JP2017091673A - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP2017091673A
JP2017091673A JP2015217337A JP2015217337A JP2017091673A JP 2017091673 A JP2017091673 A JP 2017091673A JP 2015217337 A JP2015217337 A JP 2015217337A JP 2015217337 A JP2015217337 A JP 2015217337A JP 2017091673 A JP2017091673 A JP 2017091673A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
active material
porous
porous current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015217337A
Other languages
Japanese (ja)
Inventor
大助 星野
Daisuke Hoshino
大助 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2015217337A priority Critical patent/JP2017091673A/en
Publication of JP2017091673A publication Critical patent/JP2017091673A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery from which a large current can be taken out easily, while ensuring a high energy density.SOLUTION: The collector 11A of the positive electrode plate 11 of a lithium ion battery is a porous collector of porous structure, the porous collector 11A is filled with a positive electrode active material, a conductive material and a binder composing a positive electrode active material layer 11B, and on the surface of the porous collector 11A, a carbon coat layer 17 contributive to reduction of electrical resistance between the porous collector 11A and positive electrode active material layer 11B is provided.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン電池に関する。   The present invention relates to a lithium ion battery.

リチウムイオン電池には、正極に多孔質アルミニウム集電体を用いることによって、金属箔を用いた場合と比べて多量の活物質を充填可能にした構成が提案されている(例えば、特許文献1、2)。しかし、大電流を取り出すことが難しく、用途が限定される。
また、正極に金属箔を用いたリチウムイオン電池には、金属箔の片面又は両面に、導電性粒子を含む層を塗布して導電性粒子の被覆率を50〜100%にし、この層を有する面に電極活物質を含む層を設けた構成が提案されている(例えば、特許文献3)。しかし、高エネルギー密度を求め、厚塗りしていくと特性変化が顕著であり、一定以上の高エネルギー密度化は困難であった。
A lithium ion battery has been proposed in which a porous aluminum current collector is used as a positive electrode so that a larger amount of active material can be filled than when a metal foil is used (for example, Patent Document 1, 2). However, it is difficult to extract a large current, and the application is limited.
Further, in a lithium ion battery using a metal foil for the positive electrode, a layer containing conductive particles is applied to one or both sides of the metal foil so that the coverage of the conductive particles is 50 to 100%, and this layer is included. The structure which provided the layer containing an electrode active material in the surface is proposed (for example, patent document 3). However, when a high energy density is obtained and thick coating is performed, the characteristic change is remarkable, and it is difficult to increase the energy density beyond a certain level.

特開2013−140745号公報JP2013-140745A 特開2014−022150号公報JP, 2014-022150, A 特表2012−096189号公報Special table 2012-096189 gazette

そこで、本発明は、大電流を取り出し易く、且つ、高エネルギー密度化が可能なリチウムイオン電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a lithium ion battery that can easily extract a large current and can achieve high energy density.

上記目的を達成するために、本発明は、集電体と活物質層とを有する電極を用いたリチウムイオン電池において、前記集電体は、多孔構造の多孔質集電体であり、前記多孔質集電体には、前記活物質層を構成する活物質、導電材及び結着材が充填され、前記多孔質集電体の表面には、予め導電性を有する層が設けられていることを特徴とする。   In order to achieve the above object, the present invention provides a lithium ion battery using an electrode having a current collector and an active material layer, wherein the current collector is a porous current collector having a porous structure, and the porous The current collector is filled with an active material, a conductive material, and a binder constituting the active material layer, and a conductive layer is provided in advance on the surface of the porous current collector. It is characterized by.

上記構成において、前記多孔質集電体は、三次元多孔構造でも良い。
また、上記構成において、前記導電性を有する層はカーボンコート層でも良い。
In the above configuration, the porous current collector may have a three-dimensional porous structure.
In the above structure, the conductive layer may be a carbon coat layer.

本発明は、リチウムイオン電池の電極の集電体が多孔構造の多孔質集電体であり、前記多孔質集電体には、活物質層を構成する活物質、導電材及び結着材が充填され、前記多孔質集電体の表面には、予め導電性を有する層が設けられているので、大電流を取り出し易く、且つ、高エネルギー密度化が可能になる。   In the present invention, a current collector of an electrode of a lithium ion battery is a porous current collector having a porous structure, and the porous current collector includes an active material, a conductive material, and a binder constituting an active material layer. Since a conductive layer is provided in advance on the surface of the porous current collector, a large current can be easily taken out and a high energy density can be achieved.

本発明の実施形態に係るリチウムイオン電池の電極群構成を模式的に示した図であり、(A)は電極群の断面構造、(B)は図1(A)の一部拡大図である。It is the figure which showed typically the electrode group structure of the lithium ion battery which concerns on embodiment of this invention, (A) is sectional structure of an electrode group, (B) is the elements on larger scale of FIG. 1 (A). .

図1は本発明の実施形態に係るリチウムイオン電池の電極群構成を模式的に示した図であり、図1(A)は電極群の断面構造、図1(B)は図1(A)の一部を拡大した図である。
このリチウムイオン電池10は、正極の電極(以下、「正極板」)11と、負極の電極(以下、「負極板」)13と、正極板11と負極板13との間に介挿されるセパレータ15とを備えている。正極板11は、多孔構造を有する多孔質集電体11Aに、正極活物質層11Bを構成する正極活物質、導電材及び結着材を溶媒に分散してなるスラリー(以下、「正極スラリー」)を充填することによって、高充填量電極に形成されている。負極板13は、銅等の金属材を基材とする金属箔からなる集電体13Aの表面に、負極活物質層13Bを構成する負極活物質、導電材及び結着材を溶媒に分散してなるスラリー(以下、「負極スラリー」)を設けた電極に形成されている。
FIG. 1 is a diagram schematically showing a configuration of an electrode group of a lithium ion battery according to an embodiment of the present invention. FIG. 1 (A) is a sectional structure of the electrode group, and FIG. 1 (B) is a diagram of FIG. It is the figure which expanded a part of.
The lithium ion battery 10 includes a positive electrode (hereinafter “positive electrode plate”) 11, a negative electrode (hereinafter “negative electrode plate”) 13, and a separator interposed between the positive electrode plate 11 and the negative electrode plate 13. 15. The positive electrode plate 11 is a slurry in which a positive electrode active material, a conductive material, and a binder constituting the positive electrode active material layer 11B are dispersed in a solvent in a porous current collector 11A having a porous structure (hereinafter referred to as “positive electrode slurry”). ) To form a high filling electrode. The negative electrode plate 13 has a negative electrode active material, a conductive material and a binder constituting the negative electrode active material layer 13B dispersed in a solvent on the surface of a current collector 13A made of a metal foil based on a metal material such as copper. Formed on an electrode provided with a slurry (hereinafter referred to as “negative electrode slurry”).

正極板11は、多孔質集電体11Aと、正極活物質層11Bを構成する正極スラリーとの間に、予めカーボンコート層17を有している。
この正極板11の製造工程を時系列順に説明すると、多孔質集電体11Aの表面に、導電性を有する層として機能するカーボンコート層17を形成する層形成ステップと、カーボンコート層17が形成された多孔質集電体11Aの孔に、正極活物質層11Bを構成する正極スラリーを充填する充填ステップと、多孔質集電体11Aを乾燥させる乾燥ステップと、多孔質集電体11Aをプレスするプレスステップとである。
The positive electrode plate 11 has a carbon coat layer 17 in advance between the porous current collector 11A and the positive electrode slurry constituting the positive electrode active material layer 11B.
The manufacturing process of the positive electrode plate 11 will be described in chronological order. A layer forming step for forming a carbon coat layer 17 functioning as a conductive layer on the surface of the porous current collector 11A, and a carbon coat layer 17 are formed. Filling the pores of the porous current collector 11A with the positive electrode slurry constituting the positive electrode active material layer 11B, the drying step for drying the porous current collector 11A, and pressing the porous current collector 11A Press step.

発明者等の検討によれば、上記乾燥ステップにより、正極活物質層11B内の、導電材及び結着材の存在比率に濃度勾配が生じ、正極活物質層11Bと多孔質集電体11Aとの間に悪影響が生じることがある。例えば、導電材及び結着材の存在比率は、乾燥により多孔質集電体11Aから離れた領域が相対的に高くなり易い。また、多孔質集電体11Aと正極活物質層11Bとを確実に接触させることは難しいので、接触しない箇所があると、多孔質集電体11Aと正極活物質層11Bとの間の導電性に不利となる。   According to studies by the inventors, the drying step causes a concentration gradient in the abundance ratio of the conductive material and the binder in the positive electrode active material layer 11B, and the positive electrode active material layer 11B and the porous current collector 11A Adverse effects may occur during For example, the abundance ratio of the conductive material and the binder tends to be relatively high in a region away from the porous current collector 11A due to drying. In addition, since it is difficult to reliably contact the porous current collector 11A and the positive electrode active material layer 11B, the conductivity between the porous current collector 11A and the positive electrode active material layer 11B is present when there is no contact. Disadvantageous.

これに対し、本実施形態のリチウムイオン電池10は、多孔質集電体11Aの表面にカーボンコート層17を有するので、カーボンコート層17が多孔質集電体11Aと正極活物質層11Bとの間に位置し、多孔質集電体11Aと正極活物質層11Bとの間の電気抵抗の低減に寄与する。従って、電気抵抗を低減させることが可能になり、大電流を流し易くなる。しかも、多孔質集電体11Aを用いるので、正極活物質などを多く充填することが可能であり、高エネルギー密度化を図り易くなる。これらにより、本実施形態のリチウムイオン電池10は、大電流を取り出し易く、且つ、高エネルギー密度化に好適である。   On the other hand, since the lithium ion battery 10 of this embodiment has the carbon coat layer 17 on the surface of the porous current collector 11A, the carbon coat layer 17 is composed of the porous current collector 11A and the positive electrode active material layer 11B. It is located in between, and contributes to a reduction in electrical resistance between the porous current collector 11A and the positive electrode active material layer 11B. Accordingly, it is possible to reduce the electric resistance and to easily flow a large current. In addition, since the porous current collector 11A is used, it is possible to fill a large amount of the positive electrode active material and the like, and it is easy to achieve high energy density. Accordingly, the lithium ion battery 10 of the present embodiment is easy to extract a large current and is suitable for increasing the energy density.

ここで、多孔質集電体11Aに正極スラリーを充填しただけでは、必要な塗膜密度が得られず、出力・サイクル特性が低下する可能性がある。
発明者等の検討によれば、多孔質集電体11Aの表面にカーボンコート層17を付与した場合には、後述する知見を得ている。
一般的なアルミニウム箔上に活物質などを塗工した電極と比べ、より厚く塗工しても特性を維持できる。また、正極スラリー中の導電材の比率を下げても特性を維持できる。また、正極スラリー中の結着材の比率を下げても特性を維持でき、塗膜密度を上げなくても特性が維持できる。従って、出力・サイクル特性の低下を抑えやすくなる。
Here, if the porous current collector 11A is simply filled with the positive electrode slurry, the required coating film density cannot be obtained, and the output / cycle characteristics may be deteriorated.
According to the study by the inventors, when the carbon coat layer 17 is provided on the surface of the porous current collector 11A, the following knowledge has been obtained.
Compared with an electrode in which an active material or the like is coated on a general aluminum foil, the characteristics can be maintained even if the coating is made thicker. Further, the characteristics can be maintained even if the ratio of the conductive material in the positive electrode slurry is lowered. Further, the characteristics can be maintained even when the ratio of the binder in the positive electrode slurry is lowered, and the characteristics can be maintained without increasing the coating film density. Therefore, it is easy to suppress a decrease in output / cycle characteristics.

以下、正極板11の製法や性質などを詳述する。
1.1(正極板の多孔質集電体)
多孔質集電体11Aには、例えば、アルミニウム合金を基材とする多孔質アルミニウム集電体が用いられる。
この多孔質集電体11Aは、所定の体積割合で混合したアルミニウム粉末(基材金属粉末に相当)と支持粉末の混合粉末をアルミニウム板(基材金属板に相当)と複合化して加圧成形した後に、その成形体を不活性雰囲気中で熱処理してアルミニウム粉末又はアルミニウム板から液相を生じさせ、アルミニウム粉末同士及びアルミニウム粉末とアルミニウム板とを接合し、最終的に支持粉末を除去することで得られる。
これにより、多孔質集電体11Aは、支持粉末が除去された多数の空隙と、その空隙の周囲を形成する接合したアルミニウム粉末の結合金属粉末壁とからなる三次元多孔構造となる。また、結合金属粉末壁には多くの微細な孔が形成される。これにより、空隙同士がこれら微細孔によって連結したオープンセル型の構造となる。
Hereinafter, the production method and properties of the positive electrode plate 11 will be described in detail.
1.1 (Porous current collector of positive electrode plate)
As the porous current collector 11A, for example, a porous aluminum current collector based on an aluminum alloy is used.
This porous current collector 11A is formed by press-molding a mixed powder of aluminum powder (corresponding to a base metal powder) mixed with a predetermined volume ratio and a supporting powder with an aluminum plate (corresponding to a base metal plate). After that, the molded body is heat-treated in an inert atmosphere to form a liquid phase from the aluminum powder or the aluminum plate, and the aluminum powder and the aluminum powder and the aluminum plate are joined together, and finally the supporting powder is removed. It is obtained by.
As a result, the porous current collector 11A has a three-dimensional porous structure including a large number of voids from which the support powder has been removed, and bonded metal powder walls of joined aluminum powder that form the periphery of the voids. Moreover, many fine holes are formed in the bonded metal powder wall. Thereby, it becomes an open cell type structure in which voids are connected by these fine holes.

多孔質集電体11Aの空孔率は、80%以上、95%以下に設定され、好ましくは85%以上に設定される。この範囲にすることより、多孔質集電体11Aの孔内に多くの正極スラリーを充填でき、電池の高出力化、及び高容量化に有利となる。   The porosity of the porous current collector 11A is set to 80% or more and 95% or less, preferably 85% or more. By setting it in this range, a large number of positive electrode slurries can be filled in the pores of the porous current collector 11A, which is advantageous for increasing the output and capacity of the battery.

支持粉末は、アルミニウム粉末の融点よりも高い融点を有し、最終的に除去できる材料が適用される。また、混合粉末をアルミニウム板と複合化する場合には、アルミニウム粉末とアルミニウム板の低い方の融点よりも高い融点を有する支持粉末が用いられる。このような支持粉末としては水溶性塩が好ましく、入手の容易性から塩化ナトリウムや塩化カリウムが好適に用いられる。支持粉末が除去されることで形成された空間が多孔質集電体11Aの孔になることから、支持粉末の粒径が孔径に反映される。
支持粉末の粒径は、100〜1000μmの範囲内が好ましい。支持粉末の粒径は、ふるいの目開きで規定する。従って、分級によって支持粉末の粒径を揃えることで、孔径の揃った多孔質集電体11Aが得られる。
The supporting powder has a melting point higher than that of the aluminum powder, and a material that can be finally removed is applied. When the mixed powder is combined with an aluminum plate, a supporting powder having a melting point higher than the lower melting point of the aluminum powder and the aluminum plate is used. As such a supporting powder, a water-soluble salt is preferable, and sodium chloride and potassium chloride are preferably used from the viewpoint of availability. Since the space formed by removing the support powder becomes the pores of the porous current collector 11A, the particle size of the support powder is reflected in the pore diameter.
The particle size of the support powder is preferably in the range of 100 to 1000 μm. The particle size of the support powder is defined by the opening of the sieve. Therefore, the porous current collector 11A having the uniform pore diameter can be obtained by aligning the particle diameter of the support powder by classification.

アルミニウム板には、金網、エキスパンドメタル、パンチングメタルなどの網状体が用いられる。アルミニウム板が支持体となり多孔質アルミニウム集電体の強度が向上し、更に導電性が向上する。多孔質集電体11Aの強度が高いほど、電極作製工程において多孔質アルミニウムが欠落することはなく、十分な電池機能を発揮することができる。アルミニウム板の材質は、純アルミニウム又はアルミニウム合金が用いられる。アルミニウム合金としては、アルミニウム−チタン合金、アルミニウム−マンガン合金、アルミニウム−鉄合金、アルミニウム−ニッケル合金などが好適に用いられる。   For the aluminum plate, a net-like body such as a wire net, an expanded metal, or a punching metal is used. The aluminum plate serves as a support, and the strength of the porous aluminum current collector is improved and the conductivity is further improved. As the strength of the porous current collector 11A is higher, porous aluminum is not lost in the electrode manufacturing process, and a sufficient battery function can be exhibited. As the material of the aluminum plate, pure aluminum or aluminum alloy is used. As the aluminum alloy, an aluminum-titanium alloy, an aluminum-manganese alloy, an aluminum-iron alloy, an aluminum-nickel alloy, or the like is preferably used.

混合粉末とアルミニウム板との複合化とは、例えばアルミニウム板に金網を用いた場合には、網目の中に混合粉末を充填しつつ網全体を混合粉末で覆うような一体化状態をいう。アルミニウム板の両側に結合金属粉末壁を設けた多孔質アルミニウムに正極活物質を充填する場合、アルミニウム板が多孔の網状体であればアルミニウム板で分けられる領域の片側からの充填であっても、もう一方の領域にまで充填することができる。従って、アルミニウム板は網状体であることが好ましい。ここで、多孔とは、網状体の網目部分、金属繊維の繊維と繊維との隙間部分を言う。   The compounding of the mixed powder and the aluminum plate refers to an integrated state in which, for example, when a metal mesh is used for the aluminum plate, the mesh is covered with the mixed powder while the mixed powder is filled in the mesh. If the positive electrode active material is filled into porous aluminum provided with bonded metal powder walls on both sides of the aluminum plate, even if the aluminum plate is a porous network, it can be filled from one side of the region divided by the aluminum plate, The other area can be filled. Therefore, the aluminum plate is preferably a net-like body. Here, the term “porous” refers to a mesh portion of a net-like body and a gap portion between fibers of metal fibers.

1.2(層形成ステップ)
カーボンコート層17は、物理蒸着法(PVD:Physical Vapor Deposition)などによって多孔質集電体11Aの表面に形成される。このカーボンコート層17は、表面に均質に設ければ良く、PVDに限定されず、例えば、化学蒸着法(CVD:Chemical Vapor Deposition)、液相成長法などの公知の薄膜形成方法を適用可能である。
また、カーボンコート層17は、カーボン材料を用いて形成すれば良い。使用するカーボン材料は電気的抵抗が可及的に低い素材を用いることが好ましい。
1.2 (Layer formation step)
The carbon coat layer 17 is formed on the surface of the porous current collector 11A by physical vapor deposition (PVD: Physical Vapor Deposition) or the like. The carbon coat layer 17 may be provided uniformly on the surface, and is not limited to PVD. For example, a known thin film forming method such as chemical vapor deposition (CVD) or liquid phase growth can be applied. is there.
The carbon coat layer 17 may be formed using a carbon material. The carbon material to be used is preferably a material having an electric resistance as low as possible.

1.3(充填ステップと乾燥ステップ)
カーボンコート層17が形成された多孔質集電体11Aは、正極活物質層11Bを構成する正極活物質、導電材及び結着材を溶媒に分散してなる正極スラリーに浸漬される。
正極活物質は、非水電解質二次電池に使用できるものであれば特に制限されるものではなく、例えば、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウムなどのリチウム金属酸化物を挙げることができる。導電材は、特に限定されるものではなく、公知または市販のものを使用できる。例えば、アセチレンブラック、ケッチェンブラックなどのカーボンブラック、活性炭、黒鉛などを挙げることができる。
1.3 (filling step and drying step)
The porous current collector 11A on which the carbon coat layer 17 is formed is immersed in a positive electrode slurry in which a positive electrode active material, a conductive material, and a binder constituting the positive electrode active material layer 11B are dispersed in a solvent.
The positive electrode active material is not particularly limited as long as it can be used for a non-aqueous electrolyte secondary battery. For example, lithium metal oxide such as lithium cobaltate, lithium manganate, lithium nickelate, nickel cobalt lithium manganate, etc. You can list things. The conductive material is not particularly limited, and a known or commercially available material can be used. Examples thereof include carbon black such as acetylene black and ketjen black, activated carbon, graphite and the like.

結着材は、特に限定されるものではなく、公知または市販のものを使用することができる。例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリビニルピロリドン(PVP)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、エチレン−プロピレン共重合体、スチレンブタジエンゴム(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)などが挙げられる。   A binder is not specifically limited, A well-known or commercially available thing can be used. For example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyvinylpyrrolidone (PVP), polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), ethylene-propylene copolymer, styrene butadiene rubber (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC) and the like.

正極活物質、導電材及び結着材は、溶媒に分散した正極スラリーの状態で、多孔質集電体11Aに充填される。正極活物質、導電材及び結着材の配合割合は、所望の作用効果が得られるように適宜選択することが好ましい。また、これら各成分の正極スラリー中の濃度も限定されるものではない。正極スラリーの溶媒も特に限定されるものではないが、例えば、N‐メチル‐2‐ピロリドン、水等が好適に用いられる。結着材としてポリフッ化ビニリデンを用いる場合には、N‐メチル‐2‐ピロリドンを溶媒に用いるのが好ましく、結着材としてポリテトラフルオロエチレン、ポリビニルアルコール、カルボキシメチルセルロースなどを用いる場合は、水を溶媒に用いることが好ましい。   The positive electrode active material, the conductive material, and the binder are filled in the porous current collector 11A in the state of a positive electrode slurry dispersed in a solvent. The mixing ratio of the positive electrode active material, the conductive material, and the binder is preferably selected as appropriate so as to obtain a desired effect. Further, the concentration of each component in the positive electrode slurry is not limited. The solvent for the positive electrode slurry is not particularly limited, and for example, N-methyl-2-pyrrolidone, water and the like are preferably used. When using polyvinylidene fluoride as a binder, it is preferable to use N-methyl-2-pyrrolidone as a solvent. When using polytetrafluoroethylene, polyvinyl alcohol, carboxymethylcellulose, or the like as a binder, water is used. It is preferable to use it as a solvent.

正極活物質、導電材及び結着材を溶媒に分散した正極スラリーは、圧入法などの公知の方法により多孔質集電体11Aに充填しても良い。圧入法の場合、多孔質集電体11Aを隔膜として一方側に正極スラリーを配置し、他方側は正極スラリーの透過側とする。そして、他方側の透過側を減圧にして正極スラリーを透過させることによって、多孔質集電体11Aの孔に正極活物質、導電材及び結着材を充填させる。
これに代えて、一方側に配置した正極スラリーを加圧することにより、多孔質集電体11Aの孔に、正極活物質、導電材及び結着材を溶媒に分散した正極スラリーを充填しても良い。また、圧入法に代えて、正極活物質、導電材及び結着材を溶媒に分散した正極スラリー中に多孔質集電体11Aを浸漬し、正極活物質、導電材及び、結着材を多孔質集電体11Aの孔に拡散させる方法(「浸漬法」に相当)を採用しても良い。
多孔質集電体11Aの孔に、正極活物質、導電材及び結着材を溶媒に分散した正極スラリーを充填させた正極板11は、50〜200℃内の温度で溶媒を飛散させて乾燥される。
The positive electrode slurry in which the positive electrode active material, the conductive material, and the binder are dispersed in a solvent may be filled into the porous current collector 11A by a known method such as a press-fitting method. In the case of the press-fitting method, the positive electrode slurry is arranged on one side with the porous current collector 11A as the diaphragm, and the other side is the permeate side of the positive electrode slurry. Then, the positive electrode active material, the conductive material, and the binder are filled in the holes of the porous current collector 11A by reducing the pressure on the other permeate side and allowing the positive electrode slurry to pass therethrough.
Alternatively, by pressurizing the positive electrode slurry disposed on one side, the positive electrode slurry in which the positive electrode active material, the conductive material and the binder are dispersed in the solvent is filled in the pores of the porous current collector 11A. good. In place of the press-fitting method, the porous current collector 11A is immersed in a positive electrode slurry in which a positive electrode active material, a conductive material, and a binder are dispersed in a solvent, and the positive electrode active material, the conductive material, and the binder are made porous. You may employ | adopt the method (equivalent to an "immersion method") to diffuse to the hole of the mass collector 11A.
The positive electrode plate 11 in which the positive electrode slurry in which the positive electrode active material, the conductive material, and the binder are dispersed in a solvent is filled in the pores of the porous current collector 11A is dried by scattering the solvent at a temperature within 50 to 200 ° C. Is done.

1.4(プレスステップ)
上記乾燥ステップを終えた正極板11を、ロールプレス機や平板プレス機などのプレス機を用いて加圧するプレス処理によって、活物質の電極密度を向上させる。特に、平板プレス機によりプレスすることが好ましい。ロールプレス機を用いたプレス処理では、多孔質集電体11Aが歪曲するおそれがあるためである。
また、発明者等の検討によれば、正極板11の電極密度は、2.75g/cc、或いは、2.75g/cc近傍にすることが好ましかった。なお、未プレスの場合、正極板11の塗膜密度は2.0g/ccであった。但し、所望の特性が得られる範囲で各値は適宜に変更しても良い。
1.4 (press step)
The positive electrode plate 11 after the drying step is pressed using a press such as a roll press or a flat press to improve the electrode density of the active material. In particular, it is preferable to press with a flat plate press. This is because the porous current collector 11A may be distorted in press processing using a roll press.
Further, according to the study by the inventors, it was preferable that the electrode density of the positive electrode plate 11 be 2.75 g / cc or near 2.75 g / cc. When not pressed, the coating film density of the positive electrode plate 11 was 2.0 g / cc. However, each value may be appropriately changed within a range where desired characteristics can be obtained.

2.(実施例)
実施例を説明する。以下の説明では、説明を判りやすくするため、図1に示す部材と同様の部材は同一の符号を付している。
2.1(正極板の作製)
正極板11の多孔質集電体11Aは、アルミニウム合金を基材とした。この多孔質集電体11Aは、アルミニウム粉末及び支持粉末の混合比を調整し、空孔率が85%となるよう作製した。この多孔質集電体11Aの表面に、浸漬法によって厚さ2μmのカーボンコート層17を形成した。なお、カーボンコート層17の形成に使用した材料は、デンカブラック(登録商標)、PVDF#1100、N−メチル−2−ピロリドンを夫々3:2:95とし、ホモジナイザーを用いて1時間分散させて作製した。
正極活物質には、ニッケルコバルトマンガン酸リチウム(LiNi1/3Co1/3Mn1/3)を使用した。組成は、正極活物質:導電材:結着材=90:5:5であり、混練機を用いてこれらの材料にN−メチル−2−ピロリドンを分散することにより、正極スラリーを作製した。そして、カーボンコート層17を形成した多孔質集電体11Aを、浸漬法を用いて前記正極スラリー中に浸漬し、減圧(本実施例では−0.1MPa)して多孔質集電体11Aに正極スラリーを充填した。
2. (Example)
Examples will be described. In the following description, in order to make the description easy to understand, the same members as those shown in FIG.
2.1 (Preparation of positive electrode plate)
The porous current collector 11A of the positive electrode plate 11 was made of an aluminum alloy as a base material. This porous current collector 11A was prepared by adjusting the mixing ratio of the aluminum powder and the support powder so that the porosity was 85%. A carbon coat layer 17 having a thickness of 2 μm was formed on the surface of the porous current collector 11A by an immersion method. The materials used for forming the carbon coat layer 17 were Denka Black (registered trademark), PVDF # 1100, and N-methyl-2-pyrrolidone at 3: 2: 95, respectively, and dispersed for 1 hour using a homogenizer. Produced.
As the positive electrode active material, lithium nickel cobalt manganate (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) was used. The composition was positive electrode active material: conductive material: binder = 90: 5: 5, and a positive electrode slurry was prepared by dispersing N-methyl-2-pyrrolidone in these materials using a kneader. Then, the porous current collector 11A on which the carbon coat layer 17 is formed is immersed in the positive electrode slurry using an immersion method, and the pressure is reduced (in this example, −0.1 MPa) to form the porous current collector 11A. The positive electrode slurry was filled.

充填後、多孔質集電体11Aの表裏面に付着した余剰スラリーを、ヘラを用いて擦り切り落とした。次いで、多孔質集電体11Aを乾燥装置内に配置し、80℃で2時間乾燥させた。乾燥後の電極塗工量は、1000g/平方mであった。
続いて、多孔質集電体11Aを、平板プレス機により圧力0.50トン/平方cmでプレス処理し、少なくとも一辺に未塗工部分が残るように所定サイズにサイジングし、サイジング後の電極の未塗工部分に正極タブを溶着することにより、正極板11を得た。
After filling, surplus slurry adhered to the front and back surfaces of the porous current collector 11A was scraped off using a spatula. Next, the porous current collector 11A was placed in a drying apparatus and dried at 80 ° C. for 2 hours. The electrode coating amount after drying was 1000 g / square m.
Subsequently, the porous current collector 11A was pressed with a flat plate press at a pressure of 0.50 ton / square cm, sized to a predetermined size so that an uncoated portion remained on at least one side, and the electrode after sizing A positive electrode tab 11 was obtained by welding a positive electrode tab to an uncoated portion.

2.2(負極板の作製)
負極板13の集電体13Aには、銅箔を用いた。負極活物質は、平均粒径20μm、最大粒径81μmの人造黒鉛粉末を90重量部とし、バインダーは、ポリフッ化ビニリデン樹脂を10重量部とした。これら負極活物質、及びバインダーに、溶媒としてN−メチルピロリドンを配合し、分散機にて攪拌混合させることにより、負極活物質合剤の塗工用スラリーを調製した。前記最大粒径、及び平均粒径は、レーザー光回折法による粒度分布測定における体積基準のメディアン径(D50)を示している。また、最大粒径は前記測定における最大の値である。
2.2 (Preparation of negative electrode plate)
A copper foil was used for the current collector 13 </ b> A of the negative electrode plate 13. The negative electrode active material was 90 parts by weight of artificial graphite powder having an average particle diameter of 20 μm and a maximum particle diameter of 81 μm, and the binder was 10 parts by weight of polyvinylidene fluoride resin. N-methylpyrrolidone as a solvent was blended with these negative electrode active material and binder, and the mixture was stirred and mixed with a disperser to prepare a slurry for coating a negative electrode active material mixture. The maximum particle size and the average particle size indicate a volume-based median diameter (D50) in particle size distribution measurement by a laser light diffraction method. The maximum particle size is the maximum value in the measurement.

次いで、上記の負極活物質合剤の塗工用スラリーを、ダイコータ(薄膜塗布工具)を用いて集電体13Aに連続的に片面塗工し、オーブンで乾燥して溶媒を除去することにより、集電体13A上に負極活物質合剤塗膜(負極活物質層13Bに相当)を形成した。続いて、プレスし、少なくとも一辺に未塗工部分が残るように所定サイズにサイジングし、サイジング後の電極の未塗工部分に負極タブを溶着することにより、負極板13を得た。   Next, the negative electrode active material mixture coating slurry is continuously applied to the current collector 13A using a die coater (thin film coating tool), and dried in an oven to remove the solvent. A negative electrode active material mixture coating film (corresponding to the negative electrode active material layer 13B) was formed on the current collector 13A. Subsequently, pressing was performed, sizing to a predetermined size so that an uncoated portion remained on at least one side, and a negative electrode tab was welded to the uncoated portion of the sized electrode, thereby obtaining the negative electrode plate 13.

2.3(電池の組立て)
上記の正極板11及び負極板13からなる複数枚の極板を用いて、これら極板と、微多孔性フィルムからなるセパレータ15とを、セパレータ/負極板/セパレータ/正極板/セパレータ/負極板/セパレータの順であって、且つ、負極板13の塗工面は正極板11を向くように積層し、正極タブ及び負極タブが夫々対向するように電極群(発電素子とも称する)を作製した。
次いで、電極群の正極板11と負極板13に夫々取り付けられたタブに正極端子及び負極端子をそれぞれ溶着し、電槽となるラミネートフィルムの絞り加工により形成した凹部に収納した。該凹部が形成されたアルミラミネートフィルムと同一寸法の平坦なアルミラミネートフィルムを重ね合わせ、各端子が通過する2辺と他の1辺とをヒートシールした。
このとき、端子部には、各端子とアルミ基材との短絡を防ぐことを目的として、合成樹脂からなるシートフィルムを介してシールしてドライセルを作製した。
2.3 (Battery assembly)
Using a plurality of electrode plates composed of the positive electrode plate 11 and the negative electrode plate 13 described above, these electrode plates and the separator 15 made of a microporous film are separated into a separator / negative electrode plate / separator / positive electrode plate / separator / negative electrode plate. The electrode group (also referred to as a power generation element) was prepared so that the positive electrode plate 11 and the coating surface of the negative electrode plate 13 faced the positive electrode plate 11, and the positive electrode tab and the negative electrode tab were opposed to each other.
Next, the positive electrode terminal and the negative electrode terminal were welded to tabs attached to the positive electrode plate 11 and the negative electrode plate 13 of the electrode group, respectively, and stored in the recesses formed by drawing the laminated film serving as the battery case. A flat aluminum laminate film having the same dimensions as that of the aluminum laminate film in which the concave portion was formed was superposed, and two sides through which each terminal passes and the other one side were heat-sealed.
At this time, for the purpose of preventing a short circuit between each terminal and the aluminum substrate, the terminal portion was sealed through a sheet film made of a synthetic resin to produce a dry cell.

続いて、重量混合比3:7のエチレンカーボネートとエチルメチルカーボネートの混合溶媒に六フッ化リン酸リチウムを1.3mol/Lになるように溶解した電解液を、上記ドライセルの開口する1辺から注入し、セル内を減圧した後、当該部分をヒートシールしてセルを封止した。次に、これを0.1CAの電流で満充電となるまで初充電を行い、所定時間保管した。その後、0.2CAの電流で、セル電圧が2.75Vになるまで放電し、活性化処理を行った。活性化処理の終了後、発生したガスを排出するため、注液時に封止した部分を開封し、セル内を減圧した後、最終封口のためにヒートシールし、実施例のリチウムイオン電池10を製作した。   Subsequently, an electrolytic solution in which lithium hexafluorophosphate was dissolved in a mixed solvent of ethylene carbonate and ethyl methyl carbonate having a weight mixing ratio of 3: 7 so as to be 1.3 mol / L was added from one side where the dry cell was opened. After injecting and depressurizing the inside of the cell, the part was heat sealed to seal the cell. Next, this was initially charged until it was fully charged with a current of 0.1 CA, and stored for a predetermined time. Thereafter, the cell was discharged at a current of 0.2 CA until the cell voltage reached 2.75 V, and an activation process was performed. After completion of the activation treatment, the discharged gas is discharged, and the sealed portion at the time of pouring is opened, the inside of the cell is decompressed, and then heat-sealed for the final sealing. Produced.

3.(比較例)
実施例のアルミニウム合金基材の表面上にカーボンコート層17を形成した多孔質集電体11Aの代わりに、カーボンコート層を表面上に形成していないアルミニウム合金基材からなる公知の多孔質集電体を、正極板として使用した。その他の条件は、全て実施例と同様とし、比較例のリチウムイオン電池を作製した。
3. (Comparative example)
Instead of the porous current collector 11A having the carbon coat layer 17 formed on the surface of the aluminum alloy substrate of the example, a known porous collector made of an aluminum alloy substrate having no carbon coat layer formed on the surface is used. The electric body was used as a positive electrode plate. The other conditions were all the same as those in the example, and a comparative lithium ion battery was produced.

4.(試験)
4.1(放電容量試験)
実施例及び比較例で作製した電池の放電容量試験を実施した。
試験内容は次の通りである。作製した電池を、0.2Cの電流値で4.2Vまで充電し、4.2Vに到達後、定電圧で0.05C相当の電流値に垂下するまで充電を実施した。充電後に0.2Cの定電流で2.75Vの電圧に到達するまで放電を行い、実施例及び比較例の電池のそれぞれの0.2C放電容量を得た。
さらに、上記と同じ条件で充電を実施し、1.0Cの定電流で2.75Vの電圧に到達するまで放電を行い、実施例及び比較例の電池のそれぞれの1.0C放電容量を得た。表1に試験結果を示す。
4). (test)
4.1 (Discharge capacity test)
The discharge capacity test of the battery produced by the Example and the comparative example was implemented.
The contents of the test are as follows. The produced battery was charged to 4.2 V at a current value of 0.2 C, and after reaching 4.2 V, charging was performed until it dropped to a current value equivalent to 0.05 C at a constant voltage. After charging, discharging was performed at a constant current of 0.2 C until a voltage of 2.75 V was reached, and 0.2 C discharge capacities of the batteries of Examples and Comparative Examples were obtained.
Furthermore, charging was performed under the same conditions as described above, and discharging was performed at a constant current of 1.0 C until a voltage of 2.75 V was reached, thereby obtaining 1.0 C discharge capacities of the batteries of Examples and Comparative Examples. . Table 1 shows the test results.

Figure 2017091673
Figure 2017091673

表1に示すように、実施例の電池の放電容量維持率は90%であり、比較例の電池の放電容量維持率は50%であった。従って、実施例の電池は、比較例の電池と比べ、高率放電時の放電容量が大きいことが判る。   As shown in Table 1, the discharge capacity retention rate of the battery of the example was 90%, and the discharge capacity retention rate of the battery of the comparative example was 50%. Therefore, it can be seen that the battery of the example has a larger discharge capacity at the time of high rate discharge than the battery of the comparative example.

4.2(サイクル試験率における容量維持率)
実施例及び比較例で作製した電池のサイクル試験を実施した。
サイクル試験は、環境温度25℃、充電及び放電の電流値は0.5C、電圧設定2.75−4.2Vで行った。表2にサイクル試験1サイクル目の放電容量と、1000サイクル目の放電容量及びその維持率を夫々示す。
4.2 (Capacity maintenance rate at cycle test rate)
A cycle test was conducted on the batteries prepared in the examples and comparative examples.
The cycle test was performed at an environmental temperature of 25 ° C., a charge and discharge current value of 0.5 C, and a voltage setting of 2.75 to 4.2 V. Table 2 shows the discharge capacity at the first cycle of the cycle test, the discharge capacity at the 1000th cycle, and the maintenance rate, respectively.

Figure 2017091673
Figure 2017091673

表2に示すように、実施例の電池の放電容量維持率は80.2%であり、比較例の電池の放電容量維持率は70.5%であった。従って、実施例の電池は、比較例の電池と比べ、サイクル試験における容量維持率が優れることが判る。   As shown in Table 2, the discharge capacity retention rate of the battery of the example was 80.2%, and the discharge capacity retention rate of the battery of the comparative example was 70.5%. Therefore, it can be seen that the battery of the example is superior in capacity retention rate in the cycle test as compared with the battery of the comparative example.

以上説明したように、本実施形態のリチウムイオン電池10の正極板11は、多孔構造の多孔質集電体11Aを用い、この多孔質集電体11Aには、正極活物質層11Bを構成する正極活物質、導電材及び結着材を溶媒に分散してなる正極スラリーが充填され、多孔質集電体11Aの表面には、多孔質集電体11Aと正極活物質層11Bとの間の電気抵抗の低減に寄与する導電性を有するカーボンコート層17が予め設けられる。このカーボンコート層17により大電流を取り出し易くなるとともに、多孔質集電体11Aにより正極活物質などを多く充填でき、高エネルギー密度化に有利となる。   As described above, the positive electrode plate 11 of the lithium ion battery 10 according to the present embodiment uses the porous current collector 11A having a porous structure, and the porous current collector 11A constitutes the positive electrode active material layer 11B. A positive electrode slurry in which a positive electrode active material, a conductive material, and a binder are dispersed in a solvent is filled, and the surface of the porous current collector 11A is between the porous current collector 11A and the positive electrode active material layer 11B. A carbon coat layer 17 having conductivity that contributes to a reduction in electrical resistance is provided in advance. The carbon coat layer 17 makes it easy to take out a large current, and the porous current collector 11A can be filled with a large amount of a positive electrode active material, which is advantageous for increasing the energy density.

これにより、上記乾燥ステップなどにより、多孔質集電体11A近傍の導電材及び結着材の存在比率が、多孔質集電体11A近傍から離れた領域の存在比率に比べ相対的に低くなったとしても、大電流を取り出し易く、且つ、高エネルギー密度化が可能になる。従って、所望の電池性能を得ながら、セパレータ15及び電極枚数の低減が可能になり、部品点数の低減やコスト低減、更にはリチウムイオン電池10の小型化にも有利となる。   As a result, due to the drying step or the like, the abundance ratio of the conductive material and the binder in the vicinity of the porous current collector 11A is relatively lower than the abundance ratio in the region away from the vicinity of the porous current collector 11A. However, it is easy to extract a large current and a high energy density can be achieved. Therefore, it is possible to reduce the number of separators 15 and the number of electrodes while obtaining desired battery performance, which is advantageous for reducing the number of parts and cost, and further reducing the size of the lithium ion battery 10.

また、多孔質集電体11Aは、正極活物質などを効率良く多く充填することができ、高エネルギー密度化により有利である。さらに、導電性を有する層をカーボンコート層17としているので、広く流通する炭素素材を用いて製作できるとともに、炭素素材の選定により所望の性能を得やすくなる。また、材料の調達が容易で材料コストの増大も抑えやすくなる。   In addition, the porous current collector 11A can be efficiently filled with a large amount of positive electrode active material and the like, which is advantageous in increasing the energy density. Furthermore, since the conductive layer is the carbon coat layer 17, it can be manufactured using a widely distributed carbon material, and desired performance can be easily obtained by selecting the carbon material. In addition, it is easy to procure materials and it is easy to suppress an increase in material costs.

本発明は上述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形、及び変更が可能である。
例えば、上述の実施形態では、リチウムイオン電池10の正極板11に多孔質集電体11Aを用い、且つ、多孔質集電体11Aの表面にカーボンコート層17を設ける場合を適用したが、負極板13に多孔質集電体を用いるとともに、この多孔質集電体の表面にカーボンコート層を設けるようにしても良い。この場合も、大電流を取り出し易くなり、且つ、高エネルギー密度化に有利となる。すなわち、本発明は、正極板11、及び負極板13のいずれにも適用可能である。
The present invention is not limited to the above-described embodiment, and various modifications and changes can be made based on the technical idea of the present invention.
For example, in the above-described embodiment, the case where the porous current collector 11A is used for the positive electrode plate 11 of the lithium ion battery 10 and the carbon coat layer 17 is provided on the surface of the porous current collector 11A is applied. A porous current collector may be used for the plate 13 and a carbon coat layer may be provided on the surface of the porous current collector. Also in this case, it is easy to take out a large current, and it is advantageous for increasing the energy density. That is, the present invention is applicable to both the positive electrode plate 11 and the negative electrode plate 13.

また、上述の実施形態では、カーボンコート層17を設ける場合を説明したが、これに限らず、多孔質集電体11Aと活物質層との間の電気抵抗の低減に寄与する範囲で、カーボンコート層以外の導電性を有する層を設けるようにしても良い。   In the above-described embodiment, the case where the carbon coat layer 17 is provided has been described. However, the carbon coat layer 17 is not limited thereto. A conductive layer other than the coat layer may be provided.

10 リチウムイオン電池
11 正極板(リチウムイオン電池用電極)
11A 多孔質集電体
11B 正極活物質層
13 負極板(リチウムイオン電池用電極)
13B 負極活物質層
15 セパレータ
17 カーボンコート層
10 Lithium ion battery 11 Positive electrode plate (electrode for lithium ion battery)
11A Porous current collector 11B Positive electrode active material layer 13 Negative electrode plate (electrode for lithium ion battery)
13B Negative electrode active material layer 15 Separator 17 Carbon coat layer

Claims (3)

集電体と活物質層とを有する電極を用いたリチウムイオン電池において、
前記集電体は、多孔構造の多孔質集電体であり、前記多孔質集電体には、前記活物質層を構成する活物質、導電材及び結着材が充填され、
前記多孔質集電体の表面には、予め導電性を有する層が設けられていることを特徴とするリチウムイオン電池。
In a lithium ion battery using an electrode having a current collector and an active material layer,
The current collector is a porous current collector having a porous structure, and the porous current collector is filled with an active material, a conductive material, and a binder constituting the active material layer,
A lithium ion battery characterized in that a conductive layer is provided in advance on the surface of the porous current collector.
前記多孔質集電体は、三次元多孔構造であることを特徴とする請求項1に記載のリチウムイオン電池。   The lithium ion battery according to claim 1, wherein the porous current collector has a three-dimensional porous structure. 前記導電性を有する層はカーボンコート層であることを特徴とする請求項1又は2に記載のリチウムイオン電池。   The lithium ion battery according to claim 1, wherein the conductive layer is a carbon coat layer.
JP2015217337A 2015-11-05 2015-11-05 Lithium ion battery Pending JP2017091673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015217337A JP2017091673A (en) 2015-11-05 2015-11-05 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015217337A JP2017091673A (en) 2015-11-05 2015-11-05 Lithium ion battery

Publications (1)

Publication Number Publication Date
JP2017091673A true JP2017091673A (en) 2017-05-25

Family

ID=58770936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015217337A Pending JP2017091673A (en) 2015-11-05 2015-11-05 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP2017091673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063860A (en) * 2019-12-19 2020-04-24 深圳市倍特力电池有限公司 Electrode plate, preparation method thereof and battery
JP2021157989A (en) * 2020-03-27 2021-10-07 古河電池株式会社 Lithium-ion battery and manufacturing method thereof
CN115360330A (en) * 2022-08-18 2022-11-18 湘潭大学 Preparation method of positive pole piece, positive pole piece and lithium ion battery
WO2024023625A1 (en) * 2022-07-29 2024-02-01 株式会社半導体エネルギー研究所 Battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063860A (en) * 2019-12-19 2020-04-24 深圳市倍特力电池有限公司 Electrode plate, preparation method thereof and battery
JP2021157989A (en) * 2020-03-27 2021-10-07 古河電池株式会社 Lithium-ion battery and manufacturing method thereof
JP7376409B2 (en) 2020-03-27 2023-11-08 古河電池株式会社 Lithium ion batteries and lithium ion battery manufacturing methods
WO2024023625A1 (en) * 2022-07-29 2024-02-01 株式会社半導体エネルギー研究所 Battery
CN115360330A (en) * 2022-08-18 2022-11-18 湘潭大学 Preparation method of positive pole piece, positive pole piece and lithium ion battery

Similar Documents

Publication Publication Date Title
JP6352884B2 (en) Anode material for metal-air secondary battery, metal-air secondary battery comprising the same, and method for producing anode material for metal-air secondary battery
JP2018147738A (en) Method of manufacturing separator for zinc negative electrode secondary battery and separator for zinc negative electrode secondary battery
JP2014197479A (en) Positive electrode for lithium ion secondary battery, method for manufacturing the same, and lithium ion secondary battery formed by use thereof
JP2017091673A (en) Lithium ion battery
JP2018106984A (en) All-solid-state lithium ion battery
JP2019106352A (en) Method for producing sulfide solid-state battery
JP2019140042A (en) Method for manufacturing all-solid battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
WO2015087948A1 (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JP2017027654A (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JP2020035682A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
AU2014212256B2 (en) Coated iron electrode and method of making same
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP2009176516A (en) Foamed nickel chromium current collector for nonaqueous electrolyte secondary battery and electrode using it
JP2013140745A (en) Method for manufacturing porous aluminum current collector for nonaqueous electrolytic secondary battery, and method for manufacturing positive electrode for nonaqueous electrolytic secondary battery, and nonaqueous electrolytic secondary battery with positive electrode
JP6583993B2 (en) Lithium secondary battery charge / discharge method
JP2014022150A (en) Nonaqueous electrolyte secondary battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
JP6071241B2 (en) Non-aqueous electrolyte secondary battery positive electrode, method for producing the non-aqueous electrolyte secondary battery positive electrode, and non-aqueous electrolyte secondary battery using the non-aqueous electrolyte secondary battery positive electrode
JP2020087516A (en) Method for manufacturing zinc battery negative electrode and method for manufacturing zinc battery
JP2016164837A (en) Positive electrode manufacturing method and positive electrode
US20210111398A1 (en) Electrode for lithium ion secondary batteries and lithium ion secondary battery
JP2019079755A (en) Negative electrode for non-aqueous electrolyte, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2013214374A (en) Positive electrode for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery using the same
JP7376409B2 (en) Lithium ion batteries and lithium ion battery manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191126