06163072A (en) Metal-hydride secondary battery
JPH0837022A (en) Alkaline storage battery
JP2940952B2 (en) Method for manufacturing nickel-hydrogen alkaline storage battery
JPH08185864A (en) Electrode plate for alkaline storage battery and its manufacture
JP2000106184A (en) Nickel hydroxide electrode for alkaline storage battery, and the alkaline storage battery using this electrode
JPH1021904A (en) Alkaline storage battery
JP2591987B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JPH0945323A (en) Active material for alkaline secondary battery and its manufacture and electrode for alkaline secondary battery and alkaline secondary battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees