WO2024023625A1 - Battery - Google Patents

Battery Download PDF

Info

Publication number
WO2024023625A1
WO2024023625A1 PCT/IB2023/057210 IB2023057210W WO2024023625A1 WO 2024023625 A1 WO2024023625 A1 WO 2024023625A1 IB 2023057210 W IB2023057210 W IB 2023057210W WO 2024023625 A1 WO2024023625 A1 WO 2024023625A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
less
Prior art date
Application number
PCT/IB2023/057210
Other languages
French (fr)
Japanese (ja)
Inventor
高橋辰義
種村和幸
三上真弓
村椿将太郎
栗城和貴
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2024023625A1 publication Critical patent/WO2024023625A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to a power storage device (also referred to as a battery or a secondary battery). Furthermore, the present invention is not limited to the above-mentioned fields, but relates to semiconductor devices, display devices, light emitting devices, lighting devices, electronic equipment, vehicles, and manufacturing methods thereof.
  • the battery of the present invention can be applied to the semiconductor device, display device, light emitting device, lighting device, electronic device, and vehicle described above as a necessary power source.
  • Batteries include secondary batteries such as lithium ion secondary batteries and sodium ion secondary batteries.
  • the above-mentioned electronic devices include information terminal devices equipped with lithium ion secondary batteries.
  • the above-mentioned power storage device includes a stationary power storage device and the like.
  • lithium ion secondary batteries lithium ion capacitors
  • air batteries air batteries
  • all-solid-state batteries lithium ion secondary batteries
  • demand for high-output, high-capacity lithium-ion secondary batteries is rapidly expanding along with the development of the semiconductor industry, and they have become indispensable in today's information society as a source of rechargeable energy. .
  • a positive electrode active material having a layered rock salt crystal structure is expected to have a high capacity because a lithium ion diffusion path exists two-dimensionally within the crystal structure.
  • positive electrode active materials with a layered rock-salt crystal structure are said to be susceptible to thermal runaway if too many lithium ions are desorbed during charging, causing the crystal structure to break, leading to safety issues.
  • Safety tests include nail penetration tests, and in order to suppress the rise in battery temperature during abnormal situations such as nail penetration, for example, in Patent Document 1, a protective layer is installed between the positive electrode composite layer and the positive electrode current collector. A configuration has been proposed.
  • Lithium cobalt oxide (LiCoO 2 ) and the like are known as positive electrode active materials with a layered rock salt crystal structure.
  • Lithium cobalt oxide has a layered rock salt type crystal structure, and lithium ions can move two-dimensionally between layers made of CoO 6 octahedrons, so it also has good cycle characteristics.
  • lithium cobalt oxide has had the problem of phase changes during charging and discharging. For example, when lithium ions are released to some extent during charging, lithium cobalt oxide undergoes a phase change from hexagonal to monoclinic. Therefore, in order to use lithium cobalt oxide with good cycle characteristics, the amount of lithium ions released has been limited.
  • Patent Documents 2 to 4 propose a structure in which additive elements are added to lithium cobalt oxide.
  • the content described in Non-Patent Document 1 known as Shannon's ionic radius, may be referred to.
  • Research on the crystal structure of positive electrode active materials has also been conducted (Non-Patent Documents 2 to 5).
  • X-ray diffraction is one of the methods used to analyze secondary batteries using positive electrode active materials.
  • XRD data can be analyzed by using ICSD (Inorganic Crystal Structure Database) introduced in Non-Patent Document 6.
  • ICSD Inorganic Crystal Structure Database
  • the lattice constant of lithium cobalt oxide described in Non-Patent Document 7 can be referred to from ICSD.
  • the analysis program RIETAN-FP Non-Patent Document 8 can be used for the Rietveld method analysis.
  • ImageJ Non-Patent Documents 9 to 11
  • ImageJ Non-Patent Documents 9 to 11
  • Ultrafine electron diffraction is also effective in identifying secondary batteries of positive electrode active materials, especially secondary batteries in the surface layer.
  • the analysis program ReciPro can be used to analyze the electron beam diffraction pattern.
  • Non-Patent Document 13 fluorides such as fluorite (calcium fluoride) have been used as fluxes in iron and steel manufacturing for a long time, and their physical properties have been studied (Non-Patent Document 13).
  • Non-Patent Document 14 it is known that when the temperature of a lithium ion secondary battery increases during charging, it goes through several states and reaches thermal runaway (Non-Patent Document 14 and Non-Patent Document 15).
  • Motohashi, et al “Electronic phase diagram of the layered cobalt oxide system Li ⁇ x ⁇ CoO ⁇ 2 ⁇ (0.0 ⁇ x ⁇ 1.0)”, Physical Review B, 80 (16); 165114 Zhaohui Chen et al, “Staging Phase Transitions in Li ⁇ x ⁇ CoO ⁇ 2 ⁇ ”, Journal of The Electrochemical Society, 2002, 149 (12) A1604-A1609 G. G. Amatucci et. al. , “CoO ⁇ 2 ⁇ , The End Member of the Li ⁇ x ⁇ CoO ⁇ 2 ⁇ Solid Solution”J. Electrochem. Soc. 143(3) 1114 (1996). A. Belsky, et al.
  • lithium cobalt oxide (LiCoO 2 , sometimes referred to as LCO) is said to have low thermal stability.
  • a nail penetration test is one of the safety tests for lithium ion secondary batteries. When an internal short circuit occurs during a nail penetration test, Joule heat is generated, so when using lithium cobalt oxide as described above, the oxygen released from the lithium cobalt oxide reacts with the electrolyte, etc., leading to thermal runaway. There is. Furthermore, it is known that lithium cobalt oxide causes a thermite reaction with aluminum, which is commonly used as a positive electrode current collector, when the temperature becomes high (Non-Patent Document 15).
  • the temperature becomes as high as 1000°C or more. Therefore, it is important to suppress the thermite reaction between the positive electrode active material and the aluminum foil.
  • an object of one embodiment of the present invention is to provide a battery with high safety. Furthermore, an object of one embodiment of the present invention is to provide a battery with high capacity and high safety.
  • an object of one embodiment of the present invention is to provide a novel material, active material, power storage device, or method for manufacturing the same.
  • One embodiment of the present invention has a positive electrode, the positive electrode has a positive electrode current collector, and a positive electrode active material layer, the positive electrode active material layer is provided on the positive electrode current collector, and the positive electrode has a positive electrode current collector.
  • the metal foil is a stainless steel foil and that the coating layer contains aluminum.
  • the thickness of the metal foil is preferably 1 ⁇ m or more and 30 ⁇ m or less, and the thickness of the coating layer is preferably 1 nm or more and 1 ⁇ m or less.
  • the battery preferably has an exterior body that encloses the positive electrode, and the exterior body is preferably a stainless steel laminate film.
  • the positive electrode active material layer has a positive electrode active material
  • the positive electrode active material has lithium cobalt oxide containing nickel and magnesium
  • the positive electrode active material layer has a surface layer of the positive electrode active material.
  • the detected amount of nickel in the positive electrode active material is larger than the detected amount of nickel inside the positive electrode active material
  • the detected amount of magnesium in the surface layer of the positive electrode active material is larger than the detected amount of magnesium inside the positive electrode active material. It is preferable that the distribution of nickel and the distribution of magnesium have an overlapping region.
  • nickel is preferably detected on a surface other than the (001) surface of lithium cobalt oxide in the surface layer of the positive electrode active material.
  • the difference between the depth of the peak of the detected amount of nickel and the depth of the peak of the detected amount of magnesium in the surface layer of the positive electrode active material is preferably within 3 nm.
  • the positive electrode active material contains aluminum
  • the maximum value of the detected amount of aluminum is the maximum value of the detected amount of nickel and the maximum value of the detected amount of magnesium.
  • the diffraction of the positive electrode active material it is preferable that the pattern has at least a first peak whose 2 ⁇ is 19.13 or more and less than 19.37, and a second peak whose 2 ⁇ is 45.37° or more and less than 45.57°.
  • the positive electrode active material preferably contains fluorine, and the amount of fluorine detected in the surface layer of the positive electrode active material is preferably larger than the amount of fluorine detected inside the positive electrode active material.
  • a highly safe battery can be provided.
  • a battery with high capacity and high safety can be provided.
  • a novel material, active material, power storage device, or method for manufacturing them can be provided.
  • FIG. 1A is a perspective view of the battery
  • FIG. 1B is a cross-sectional view of the battery
  • FIG. 1C is a cross-sectional view of the positive electrode
  • 2A and 2B are graphs showing the internal temperature of the battery.
  • FIGS. 3A and 3B are diagrams illustrating a nail penetration test.
  • 4A to 4D are diagrams illustrating configuration examples of the positive electrode.
  • 5A to 5E are diagrams illustrating configuration examples of secondary batteries.
  • 6A to 6C are diagrams showing configuration examples of secondary batteries.
  • FIGS. 7A to 7C are diagrams showing configuration examples of a secondary battery.
  • FIGS. 8A to 8C are diagrams illustrating an example of the structure of a laminate.
  • 9A to 9C are cross-sectional views of the positive electrode active material.
  • FIGS. 10A to 10C are examples of distributions of additive elements included in the positive electrode active material.
  • FIG. 11A is an example of the distribution of additive elements included in the positive electrode active material.
  • FIG. 11B is a diagram illustrating the distribution of additive elements.
  • FIG. 12 is a phase diagram showing the relationship between the composition and temperature of lithium fluoride and magnesium fluoride.
  • FIG. 13 is a diagram illustrating the results of DSC measurement.
  • FIG. 14 is an example of a TEM image in which the crystal orientations are approximately the same.
  • FIG. 15A is an example of a STEM image in which the crystal orientations are approximately the same.
  • FIG. 15B is an FFT pattern of a region of rock salt crystal RS, and FIG.
  • FIG. 15C is an FFT pattern of a region of layered rock salt crystal LRS.
  • FIG. 16 is a diagram illustrating the crystal structure of the positive electrode active material.
  • FIG. 17 is a diagram illustrating the crystal structure of a conventional positive electrode active material.
  • FIG. 18 is a diagram illustrating the charging depth and lattice constant of the positive electrode active material.
  • FIG. 19 is a diagram showing an XRD pattern calculated from the crystal structure.
  • FIG. 20 is a diagram showing an XRD pattern calculated from the crystal structure.
  • FIGS. 21A and 21B are diagrams showing XRD patterns calculated from the crystal structure. 22A to 22C show lattice constants calculated from XRD.
  • 23A to 23C show lattice constants calculated from XRD.
  • FIGS. 24A and 24B are cross-sectional views of the positive electrode active material.
  • 25A to 25C are diagrams illustrating a method for manufacturing a positive electrode active material.
  • FIG. 26 is a diagram illustrating a method for producing a positive electrode active material.
  • FIGS. 27A to 27C are diagrams illustrating a method for manufacturing a positive electrode active material.
  • FIG. 28A is a perspective view of a battery pack showing one embodiment of the present invention
  • FIG. 28B is a block diagram of the battery pack
  • FIG. 28C is a block diagram of a vehicle having the battery pack.
  • 29A to 29D are diagrams illustrating an example of a transportation vehicle.
  • FIG. 29E is a diagram illustrating an example of an artificial satellite.
  • FIG. 30A is a diagram showing an electric bicycle
  • FIG. 30B is a diagram showing a secondary battery of the electric bicycle
  • FIG. 30C is a diagram explaining a scooter.
  • 31A to 31E are diagrams illustrating an example
  • space groups are expressed using short notation in international notation (or Hermann-Mauguin symbol).
  • crystal planes and crystal directions are expressed using Miller indices.
  • Space groups, crystal planes, and crystal directions are expressed in terms of crystallography by adding a superscript bar to the number, but in this specification, etc., due to formatting constraints, instead of adding a bar above the number, they are written in front of the number. It is sometimes expressed by adding a - (minus sign) to it.
  • the individual orientation that indicates the direction within the crystal is [ ]
  • the collective orientation that indicates all equivalent directions is ⁇ >
  • the individual plane that indicates the crystal plane is ( )
  • the collective plane that has equivalent symmetry is ⁇ ⁇ .
  • the trigonal crystal represented by the space group R-3m is generally represented by a complex hexagonal lattice of hexagonal crystals for ease of understanding the structure, and unless otherwise mentioned in this specification, the space group R-3m is It is expressed as a complex hexagonal lattice.
  • the space group R-3m is It is expressed as a complex hexagonal lattice.
  • hkl but also (hkil) may be used as the Miller index.
  • i is -(h+k).
  • crystal planes and the like are expressed in a complex hexagonal lattice.
  • particles is not limited to only spherical shapes (circular cross-sectional shapes), but also includes particles whose cross-sectional shapes are elliptical, rectangular, trapezoidal, triangular, square with rounded corners, and asymmetrical. Examples include shape, and further, individual particles may be amorphous.
  • the theoretical capacity of the positive electrode active material refers to the amount of electricity when all the lithium that can be intercalated and desorbed from the positive electrode active material is desorbed.
  • the theoretical capacity of LiCoO 2 is 274 mAh/g
  • the theoretical capacity of LiNiO 2 is 275 mAh/g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh/g.
  • the amount of lithium that can be intercalated and desorbed remaining in the positive electrode active material is indicated by x in the composition formula, for example, x in Li x CoO 2 .
  • x (theoretical capacity ⁇ charge capacity)/theoretical capacity.
  • LiCoO 2 charge capacity
  • x 0.2 CoO 2
  • x in Li x CoO 2 is small, it means, for example, 0.1 ⁇ x ⁇ 0.24.
  • discharge completed refers to a state where the voltage is 3.0 V or 2.5 V or less at a current of 100 mA/g or less, for example.
  • the charging capacity and/or discharging capacity used to calculate x in Li x CoO 2 is preferably measured under conditions where there is no or little influence of short circuits and/or decomposition of the electrolytic solution. For example, data from a lithium ion secondary battery that has undergone a sudden change in capacity that appears to be a short circuit must not be used to calculate x.
  • the space group of a lithium ion secondary battery is identified by XRD, electron beam diffraction, neutron beam diffraction, etc. Therefore, in this specification and the like, the terms belonging to a certain space group, belonging to a certain space group, or being a certain space group can be rephrased as identifying with a certain space group.
  • the anion has a structure in which three layers are shifted from each other and stacked like ABCABC, it is called a cubic close-packed structure. Therefore, the anion does not have to be strictly in a cubic lattice.
  • the analysis results do not necessarily have to match the theory. For example, in an FFT (fast Fourier transform) pattern such as an electron diffraction pattern or a TEM image, a spot may appear at a position slightly different from a theoretical position. For example, if the orientation with respect to the theoretical position is 5 degrees or less, or 2.5 degrees or less, it can be said that the structure has a cubic close-packed structure.
  • FFT fast Fourier transform
  • the distribution of a certain element refers to a region in which the element is continuously detected in a non-noise range using a certain continuous analysis method.
  • a positive electrode active material to which additive elements are added may be expressed as a composite oxide, a positive electrode material, a positive electrode material, a positive electrode material for lithium ion secondary batteries, etc.
  • the positive electrode active material of one embodiment of the present invention preferably contains a compound.
  • the positive electrode active material of one embodiment of the present invention preferably has a composition.
  • the positive electrode active material of one embodiment of the present invention preferably has a composite.
  • all particles do not necessarily have to have the characteristics. For example, if 50% or more, preferably 70% or more, more preferably 90% or more of three or more randomly selected positive electrode active material particles have the characteristic, it is sufficient to have the positive electrode active material and the same. It can be said that this has the effect of improving the characteristics of lithium ion secondary batteries.
  • the voltage applied to the positive electrode generally increases. Since the positive electrode active material of one embodiment of the present invention is stable in a charged state, a lithium ion secondary battery can be obtained in which a decrease in charge and discharge capacity due to repeated charging and discharging is suppressed.
  • an internal short circuit or an external short circuit of a lithium ion secondary battery not only causes problems in the charging operation and/or discharging operation of the lithium ion secondary battery, but also may cause heat generation and ignition.
  • internal short circuits or external short circuits are suppressed even at high charging voltages. Therefore, a lithium ion secondary battery that has both high discharge capacity and safety can be obtained.
  • an internal short circuit in a lithium ion secondary battery refers to contact between a positive electrode and a negative electrode inside the battery.
  • an external short circuit of a lithium ion secondary battery is assumed to occur due to misuse, and refers to contact between the positive electrode and the negative electrode outside the battery.
  • the materials included in the lithium ion secondary battery will be described in terms of their state before deterioration.
  • a decrease in discharge capacity due to aging treatment and burn-in treatment during the manufacturing stage of a lithium ion secondary battery is not called deterioration.
  • a lithium ion secondary battery consisting of a single cell or an assembled battery has a discharge capacity of 97% or more of the rated capacity, it can be said to be in a state before deterioration.
  • the rated capacity is based on JIS C 8711:2019 for lithium ion secondary batteries for portable devices. In the case of other lithium ion secondary batteries, they comply with not only the JIS standards mentioned above but also JIS and IEC standards for electric vehicle propulsion, industrial use, etc.
  • the state of the material of a lithium ion secondary battery before deterioration is referred to as the initial product or initial state, and the state after deterioration (discharge of less than 97% of the rated capacity of the lithium ion secondary battery)
  • the state in which the product has a capacity is sometimes referred to as a used product or in-use state, or a used product or used state.
  • a lithium ion secondary battery refers to a battery using lithium ions as carrier ions, but the carrier ions of the present invention are not limited to lithium ions.
  • an alkali metal ion or an alkaline earth metal ion can be used as a carrier ion in the present invention, and specifically, a sodium ion or the like can be used.
  • the present invention can be understood by reading lithium ions as sodium ions, etc.
  • the battery may be referred to as a secondary battery.
  • FIGS. 1A and 1B are diagrams illustrating an example of a battery according to one embodiment of the present invention.
  • FIG. 1C is a diagram illustrating an example of a positive electrode included in a battery according to one embodiment of the present invention.
  • a battery 10 is shown in FIG. 1A.
  • the battery 10 includes an exterior body 50 and a positive electrode lead 21 and a negative electrode lead 31 extending from the inside of the exterior body 50 to the outside.
  • the exterior body 50 is sealed with the sealing part 24, the sealing part 34, and the sealing part 51.
  • FIG. 1B is a schematic cross-sectional view taken along the dashed-dotted line X1-X2 in FIG. 1A.
  • the battery 10 includes a positive electrode 20, a negative electrode 30, a separator 40, and an exterior body 50.
  • the positive electrode 20, the negative electrode 30, and the separator 40 are enclosed in an exterior body 50.
  • the positive electrode 20 includes a positive electrode current collector 22 and a positive electrode active material layer 23 provided on the positive electrode current collector 22.
  • the negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 33 provided on the negative electrode current collector 32.
  • Separator 40 has at least a region located between positive electrode active material layer 23 and negative electrode active material layer 33.
  • the positive electrode current collector 22 and the positive electrode lead 21 are electrically connected, and the positive electrode lead 21 extends from the inside of the exterior body 50 to the outside.
  • the negative electrode current collector 32 and the negative electrode lead 31 are electrically connected in the same manner as the positive electrode current collector 22 and the positive electrode lead 21, and the negative electrode lead 31 extends from the inside of the exterior body 50 to the outside. .
  • FIG. 1C is an example of an enlarged view of area A surrounded by a broken line in FIG. 1B.
  • the positive electrode active material layer 23 provided on the positive electrode current collector 22 includes the positive electrode active material 100 and the binder 13.
  • the positive electrode active material layer 23 may have a conductive material 14 in addition to the positive electrode active material 100 and the binder 13, but if the conductivity of the positive electrode active material 100 is sufficiently high, it may not have the conductive material 14. Good too.
  • the positive electrode active material 100 is preferably a composite oxide having a layered rock salt type crystal structure belonging to space group R-3m, such as lithium cobalt oxide. Note that details of the positive electrode active material 100 of one embodiment of the present invention will be described in Embodiments 2 to 4.
  • the positive electrode current collector 22 has a low content of a metal such as aluminum that has a high ionization tendency and has a low melting point.
  • a metal such as aluminum that has a high ionization tendency and has a low melting point.
  • the positive electrode current collector 22 has aluminum, which is a metal with a low melting point, on its surface. The reason is that since aluminum is a metal (sometimes called valve metal) that forms a passive film in the electrolyte, the stability of the positive electrode current collector 22 can be increased against high oxidation potentials. It is from.
  • the positive electrode current collector 22 has a minimum mass of aluminum in the region in contact with the electrolyte.
  • the mass of aluminum contained in the positive electrode current collector 22 is, for example, preferably 0.002% or more and 40% or less, more preferably 0.03% or more and 6% or less of the mass of the positive electrode current collector 22. It is preferably 0.2% or more and 2.5% or less.
  • a laminated metal sheet is preferably used as the positive electrode current collector 22.
  • the laminated metal sheet refers to a metal foil with a low ionization tendency, such as a stainless steel foil, or a metal foil with a high melting point, coated thinly with aluminum.
  • FIG. 1C A case where a laminated metal sheet is used as the positive electrode current collector 22 is shown in FIG. 1C.
  • the laminated metal sheet has a metal foil 22a and a covering layer 22b. It is preferable that the coating layer 22b covers at least a portion of the surface of the metal foil 22a. More preferably, the coating layer 22b is provided on one or both surfaces of the metal foil 22a. Furthermore, it is more preferable that the coating layer 22b covers the entire metal foil 22a, including the side edges of the metal foil 22a.
  • the coating layer 22b is preferably made of aluminum, a fluoride film, or a metal material capable of forming a film containing fluoride.
  • a metal material capable of forming a film containing fluoride.
  • valve metals also referred to as valve metals
  • titanium, tantalum, and chromium may be used. Note that the valve metal refers to a metal that can form a passive state on its surface.
  • the coating layer 22b When the coating layer 22b is provided on the surface of the metal foil 22a, even if the metal foil 22a is made of a material that cannot form a fluoride coating or a coating containing fluoride, the coating layer 22b can prevent the electrolysis of the components of the metal foil 22a. Elution into the liquid can be suppressed.
  • the causes of the components of the metal foil 22a eluting into the electrolyte are LiPF 6 used as the electrolyte of lithium ion batteries, moisture contained as an impurity in the electrolyte, or moisture entering from outside the battery 10. It is thought that the metal foil 22a, which cannot form a fluoride film, is eluted by the hydrogen fluoride.
  • metal foil 22a for example, one or more of stainless steel foil, chrome foil, nickel foil, molybdenum foil, tantalum foil, tungsten foil, gold foil, platinum foil, iridium foil, etc. is preferable.
  • the metal foil 22a can be produced using a rolling method.
  • the thickness of the metal foil 22a is preferably 1 ⁇ m or more and 30 ⁇ m or less, more preferably 5 ⁇ m or more and 20 ⁇ m or less, and more preferably 5 ⁇ m or more and 15 ⁇ m or less.
  • the coating layer 22b is formed using the metal foil 22a as a base material using a sputtering method, a vapor deposition method, a CVD (Chemical Vapor Deposition) method, an MBE (Molecular Beam Epitaxy) method, or a PLD (Pulsed Laser Deposition) method. ion) method or ALD (Atomic Layer Deposition) ) method.
  • the thickness of the coating layer 22b is preferably 1 nm or more and 1 ⁇ m or less, more preferably 10 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less.
  • the composite oxide that is the positive electrode active material and the positive electrode current collector 22 there is less risk of a thermite reaction occurring, and it is possible to prevent the battery from catching fire and spreading the fire to the surrounding area.
  • the amount of heat generated by the thermite reaction can be reduced, thereby preventing battery ignition and the surrounding area of the battery. Fire spread can be prevented.
  • the battery of one embodiment of the present invention can suppress thermal runaway. The thermal runaway of a battery will be explained below.
  • FIG. 2A is a graph of battery temperature versus time. For example, when the battery temperature reaches or near 100° C., (1) SEI (Solid Electrolyte Interphase) of the negative electrode collapses and generates heat.
  • SEI Solid Electrolyte Interphase
  • Non-Patent Document 15 when the temperature of the battery exceeds 660°C, aluminum used as the positive electrode current collector melts, and a thermite reaction with the oxide used as the positive electrode active material occurs. It is stated that the temperature at some points is as high as 1000°C or more.
  • the composite oxide that is the positive electrode active material and the positive electrode current collector 22 when the battery reaches a high temperature, the composite oxide that is the positive electrode active material and the positive electrode current collector 22 This is preferable because there is less possibility that the thermite reaction will occur. Alternatively, even if a thermite reaction occurs between the composite oxide that is the positive electrode active material and the positive electrode current collector 22, the amount of heat generated by the thermite reaction can be reduced, which is preferable.
  • FIGS. 3A, 3B a nail penetration test for a general lithium ion battery will be explained using FIGS. 3A, 3B, and the like.
  • the nail penetration test is a test in which the battery 500 is fully charged (States of Charge: equivalent to 100% SOC) and a nail 1003 having a predetermined diameter selected from 2 mm to 10 mm is inserted into the battery at a predetermined speed. .
  • the speed at which the nail is inserted can be, for example, 1 mm/s or more and 20 mm/s or less.
  • FIG. 3A shows a cross-sectional view of the battery 500 with a nail 1003 inserted therein.
  • the battery 500 has a structure in which a positive electrode 503, a separator 508, a negative electrode 506, and an electrolyte 530 are housed in an exterior body 531.
  • the positive electrode 503 has a positive electrode current collector 501 and positive electrode active material layers 502 formed on both surfaces thereof
  • the negative electrode 506 has a negative electrode current collector 504 and negative electrode active material layers 505 formed on both surfaces thereof.
  • FIG. 3B shows an enlarged view of the nail 1003 and the positive electrode current collector 501, and also clearly shows the positive electrode active material 100 and the conductive material 553 included in the positive electrode active material layer 502.
  • the temperature of the battery 500 may rise due to Joule heat.
  • a change in the crystal structure of the lithium cobalt oxide may occur, and further heat generation may occur.
  • the electrons (e - ) flowing to the positive electrode 503 reduce the tetravalent Co in the charged lithium cobalt oxide to become trivalent or divalent, and this reduction reaction releases oxygen from the lithium cobalt oxide. be done.
  • the electrolytic solution 530 is decomposed by an oxidation reaction caused by the oxygen. This is one of the electrochemical reactions and is called the oxidation reaction of the electrolyte by the positive electrode.
  • the speed at which current flows into the positive electrode active material 100 and the like varies depending on the insulation properties of the positive electrode active material, and it is also believed that the speed at which the current flows affects the electrochemical reaction.
  • FIG. 2B is a partially revised diagram based on the graph shown on page 70 [FIG. 2-12] of Non-Patent Document 14, and is a graph of battery temperature (specifically, internal temperature) versus time. be.
  • P0 the temperature of the battery increases over time.
  • P1 when the temperature of the battery rises to around 100°C due to Joule heat generated by an internal short circuit, it exceeds the reference temperature (Ts), which is the limit temperature that does not lead to thermal runaway of the battery. There are cases.
  • the positive electrode active material has a stable structure that does not release oxygen even when exposed to high temperatures.
  • the positive electrode active material preferably has a structure in which the speed of current flowing into the active material is slow.
  • the positive electrode active material 100 which is one embodiment of the present invention, can have both the stable structure described above and a structure that slows down the current speed.
  • the positive electrode can be formed by applying a slurry onto the positive electrode current collector and drying it. Note that pressing may be applied after drying.
  • the positive electrode has an active material layer formed on a current collector.
  • the slurry is a material liquid used to form an active material layer on a current collector, and contains an active material, a binder, and a solvent, preferably further mixed with a conductive material.
  • the slurry is sometimes called an electrode slurry or an active material slurry, and when forming a positive electrode active material layer, it is also called a positive electrode slurry.
  • binder it is preferable to use rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer. Furthermore, fluororubber can be used as the binder.
  • SBR styrene-butadiene rubber
  • fluororubber can be used as the binder.
  • the binder it is preferable to use, for example, a water-soluble polymer.
  • a water-soluble polymer for example, polysaccharides can be used.
  • polysaccharide cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, or starch can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • polystyrene polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEO polypropylene oxide
  • polyimide polyvinyl chloride
  • materials such as polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, nitrocellulose, etc.
  • the binder may be used in combination of more than one of the above.
  • a material with particularly excellent viscosity adjusting effect may be used in combination with other materials.
  • rubber materials have excellent adhesive strength and elasticity, it may be difficult to adjust the viscosity when mixed with a solvent. In such cases, for example, it is preferable to mix with a material that is particularly effective in controlling viscosity.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • the above-mentioned polysaccharides such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, cellulose derivatives such as regenerated cellulose, or starch are used. be able to.
  • cellulose and cellulose derivatives used as binders for electrodes include salts thereof.
  • the viscosity is stabilized, and other materials to be combined as the active material and binder, such as styrene-butadiene rubber, can be stably dispersed in the aqueous solution. Furthermore, since it has a functional group, it is expected that it will be easily adsorbed stably on the surface of the active material. In addition, many cellulose derivatives such as carboxymethylcellulose have functional groups such as hydroxyl or carboxyl groups, and because of these functional groups, polymers interact with each other and may exist widely covering the surface of the active material. Be expected.
  • the binder When the binder forms a film that covers or is in contact with the surface of the active material, it is expected to serve as a passive film and suppress the decomposition of the electrolyte.
  • the "passive film” is a film with no electrical conductivity or a film with extremely low electrical conductivity.
  • the passive film when a passive film is formed on the surface of an active material, the battery reaction potential In this case, decomposition of the electrolytic solution can be suppressed. Further, it is more desirable that the passive film suppresses electrical conductivity and can conduct lithium ions.
  • the conductive material is also called a conductivity imparting agent or a conductivity aid, and a carbon material is used.
  • a conductive material By attaching a conductive material between the plurality of active materials, the plurality of active materials are electrically connected to each other, thereby increasing conductivity.
  • adheresion does not only mean that the active material and the conductive material are in close physical contact with each other, but also when a covalent bond occurs or when they bond due to van der Waals forces, the surface of the active material
  • the concept includes cases where a conductive material covers a part of the active material, cases where the conductive material fits into the unevenness of the surface of the active material, cases where the active material is electrically connected even if they are not in contact with each other.
  • the active material layers such as the positive electrode active material layer and the negative electrode active material layer, include a conductive material.
  • Examples of the conductive material include carbon black such as acetylene black and furnace black, graphite such as artificial graphite and natural graphite, carbon fibers such as carbon nanofibers and carbon nanotubes, and graphene compounds. More than one species can be used.
  • carbon fibers such as mesophase pitch carbon fiber and isotropic pitch carbon fiber can be used.
  • carbon nanofibers, carbon nanotubes, or the like can be used as the carbon fibers.
  • Carbon nanotubes can be produced, for example, by a vapor phase growth method.
  • the content of the conductive material relative to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 5 wt% or less.
  • graphene compounds Unlike granular conductive materials such as carbon black, which make point contact with the active material, graphene compounds enable surface contact with low contact resistance. It is possible to improve electrical conductivity with Therefore, the ratio of active material in the active material layer can be increased. Thereby, the discharge capacity of the battery can be increased.
  • Particulate carbon-containing compounds such as carbon black and graphite, or fibrous carbon-containing compounds such as carbon nanotubes, easily enter minute spaces.
  • the minute space refers to, for example, a region between a plurality of active materials.
  • 4A to 4D show configuration examples of the positive electrode 20. 4A to 4D are modifications of the positive electrode 20 shown in FIG. 1C.
  • FIG. 4A uses carbon black 15 as the carbon material used as the conductive material 14 and illustrates the electrolyte 60 contained in the voids located between the particles of the positive electrode active material 100.
  • An example is shown in which the second positive electrode active material 110 is further included.
  • a binder may be mixed in order to fix the positive electrode current collector 11 and the positive electrode active material 100 as a positive electrode of a secondary battery.
  • a binder is also called a binding agent.
  • the binder is a polymeric material, and when a large amount of the binder is included, the proportion of the active material in the positive electrode decreases, and the discharge capacity of the secondary battery decreases. Therefore, it is preferable to mix the amount of binder to a minimum.
  • FIG. 4A shows an example in which the positive electrode active material 100 is spherical, it is not particularly limited.
  • the cross-sectional shape of the positive electrode active material 100 may be an ellipse, a rectangle, a trapezoid, a triangle, a polygon with rounded corners, or an asymmetric shape.
  • FIG. 4B shows an example in which the positive electrode active material 100 has a polygonal shape with rounded corners.
  • graphene 16 is used as the carbon material used as the conductive material 14.
  • a positive electrode active material layer including a positive electrode active material 100, graphene 16, and carbon black 15 is formed on the positive electrode current collector 11. Note that graphene 16 alone may be used as the conductive material without using carbon black 15.
  • graphene 16 for example, graphene, multilayer graphene, multigraphene, reduced graphene oxide, reduced multilayer graphene oxide, reduced multilayer graphene oxide, or the like can be used.
  • FIG. 4C illustrates an example of a positive electrode using carbon fiber 17 instead of graphene.
  • FIG. 4C shows an example different from FIG. 4B.
  • carbon fiber 17 When carbon fiber 17 is used, agglomeration of carbon black 15 can be prevented and dispersibility can be improved. Note that the carbon fiber 17 alone may be used as the conductive material without using the carbon black 15.
  • carbon fibers such as mesophase pitch carbon fiber and isotropic pitch carbon fiber can be used.
  • carbon nanofibers, carbon nanotubes, or the like can be used as the carbon fibers.
  • Carbon nanotubes can be produced, for example, by a vapor phase growth method.
  • FIG. 4D is illustrated as an example of another positive electrode.
  • FIG. 4D shows an example in which carbon fiber 17 is used in addition to graphene 16.
  • carbon fiber 17 is used in addition to graphene 16.
  • the negative electrode included in the battery of one embodiment of the present invention includes a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer includes a negative electrode active material, and may further include a conductive material and a binder.
  • the current collector for example, metal foil such as copper foil can be used.
  • the negative electrode can be formed by applying a slurry onto a metal foil and drying it. Note that pressing may be applied after drying.
  • the negative electrode has an active material layer formed on a current collector.
  • the slurry is a material liquid used to form an active material layer on a current collector, and contains an active material, a binder, and a solvent, preferably further mixed with a conductive material. Note that the slurry is sometimes called an electrode slurry or an active material slurry, and when forming a negative electrode active material layer, it is also called a negative electrode slurry.
  • ⁇ Negative electrode active material> For example, a carbon material or an alloy-based material can be used as the negative electrode active material.
  • carbon material for example, graphite (natural graphite, artificial graphite), graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon fiber (carbon nanotube), graphene, carbon black, etc. can be used. can.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of the artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • spherical graphite having a spherical shape can be used as the artificial graphite.
  • MCMB may have a spherical shape, which is preferred.
  • it is relatively easy to reduce the surface area of MCMB which may be preferable.
  • Examples of natural graphite include flaky graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as that of lithium metal (0.05 V or more and 0.3 V or less vs. Li/Li + ) when lithium ions are inserted into graphite (when a lithium-graphite intercalation compound is generated). This allows lithium ion batteries using graphite to exhibit high operating voltage. Furthermore, graphite is preferable because it has advantages such as a relatively high capacity per unit volume, a relatively small volumetric expansion, low cost, and higher safety than lithium metal.
  • Non-graphitizable carbon can be obtained, for example, by firing synthetic resins such as phenol resins or organic substances derived from plants.
  • the non-graphitizable carbon included in the negative electrode active material of the lithium ion battery according to one embodiment of the present invention has a (002) plane spacing of 0.34 nm or more and 0.50 nm or less, as measured by X-ray diffraction (XRD). It is preferably 0.35 nm or more and 0.42 nm or less.
  • an element that can perform a charge/discharge reaction by alloying/dealloying reaction with lithium can be used as the negative electrode active material.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, etc. can be used. These elements have a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh/g. For this reason, it is preferable to use silicon as the negative electrode active material. Further, compounds having these elements may also be used.
  • an element that can perform a charging/discharging reaction by alloying/dealloying reaction with lithium, a compound having the element, etc. may be referred to as an alloy-based material.
  • SiO refers to silicon monoxide, for example.
  • SiO can also be expressed as SiO x .
  • x preferably has a value of 1 or a value close to 1.
  • x is preferably 0.2 or more and 1.5 or less, more preferably 0.3 or more and 1.2 or less.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite intercalation compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • oxidized Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 is preferable because it exhibits a large discharge capacity (900 mAh/g, 1890 mAh/cm 3 ).
  • the negative electrode active material contains lithium ions, it can be combined with materials such as V 2 O 5 and Cr 3 O 8 that do not contain lithium ions as the positive electrode active material, which is preferable. . Note that even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by removing lithium ions contained in the positive electrode active material in advance.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • transition metal oxides that do not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • Materials that cause conversion reactions include oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , and Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 , nitrides such as Cu 3 N and Ge 3 N 4 , phosphides such as NiP 2 , FeP 2 and CoP 3 , and fluorides such as FeF 3 and BiF 3 .
  • negative electrode active material can be used from among the negative electrode active materials shown above, but a combination of multiple types can also be used.
  • it can be a combination of a carbon material and silicon, or a combination of a carbon material and silicon monoxide.
  • the negative electrode it may be a negative electrode that does not have a negative electrode active material at the time of completion of battery production.
  • An example of a negative electrode that does not have a negative electrode active material is a negative electrode that has only a negative electrode current collector at the end of battery production, and the lithium ions that are released from the positive electrode active material when the battery is charged are deposited on the negative electrode current collector. It can be a negative electrode that is precipitated as lithium metal to form a negative electrode active material layer.
  • a battery using such a negative electrode is sometimes called a negative electrode-free (anode-free) battery, a negative electrode-less (anode-less) battery, or the like.
  • a film may be provided on the negative electrode current collector to uniformly deposit lithium.
  • a solid electrolyte having lithium ion conductivity can be used as a membrane for uniformly depositing lithium.
  • the solid electrolyte sulfide-based solid electrolytes, oxide-based solid electrolytes, polymer-based solid electrolytes, and the like can be used.
  • a polymer solid electrolyte is suitable as a film for uniformly depositing lithium because it is relatively easy to form a uniform film on the negative electrode current collector.
  • a metal film that forms an alloy with lithium can be used as a metal film that forms an alloy with lithium can be used.
  • a magnesium metal film can be used as the metal film that forms an alloy with lithium. Since lithium and magnesium form a solid solution over a wide composition range, it is suitable as a film for uniformizing the precipitation of lithium.
  • an electrolytic solution including a solvent and an electrolyte dissolved in the solvent can be used.
  • the electrolyte includes a solvent and a lithium salt.
  • aprotic organic solvents are preferred, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, and dimethyl carbonate.
  • DMC diethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • methyl formate methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 -
  • DME dimethoxyethane
  • DME dimethyl sulfoxide
  • diethyl ether methyl diglyme
  • acetonitrile benzonitrile
  • tetrahydrofuran sulfolane
  • sultone etc., or any combination and ratio of two or more of these. It can be used in
  • the organic solvent contained in the electrolytic solution contains ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC), ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate are combined at 100 vol%.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate are combined at 100 vol%.
  • the volume ratio of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate is x:y:100-x-y (5 ⁇ x ⁇ 35 and 0 ⁇ y ⁇ 65).
  • the organic solvent contained in the electrolytic solution a fluorinated cyclic carbonate or a mixed organic solvent containing a fluorinated chain carbonate can be used. Furthermore, it is preferable that the mixed organic solvent contains both a fluorinated cyclic carbonate and a fluorinated chain carbonate. Both the fluorinated cyclic carbonate and the fluorinated chain carbonate have a substituent that exhibits electron-withdrawing properties, and are preferred because they lower the solvation energy of lithium ions. Therefore, both the fluorinated cyclic carbonate and the fluorinated chain carbonate are suitable for the electrolytic solution, and a mixed organic solvent thereof is suitable.
  • fluorinated cyclic carbonate for example, fluoroethylene carbonate (fluoroethylene carbonate, FEC, F1EC), difluoroethylene carbonate (DFEC, F2EC), trifluoroethylene carbonate (F3EC), or tetrafluoroethylene carbonate (F4EC) can be used.
  • FEC fluoroethylene carbonate
  • F1EC fluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • F3EC trifluoroethylene carbonate
  • F4EC tetrafluoroethylene carbonate
  • fluorinated chain carbonate is methyl 3,3,3-trifluoropropionate.
  • the abbreviation for methyl 3,3,3-trifluoropropionate is "MTFP".
  • MTFP the electron-withdrawing substituent is the CF3 group.
  • FEC is one of the cyclic carbonates and has a high dielectric constant, so when used in an organic solvent, it has the effect of promoting the dissociation of lithium salt.
  • FEC has a substituent that exhibits electron-withdrawing properties
  • desolvation with lithium ions progresses more easily than ethylene carbonate (EC).
  • EC ethylene carbonate
  • the solvation energy of lithium ions in FEC is smaller than that in ethylene carbonate (EC), which does not have a substituent that exhibits electron-withdrawing properties. Therefore, lithium ions are easily released on the surface of the positive electrode active material and the surface of the negative electrode active material, and the internal resistance of the secondary battery can be lowered.
  • FEC has a deep highest occupied molecular orbital (HOMO) level
  • HOMO occupied molecular orbital
  • MTFP is one of the chain carbonates and has the effect of lowering the viscosity of the electrolytic solution or maintaining the viscosity at room temperature (typically 25°C) even at low temperatures (typically 0°C). is also possible.
  • MTFP has a lower solvation energy than methyl propionate (abbreviated as "MP"), which does not have an electron-withdrawing substituent, it is difficult to solvate lithium ions when used in an electrolyte. may be generated.
  • MP methyl propionate
  • the volume ratio is x:100-x (5 ⁇ x ⁇ 30, preferably 10 ⁇ x ⁇ 20). It is best to mix them and use them. In other words, in the mixed organic solvent, it is preferable to mix the organic solvents so that MTFP is larger than FEC.
  • the negative electrode of one embodiment of the present invention has a coating layer on the surface of the negative electrode active material, and when metallic titanium is used for the coating layer, when fluorine ions are generated in the electrolytic solution containing the above FEC or MTFP, It is also possible to form a passive film on the surface of titanium metal. Therefore, the negative electrode of one embodiment of the present invention can be suitably combined with an electrolytic solution containing a mixed organic solvent containing FEC and MTFP.
  • Ionic liquids are composed of cations and anions, and include organic cations and anions.
  • Examples of the organic cation used in the electrolytic solution include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • examples of anions used in the electrolytic solution include monovalent amide anions, monovalent methide anions, fluorosulfonic acid anions, perfluoroalkylsulfonic acid anions, tetrafluoroborate anions, perfluoroalkylborate anions, and hexafluorophosphate anions. , or perfluoroalkyl phosphate anion.
  • lithium bis(fluorosulfonyl)imide also referred to as EMI-FSI
  • EMI-FSI lithium bis(fluorosulfonyl)imide
  • lithium salt also called electrolyte
  • LiPF 6 LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC(CF 3 SO 2 ) 3 , LiC(C 2 F 5 SO 2 ) 3 , LiN(SO 2 F) 2 (also referred to as LiFSI) , LiN(CF 3 SO 2 ) 2 , LiN(C 4 F 9 SO 2 )(CF 3 SO 2 ), LiN(C 2 F 5 SO 2 ) 2 , etc., or two of these.
  • the above can be used in any combination and ratio.
  • the amount of the lithium salt relative to the solvent is preferably 0.5 mol/L or more and 3.0 mol/L or less.
  • Use of fluorides such as LiPF 6 and LiBF 4 improves the safety of lithium ion secondary batteries.
  • the electrolytic solution mentioned above it is preferable to use a highly purified electrolytic solution that has a low content of particulate dust or elements other than the constituent elements of the electrolytic solution (hereinafter also simply referred to as "impurities").
  • the weight ratio of impurities to the electrolytic solution is 1 wt% or less, preferably 0.1 wt% or less, more preferably 0.01 wt% or less.
  • the electrolyte may contain additives.
  • the additive can suppress reaction decomposition of the electrolyte that may occur on the surface of the positive electrode or the negative electrode when operating the secondary battery at high voltage and/or high temperature.
  • additives for example, vinylene carbonate (VC), propane sultone (PS), TerT-butylbenzene (TBB), fluoroethylene carbonate (FEC), and lithium bis(oxalate)borate (LiBOB) may be used.
  • VC or FEC is preferable because it forms a good film on the negative electrode during aging of the secondary battery or during charging at the initial stage of use and improves cycle characteristics.
  • any one type or two or more types of dinitrile compounds can be used.
  • dinitrile compounds include, for example, succinonitrile, glutaronitrile, adiponitrile (ADN), or ethylene glycol bis(propionitrile) ether (EGBE).
  • fluorobenzene may be added to the above organic solvent.
  • concentration of the additive may be, for example, 0.1 wt% or more and 5 wt% or less based on the entire electrolytic solution.
  • PS or EGBE is preferable because it forms a good film on the positive electrode during charging and discharging and improves cycle characteristics.
  • FB is preferable because it improves the wettability of the organic solvent to the positive electrode and negative electrode.
  • a dinitrile compound is preferable because the nitrile group is oriented toward the positive electrode and the negative electrode, inhibiting oxidative decomposition of the organic solvent, and thus improving high voltage resistance.
  • dinitrile compounds are preferable because they can prevent dissolution of copper during overdischarge when a current collector containing copper is used in the negative electrode. Considering the use of secondary batteries at high voltages, it is preferable to add a nitrile compound.
  • Gel electrolyte As the gel electrolyte, a polymer gel obtained by swelling a polymer with an electrolytic solution may be used. By using a polymer gel electrolyte, a semi-solid electrolyte layer can be provided, increasing safety against leakage and the like. Further, it is possible to make the secondary battery thinner and lighter.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluoropolymer gel, etc. can be used.
  • polymers having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and copolymers containing them can be used.
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer formed may also have a porous shape.
  • Solid electrolyte instead of the electrolyte, a solid electrolyte containing an inorganic material such as a sulfide or oxide, a solid electrolyte containing a polymeric material such as PEO (polyethylene oxide), or the like can be used.
  • a solid electrolyte it is not necessary to install a separator and/or spacer. Additionally, since the entire battery can be solidified, there is no risk of leakage, dramatically improving safety.
  • separator 40 shown in FIG. 1B etc. In the case of a battery having an electrolyte, a separator is placed between the positive electrode and the negative electrode.
  • separators include fibers containing cellulose such as paper, nonwoven fabrics, glass fibers, ceramics, or synthetic materials using nylon (polyamide), polyimide, vinylon (polyvinyl alcohol fiber), polyester, acrylic, polyolefin, and polyurethane. A material made of fiber or the like can be used. It is preferable that the separator is processed into a bag shape and arranged so as to surround either the positive electrode or the negative electrode.
  • the separator may have a multilayer structure.
  • a film of an organic material such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, a polyimide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles (alumina, boehmite, etc.), silicon oxide particles, etc. can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene, etc. can be used.
  • the polyamide material for example, nylon, aramid (meta-aramid, para-aramid), etc. can be used.
  • Coating with a ceramic material improves oxidation resistance, so it is possible to suppress deterioration of the separator during high voltage charging and improve battery reliability. Furthermore, coating with a fluorine-based material makes it easier for the separator and electrode to come into close contact with each other, thereby improving output characteristics. Coating with a polyamide-based material, especially aramid, improves heat resistance, which can improve the safety of the battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the battery can be maintained even if the overall thickness of the separator is thin, so the capacity per volume of the battery can be increased.
  • the exterior body 50 shown in FIG. 1A etc. will be explained.
  • a metal material such as aluminum, stainless steel, or titanium, or a resin material
  • a film-like exterior body can also be used.
  • a film for example, a highly flexible metal thin film or metal foil such as aluminum, stainless steel, titanium, copper, or nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, or polyamide.
  • a three-layer film can be used in which an insulating synthetic resin film such as polyamide resin or polyester resin is provided on a thin metal film as the outer surface of the exterior body.
  • a film with such a multilayer structure can be called a laminate film.
  • the laminate film may be called an aluminum laminate film, a stainless steel laminate film, a titanium laminate film, a copper laminate film, a nickel laminate film, etc. using the name of the material of the metal layer that the laminate film has.
  • the material or thickness of the metal layer included in the laminate film may affect the flexibility of the battery.
  • an aluminum laminate film having a polypropylene layer, an aluminum layer, and a nylon layer as an exterior body used in a battery where flexibility or weight reduction is important.
  • the thickness of the aluminum layer is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. Note that if the aluminum layer is thinner than 10 ⁇ m, there is a concern that the gas barrier properties will deteriorate due to pinholes in the aluminum layer, so the thickness of the aluminum layer is preferably 10 ⁇ m or more.
  • the thickness of the stainless steel layer is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. Note that if the stainless steel layer is thinner than 10 ⁇ m, there is a concern that the gas barrier properties may be deteriorated due to pinholes in the stainless steel layer, so the thickness of the stainless steel layer is preferably 10 ⁇ m or more.
  • stainless steel in this specification refers to steel (an alloy of iron and carbon) containing about 12% or more of chromium, and can be roughly classified into martensitic, ferritic, or austenitic based on composition. Note that stainless steel to which one or more selected from Ti, Nb, Mo, Cu, Ni, or Si is added is also included.
  • the thickness of the titanium layer is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less. Note that if the titanium layer is thinner than 10 ⁇ m, there is a concern that the gas barrier properties will deteriorate due to pinholes in the titanium layer, so the thickness of the titanium layer is preferably 10 ⁇ m or more.
  • a graphene sheet may be used as the laminate film instead of the above metal layer.
  • a graphene sheet a multilayer graphene sheet with a size of 100 nm or more and 30 ⁇ m or less, preferably 200 nm or more and 20 ⁇ m or less can be used. Since the graphene sheet is flexible, has an interlayer distance of 0.34 nm, and has gas barrier properties, it is suitable as a film for use in the exterior of a secondary battery.
  • FIG. 5A shows the positive electrode current collector 22
  • FIG. 5B shows the separator 40
  • FIG. 5C shows the negative electrode current collector 32
  • FIG. 5D shows the positive electrode lead 21 and negative electrode lead 31
  • FIG. 5E shows the film-like exterior body 50.
  • a top view (also called a plan view) is shown.
  • the positive electrode lead 21 has a sealing part 24 and a lead metal 76a
  • the negative electrode lead 31 has a sealing part 34 and a lead metal 76b.
  • each of the figures in FIGS. 5A to 5E are approximately the same, and the region 41 surrounded by the dashed line in FIG. 5E is approximately the same as the dimension of the separator in FIG. 5B. Further, the area between the broken line and the end in FIG. 5E becomes the sealing part 51.
  • protruding portion of the positive electrode current collector 22 (the broken line portion in FIG. 5A) and the protruding portion of the negative electrode current collector 32 (the broken line portion in FIG. 5C) are referred to as tab portions.
  • FIG. 6A is an example in which positive electrode active material layers 23 are provided on both sides of the positive electrode current collector 22.
  • the negative electrode current collector 32, the negative electrode active material layer 33, the separator 40, the positive electrode active material layer 23, the positive electrode current collector 22, the positive electrode active material layer 23, the separator 40, the negative electrode active material layer 33, the negative electrode current collector They are arranged in the order of body 32.
  • a cross-sectional view of this laminated structure taken along a plane 70 is shown in FIG. 6B.
  • the positive electrode active material layer 23 can be provided on both sides of the positive electrode current collector 22, except for the tab portion described in FIG. 5A.
  • the negative electrode active material layer 33 can be provided on one side of the negative electrode current collector 32, excluding the tab portion described in FIG. 5C.
  • FIG. 6A shows an example in which two separators are used, a structure in which one separator is bent and sealed at both ends to form a bag shape, and the positive electrode current collector 22 is stored between the two separators is shown. It is also possible to do this.
  • a positive electrode active material layer 23 is formed on both sides of a positive electrode current collector 22 housed in a bag-shaped separator.
  • the negative electrode active material layer 33 on both sides of the negative electrode current collector 32.
  • FIG. 6C between two negative electrode current collectors 32 having negative electrode active material layers 33 on only one side, three negative electrode current collectors 32 having negative electrode active material layers 33 on both sides, and positive electrode active material layers on both sides.
  • a secondary battery is constructed by sandwiching four positive electrode current collectors 22 having a diameter of 23 and eight separators 40.
  • the negative electrode active material layer 33 can be provided on both sides of the negative electrode current collector 32, except for the tab portion explained in FIG. 5C. In this case as well, instead of using eight separators, four bag-shaped separators may be used.
  • the capacity of the secondary battery can be increased by increasing the number of layers. Furthermore, by providing the positive electrode active material layers 23 on both sides of the positive electrode current collector 22 and the negative electrode active material layers 33 on both sides of the negative electrode current collector 32, the thickness of the secondary battery can be reduced.
  • FIG. 7A shows a diagram of a secondary battery formed by providing the positive electrode active material layer 23 on only one side of the positive electrode current collector 22 and providing the negative electrode active material layer 33 on only one side of the negative electrode current collector 32.
  • a negative electrode active material layer 33 is provided on one side of the negative electrode current collector 32, and a separator 40 is laminated so as to be in contact with the negative electrode active material layer 33.
  • the surface of the separator 40 on the side not in contact with the negative electrode active material layer 33 is in contact with the positive electrode active material layer 23 of the positive electrode current collector 22 with the positive electrode active material layer 23 formed on one side.
  • the surface of the positive electrode current collector 22 is in contact with the positive electrode current collector 22 on which another positive electrode active material layer 23 is formed on one side.
  • the positive electrode current collector 22 is arranged so that the surfaces on which the positive electrode active material layer 23 is not formed face each other. Then, a separator 40 is further formed, and the negative electrode active material layer 33 of the negative electrode current collector 32 having the negative electrode active material layer 33 formed on one side thereof is laminated so as to be in contact with the separator.
  • FIG. 7B A cross-sectional view of the laminated structure of FIG. 7A taken along a plane 71 is shown in FIG. 7B.
  • FIG. 7A two separators are used, but one separator is bent and both ends are sealed to form a bag shape, and between them, two positive electrode current collectors 22 with a positive electrode active material layer 23 arranged on one side are inserted. You can also sandwich it.
  • FIG. 7C shows a diagram in which a plurality of the laminated structures of FIG. 7A are laminated.
  • the surfaces of the negative electrode current collector 32 on which the negative electrode active material layer 33 is not formed are arranged facing each other.
  • FIG. 7C shows a state in which 12 positive electrode current collectors 22, 12 negative electrode current collectors 32, and 12 separators 40 are stacked.
  • the positive electrode active material layer 23 can be provided on one side of the positive electrode current collector 22, except for the tab portion described in FIG. 5A. Further, the negative electrode active material layer 33 can be provided on one side of the negative electrode current collector 32, excluding the tab portion described in FIG. 5C.
  • the plurality of positive electrode current collectors 22 are all fixed at the tab portions and electrically connected.
  • all of the plurality of negative electrode current collectors 32 are fixed and electrically connected at the tab portion.
  • the positive electrode lead 21 and the plurality of positive electrode current collectors 22 are fixed at the same time using tab portions and electrically connected.
  • the negative electrode lead 31 and the plurality of negative electrode current collectors 32 are simultaneously fixed and electrically connected using tab portions.
  • a method of fixing the plurality of current collectors and electrode leads As a method of fixing the plurality of current collectors and electrode leads, a method of fixing them by welding such as ultrasonic welding, etc. can be used.
  • FIGS. 8A to 8C are cross-sectional schematic diagrams showing an example of a laminate in which a positive electrode 20, a negative electrode 30, and a separator 40 are laminated.
  • the schematic cross-sectional views shown in FIGS. 8A to 8C are schematic cross-sectional views taken along Y1-Y2 of the battery 10 shown in FIG. 1A, and the exterior body 50 is omitted. Further, regarding the positive electrode 20 and the negative electrode 30, illustration of the current collector and the active material layer is omitted to avoid complication of the drawings.
  • the separator 40 has a region located between the positive electrode 20 and the negative electrode 30.
  • the positive electrode 20 and the negative electrode 30 have an overlapping region with the separator 40 in between.
  • the separator 40 may have a region located between the positive electrode 20 and the exterior body 50, or may have a region located between the negative electrode 30 and the exterior body 50.
  • a laminate including a plurality of positive electrodes 20, a plurality of negative electrodes 30, and a plurality of separators 40 can be formed.
  • a laminate including a plurality of positive electrodes 20, a plurality of negative electrodes 30, and one separator 40 can be formed.
  • the separator 40 has a meandering shape and can be positioned between the plurality of positive electrodes 20 and the plurality of negative electrodes 30.
  • the separator 40 can have a wound shape and be positioned between the plurality of positive electrodes 20 and the plurality of negative electrodes 30.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • FIG. 9A to 9C are cross-sectional views of a positive electrode active material 100 that is one embodiment of the present invention.
  • the positive electrode active material 100 has a surface layer portion 100a and an interior portion 100b.
  • the boundary between the surface layer portion 100a and the interior portion 100b is indicated by a broken line.
  • FIG. 9B shows a positive electrode active material 100 having a buried part 102. (001) in the figure indicates the (001) plane of lithium cobalt oxide. LiCoO 2 belongs to space group R-3m.
  • FIG. 9C a part of the grain boundary 101 is shown by a dashed line.
  • the surface layer portion 100a can be referred to as a barrier film, and the lithium cobalt oxide having the surface layer portion 100a may be referred to as lithium cobalt oxide having a barrier film.
  • the surface layer 100a of the positive electrode active material 100 is, for example, within 50 nm from the surface toward the inside, more preferably within 35 nm from the surface toward the inside, and still more preferably 20 nm from the surface toward the inside. most preferably refers to a region within 10 nm perpendicularly or substantially perpendicularly from the surface toward the inside. Note that "substantially perpendicular” is defined as 80° or more and 100° or less. Cracks and/or surfaces caused by cracks may also be referred to as surfaces.
  • the surface layer portion 100a has the same meaning as near-surface, near-surface region, or shell.
  • Interior 100b is synonymous with interior region or core.
  • the surface of the positive electrode active material 100 refers to the surface of the composite oxide including the surface layer portion 100a and the interior portion 100b. Therefore, the positive electrode active material 100 is made of materials to which metal oxides such as aluminum oxide (Al 2 O 3 ) that do not have lithium sites that can contribute to charging and discharging are attached, and carbonates chemically adsorbed after the production of the positive electrode active material. , hydroxyl group, etc. are not included. Note that the deposited metal oxide refers to a metal oxide whose crystal structure does not match that of the interior 100b, for example.
  • metal oxides such as aluminum oxide (Al 2 O 3 ) that do not have lithium sites that can contribute to charging and discharging are attached, and carbonates chemically adsorbed after the production of the positive electrode active material. , hydroxyl group, etc. are not included.
  • the deposited metal oxide refers to a metal oxide whose crystal structure does not match that of the interior 100b, for example.
  • electrolyte, organic solvent, binder, conductive material, or compounds derived from these that adhere to the positive electrode active material 100 are not included.
  • the crystal grain boundaries 101 are, for example, areas where particles of the positive electrode active material 100 are fixed to each other, areas where the crystal orientation changes inside the positive electrode active material 100, in other words, the repetition of bright lines and dark lines in a STEM image etc. is discontinuous. This refers to areas where the crystal structure is disordered, areas with many crystal defects, areas where the crystal structure is disordered, etc.
  • crystal defects refer to defects that can be observed in cross-sectional TEM (transmission electron microscopy), cross-sectional STEM images, etc., that is, structures where other atoms enter between lattices, cavities, etc.
  • the grain boundary 101 can be said to be one of the planar defects. Further, the vicinity of the grain boundary 101 refers to a region within 10 nm from the grain boundary 101.
  • the positive electrode active material 100 includes lithium, cobalt, oxygen, and additional elements.
  • the positive electrode active material 100 includes lithium cobalt oxide (LiCoO 2 ) to which an additive element is added.
  • the positive electrode active material of a lithium ion secondary battery must contain a transition metal capable of redox in order to maintain charge neutrality even when lithium ions are intercalated and desorbed. It is preferable that the positive electrode active material 100 of one embodiment of the present invention mainly uses cobalt as the transition metal responsible for the redox reaction. In addition to cobalt, at least one or two selected from nickel and manganese may be used. Among the transition metals contained in the positive electrode active material 100, if cobalt accounts for 75 atomic % or more, preferably 90 atomic % or more, and more preferably 95 atomic % or more, it is relatively easy to synthesize, easy to handle, and has excellent cycle characteristics. It is preferable as it has many advantages.
  • nickel such as lithium nickelate (LiNiO 2 ) accounts for the majority of the transition metals.
  • the stability is better when x in Li x CoO 2 is small compared to complex oxides in which the amount of x in Li x CoO 2 is small. This is thought to be because cobalt is less affected by distortion due to the Jahn-Teller effect than nickel.
  • the strength of the Jahn-Teller effect in transition metal compounds differs depending on the number of electrons in the d orbital of the transition metal.
  • Layered rock-salt complex oxides such as lithium nickelate, in which octahedral-coordinated low-spin nickel (III) accounts for the majority of the transition metal, are strongly influenced by the Jahn-Teller effect, and are separated from the octahedral structure of nickel and oxygen. Distortion is likely to occur in the layers. Therefore, there is a growing concern that the crystal structure will collapse during charge/discharge cycles. Also, nickel ions are larger than cobalt ions and are close to the size of lithium ions. Therefore, in layered rock salt type composite oxides in which nickel accounts for the majority of the transition metal, such as lithium nickelate, there is a problem that cation mixing of nickel and lithium tends to occur.
  • the additive elements included in the positive electrode active material 100 include magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, and beryllium. It is preferable to use one or more selected ones. Moreover, the sum of transition metals among the additional elements is preferably less than 25 atom %, more preferably less than 10 atom %, and even more preferably less than 5 atom %.
  • the positive electrode active material 100 includes lithium cobalt oxide to which magnesium and fluorine are added, lithium cobalt oxide to which magnesium, fluorine and titanium are added, lithium cobalt oxide to which magnesium, fluorine and aluminum are added, magnesium, fluorine and nickel. It can have added lithium cobalt oxide, lithium cobalt oxide added with magnesium, fluorine, nickel and aluminum, and the like.
  • the additive element is dissolved in the positive electrode active material 100. Therefore, for example, when performing STEM-EDX line analysis, the depth at which the amount of added elements increases is deeper than the depth at which the amount of transition metal M is detected, that is, the positive electrode active area. Preferably, it is located inside the substance 100.
  • the depth at which the amount of a certain element detected in STEM-EDX line analysis increases is defined as the depth at which measurement values that can be determined not to be noise from the viewpoint of intensity, spatial resolution, etc. are continuously obtained. This refers to the depth at which it becomes like this.
  • the additive element has the same meaning as a mixture or a part of raw materials.
  • additive elements do not necessarily include magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, or beryllium. .
  • the positive electrode active material 100 is substantially free of manganese, the advantages of relatively easy synthesis, ease of handling, and excellent cycle characteristics will be greater.
  • the weight of manganese contained in the positive electrode active material 100 is, for example, preferably 600 ppm or less, more preferably 100 ppm or less.
  • Layered rock salt type composite oxides have high discharge capacity, have two-dimensional lithium ion diffusion paths, are suitable for lithium ion insertion/extraction reactions, and are excellent as positive electrode active materials for secondary batteries. Therefore, it is particularly preferable that the interior 100b, which occupies most of the volume of the positive electrode active material 100, has a layered rock salt crystal structure.
  • FIG. 16 shows the layered rock salt type crystal structure with R-3m O3 attached.
  • the coordinates of lithium, cobalt, and oxygen are Li (0, 0, 0), Co (0, 0, 0.5), and O (0, 0, 0.23951) (Non-Patent Document 7).
  • the surface layer 100a of the positive electrode active material 100 is reinforced so that the layered structure made of octahedrons of cobalt and oxygen in the interior 100b will not be broken even if lithium is removed from the positive electrode active material 100 due to charging. It is preferable to have a function. Alternatively, it is preferable that the surface layer portion 100a functions as a barrier film for the positive electrode active material 100. Alternatively, it is preferable that the surface layer portion 100a, which is the outer peripheral portion of the positive electrode active material 100, reinforces the positive electrode active material 100.
  • Reinforcement here refers to suppressing structural changes in the surface layer portion 100a and interior portion 100b of the positive electrode active material 100, such as desorption of oxygen and/or displacement of the layered structure consisting of an octahedron of cobalt and oxygen. and/or suppressing oxidative decomposition of the electrolyte on the surface of the positive electrode active material 100.
  • the surface layer portion 100a has a crystal structure different from that of the interior portion 100b. Further, it is preferable that the surface layer portion 100a has a composition and crystal structure that are more stable at room temperature (25° C.) than the interior portion 100b. For example, it is preferable that at least a portion of the surface layer portion 100a of the positive electrode active material 100 according to one embodiment of the present invention has a rock salt crystal structure. Alternatively, the surface layer portion 100a preferably has both a layered rock salt type crystal structure and a rock salt type crystal structure. Alternatively, the surface layer portion 100a preferably has characteristics of both a layered rock salt type and a rock salt type crystal structure.
  • the surface layer portion 100a is a region where lithium ions are first desorbed during charging, and is a region where the lithium concentration tends to be lower than that in the interior portion 100b. Further, it can be said that some of the bonds of the atoms on the surface of the particles of the positive electrode active material 100 included in the surface layer portion 100a are in a state of being broken. Therefore, the surface layer portion 100a tends to become unstable, and can be said to be a region where the crystal structure tends to deteriorate.
  • the crystal structure of the layered structure made of octahedrons of cobalt and oxygen shifts in the surface layer 100a, the influence will be chained to the interior 100b, causing the crystal structure of the layered structure to shift in the interior 100b as well. This is thought to lead to deterioration of the crystal structure.
  • the surface layer 100a can be made sufficiently stable, even when x in Li x CoO 2 is small, for example, even when x is 0.24 or less, the layered structure consisting of cobalt and oxygen octahedrons in the interior 100b will be difficult to break. Can be done. Furthermore, it is possible to suppress misalignment of the octahedral layer of cobalt and oxygen in the interior 100b.
  • the surface layer portion 100a preferably contains an additive element, and more preferably contains a plurality of additive elements. Further, it is preferable that the concentration of one or more selected additive elements is higher in the surface layer portion 100a than in the interior portion 100b. Further, it is preferable that one or more selected from the additive elements included in the positive electrode active material 100 have a concentration gradient. Further, it is more preferable that the distribution of the positive electrode active material 100 differs depending on the added element. For example, it is more preferable that the depth of the detected amount peak in the surface layer from the surface or a reference point in EDX-ray analysis described below differs depending on the added element. The peak of the detected amount here refers to the maximum value of the detected amount in the surface layer portion 100a or 50 nm or less from the surface. The detected amount refers to, for example, a count in EDX-ray analysis.
  • Arrows X1-X2 are shown in FIG. 9 as an example of the depth direction of a crystal plane other than the (001) plane of lithium cobalt oxide in the positive electrode active material 100 of one embodiment of the present invention.
  • Examples of characteristic X-ray intensity distributions (also referred to as EDX-ray analysis profiles) of each additive element when EDX-ray analysis is performed along arrows X1-X2 are shown in FIGS. 10A to 10C.
  • the amount of at least magnesium and nickel among the added elements detected in the surface layer portion 100a is larger than the amount detected in the interior portion 100b. Furthermore, it is preferable that the detected amounts of magnesium and nickel have a narrow peak in a region closer to the surface in the surface layer portion 100a. For example, it is preferable to have peaks of detected amounts of magnesium and nickel within 3 nm from the surface or a reference point. Moreover, it is preferable that the distributions of magnesium and nickel overlap. The peaks of the detected amounts of magnesium and nickel may be at the same depth, the peak of magnesium may be closer to the surface, and the peak of nickel may be closer to the surface as shown in FIG. 10B. The difference in depth between the peak of the detected amount of nickel and the peak of the detected amount of magnesium is preferably within 3 nm, and more preferably within 1 nm.
  • the amount of nickel detected in the interior 100b may be very small compared to the surface layer 100a, or may not be detected, that is, it may be below the lower limit of detection.
  • the amount of fluorine detected in the surface layer 100a is larger than the amount detected inside, similar to magnesium or nickel. Moreover, it is preferable that the detected amount of fluorine has a peak in a region closer to the surface of the surface layer portion 100a. For example, it is preferable that the detected amount of fluorine has a peak within 3 nm from the surface or the reference point. Similarly, it is preferable that the amount of titanium, silicon, phosphorus, boron, and/or calcium detected in the surface layer portion 100a is larger than the amount detected inside.
  • the detected amounts of titanium, silicon, phosphorus, boron, and/or calcium have a peak in a region closer to the surface of the surface layer portion 100a.
  • At least aluminum has a detected amount peak inside the element compared to magnesium.
  • the distributions of magnesium and aluminum may overlap as shown in FIG. 10A, or the distributions of magnesium and aluminum may not overlap as shown in FIG. 10C.
  • the peak of the detected amount of aluminum may be present in the surface layer portion 100a or may be deeper than the surface layer portion 100a. For example, it is preferable to have a peak in a region of 5 nm or more and 30 nm or less from the surface or the reference point toward the inside.
  • the distribution of aluminum may not be a normal distribution.
  • the length of the hem may differ between the front side and the inside side.
  • the peak width at a height (1/5 Max Al ) of the maximum value (Max Al ) of the detected amount of aluminum is plotted from the maximum value on the horizontal axis.
  • the peak width Wc on the inner side may be larger than the peak width Ws on the surface side.
  • manganese like aluminum, has a detection peak within the range compared to magnesium.
  • the additive elements do not necessarily have to have the same concentration gradient or distribution in all the surface layer portions 100a of the positive electrode active material 100.
  • arrows Y1-Y2 are shown in FIG.
  • FIG. 11A shows an example of the intensity distribution of the characteristic X-ray of the added element along the arrow Y1-Y2.
  • the (001) oriented surface may have a different distribution of additive elements from other surfaces.
  • the (001) oriented surface and its surface layer portion 100a may have a lower detected amount of one or more selected additive elements than the surface other than the (001) oriented surface.
  • the detected amount of nickel may be low.
  • the detected amount of one or more selected from the additive elements may be below the lower detection limit.
  • the detected amount of nickel may be below the lower limit of detection.
  • the peak of the detected amount of one or more selected from the additive elements may be shallower than in the (001) oriented surface.
  • the peak positions of the detected amounts of magnesium and aluminum may be shallower than in the (001) oriented surface.
  • the surface of the positive electrode active material 100 is more stable if it has a (001) orientation.
  • the main diffusion path of lithium ions during charging and discharging is not exposed on the (001) plane.
  • the surface other than the (001) orientation and its surface layer portion 100a are important regions for maintaining the diffusion path of lithium ions, and at the same time, they are easily unstable because they are the regions from which lithium ions are first desorbed. Therefore, it is extremely important to reinforce the surface other than the (001) orientation and its surface layer portion 100a in order to maintain the crystal structure of the entire positive electrode active material 100.
  • the characteristic X-ray intensity distribution of the additive element on the surface other than the (001) orientation and the surface layer portion 100a is as shown in any of FIGS. 10A to 10C. It is important that the distribution is consistent.
  • the additive elements it is particularly preferable that nickel is detected on the surface other than the (001) orientation and on the surface layer portion 100a thereof.
  • the concentration of the additive element may be low as described above, or may be absent.
  • the distribution of magnesium in the (001) oriented surface and its surface layer 100a preferably has a half width of 10 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less, and 80 nm or more and 120 nm or less. and even more preferable.
  • the distribution of magnesium on the non-(001) oriented surface and its surface layer 100a preferably has a half width of more than 200 nm and less than 500 nm, more preferably more than 200 nm and less than 300 nm, and more preferably more than 230 nm and 270 nm. It is more preferable that it is the following.
  • the half width of the distribution of nickel on the non-(001) oriented surface and its surface layer 100a is preferably 30 nm or more and 150 nm or less, more preferably 50 nm or more and 130 nm or less, and 70 nm or more and 110 nm or less. is even more preferable.
  • Magnesium is divalent, and magnesium ions are more stable in lithium sites than in cobalt sites in a layered rock salt crystal structure, so they easily enter lithium sites.
  • the presence of magnesium at an appropriate concentration in the lithium sites of the surface layer 100a makes it easier to maintain the layered rock salt crystal structure. This is presumed to be because the magnesium present at the lithium site functions as a pillar that supports the two CoO layers.
  • the presence of magnesium can suppress desorption of oxygen around magnesium when x in Li x CoO 2 is, for example, 0.24 or less.
  • the presence of magnesium can be expected to increase the density of the positive electrode active material 100.
  • the magnesium concentration in the surface layer portion 100a is high, it can be expected that the corrosion resistance against hydrofluoric acid produced by decomposition of the electrolytic solution will be improved.
  • magnesium is at an appropriate concentration, it will not adversely affect the insertion and desorption of lithium during charging and discharging, and the above benefits can be enjoyed.
  • an excess of magnesium may have an adverse effect on lithium intercalation and deintercalation.
  • the effect on stabilizing the crystal structure may be reduced. This is thought to be because magnesium enters the cobalt site in addition to the lithium site.
  • unnecessary magnesium compounds oxides, fluorides, etc.
  • the discharge capacity of the positive electrode active material may decrease. This is thought to be because too much magnesium enters the lithium site, reducing the amount of lithium that contributes to charging and discharging.
  • the entire positive electrode active material 100 has an appropriate amount of magnesium.
  • the number of magnesium atoms is preferably 0.002 times or more and 0.06 times or less, more preferably 0.005 times or more and 0.03 times or less, and even more preferably about 0.01 times the number of cobalt atoms.
  • the amount of magnesium contained in the entire positive electrode active material 100 herein may be a value obtained by elemental analysis of the entire positive electrode active material 100 using, for example, GD-MS, ICP-MS, etc. It may be based on the value of the composition of raw materials in the process of producing the substance 100.
  • ⁇ nickel ⁇ Nickel can exist at both cobalt sites and lithium sites in the layered rock salt crystal structure of LiMeO 2 .
  • it can be said to have a lower oxidation-reduction potential than cobalt, so it can easily give up lithium and electrons during charging, for example. Therefore, it can be expected that the charging and discharging speed will be faster. Therefore, even at the same charging voltage, a larger charge/discharge capacity can be obtained when the transition metal M is nickel than when the transition metal M is cobalt.
  • NiO nickel oxide
  • magnesium, aluminum, cobalt, and nickel have a greater tendency to ionize in that order. Therefore, it is thought that nickel is less eluted into the electrolyte than the other elements mentioned above during charging. Therefore, it is considered to be highly effective in stabilizing the crystal structure of the surface layer in the charged state.
  • Ni 2+ is the most stable, and nickel has a higher trivalent ionization energy than cobalt. Therefore, it is known that nickel and oxygen alone do not form a spinel-type crystal structure. Therefore, nickel is considered to have the effect of suppressing the phase change from a layered rock salt type crystal structure to a spinel type crystal structure.
  • the entire positive electrode active material 100 has an appropriate amount of nickel.
  • the number of nickel atoms in the positive electrode active material 100 is preferably more than 0% and less than 7.5% of the number of cobalt atoms, preferably 0.05% or more and 4% or less, and preferably 0.1% or more and 2% or less. is preferable, and more preferably 0.2% or more and 1% or less.
  • it is preferably more than 0% and 4% or less.
  • it is preferably more than 0% and 2% or less.
  • preferably 0.05% or more and 2% or less Or preferably 0.1% or more and 7.5% or less.
  • the amount of nickel shown here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material using GD-MS, ICP-MS, etc., or a value obtained by mixing raw materials in the process of producing the positive electrode active material. may be based on the value of
  • Aluminum can also exist in cobalt sites in a layered rock salt type crystal structure.
  • Aluminum is a typical trivalent element and its valence does not change, so lithium around aluminum is difficult to move during charging and discharging. Therefore, aluminum and the lithium surrounding it function as pillars and can suppress changes in the crystal structure. Therefore, as will be described later, even if the positive electrode active material 100 is subjected to a force that expands and contracts in the c-axis direction due to insertion and desorption of lithium ions, that is, even if a force that expands and contracts in the c-axis direction is applied by changing the charging depth or charging rate. , deterioration of the positive electrode active material 100 can be suppressed.
  • aluminum has the effect of suppressing the elution of surrounding cobalt and improving continuous charging resistance. Furthermore, since the Al--O bond is stronger than the Co--O bond, desorption of oxygen around aluminum can be suppressed. These effects improve thermal stability. Therefore, when aluminum is included as an additive element, safety can be improved when the positive electrode active material 100 is used in a secondary battery. Moreover, the positive electrode active material 100 can be made such that the crystal structure does not easily collapse even after repeated charging and discharging.
  • the entire positive electrode active material 100 has an appropriate amount of aluminum.
  • the number of aluminum atoms contained in the entire positive electrode active material 100 is preferably 0.05% or more and 4% or less, preferably 0.1% or more and 2% or less, and 0.3% or more and 1.5% or less of the number of cobalt atoms. % or less is more preferable. Or preferably 0.05% or more and 2% or less. Or preferably 0.1% or more and 4% or less.
  • the amount that the entire positive electrode active material 100 has here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material 100 using GD-MS, ICP-MS, etc., or the amount that the entire positive electrode active material 100 has. It may also be based on the value of the composition of raw materials during the production process.
  • Fluorine is a monovalent anion, and when part of the oxygen in the surface layer portion 100a is replaced with fluorine, the lithium desorption energy decreases. This is because the redox potential of cobalt ions accompanying lithium desorption differs depending on the presence or absence of fluorine. In other words, when fluorine is not present, cobalt ions change from trivalent to tetravalent as lithium is eliminated. On the other hand, when fluorine is present, cobalt ions change from divalent to trivalent as lithium is eliminated. The redox potential of cobalt ions is different between the two.
  • the melting point of fluoride such as lithium fluoride
  • it can function as a fluxing agent (also referred to as a fluxing agent) that lowers the melting point of the other additive element sources.
  • a fluxing agent also referred to as a fluxing agent
  • the eutectic point P of LiF and MgF 2 is around 742° C. (T1). Therefore, when a mixed fluoride containing LiF and MgF 2 as the fluoride is used as an additive element source, it is preferable to set the heating temperature to 742° C. or higher in the heating step after mixing the additive elements.
  • the curve labeled mixed fluoride in FIG. 13 is the result of a DSC measurement of a mixture of LiF and MgF2 .
  • the mixed fluoride was prepared by mixing LiF:MgF 2 at a molar ratio of 1:3.
  • the curve labeled “Mixture” in FIG. 13 is the result of DSC measurement of a mixture of lithium cobalt oxide, LiF and MgF 2 .
  • the heating temperature after mixing the additive elements is preferably 742°C or higher, more preferably 830°C or higher. Further, the temperature may be 800° C. (T2 in FIG. 12) or higher, which is between these values.
  • Titanium oxides are known to have superhydrophilic properties. Therefore, by using the positive electrode active material 100 having titanium oxide in the surface layer portion 100a, the wettability with respect to a highly polar solvent may be improved. When used as a secondary battery, the interface between the positive electrode active material 100 and the highly polar electrolytic solution becomes good, and there is a possibility that an increase in internal resistance can be suppressed.
  • phosphorus in the surface layer portion 100a because short circuits may be suppressed when x in Li x CoO 2 is maintained in a small state.
  • the positive electrode active material 100 contains phosphorus, it is preferable because the phosphorus reacts with hydrogen fluoride generated by decomposition of the electrolytic solution or electrolyte, and there is a possibility that the hydrogen fluoride concentration in the electrolyte can be reduced.
  • hydrogen fluoride may be generated due to hydrolysis. Furthermore, there is a possibility that hydrogen fluoride may be generated due to the reaction between polyvinylidene fluoride (PVDF) used as a component of the positive electrode and an alkali.
  • PVDF polyvinylidene fluoride
  • By reducing the concentration of hydrogen fluoride in the electrolyte corrosion of the current collector and/or peeling of the coating portion 104 may be suppressed. Further, it may be possible to suppress a decrease in adhesiveness due to gelation and/or insolubilization of PVDF.
  • the positive electrode active material 100 contains phosphorus together with magnesium because stability in a state where x in Li x CoO 2 is small is extremely high.
  • the number of phosphorus atoms is preferably 1% or more and 20% or less of the number of cobalt atoms, more preferably 2% or more and 10% or less, and even more preferably 3% or more and 8% or less. Or preferably 1% or more and 10% or less. Or preferably 1% or more and 8% or less. Or preferably 2% or more and 20% or less. Or preferably 2% or more and 8% or less. Or preferably 3% or more and 20% or less. Or preferably 3% or more and 10% or less.
  • the number of magnesium atoms is preferably 0.1% or more and 10% or less of the number of cobalt atoms, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less. Or preferably 0.1% or more and 5% or less. Or preferably 0.1% or more and 4% or less. Or preferably 0.5% or more and 10% or less. Or preferably 0.5% or more and 4% or less. Or preferably 0.7% or more and 10% or less. Or preferably 0.7% or more and 5% or less.
  • concentrations of phosphorus and magnesium shown here may be, for example, values obtained by elemental analysis of the entire positive electrode active material 100 using GD-MS, ICP-MS, etc., or values obtained during the manufacturing process of the positive electrode active material 100. It may be based on the value of the raw material composition in .
  • the crack progresses due to the presence of phosphorus, more specifically, a compound containing phosphorus and oxygen, inside the positive electrode active material with the crack as the surface, for example, in the embedded part 102. can be suppressed.
  • magnesium be added in a step before nickel.
  • magnesium and nickel are added in the same step.
  • Magnesium has a large ionic radius and tends to remain in the surface layer of lithium cobalt oxide no matter what process it is added to, whereas nickel can diffuse widely into the interior of lithium cobalt oxide if magnesium is not present. Therefore, if nickel is added before magnesium, there is a concern that nickel will diffuse into the interior of lithium cobalt oxide and will not remain in the desired amount on the surface layer.
  • the positive electrode active material 100 has both magnesium and nickel distributed in a region closer to the surface in the surface layer portion 100a, and aluminum distributed in a deeper region than these, the positive electrode active material 100 is more It is possible to stabilize the crystal structure in a wide range.
  • aluminum is not essential for the surface because the surface can be sufficiently stabilized by magnesium, nickel, etc. Rather, it is preferable that aluminum is widely distributed in a deeper region. For example, it is preferable that aluminum is continuously detected in a region from the surface in a depth direction of 1 nm or more and 25 nm or less.
  • the crystal structure be widely distributed in a region of 0 nm or more and 100 nm or less from the surface, preferably 0.5 nm or more and 50 nm or less from the surface, since the crystal structure can be stabilized over a wider region.
  • each additive element can be synergized and contribute to further stabilization of the surface layer portion 100a.
  • magnesium, nickel and aluminum are highly effective in providing a stable composition and crystal structure.
  • the surface layer portion 100a is occupied only by the compound of the additive element and oxygen, it is not preferable because it becomes difficult to insert and extract lithium.
  • the surface layer portion 100a is occupied only by MgO, a structure in which MgO and NiO(II) are dissolved in solid solution, and/or a structure in which MgO and CoO(II) are dissolved in solid solution. Therefore, the surface layer portion 100a must contain at least cobalt, also contain lithium in the discharge state, and have a path for inserting and extracting lithium.
  • the surface layer portion 100a has a higher concentration of cobalt than magnesium.
  • the ratio Mg/Co of the number of atoms of magnesium to the number of atoms of cobalt, Co is preferably 0.62 or less.
  • the surface layer portion 100a has a higher concentration of cobalt than nickel.
  • the surface layer portion 100a has a higher concentration of cobalt than aluminum.
  • the surface layer portion 100a has a higher concentration of cobalt than fluorine.
  • the surface layer portion 100a has a higher concentration of magnesium than nickel.
  • the number of nickel atoms is preferably 1/6 or less of the number of magnesium atoms.
  • additive elements particularly magnesium, nickel, and aluminum
  • they are also preferably randomly and dilutely present in the interior 100b.
  • magnesium and aluminum are present at appropriate concentrations in the lithium sites in the interior 100b, there is an effect that the layered rock salt type crystal structure can be easily maintained, similar to the above.
  • nickel exists in the interior 100b at an appropriate concentration, the shift of the layered structure consisting of octahedrons of cobalt and oxygen can be suppressed in the same manner as described above.
  • magnesium and nickel are contained together, a synergistic effect of suppressing the elution of magnesium can be expected as described above.
  • the crystal structure changes continuously from the interior 100b toward the surface due to the concentration gradient of the additive element as described above.
  • the crystal orientations of the surface layer portion 100a and the interior portion 100b are approximately the same.
  • the crystal structure changes continuously from the layered rock salt-type interior 100b toward the surface and surface layer portion 100a that has the characteristics of the rock salt type or both the rock salt type and the layered rock salt type.
  • the crystal orientations of the surface layer portion 100a, which has the characteristics of a rock salt type or both of a rock salt type and a layered rock salt type, and the crystal orientation of the layered rock salt type interior 100b are generally the same.
  • the layered rock salt type crystal structure belonging to space group R-3m which is possessed by a composite oxide containing transition metals such as lithium and cobalt, refers to a structure in which cations and anions are arranged alternately. It has a rock salt-type ion arrangement, and the transition metal and lithium are regularly arranged to form a two-dimensional plane, so it is a crystal structure that allows two-dimensional diffusion of lithium. Note that there may be defects such as cation or anion deficiency. Strictly speaking, the layered rock salt crystal structure may have a structure in which the lattice of the rock salt crystal is distorted.
  • rock salt type crystal structure refers to a structure having a cubic system crystal structure, such as a crystal structure belonging to the space group Fm-3m, in which cations and anions are arranged alternately. Note that there may be a deficiency of cations or anions.
  • the presence of both layered rock salt type and rock salt type crystal structure characteristics can be determined by electron beam diffraction, TEM images, cross-sectional STEM images, etc.
  • the rock salt type has no distinction in cation sites, but the layered rock salt type has two types of cation sites in its crystal structure, one mostly occupied by lithium and the other occupied by transition metals.
  • the layered structure in which two-dimensional planes of cations and two-dimensional planes of anions are arranged alternately is the same for both the rock salt type and the layered rock salt type.
  • the bright spots of the electron beam diffraction pattern corresponding to the crystal planes forming this two-dimensional plane when the central spot (transparent spot) is set as the origin 000, the bright spot closest to the central spot is the ideal one.
  • a state rock salt type has a (111) plane
  • a layered rock salt type has a (003) plane, for example.
  • the distance between the bright spots on the (003) plane of LiCoO 2 is approximately half the distance between the bright spots on the (111) plane of MgO. observed at a distance of about Therefore, when the analysis region has two phases, for example, rock salt type MgO and layered rock salt type LiCoO2 , the electron diffraction pattern has a plane orientation in which bright spots with strong brightness and bright spots with weak brightness are arranged alternately. do. Bright spots common to the halite type and layered halite type have strong brightness, and bright spots that occur only in the layered halite type have weak brightness.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic close-packed structure (face-centered cubic lattice structure).
  • the anions are also presumed to have a cubic close-packed structure. Therefore, when a layered rock salt crystal and a rock salt crystal come into contact, there is a crystal plane in which the cubic close-packed structure composed of anions is oriented in the same direction.
  • Anions in the ⁇ 111 ⁇ plane of the cubic crystal structure have a triangular lattice.
  • the layered rock salt type has a space group R-3m and has a rhombohedral structure, but to facilitate understanding of the structure, it is generally expressed as a complex hexagonal lattice, and the (0001) plane of the layered rock salt type has a hexagonal lattice.
  • the triangular lattice of the cubic ⁇ 111 ⁇ plane has an atomic arrangement similar to the hexagonal lattice of the (0001) plane of the layered rock salt type. When both lattices are consistent, it can be said that the orientations of the cubic close-packed structures are aligned.
  • the space group of layered rock salt crystals and O3' type crystals is R-3m, which is different from the space group Fm-3m of rock salt crystals (the space group of general rock salt crystals), so the above conditions are
  • the Miller index of the crystal planes to be satisfied is different between a layered rock salt type crystal and an O3' type crystal and a rock salt type crystal.
  • a layered rock salt type crystal, an O3' type crystal, and a rock salt type crystal when the directions of the cubic close-packed structures constituted by anions are aligned, it may be said that the orientations of the crystals are approximately the same.
  • having three-dimensional structural similarity such that the crystal orientations roughly match, or having the same crystallographic orientation is called topotaxy.
  • TEM Transmission Electron Microscope
  • STEM Sccanning Transmission Electron Microscope
  • HAADF-STEM High-angle Annular Dark Field Scanning TEM (high-angle scattering annular dark-field scanning transmission electron microscope) image
  • ABF-STEM annular bright-field scanning transmission electron microscope) image
  • an electron beam diffraction pattern etc. It can also be determined based on FFT patterns of TEM images, STEM images, etc.
  • XRD X-ray diffraction
  • neutron beam diffraction etc.
  • FIG. 14 shows an example of a TEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are approximately the same.
  • a TEM image, a STEM image, a HAADF-STEM image, an ABF-STEM image, etc. provide images that reflect the crystal structure.
  • contrast derived from crystal planes can be obtained. Due to electron beam diffraction and interference, for example, when an electron beam is incident perpendicularly to the c-axis of a layered rock-salt complex hexagonal lattice, the contrast originating from the (0003) plane is divided into bright bands (bright strips) and dark bands (dark strips). ) is obtained by repeating. Therefore, repeating bright lines and dark lines are observed in the TEM image, and if the angle between the bright lines (for example, L RS and L LRS shown in FIG. 14) is 5 degrees or less or 2.5 degrees or less, the crystal plane is approximately It can be determined that they match, that is, the crystal orientations approximately match. Similarly, when the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less, it can be determined that the orientations of the crystals approximately match.
  • the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less
  • lithium cobalt oxide which has a layered rock salt crystal structure
  • the arrangement of cobalt atoms perpendicular to the c-axis is observed as a bright line or an arrangement of strong bright points, and lithium atoms and oxygen atoms are observed perpendicularly to the c-axis.
  • the arrangement is observed as a dark line or region of low brightness.
  • lithium cobalt oxide contains fluorine (atomic number 9) and magnesium (atomic number 12) as additive elements.
  • FIG. 15A shows an example of a STEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are approximately the same.
  • FIG. 15B shows the FFT pattern of the region of the rock salt crystal RS
  • FIG. 15C shows the FFT pattern of the region of the layered rock salt crystal LRS.
  • the left side of FIGS. 15B and 15C shows the composition, the JCPDS card number, and the d value and angle calculated from the JCPDS card data. Actual measurements are shown on the right. Spots marked with O are 0th order diffraction.
  • the spots labeled A in FIG. 15B originate from the 11-1 reflection of the cubic crystal.
  • the spots labeled A in FIG. 15C are derived from layered rock salt type 0003 reflections. It can be seen from FIGS. 15B and 15C that the orientation of the 11-1 reflection of the cubic crystal and the orientation of the 0003 reflection of the layered rock salt type roughly match. That is, it can be seen that the straight line passing through AO in FIG. 15B and the straight line passing through AO in FIG. 15C are approximately parallel. As used herein, “approximately matching” and “approximately parallel” mean that the angle is 5 degrees or less, or 2.5 degrees or less.
  • the direction of the 11-1 reflection of the cubic crystal and the direction of the 0003 reflection of the layered rock salt type may vary.
  • a spot that is not derived from layered rock salt type 0003 reflection may be observed.
  • the spots labeled B in FIG. 15C are derived from layered rock salt type 1014 reflections.
  • ⁇ AOB is 52° or more and 56° or less
  • d may be observed at a location of 0.19 nm or more and 0.21 nm or less.
  • this index is just an example, and does not necessarily have to match this index.
  • reciprocal lattice points equivalent to 0003 and 1014 may be used.
  • a spot that is not derived from the 11-1 reflection of the cubic crystal may be observed on a reciprocal lattice space different from the direction in which the 11-1 reflection of the cubic crystal was observed.
  • the spot labeled B in FIG. 15B is derived from 200 reflections of a cubic crystal. This is a point that is at an angle of 54° or more and 56° or less (that is, ⁇ AOB is 54° or more and 56° or less) from the orientation of the reciprocal lattice point (A in Figure 15B) derived from the 11-1 reflection of the cubic crystal. Diffraction spots may be observed. Note that this index is just an example, and does not necessarily have to match this index. For example, reciprocal lattice points equivalent to 11-1 and 200 may be used.
  • layered rock salt type positive electrode active materials such as lithium cobalt oxide, (0003) plane and planes equivalent to this, and (10-14) plane and planes equivalent to this tend to appear as crystal planes.
  • a (0003) plane using a TEM, etc. first select a positive electrode active material particle in which a crystal plane expected to be a (0003) plane is observed using a SEM, etc., and when an electron beam is observed using a TEM etc. ] It is preferable to process the positive electrode active material particles into thin sections using FIB or the like so that the (0003) plane can be observed as the incident light.
  • it is preferable to thin the layered rock salt so that the (0003) plane can be easily observed.
  • the positive electrode active material 100 of one embodiment of the present invention has the above-described distribution of additive elements and/or crystal structure in a discharge state, and thus has a crystal structure in a state where x in Li x CoO 2 is small. However, it is different from conventional positive electrode active materials. Note that x is small here, meaning 0.1 ⁇ x ⁇ 0.24.
  • FIGS. 16 to 21 A change in the crystal structure due to a change in x in Li x CoO 2 will be explained using FIGS. 16 to 21 while comparing a conventional cathode active material and the cathode active material 100 of one embodiment of the present invention.
  • FIG. 17 shows changes in the crystal structure of a conventional positive electrode active material.
  • the conventional positive electrode active material shown in FIG. 17 is lithium cobalt oxide (LiCoO 2 ) without any particular additive element.
  • changes in the crystal structure of lithium cobalt oxide without additive elements are described in Non-Patent Documents 2 to 5.
  • lithium occupies octahedral sites, and three CoO 2 layers exist in the unit cell. Therefore, this crystal structure is sometimes called an O3 type crystal structure.
  • the CoO 2 layer refers to a structure in which an octahedral structure in which six oxygen atoms are coordinated with cobalt is continuous in a plane in a shared edge state. This is sometimes referred to as a layer consisting of an octahedron of cobalt and oxygen.
  • one CoO 2 layer exists in the unit cell. Therefore, it is sometimes called O1 type or monoclinic O1 type.
  • the positive electrode active material has a trigonal space group P-3m1 crystal structure, and one CoO 2 layer is also present in the unit cell. Therefore, this crystal structure is sometimes called O1 type or trigonal O1 type.
  • the trigonal crystal is sometimes converted into a complex hexagonal lattice and is called the hexagonal O1 type.
  • This structure can also be said to be a structure in which a CoO 2 structure like trigonal O1 type and a LiCoO 2 structure like R-3m O3 are stacked alternately. Therefore, this crystal structure is sometimes called an H1-3 type crystal structure.
  • the actual intercalation and desorption of lithium does not necessarily occur uniformly within the positive electrode active material, and the lithium concentration may become mottled. is observed.
  • the H1-3 type crystal structure has twice the number of cobalt atoms per unit cell as other structures.
  • the c-axis of the H1-3 type crystal structure is shown as 1/2 of the unit cell.
  • the coordinates of cobalt and oxygen in the unit cell are Co(0,0,0.42150 ⁇ 0.00016), O1(0, 0,0.27671 ⁇ 0.00045), O2 (0,0,0.11535 ⁇ 0.00045).
  • O1 and O2 are each oxygen atoms.
  • Which unit cell should be used to represent the crystal structure of the positive electrode active material can be determined, for example, by Rietveld analysis of the XRD pattern. In this case, a unit cell with a small GOF (goodness of fit) value may be used.
  • conventional lithium cobalt oxide has an H1-3 type crystal structure, an R-3m O3 structure in a discharged state, The crystal structure changes (that is, non-equilibrium phase changes) repeatedly between the two.
  • FIG. 18 shows the change in the c-axis length of the conventional lithium cobalt oxide described in Non-Patent Document 5.
  • Round markers indicate hexagonal phase
  • diamond-shaped markers indicate monoclinic phase.
  • the c-axis length contracts, as shown by the diamond-shaped marker in FIG.
  • phase transition from O3 to H1-3 phase is a phase transition accompanying the desorption of lithium ions, it is thought that the phase transition occurs from the surface of the positive electrode active material, which is the region from which lithium ions first escape, but eventually the positive electrode It can extend to the entire active material.
  • the change in the c-axis length of lithium cobalt oxide corresponds to the change in the angle at which the peak of, for example, the (003) plane of lithium cobalt oxide appears in the XRD pattern. It is known that in XRD using CuK ⁇ 1 rays, the peak of the (003) plane of lithium cobalt oxide occurs at a 2 ⁇ of around 19° to 20°.
  • the difference in volume between the H1-3 type crystal structure and the R-3m O3 type crystal structure in the discharge state exceeds 3.5%, typically 3.9% or more. It is.
  • the crystal structure of conventional lithium cobalt oxide collapses.
  • the collapse of the crystal structure causes deterioration of cycle characteristics. This is because as the crystal structure collapses, the number of sites where lithium can exist stably decreases, and insertion and extraction of lithium becomes difficult.
  • the change in crystal structure between the discharge state where x in Li x CoO 2 is 1 and the state where x is 0.24 or less is different from that of the conventional positive electrode active material. less than. More specifically, the deviation between the two CoO layers between the state where x is 1 and the state where x is 0.24 or less can be reduced. Further, the change in volume when compared per cobalt atom can be reduced. Therefore, in the cathode active material 100 of one embodiment of the present invention, even if charging and discharging are repeated such that x becomes 0.24 or less, the crystal structure does not easily collapse, and excellent cycle characteristics can be achieved.
  • the positive electrode active material 100 of one embodiment of the present invention can have a more stable crystal structure than conventional positive electrode active materials when x in Li x CoO 2 is 0.24 or less. Therefore, in the cathode active material 100 of one embodiment of the present invention, short circuits are unlikely to occur when x in Li x CoO 2 is maintained at 0.24 or less. In such a case, the safety of the secondary battery is further improved, which is preferable.
  • FIG. 16 shows the crystal structure that the interior 100b of the positive electrode active material 100 has when x in Li x CoO 2 is about 1, 0.2, and about 0.15. Since the interior 100b occupies most of the volume of the positive electrode active material 100 and is a part that greatly contributes to charging and discharging, it can be said that the displacement of the CoO 2 layer and the change in volume are the most problematic part.
  • the positive electrode active material 100 has the same R-3mO3 crystal structure as conventional lithium cobalt oxide.
  • the positive electrode active material 100 forms a crystal with a different structure.
  • the positive electrode active material 100 of one embodiment of the present invention has a crystal structure belonging to a monoclinic space group P2/m.
  • P2/m monoclinic space group
  • the amount of lithium present in the positive electrode active material 100 is about 15 atomic % in the discharged state. Therefore, this crystal structure will be referred to as a monoclinic O1(15) type crystal structure.
  • This crystal structure is shown in FIG. 16 with P2/m monoclinic O1 (15).
  • the monoclinic O1(15) type crystal structure has the coordinates of cobalt and oxygen in the unit cell as Co1(0.5,0,0.5), Co2 (0, 0.5, 0.5), O1 (X O1 , 0, Z O1 ), 0.23 ⁇ X O1 ⁇ 0.24, 0.61 ⁇ Z O1 ⁇ 0.65, O2( XO2,0.5 , ZO2 ), It can be shown within the range of 0.75 ⁇ X O2 ⁇ 0.78, 0.68 ⁇ Z O2 ⁇ 0.71.
  • this crystal structure can exhibit a lattice constant even in the space group R-3m if a certain degree of error is allowed.
  • the coordinates of cobalt and oxygen in the unit cell in this case are Co(0,0,0.5), O(0,0,Z O ), It can be shown within the range of 0.21 ⁇ Z O ⁇ 0.23.
  • ions such as cobalt, nickel, and magnesium occupy six oxygen coordination positions. Note that light elements such as lithium and magnesium may occupy the 4-coordination position of oxygen.
  • the difference in volume per same number of cobalt atoms between R-3m O3 in the discharge state and the O3' type crystal structure is 2.5% or less, more specifically 2.2% or less, typically 1.8%. It is.
  • the difference in volume per the same number of cobalt atoms between R-3m O3 in the discharge state and the monoclinic O1 (15) type crystal structure is less than 3.3%, more specifically less than 3.0%, typically is 2.5%.
  • Table 1 shows the difference in volume per cobalt atom between R-3m O3 in the discharge state and O3', monoclinic O1 (15), H1-3 type, and trigonal O1.
  • the lattice constants of the crystal structures of R-3m O3 and trigonal O1 in the discharge state used in the calculations in Table 1 are given in ICSD coll. code. 172909 and 88721.
  • H1-3 reference can be made to Non-Patent Document 4.
  • the cathode active material 100 of one embodiment of the present invention changes in the crystal structure when x in Li x CoO 2 is small, that is, when a large amount of lithium is released, are suppressed more than in conventional cathode active materials. has been done.
  • changes in volume are also suppressed when comparing the same number of cobalt atoms. Therefore, the crystal structure of the positive electrode active material 100 does not easily collapse even after repeated charging and discharging such that x becomes 0.24 or less. Therefore, in the positive electrode active material 100, a decrease in charge/discharge capacity during charge/discharge cycles is suppressed.
  • the positive electrode active material 100 has a large discharge capacity per weight and per volume. Therefore, by using the positive electrode active material 100, a secondary battery with high discharge capacity per weight and per volume can be manufactured.
  • the positive electrode active material 100 may have an O3' type crystal structure when x in Li x CoO 2 is 0.15 or more and 0.24 or less, and when x exceeds 0.24 and 0. It is estimated that even if it is less than .27, it has an O3' type crystal structure.
  • x in Li x CoO 2 exceeds 0.1 and is 0.2 or less, typically x is 0.15 or more and 0.17 or less, it has a monoclinic O1 (15) type crystal structure. It has been confirmed that there is.
  • the crystal structure is influenced not only by x in Li x CoO 2 but also by the number of charge/discharge cycles, charge/discharge current, temperature, electrolyte, etc., it is not necessarily limited to the above range of x.
  • the positive electrode active material 100 may have only the O3' type or only the monoclinic O1 (15) type. or may have both crystal structures. Further, all of the particles in the interior 100b of the positive electrode active material 100 do not have to have an O3' type and/or a monoclinic O1(15) type crystal structure. It may contain other crystal structures or may be partially amorphous.
  • a state in which x in Li x CoO 2 is small can be rephrased as a state in which the battery is charged at a high charging voltage.
  • a charging voltage of 4.6 V or more can be said to be a high charging voltage with reference to the potential of lithium metal.
  • charging voltage is expressed based on the potential of lithium metal.
  • the positive electrode active material 100 of one embodiment of the present invention can maintain a crystal structure with R-3mO3 symmetry even when charged at a high charging voltage, for example, 4.6 V or higher at 25° C., and is therefore preferable.
  • a high charging voltage for example, 4.6 V or higher at 25° C.
  • an O3' type crystal structure can be obtained when charged at a higher charging voltage, for example, a voltage of 4.65 V or more and 4.7 V or less at 25° C.
  • a monoclinic O1 (15) type crystal structure can be obtained when the battery is charged at a higher charging voltage, for example, a voltage exceeding 4.7 V and not more than 4.8 V at 25°C.
  • the H1-3 type crystal structure may be finally observed when the charging voltage is further increased. Furthermore, as mentioned above, the crystal structure is affected by the number of charge/discharge cycles, charge/discharge current, temperature, electrolyte, etc., so if the charging voltage is lower, for example, if the charging voltage is 4.5 V or more and less than 4.6 V at 25°C, In some cases, the positive electrode active material 100 of one embodiment of the present invention can have an O3' type crystal structure. Similarly, when charged at a voltage of 4.65 V or more and 4.7 V or less at 25° C., a monoclinic O1 (15) type crystal structure may be obtained.
  • graphite when used as a negative electrode active material in a secondary battery, for example, the voltage of the secondary battery is lowered by the potential of graphite than the above.
  • the potential of graphite is about 0.05V to 0.2V based on the potential of lithium metal. Therefore, in the case of a secondary battery using graphite as a negative electrode active material, it has the same crystal structure as above when the voltage is obtained by subtracting the potential of graphite from the above voltage.
  • lithium is shown to exist at all lithium sites with equal probability, but the present invention is not limited to this. It may exist biasedly at some lithium sites, or it may have symmetry such as monoclinic O1 (Li 0.5 CoO 2 ) shown in FIG. 17, for example.
  • the distribution of lithium can be analyzed, for example, by neutron diffraction.
  • the O3' and monoclinic O1(15) type crystal structures are similar to the CdCl 2 type crystal structure, although they have lithium randomly between the layers.
  • This crystal structure similar to CdCl type 2 is close to the crystal structure when lithium nickelate is charged to Li 0.06 NiO 2 , but pure lithium cobalt oxide or a layered rock salt type positive electrode active material containing a large amount of cobalt is It is known that CdCl does not normally have a type 2 crystal structure.
  • maldistribution refers to the concentration of an element in a certain region being different from that in other regions. It has the same meaning as segregation, precipitation, non-uniformity, deviation, or a mixture of areas with high concentration and areas with low concentration.
  • the magnesium concentration in and around the grain boundaries 101 of the positive electrode active material 100 is higher than in other regions of the interior 100b.
  • the fluorine concentration in the grain boundaries 101 and the vicinity thereof is also higher than in other regions of the interior 100b.
  • the nickel concentration in the grain boundaries 101 and the vicinity thereof is also higher than in other regions of the interior 100b.
  • the aluminum concentration in the grain boundaries 101 and the vicinity thereof is also higher than in other regions of the interior 100b.
  • the grain boundary 101 is one of the planar defects. Therefore, like the particle surface, it tends to become unstable and the crystal structure tends to change. Therefore, if the concentration of the additive element at and near the grain boundaries 101 is high, changes in the crystal structure can be suppressed more effectively.
  • the magnesium concentration and fluorine concentration at the grain boundary 101 and the vicinity thereof are high, even if a crack occurs along the grain boundary 101 of the positive electrode active material 100 of one embodiment of the present invention, the surface Magnesium and fluorine concentrations increase in the vicinity. Therefore, the corrosion resistance against hydrofluoric acid can be improved even in the positive electrode active material after cracks have occurred.
  • the median diameter (D50) is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and even more preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • the thickness is preferably 1 ⁇ m or more and 40 ⁇ m or less.
  • the thickness is preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness is preferably 2 ⁇ m or more and 100 ⁇ m or less. Or preferably 2 ⁇ m or more and 30 ⁇ m or less. Alternatively, the thickness is preferably 5 ⁇ m or more and 100 ⁇ m or less. Alternatively, the thickness is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • the positive electrode active material 100 having a relatively small particle size is expected to have high charge/discharge rate characteristics.
  • a secondary battery using the positive electrode active material 100 having a relatively large particle size is expected to have high charge/discharge cycle characteristics and maintain a high discharge capacity.
  • the positive electrode active material is the positive electrode active material 100 of one embodiment of the present invention having an O3' type and/or monoclinic O1(15) type crystal structure when x in Li x CoO 2 is small , Li can.
  • XRD can analyze the symmetry of transition metals such as cobalt in the positive electrode active material with high resolution, compare the height of crystallinity and crystal orientation, and analyze the periodic strain of the lattice and crystallite size. This is preferable because sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery is directly measured.
  • powder XRD provides a diffraction peak that reflects the crystal structure of the interior 100b of the positive electrode active material 100, which occupies most of the volume of the positive electrode active material 100.
  • the positive electrode active material 100 of one embodiment of the present invention is characterized by a small change in crystal structure between when x in Li x CoO 2 is 1 and when x is 0.24 or less.
  • a material in which 50% or more of the crystal structure changes significantly when charged at a high voltage is not preferable because it cannot withstand repeated high voltage charging and discharging.
  • the O3' type or monoclinic O1 (15) type crystal structure is not achieved simply by adding additional elements.
  • x in Li x CoO 2 may be 0.24 or less.
  • the O3' type and/or monoclinic O1(15) type crystal structure accounts for 60% or more, and in other cases, the H1-3 type crystal structure accounts for 50% or more.
  • the positive electrode active material 100 of one embodiment of the present invention if x is too small, such as 0.1 or less, or under conditions where the charging voltage exceeds 4.9 V, the crystal structure of the H1-3 type or trigonal O1 type will change. This may occur in some cases. Therefore, in order to determine whether the positive electrode active material 100 of one embodiment of the present invention is used, analysis of the crystal structure such as XRD, and information such as charging capacity or charging voltage are required.
  • the positive electrode active material in a state where x is small may undergo a change in crystal structure when exposed to the atmosphere.
  • the O3' type and monoclinic O1(15) type crystal structures may change to the H1-3 type crystal structure. Therefore, it is preferable that all samples subjected to crystal structure analysis be handled in an inert atmosphere such as an argon atmosphere.
  • whether the distribution of additive elements in the positive electrode active material is in the state described above can be determined by, for example, XPS, energy dispersive X-ray spectroscopy (EDX), EPMA ( This can be determined by analysis using methods such as electronic probe microanalysis.
  • the crystal structure of the surface layer 100a, grain boundaries 101, etc. can be analyzed by electron beam diffraction of a cross section of the positive electrode active material 100.
  • ⁇ Charging method Charging to determine whether a certain composite oxide is the positive electrode active material 100 of one embodiment of the present invention is performed using, for example, a coin cell (CR2032 type) using the composite oxide for the positive electrode and lithium metal for the counter electrode. , 20 mm in diameter and 3.2 mm in height) can be made and charged.
  • a coin cell has an electrolyte, a separator, a positive electrode can, and a negative electrode can.
  • the positive electrode may be prepared by coating a positive electrode current collector made of aluminum foil with a slurry containing a positive electrode active material, a conductive material, and a binder.
  • Lithium metal can be used for the counter electrode. Note that when a material other than lithium metal is used for the counter electrode, the potential of the secondary battery and the potential of the positive electrode are different. Voltages and potentials in this specification and the like are the potentials of the positive electrode unless otherwise mentioned.
  • LiPF 6 lithium hexafluorophosphate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • a polypropylene porous film with a thickness of 25 ⁇ m can be used as the separator.
  • the positive electrode can and the negative electrode can may be made of stainless steel (SUS).
  • the coin cell produced under the above conditions is charged at an arbitrary voltage (for example, 4.5V, 4.55V, 4.6V, 4.65V, 4.7V, 4.75V or 4.8V).
  • the charging method is not particularly limited as long as it can be charged at any voltage for a sufficient amount of time.
  • the current in CC charging can be 20 mA/g or more and 100 mA/g or less.
  • CV charging can be completed at 2 mA/g or more and 10 mA/g or less. In order to observe the phase change of the positive electrode active material, it is desirable to perform charging at such a small current value.
  • CV charging may be terminated when a certain amount of time has elapsed.
  • the sufficient time at this time can be, for example, 1.5 hours or more and 3 hours or less.
  • the temperature is 25°C or 45°C.
  • the chamber When performing various analyzes after this, it is preferable to seal the chamber with an argon atmosphere in order to suppress reactions with external components.
  • XRD can be performed in a sealed container with an argon atmosphere.
  • the conditions for charging and discharging the multiple times may be different from the above-mentioned charging conditions.
  • charging is performed by constant current charging at a current value of 20 mA/g or more and 100 mA/g or less to an arbitrary voltage (for example, 4.6 V, 4.65 V, 4.7 V, 4.75 V or 4.8 V), and then the current value is Constant voltage charging can be performed until the voltage is 2 mA/g or more and 10 mA/g or less, and discharging can be performed at a constant current of 2.5 V and 20 mA/g or more and 100 mA/g or less.
  • constant current discharge can be performed at, for example, 2.5V and a current value of 20 mA/g or more and 100 mA/g or less.
  • XRD X-ray X-ray X-ray X-ray X-ray X-ray X-ray X-ray X-ray X-ray: CuK ⁇ 1- ray output: 40kV, 40mA Divergence angle: Div. Slit, 0.5° Detector: LynxEye Scan method: 2 ⁇ / ⁇ continuous scan Measurement range (2 ⁇ ): 15° or more and 90° or less Step width (2 ⁇ ): 0.01° Setting Counting time: 1 second/step Sample table rotation: 15 rpm
  • the sample to be measured is a powder, it can be set by placing it in a glass sample holder or by sprinkling the sample on a greased silicone non-reflective plate.
  • the positive electrode can be attached to the substrate with double-sided tape, and the positive electrode active material layer can be set according to the measurement surface required by the apparatus.
  • Figures 19 and 20 show the ideal powder XRD pattern using the CuK ⁇ 1 line, which is calculated from the models of the O3' type crystal structure, the monoclinic O1 (15) type crystal structure, and the H1-3 type crystal structure. , shown in FIGS. 21A and 21B.
  • 21A and 21B show the XRD patterns of the O3' type crystal structure, the monoclinic O1(15) type crystal structure, and the H1-3 type crystal structure, and in FIG. 21A, the 2 ⁇ range is 18° or more.
  • FIG. 21A the 2 ⁇ range is 18° or more.
  • 21B is an enlarged view of the region where the 2 ⁇ range is 42° or more and 46° or less.
  • the crystal structure patterns of the O3' type and the monoclinic O1 (15) type were estimated from the XRD pattern of the positive electrode active material of one embodiment of the present invention, and the crystal structures were estimated using TOPAS ver. 3 (crystal structure analysis software manufactured by Bruker), and an XRD pattern was created in the same manner as the others.
  • the positive electrode active material 100 of one embodiment of the present invention has an O3' type and/or monoclinic O1(15) type crystal structure when x in Li x CoO 2 is small; however, all of the particles are O3' type and/or monoclinic O1 (15) type crystal structure. It may contain other crystal structures, or may be partially amorphous. However, when performing Rietveld analysis on the XRD pattern, the O3' type and/or monoclinic O1 (15) type crystal structure is preferably 50% or more, more preferably 60% or more, More preferably, it is 66% or more. If the O3' type and/or monoclinic O1(15) type crystal structure is 50% or more, more preferably 60% or more, and even more preferably 66% or more, the positive electrode active material has sufficiently excellent cycle characteristics. be able to.
  • the H1-3 type and O1 type crystal structures are 50% or less. Or, it is more preferably 34% or less. Or, it is more preferable that it is substantially not observed.
  • the O3' type and/or monoclinic O1(15) type crystal structure remains 35% or more when Rietveld analysis is performed. % or more, more preferably 43% or more.
  • each diffraction peak after charging be sharp, that is, have a narrow half-width.
  • the full width at half maximum is narrower.
  • the half width varies depending on the XRD measurement conditions and the 2 ⁇ value even for peaks generated from the same crystal phase.
  • the full width at half maximum is preferably 0.2° or less, more preferably 0.15° or less, and 0.12° or less. More preferred. Note that not all peaks necessarily satisfy this requirement. If some peaks satisfy this requirement, it can be said that the crystallinity of the crystal phase is high. Such high crystallinity contributes to sufficient stabilization of the crystal structure after charging.
  • the crystallite size is small and the peak is broad and small. The crystallite size can be determined from the half width of the XRD peak.
  • the influence of the Jahn-Teller effect is small as described above.
  • transition metals such as nickel and manganese may be included as additive elements, as long as the influence of the Jahn-Teller effect is small.
  • FIG. 22 shows the results of calculating the a-axis and c-axis lattice constants using XRD when the positive electrode active material 100 according to one embodiment of the present invention has a layered rock salt crystal structure and contains cobalt and nickel. show.
  • FIG. 22A shows the results for the a-axis
  • FIG. 22B shows the results for the c-axis.
  • the XRD pattern used for these calculations is the powder after the synthesis of the positive electrode active material, but before it is incorporated into the positive electrode.
  • the nickel concentration on the horizontal axis indicates the nickel concentration when the sum of the numbers of cobalt and nickel atoms is taken as 100%.
  • the positive electrode active material was manufactured according to the manufacturing method shown in FIG. 25, except that an aluminum source was not used.
  • FIG. 23 shows the results of estimating the a-axis and c-axis lattice constants using XRD when the positive electrode active material 100 according to one embodiment of the present invention has a layered rock salt crystal structure and contains cobalt and manganese. shows.
  • FIG. 23A shows the results for the a-axis
  • FIG. 23B shows the results for the c-axis.
  • the lattice constant shown in FIG. 23 is for the powder after the synthesis of the positive electrode active material, and is based on XRD measurement before incorporating it into the positive electrode.
  • the manganese concentration on the horizontal axis indicates the manganese concentration when the sum of the numbers of cobalt and manganese atoms is taken as 100%.
  • the positive electrode active material was manufactured according to the manufacturing method shown in FIG. 25, except that a manganese source was used instead of a nickel source and an aluminum source was not used.
  • FIG. 22C shows the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant (a-axis/c-axis) for the positive electrode active materials whose lattice constant results are shown in FIGS. 22A and 22B.
  • FIG. 23C shows the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant (a-axis/c-axis) for the positive electrode active materials whose lattice constant results are shown in FIGS. 23A and 23B.
  • the concentration of manganese is preferably 4% or less, for example.
  • nickel concentration and manganese concentration do not necessarily apply to the surface layer portion 100a. That is, in the surface layer portion 100a, the concentration may be higher than the above concentration.
  • the a-axis lattice constant is greater than 2.814 ⁇ 10 ⁇ 10 m and smaller than 2.817 ⁇ 10 ⁇ 10 m
  • the c-axis lattice constant is less than 14.05 ⁇ 10 ⁇ 10 m. It was found that it is preferable that the diameter be larger than 14.07 ⁇ 10 ⁇ 10 m.
  • the state where charging and discharging are not performed may be, for example, the state of the powder before producing the positive electrode of the secondary battery.
  • the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant is It is preferably greater than 0.20000 and smaller than 0.20049.
  • XRD analysis is performed on the layered rock salt crystal structure of the cathode active material 100 in a state where no charging/discharging is performed or in a discharged state, a first peak is observed at 2 ⁇ of 18.50° or more and 19.30° or less. is observed, and a second peak may be observed at 2 ⁇ of 38.00° or more and 38.80° or less.
  • XPS ⁇ X-ray photoelectron spectroscopy
  • inorganic oxides if monochromatic aluminum K ⁇ rays are used as the X-rays, it is possible to analyze a region from the surface to a depth of about 2 to 8 nm (usually 5 nm or less). Therefore, the concentration of each element can be quantitatively analyzed in a region that is approximately half the depth of the surface layer 100a. Additionally, narrow scan analysis allows the bonding state of elements to be analyzed. Note that the quantitative accuracy of XPS is about ⁇ 1 atomic % in most cases, and the lower limit of detection is about 1 atomic %, although it depends on the element.
  • the concentration of one or more selected from the additive elements is higher in the surface layer portion 100a than in the interior portion 100b.
  • concentration of one or more selected additive elements in the surface layer portion 100a is preferably higher than the average of the entire positive electrode active material 100. Therefore, for example, the concentration of one or more additive elements selected from the surface layer 100a measured by It can be said that it is preferable that the concentration of the added element be higher than the average concentration of the added element of the entire positive electrode active material 100 measured by .
  • the magnesium concentration of at least a portion of the surface layer portion 100a measured by XPS or the like is higher than the average magnesium concentration of the entire positive electrode active material 100.
  • the nickel concentration in at least a portion of the surface layer portion 100a is higher than the nickel concentration in the entire positive electrode active material 100.
  • the aluminum concentration in at least a portion of the surface layer portion 100a is higher than the aluminum concentration in the entire positive electrode active material 100.
  • the fluorine concentration in at least a portion of the surface layer portion 100a is higher than the fluorine concentration in the entire positive electrode active material 100.
  • the surface and surface layer portion 100a of the positive electrode active material 100 do not contain carbonate, hydroxyl groups, etc. that were chemically adsorbed after the positive electrode active material 100 was produced. It is also assumed that the electrolytic solution, binder, conductive material, or compounds derived from these adhered to the surface of the positive electrode active material 100 are not included. Therefore, when quantifying the elements contained in the positive electrode active material, correction may be made to exclude carbon, hydrogen, excess oxygen, excess fluorine, etc. that can be detected by surface analysis such as XPS. For example, in XPS, it is possible to separate the types of bonds by analysis, and correction may be performed to exclude binder-derived C-F bonds.
  • samples such as the positive electrode active material and the positive electrode active material layer are washed to remove the electrolyte, binder, conductive material, or compounds derived from these that have adhered to the surface of the positive electrode active material. You may do so. At this time, lithium may dissolve into the solvent used for cleaning, but even in that case, the additive elements are difficult to dissolve, so the atomic ratio of the additive elements is not affected.
  • the concentration of the added element may also be compared in terms of its ratio to cobalt.
  • the ratio to cobalt it is possible to reduce the influence of carbonate, etc. chemically adsorbed after the positive electrode active material is produced, and to make a comparison, which is preferable.
  • the ratio Mg/Co of the number of atoms of magnesium and cobalt as determined by XPS analysis is preferably 0.4 or more and 1.5 or less.
  • Mg/Co as determined by ICP-MS analysis is preferably 0.001 or more and 0.06 or less.
  • the positive electrode active material 100 preferably has a higher concentration of lithium and cobalt than each additive element in the surface layer portion 100a in order to sufficiently secure a path for insertion and desorption of lithium.
  • concentration of lithium and cobalt in the surface layer 100a is preferably higher than the concentration of one or more of the additive elements selected from the additive elements contained in the surface layer 100a, which is measured by XPS or the like. can.
  • concentration of cobalt in at least a portion of the surface layer portion 100a measured by XPS or the like is higher than the concentration of magnesium in at least a portion of the surface layer portion 100a measured by XPS or the like.
  • the concentration of lithium is higher than the concentration of magnesium.
  • the concentration of cobalt is higher than the concentration of nickel.
  • the concentration of lithium is higher than the concentration of nickel.
  • the concentration of cobalt is higher than that of aluminum.
  • the concentration of lithium is higher than the concentration of aluminum.
  • the concentration of cobalt is higher than that of fluorine.
  • the concentration of lithium is higher than that of fluorine.
  • aluminum is widely distributed in a deep region, for example, in a region where the depth from the surface or the reference point is 5 nm or more and 50 nm or less. Therefore, although aluminum is detected in the analysis of the entire positive electrode active material 100 using ICP-MS, GD-MS, etc., it is more preferable that the concentration of aluminum is below the detection limit in XPS etc.
  • the number of magnesium atoms is preferably 0.4 times or more and 1.2 times or less, and 0.65 times or more and 1 times or less, relative to the number of cobalt atoms. More preferably, it is .0 times or less.
  • the number of nickel atoms is preferably 0.15 times or less, more preferably 0.03 times or more and 0.13 times or less relative to the number of cobalt atoms.
  • the number of aluminum atoms is preferably 0.12 times or less, more preferably 0.09 times or less, relative to the number of cobalt atoms.
  • the number of fluorine atoms is preferably 0.3 times or more and 0.9 times or less, more preferably 0.1 times or more and 1.1 times or less, relative to the number of cobalt atoms.
  • the above range indicates that these additive elements are not attached to a narrow area on the surface of the positive electrode active material 100, but are widely distributed in the surface layer 100a of the positive electrode active material 100 at a preferable concentration. It can be said that it shows.
  • the take-out angle may be, for example, 45°.
  • the take-out angle may be, for example, 45°.
  • it can be measured using the following equipment and conditions.
  • the peak indicating the bond energy between fluorine and other elements is preferably 682 eV or more and less than 685 eV, and more preferably about 684.3 eV. This value is different from both the binding energy of lithium fluoride, 685 eV, and the binding energy of magnesium fluoride, 686 eV.
  • the peak indicating the bond energy between magnesium and other elements is preferably 1302 eV or more and less than 1304 eV, and more preferably about 1303 eV. This value is different from the binding energy of magnesium fluoride, 1305 eV, and is close to the binding energy of magnesium oxide.
  • concentration gradient of the additive element can be determined by, for example, exposing a cross section of the positive electrode active material 100 using FIB (Focused Ion Beam) or the like, and then using the cross section by energy dispersive X-ray spectroscopy (EDX) or EPMA (electronic electron beam). It can be evaluated by analysis using probe microanalysis).
  • EDX surface analysis measuring while scanning the area and evaluating the area two-dimensionally. Also, measuring while scanning linearly and evaluating the distribution of atomic concentration within the positive electrode active material is called line analysis. Furthermore, data on a linear region extracted from the EDX surface analysis is sometimes called line analysis. Also, measuring a certain area without scanning it is called point analysis.
  • the concentration of added elements in the surface layer 100a, interior 100b, vicinity of crystal grain boundaries 101, etc. of the positive electrode active material 100 can be quantitatively analyzed. Further, the concentration distribution and maximum value of the added element can be analyzed by EDX-ray analysis. In addition, analysis using a thin sample like STEM-EDX can analyze the concentration distribution in the depth direction from the surface of the cathode active material toward the center in a specific region without being affected by the distribution in the depth direction. , is more suitable.
  • the positive electrode active material 100 is a compound containing a transition metal and oxygen that are capable of intercalating and deintercalating lithium, the transition metal M (for example, Co, Ni, Mn, Fe, etc.) and oxygen that undergo oxidation and reduction as lithium intercalates and deintercalates.
  • the interface between the region where is present and the region where is not is defined as the surface of the positive electrode active material.
  • a protective film is sometimes attached to the surface, but the protective film is not included in the positive electrode active material.
  • the protective film a single layer film or a multilayer film of carbon, metal, oxide, resin, etc. may be used.
  • the detected amount of characteristic X-rays of the transition metal M is the average value M AVE of the detected amount of characteristic X-rays of the transition metal M inside
  • the reference point is a point that is 50% of the sum of the average value OAVE and the average value OBG of the detected amount of characteristic X-rays of background oxygen.
  • the detected amount of characteristic X-rays of the transition metal M is the sum of the average detected amount of characteristic X-rays of the internal transition metal M and the average detected amount of characteristic X-rays of the background transition metal M. and the detected amount of characteristic X-rays of oxygen is 50% of the sum of the average value of the detected amount of characteristic X-rays of internal oxygen and the average value of the detected amount of characteristic X-rays of background oxygen. If the point differs from that of , it is considered to be due to the influence of oxygen-containing metal oxides, carbonates, etc. adhering to the surface, so the detected amount of characteristic X-rays of the transition metal M differs from the characteristic of the transition metal M inside.
  • a point that is 50% of the sum of the average value MAVE of detected amounts of X-rays and the average value MBG of detected amounts of characteristic X-rays of the background transition metal M can be adopted as the reference point. Further, in the case of a positive electrode active material having a plurality of transition metals M, the reference point can be determined using M AVE and M BG of the elements whose internal characteristic X-rays are detected in the largest amount.
  • the average value MBG of the detected amount of characteristic X-rays of the transition metal M in the background is preferably 2 nm or more outside the positive electrode active material, avoiding the vicinity where the detected amount of characteristic X-rays of the transition metal M starts to increase. can be determined by averaging over a range of 3 nm or more.
  • the average value MAVE of the detected amount of characteristic X-rays of the internal transition metal M is a region where the detected amounts of characteristic X-rays of transition metal M and oxygen are saturated and stable, for example, the detected amount of characteristic X-rays of transition metal M A range of 2 nm or more, preferably 3 nm or more can be determined on average at a depth of 30 nm or more, preferably more than 50 nm from the region where .
  • the average value O BG of the detected amount of characteristic X-rays of background oxygen and the average value O AVE of the detected amount of characteristic X-rays of internal oxygen can be similarly determined.
  • the surface of the positive electrode active material 100 in a cross-sectional STEM (scanning transmission electron microscope) image, etc. is the boundary between a region where an image derived from the crystal structure of the positive electrode active material is observed and a region where it is not observed. This is the outermost region in which an atomic column originating from the nucleus of a metal element with a higher atomic number than lithium among the metal elements constituting the substance is confirmed.
  • the spatial resolution of STEM-EDX is approximately 1 nm. Therefore, the position where the detected amount of characteristic X-rays of the added element reaches its maximum value may be shifted by about 1 nm. For example, even if there is a position where the detected amount of characteristic X-rays of an additive element such as magnesium has a maximum value outside the surface determined above, if the difference between the maximum value and the surface is less than 1 nm, it can be considered as an error. can.
  • the peak in STEM-EDX-ray analysis refers to the detected intensity of characteristic X-rays of each element, or the position where the maximum value is reached.
  • noise in STEM-EDX-ray analysis may include a measured value of half-width that is less than the spatial resolution (R), for example, less than R/2.
  • the effects of noise can be reduced by scanning the same location multiple times under the same conditions.
  • the integrated value obtained by measuring six scans can be used as the detected amount of characteristic X-rays of each element.
  • the number of scans is not limited to six, and it is also possible to perform more scans and use the average as the detected amount of characteristic X-rays of each element.
  • STEM-EDX-ray analysis can be performed, for example, as follows.
  • a protective film is deposited on the surface of the positive electrode active material.
  • carbon can be deposited using an ion sputtering device (MC1000 manufactured by Hitachi High-Tech).
  • the positive electrode active material is cut into thin pieces to prepare a STEM cross-sectional sample.
  • thinning processing can be performed using a FIB-SEM device (XVision 200TBS manufactured by Hitachi High-Technology).
  • the pickup is performed using an MPS (micro probing system), and the finishing conditions can be, for example, an accelerating voltage of 10 kV.
  • STEM-EDX-ray analysis for example, a STEM device (HD-2700 manufactured by Hitachi High-Tech) may be used, and an EDAX Octane T Ultra W may be used as the EDX detector.
  • the emission current of the STEM device is set to be 6 ⁇ A or more and 10 ⁇ A or less, and the depth and portions of the thin sectioned sample with few irregularities are measured.
  • the magnification is, for example, about 150,000 times.
  • the conditions for the EDX-ray analysis may include drift correction, line width of 42 nm, pitch of 0.2 nm, and number of frames of 6 or more.
  • the concentration of the additive element such as magnesium in the surface layer portion 100a is higher than that in the interior portion 100b.
  • the magnesium concentration in the surface layer portion 100a is higher than the magnesium concentration in the interior portion 100b.
  • the peak of the magnesium concentration in the surface layer 100a preferably exists within a depth of 3 nm from the surface or reference point toward the center of the positive electrode active material 100, and preferably exists within a depth of 1 nm. It is more preferable to do so, and it is still more preferable to exist at a depth of 0.5 nm.
  • the magnesium concentration attenuates to 60% or less of the peak at a depth of 1 nm from the peak. Further, it is preferable that the attenuation decreases to 30% or less of the peak at a depth of 2 nm from the peak.
  • the concentration peak also referred to as peak top
  • the concentration peak herein refers to the maximum value of concentration.
  • the magnesium concentration (detected amount of magnesium/(sum of detected amounts of magnesium, oxygen, cobalt, fluorine, aluminum, and silicon) in the surface layer 100a was 0.5 at.% or more and 10 at.% or less). It is preferably at least 1 atomic % and at most 5 atomic %.
  • the distribution of fluorine preferably overlaps with the distribution of magnesium.
  • the difference in the depth direction between the peak of fluorine concentration and the peak of magnesium concentration is preferably within 10 nm, more preferably within 3 nm, and even more preferably within 1 nm.
  • the peak of fluorine concentration in the surface layer 100a preferably exists within a depth of 3 nm from the surface or reference point toward the center of the positive electrode active material 100, and preferably exists within a depth of 1 nm. It is more preferable to do so, and it is still more preferable to exist at a depth of 0.5 nm. Further, it is more preferable that the peak of the fluorine concentration be present slightly closer to the surface than the peak of the magnesium concentration, since this increases resistance to hydrofluoric acid. For example, the peak of fluorine concentration is more preferably 0.5 nm or more closer to the surface than the peak of magnesium concentration, and even more preferably 1.5 nm or more closer to the surface.
  • the peak of the nickel concentration in the surface layer 100a is preferably present within a depth of 3 nm from the surface or reference point toward the center of the positive electrode active material 100. It is more preferable to exist within a depth of 1 nm, and even more preferably to exist within a depth of 0.5 nm.
  • the distribution of nickel preferably overlaps with the distribution of magnesium.
  • the difference in the depth direction between the peak of nickel concentration and the peak of magnesium concentration is preferably within 3 nm, more preferably within 1 nm.
  • the peak of the concentration of magnesium, nickel, or fluorine is closer to the surface than the peak of the aluminum concentration in the surface layer portion 100a.
  • the peak of aluminum concentration preferably exists at a depth of 0.5 nm or more and 50 nm or less from the surface of the positive electrode active material 100 or the reference point toward the center, and more preferably at a depth of 5 nm or more and 50 nm or less.
  • the ratio of the number of atoms of magnesium Mg and cobalt Co (Mg/Co) at the peak of magnesium concentration is preferably 0.05 or more and 0.6 or less. , more preferably 0.1 or more and 0.4 or less.
  • the ratio of the number of atoms of aluminum Al and cobalt Co (Al/Co) at the peak of the aluminum concentration is preferably 0.05 or more and 0.6 or less, more preferably 0.1 or more and 0.45 or less.
  • the ratio of the number of atoms of nickel Ni and cobalt Co (Ni/Co) at the peak of the nickel concentration is preferably 0 or more and 0.2 or less, more preferably 0.01 or more and 0.1 or less.
  • the ratio of the number of atoms of fluorine F and cobalt Co (F/Co) at the peak of the fluorine concentration is preferably 0 or more and 1.6 or less, more preferably 0.1 or more and 1.4 or less.
  • the ratio of the number of atoms of the additive element A to cobalt Co (A/Co) in the vicinity of the grain boundary 101 is preferably 0.020 or more and 0.50 or less. More preferably, it is 0.025 or more and 0.30 or less. More preferably, it is 0.030 or more and 0.20 or less. Or preferably 0.020 or more and 0.30 or less. Or preferably 0.020 or more and 0.20 or less. Or preferably 0.025 or more and 0.50 or less. Or preferably 0.025 or more and 0.20 or less. Or preferably 0.030 or more and 0.50 or less. Or preferably 0.030 or more and 0.30 or less.
  • the ratio of the number of magnesium and cobalt atoms (Mg/Co) near the grain boundary 101 is 0.020 or more and 0.50.
  • the following are preferred. More preferably, it is 0.025 or more and 0.30 or less. More preferably, it is 0.030 or more and 0.20 or less. Or preferably 0.020 or more and 0.30 or less. Or preferably 0.020 or more and 0.20 or less. Or preferably 0.025 or more and 0.50 or less. Or preferably 0.025 or more and 0.20 or less. Or preferably 0.030 or more and 0.50 or less. Or preferably 0.030 or more and 0.30 or less.
  • the additive element will not adhere to a narrow area on the surface of the positive electrode active material 100, but will preferably be applied to the surface layer 100a of the positive electrode active material 100. This can be said to indicate that the concentration is widely distributed.
  • ⁇ EPMA ⁇ EPMA Electro Probe Microanalysis
  • one or more selected additive elements have a concentration gradient, similar to the EDX analysis results. Further, it is more preferable that the depth of the concentration peak from the surface differs depending on the added element. The preferred range of the concentration peak of each additive element is also the same as in the case of EDX.
  • EPMA analyzes a region from the surface to a depth of about 1 ⁇ m. Therefore, the quantitative value of each element may differ from the measurement results using other analysis methods. For example, when the surface of the positive electrode active material 100 is analyzed by EPMA, the concentration of each additive element present in the surface layer portion 100a may be lower than the result of XPS.
  • the positive electrode active material 100 of one embodiment of the present invention at least a portion of the surface layer portion 100a preferably has a rock salt crystal structure. Therefore, when the positive electrode active material 100 and the positive electrode containing the same are analyzed by Raman spectroscopy, it is preferable that not only the layered rock salt crystal structure but also the cubic crystal structure including the rock salt type is observed. In the HAADF-STEM image and ultrafine electron diffraction pattern described below, it is found that if there is no cobalt substituted at the lithium position with a certain frequency in the depth direction at the time of observation, and cobalt present at the 4-coordination position of oxygen, the HAADF-STEM image will be different.
  • Raman spectroscopy is an analysis that captures the vibrational mode of bonds such as Co-O, even if the amount of the corresponding Co-O bond is small, it may be possible to observe the wavenumber peak of the corresponding vibrational mode. be. Furthermore, since Raman spectroscopy can measure a surface area of several ⁇ m 2 and a depth of about 1 ⁇ m, it is possible to sensitively capture states that exist only on the particle surface.
  • the integrated intensity of each peak is 470 cm -1 to 490 cm -1 as I1, 580 cm -1 to 600 cm -1 as I2, and 665 cm -1 to 685 cm -1 as I3, the value of I3/I2 is 1% or more. It is preferably 10% or less, and more preferably 3% or more and 9% or less.
  • the surface layer 100a of the positive electrode active material 100 has a rock salt type crystal structure in a preferable range.
  • the characteristics of the rock salt type crystal structure as well as the layered rock salt crystal structure be observed in the ultrafine electron diffraction pattern as well as in Raman spectroscopy.
  • the characteristics of the rock salt crystal structure should not be too strong at the surface layer 100a, especially at the outermost surface (for example, at a depth of 1 nm from the surface). is preferred.
  • the difference in the lattice constants calculated from them is Smaller is preferable.
  • the difference in lattice constant calculated from a measurement point at a depth of 1 nm or less from the surface and a measurement point at a depth of 3 nm or more and 10 nm or less is preferably 0.1 ⁇ 10 -1 nm or less about the a-axis, and c
  • the diameter is 1.0 ⁇ 10 ⁇ 1 nm or less along the axis.
  • the a-axis is 0.05 ⁇ 10 ⁇ 1 nm or less
  • the c-axis is more preferably 0.6 ⁇ 10 ⁇ 1 nm or less.
  • the a-axis is 0.04 ⁇ 10 ⁇ 1 nm or less
  • the c-axis is 0.3 ⁇ 10 ⁇ 1 nm or less.
  • the positive electrode active material 100 preferably has a smooth surface with few irregularities.
  • the fact that the surface is smooth and has few irregularities indicates that the effect of the flux described below was sufficiently exerted and the surfaces of the additive element source and lithium cobalt oxide were melted. Therefore, this is one factor indicating that the distribution of the additive elements in the surface layer portion 100a is good.
  • the fact that the surface is smooth and has few irregularities can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100, the specific surface area of the positive electrode active material 100, etc.
  • the surface smoothness can be quantified from a cross-sectional SEM image of the positive electrode active material 100 as shown below.
  • the positive electrode active material 100 is processed by FIB or the like to expose a cross section. At this time, it is preferable to cover the positive electrode active material 100 with a protective film, a protective agent, or the like.
  • a SEM image of the interface between the protective film and the like and the positive electrode active material 100 is taken.
  • interface extraction is performed using image processing software.
  • the interface line between the protective film or the like and the positive electrode active material 100 is selected using an automatic selection tool or the like, and the data is extracted into spreadsheet software or the like.
  • the surface roughness of the positive electrode active material is at least 400 nm around the outer periphery of the particles.
  • the root mean square (RMS) surface roughness which is an index of roughness, is less than 3 nm, preferably less than 1 nm, and more preferably less than 0.5 nm. Roughness (RMS) is preferred.
  • image processing software that performs noise processing, interface extraction, etc. is not particularly limited, but for example, "ImageJ" described in Non-Patent Documents 9 to 11 can be used. Further, spreadsheet software and the like are not particularly limited, but Microsoft Office Excel can be used, for example.
  • the surface smoothness of the positive electrode active material 100 can also be quantified from the ratio of the actual specific surface area S R measured by a gas adsorption method using a constant volume method and the ideal specific surface area S i . can.
  • the ideal specific surface area S i is calculated by assuming that all particles have the same diameter as D50, the same weight, and an ideal spherical shape.
  • the median diameter D50 can be measured using a particle size distribution meter using a laser diffraction/scattering method.
  • the specific surface area can be measured by, for example, a specific surface area measuring device using a gas adsorption method using a constant volume method.
  • the ratio S R /S i of the ideal specific surface area S i determined from the median diameter D50 and the actual specific surface area S R is preferably 2.1 or less.
  • the surface smoothness can also be quantified from a cross-sectional SEM image of the positive electrode active material 100 by the following method.
  • a surface SEM image of the positive electrode active material 100 is obtained.
  • a conductive coating may be applied as a pretreatment for observation.
  • the observation plane is perpendicular to the electron beam.
  • a grayscale image includes luminance (brightness information).
  • the number of gradations is low in dark areas, and the number of gradations is high in bright areas.
  • Luminance changes can be quantified in association with the number of gradations. This numerical value is called a grayscale value.
  • a histogram is a three-dimensional representation of the gradation distribution in a target area, and is also called a brightness histogram. Obtaining a brightness histogram makes it possible to visually understand and evaluate the unevenness of the positive electrode active material.
  • the difference between the maximum value and the minimum value of the gray scale value is preferably 120 or less, more preferably 115 or less, and 70 or more and 115 or less. is even more preferable.
  • the standard deviation of the gray scale value is preferably 11 or less, more preferably 8 or less, and even more preferably 4 or more and 8 or less.
  • the positive electrode active material 100 may have a recess, a crack, a depression, a V-shaped cross section, or the like. These are one type of defects, and when charging and discharging are repeated, cobalt may be eluted, the crystal structure may collapse, the positive electrode active material 100 may be cracked, and oxygen may be eliminated. However, if there is an embedded part 102 as shown in FIG. 9B to embed these elements, elution of cobalt, etc. can be suppressed. Therefore, the reliability and cycle characteristics of a secondary battery using the positive electrode active material 100 can be improved.
  • the additive element contained in the positive electrode active material 100 is in excess, there is a risk that insertion and desorption of lithium will be adversely affected. Furthermore, when the positive electrode active material 100 is used in a secondary battery, there is a possibility that an increase in internal resistance, a decrease in charge/discharge capacity, etc. may occur. On the other hand, if it is insufficient, it may not be distributed throughout the surface layer portion 100a, and the effect of suppressing the deterioration of the crystal structure may become insufficient. As described above, it is necessary that the additive element has an appropriate concentration in the positive electrode active material 100, but it is not easy to adjust the concentration.
  • the positive electrode active material 100 has a region where the additive element is unevenly distributed, some of the atoms of the excessive additive element are removed from the interior 100b of the positive electrode active material 100, and the concentration of the additive element is adjusted to an appropriate concentration in the interior 100b. can do.
  • This can suppress an increase in internal resistance, a decrease in charge/discharge capacity, etc. when used as a secondary battery.
  • Being able to suppress an increase in the internal resistance of a secondary battery is an extremely desirable characteristic, particularly when charging and discharging at a large current, for example, at 400 mA/g or more.
  • the positive electrode active material 100 having a region where the additive element is unevenly distributed it is permissible to mix the additive element in a certain amount of excess during the manufacturing process. Therefore, the production margin is wide, which is preferable.
  • a coating portion may be attached to at least a portion of the surface of the positive electrode active material 100.
  • FIGS. 24A and 24B show an example of the positive electrode active material 100 to which the coating portion 104 is attached.
  • the covering portion 104 is preferably formed by, for example, depositing decomposition products of an electrolyte and an organic electrolyte during charging and discharging.
  • x in Li x CoO 2 is 0.24 or less
  • the charge-discharge cycle characteristics will be improved by having a coating derived from the electrolyte on the surface of the positive electrode active material 100. be done. This is for reasons such as suppressing an increase in impedance on the surface of the positive electrode active material or suppressing elution of cobalt.
  • the covering portion 104 contains carbon, oxygen, and fluorine, for example.
  • the coating portion 104 containing one or more selected from boron, nitrogen, sulfur, and fluorine may be a high-quality coating portion and is therefore preferable. Further, the covering portion 104 does not need to cover all of the positive electrode active material 100. For example, it is sufficient to cover 50% or more of the surface of the positive electrode active material 100, more preferably 70% or more, and even more preferably 90% or more.
  • the positive electrode active material 100 of one embodiment of the present invention has a stable crystal structure even at high voltage. Since the crystal structure of the positive electrode active material is stable in the charged state, it is possible to suppress a decrease in charge/discharge capacity due to repeated charging/discharging.
  • As a feature of the positive electrode active material 100 having excellent properties as described above in the above ⁇ XRD>>, when x in Li x CoO 2 is small, O3' type and/or monoclinic O1 (15) type It was explained that it has a crystal structure of Moreover, in the above ⁇ EDX>>, a preferable distribution of the additive elements in the case where the positive electrode active material 100 is subjected to STEM-EDX analysis was explained. Furthermore, the positive electrode active material 100 of one embodiment of the present invention is also characterized by the volume resistivity of the powder.
  • the volume resistivity of the powder of the positive electrode active material 100 is preferably 1.0 ⁇ 10 4 ⁇ cm or more at a pressure of 64 MPa, and 1.0 It is more preferably ⁇ 10 5 ⁇ cm or more, and more preferably 1.0 ⁇ 10 6 ⁇ cm or more. Moreover, at a pressure of 64 MPa, it is preferably 1.0 ⁇ 10 9 ⁇ cm or less, more preferably 1.0 ⁇ 10 8 ⁇ cm or less, and 1.0 ⁇ 10 7 ⁇ cm or less It is more preferable that there be.
  • the positive electrode active material 100 having the above volume resistivity has a stable crystal structure even at high voltage. Therefore, the fact that the volume resistivity of the powder of the positive electrode active material 100 is within the above range allows the surface layer portion 100a to be formed well, which is important for the crystal structure of the positive electrode active material to be stable in the charged state. It can be used as an indicator to show what has been achieved. That is, it is preferable that the surface layer portion 100a has high resistance.
  • a high-resistance region exists thickly from the surface of the positive electrode active material 100 toward the inside, the battery reaction may be inhibited. Therefore, it is more preferable that only a thin region near the surface of the surface layer portion 100a has high resistance. That is, in the surface layer portion 100a, it is preferable that a high resistance region exist thinly from the surface toward the inside.
  • This embodiment can be used in combination with other embodiments.
  • the positive electrode active material 100 having the distribution, composition, and/or crystal structure of the additive elements as described in the previous embodiment, how to add the additive elements is important. At the same time, it is also important that the interior 100b has good crystallinity.
  • the manufacturing process of the positive electrode active material 100 it is preferable to first synthesize lithium cobalt oxide, then mix the additive element source and perform heat treatment.
  • the annealing temperature is too high, cation mixing will occur, increasing the possibility that additional elements, such as magnesium, will enter the cobalt sites.
  • Magnesium present in the cobalt site has no effect on maintaining the layered rock salt type crystal structure of R-3m when x in Li x CoO 2 is small.
  • the temperature of the heat treatment is too high, there are concerns that there will be adverse effects such as cobalt being reduced to become divalent and lithium evaporating.
  • a material that functions as a flux it is preferable to mix a material that functions as a flux together with the additive element source. If it has a lower melting point than lithium cobalt oxide, it can be said to be a material that functions as a fluxing agent.
  • fluorine compounds such as lithium fluoride are suitable. Addition of the flux lowers the melting point of the additive element source and the lithium cobalt oxide. By lowering the melting point, it becomes easier to distribute the additive element well at a temperature at which cation mixing is less likely to occur.
  • lithium is desorbed from a part of the surface layer 100a of lithium cobalt oxide, so that the distribution of the added elements becomes even better.
  • the initial heating makes it easier to vary the distribution depending on the added element through the following mechanism.
  • lithium is desorbed from a portion of the surface layer portion 100a due to initial heating.
  • this lithium cobalt oxide having the surface layer portion 100a deficient in lithium and additional element sources including a nickel source, an aluminum source, and a magnesium source are mixed and heated.
  • magnesium is a typical divalent element
  • nickel is a transition metal but tends to become a divalent ion. Therefore, a rock salt-type phase containing Mg 2+ , Ni 2+ , and Co 2+ reduced due to lithium deficiency is formed in a part of the surface layer 100a.
  • this phase is formed in a part of the surface layer portion 100a, it may not be clearly visible in an electron microscope image such as STEM or in an electron beam diffraction pattern.
  • nickel tends to form a solid solution when the surface layer 100a is layered rock salt type lithium cobalt oxide and diffuses to the interior 100b, but when a part of the surface layer 100a is rock salt type, it tends to stay in the surface layer 100a. . Therefore, by performing initial heating, divalent additive elements such as nickel can be easily retained in the surface layer portion 100a. The effect of this initial heating is particularly large on the surface of the positive electrode active material 100 other than the (001) orientation and the surface layer portion 100a thereof.
  • the Me-O distance in rock salt-type Ni 0.5 Mg 0.5 O is 2.09 ⁇ 10 ⁇ 1 nm
  • the Me-O distance in rock salt-type MgO is 2.11 ⁇ 10 ⁇ 1 nm.
  • the Me-O distance of spinel-type NiAl 2 O 4 is 2.0125 ⁇ 10 ⁇ 1 nm
  • the Me-O distance of spinel-type MgAl 2 O 4 is 2.0125 ⁇ 10 ⁇ 1 nm.
  • the O distance is 2.02 ⁇ 10 ⁇ 1 nm. In both cases, the Me-O distance exceeds 2 ⁇ 10 ⁇ 1 nm.
  • the bond distance between metals other than lithium and oxygen is shorter than the above.
  • the Al-O distance in layered rock salt type LiAlO 2 is 1.905 ⁇ 10 ⁇ 1 nm (Li—O distance is 2.11 ⁇ 10 ⁇ 1 nm).
  • the Co-O distance in layered rock salt type LiCoO 2 is 1.9224 ⁇ 10 ⁇ 1 nm (Li—O distance is 2.0916 ⁇ 10 ⁇ 1 nm).
  • Non-Patent Document 1 the ionic radius of six-coordinated aluminum is 0.535 ⁇ 10 ⁇ 1 nm, and the ionic radius of six-coordinated oxygen is 1.4 ⁇ 10 ⁇ 1 nm. and the sum of these is 1.935 ⁇ 10 ⁇ 1 nm.
  • the initial heating can also be expected to have the effect of increasing the crystallinity of the layered rock salt crystal structure of the interior 100b.
  • the positive electrode active material 100 having a monoclinic O1 (15) type crystal structure especially when x in Li x CoO 2 is, for example, 0.15 or more and 0.17 or less this initial heating is required. It is preferable.
  • initial heating does not necessarily have to be performed.
  • other heating steps such as annealing, by controlling the atmosphere, temperature, time, etc., when x in Li
  • the substance 100 can be produced.
  • ⁇ Method for producing positive electrode active material 1 ⁇ A method 1 for manufacturing the positive electrode active material 100 through annealing and initial heating will be described with reference to FIGS. 25A to 25C.
  • Step S11 In step S11 shown in FIG. 25A, a lithium source (Li source) and a cobalt source (Co source) are prepared as starting materials for lithium and transition metal materials, respectively.
  • a lithium source Li source
  • a cobalt source Co source
  • the lithium source it is preferable to use a compound containing lithium, such as lithium carbonate, lithium hydroxide, lithium nitrate, or lithium fluoride. It is preferable that the lithium source has high purity; for example, a material with a purity of 99.99% or more may be used.
  • cobalt source it is preferable to use a compound containing cobalt, and for example, cobalt oxide such as tricobalt tetroxide, cobalt hydroxide, etc. can be used.
  • the cobalt source preferably has a high purity, for example, the purity is 3N (99.9%) or higher, preferably 4N (99.99%) or higher, more preferably 4N5 (99.995%) or higher, and even more preferably 5N (99%) or higher. .999%) or more is preferably used.
  • the purity is 3N (99.9%) or higher, preferably 4N (99.99%) or higher, more preferably 4N5 (99.995%) or higher, and even more preferably 5N (99%) or higher. .999%) or more is preferably used.
  • impurities in the positive electrode active material can be controlled. As a result, the capacity of the secondary battery increases and/or the reliability of the secondary battery improves.
  • the cobalt source has high crystallinity, for example, it may have single crystal grains.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • HAADF-STEM high angle scattering annular dark field scanning transmission electron microscope
  • ABF-STEM annular bright field scanning electron microscope
  • Evaluations include scanning transmission electron microscopy) images, X-ray diffraction (XRD), electron diffraction, neutron diffraction, and the like. Note that the above method for evaluating crystallinity can be applied not only to cobalt sources but also to evaluating other crystallinities.
  • a lithium source and a cobalt source are ground and mixed to produce a mixed material. Grinding and mixing can be done dry or wet. The wet method is preferable because it can be crushed into smaller pieces. If using a wet method, prepare a solvent.
  • the solvent ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP), etc. can be used. It is more preferable to use an aprotic solvent that hardly reacts with lithium. In this embodiment, dehydrated acetone with a purity of 99.5% or more is used.
  • dehydrated acetone of the purity described above possible impurities can be reduced.
  • a ball mill, bead mill, or the like can be used as a means for grinding and mixing.
  • aluminum oxide balls or zirconium oxide balls may be used as the grinding media.
  • Zirconium oxide balls are preferable because they emit fewer impurities.
  • the circumferential speed is preferably 100 mm/s or more and 2000 mm/s or less in order to suppress contamination from the media. In this embodiment, the peripheral speed is 838 mm/s (rotation speed 400 rpm, ball mill diameter 40 mm).
  • step S13 shown in FIG. 25A the mixed material is heated.
  • the heating is preferably performed at a temperature of 800°C or more and 1100°C or less, more preferably 900°C or more and 1000°C or less, and even more preferably about 950°C. If the temperature is too low, the lithium source and cobalt source may be insufficiently decomposed and melted. On the other hand, if the temperature is too high, defects may occur due to evaporation of lithium from the lithium source and/or excessive reduction of cobalt. For example, cobalt changes from trivalent to divalent, which may induce oxygen defects.
  • the heating time is preferably 1 hour or more and 100 hours or less, and more preferably 2 hours or more and 20 hours or less.
  • the temperature increase rate depends on the temperature reached by the heating temperature, but is preferably 80°C/h or more and 250°C/h or less. For example, when heating at 1000°C for 10 hours, the temperature increase rate is preferably 200°C/h.
  • Heating is preferably carried out in an atmosphere with little water such as dry air, for example an atmosphere with a dew point of -50°C or less, more preferably -80°C or less. In this embodiment, heating is performed in an atmosphere with a dew point of -93°C. Further, in order to suppress impurities that may be mixed into the material, the concentration of impurities such as CH 4 , CO, CO 2 , H 2 , etc. in the heating atmosphere is preferably set to 5 ppb (parts per billion) or less.
  • An atmosphere containing oxygen is preferable as the heating atmosphere.
  • the heating atmosphere there is a method of continuously introducing dry air into the reaction chamber.
  • the flow rate of dry air is preferably 10 L/min.
  • the method in which oxygen is continuously introduced into the reaction chamber and the oxygen flows within the reaction chamber is called flow.
  • a method without flow may be used.
  • a method may be used in which the reaction chamber is depressurized and then filled with oxygen (also referred to as purging) to prevent the oxygen from entering or exiting the reaction chamber.
  • the reaction chamber may be depressurized to -970 hPa and then filled with oxygen to 50 hPa.
  • Cooling after heating may be allowed to cool naturally, but it is preferable that the temperature drop time from the specified temperature to room temperature is within 10 hours or more and 50 hours or less. However, cooling to room temperature is not necessarily required, and cooling to a temperature permitted by the next step is sufficient.
  • Heating in this step may be performed using a rotary kiln or a roller hearth kiln. Heating with a rotary kiln can be carried out while stirring in either a continuous type or a batch type.
  • the crucible used during heating is preferably an aluminum oxide crucible.
  • An aluminum oxide crucible is a material that does not easily release impurities.
  • an aluminum oxide crucible with a purity of 99.9% is used. It is preferable to heat the crucible with a lid on it. It can prevent material volatilization.
  • a used crucible refers to one in which a material containing lithium, a transition metal M, and/or an additive element is charged and heated twice or less.
  • a used crucible is one that has undergone the step of charging and heating materials containing lithium, transition metal M, and/or additive elements three or more times. This is because if a new crucible is used, there is a risk that some of the material, including lithium fluoride, will be absorbed, diffused, moved and/or attached to the sheath during heating.
  • step S13 After heating is completed, it may be crushed and further sieved if necessary. When recovering the heated material, it may be transferred from the crucible to the mortar and then recovered. Further, it is preferable to use an aluminum oxide mortar as the mortar.
  • Aluminum oxide mortar is a material that does not easily release impurities. Specifically, an aluminum oxide mortar with a purity of 90% or more, preferably 99% or more is used. Note that the same heating conditions as in step S13 can be applied to heating steps other than step S13, which will be described later.
  • Step S14 Through the above steps, lithium cobalt oxide (LiCoO 2 ) shown in step S14 shown in FIG. 25A can be synthesized.
  • the composite oxide may also be produced by a coprecipitation method.
  • the composite oxide may be produced by a hydrothermal method.
  • step S15 shown in FIG. 25A lithium cobalt oxide is heated. Since the lithium cobalt oxide is first heated, the heating in step S15 may be referred to as initial heating. Alternatively, since it is heated before step S20 shown below, it may be called preheating or pretreatment.
  • lithium is desorbed from a part of the surface layer portion 100a of lithium cobalt oxide as described above. Moreover, the effect of increasing the crystallinity of the interior 100b can be expected. Further, impurities may be mixed in the lithium source and/or cobalt source prepared in step S11 and the like. It is possible to reduce impurities from the lithium cobalt oxide completed in step S14 by initial heating.
  • initial heating has the effect of smoothing the surface of lithium cobalt oxide.
  • the surface of lithium cobalt oxide is smooth, it means that there are few irregularities, the composite oxide is rounded overall, and the corners are rounded. Furthermore, a state in which there are few foreign substances attached to the surface is called smooth. Foreign matter is considered to be a cause of unevenness, and it is preferable that it does not adhere to the surface.
  • the heating conditions can be selected from those described in step S13. Adding to the heating conditions, the heating temperature in this step is preferably lower than the temperature in step S13 in order to maintain the crystal structure of the composite oxide. Further, the heating time in this step is preferably shorter than the time in step S13 in order to maintain the crystal structure of the composite oxide. For example, heating is preferably performed at a temperature of 700° C. or more and 1000° C. or less for 2 hours or more and 20 hours or less.
  • the effect of increasing the crystallinity of the interior 100b is, for example, the effect of alleviating distortion, displacement, etc. resulting from the shrinkage difference of the lithium cobalt oxide produced in step S13.
  • a temperature difference may occur between the surface and the inside of the lithium cobalt oxide due to the heating in step S13. Temperature differences can induce differential shrinkage. It is also thought that the temperature difference causes a difference in shrinkage due to the difference in fluidity between the surface and the inside.
  • the energy associated with differential shrinkage imparts differential internal stress to lithium cobalt oxide.
  • the difference in internal stress is also called strain, and the energy is sometimes called strain energy. It is considered that the internal stress is removed by the initial heating in step S15, and in other words, the strain energy is homogenized by the initial heating in step S15. When the strain energy is homogenized, the strain in lithium cobalt oxide is relaxed. As a result, the surface of lithium cobalt oxide may become smooth. It is also said that the surface has been improved. In other words, it is considered that after step S15, the shrinkage difference that occurs in the lithium cobalt oxide is alleviated, and the surface of the composite oxide becomes smooth.
  • the difference in shrinkage may cause microscopic shifts in the lithium cobalt oxide, such as crystal shifts.
  • This step may also be carried out in order to reduce the deviation. Through this step, it is possible to equalize the deviation of the composite oxide. If the misalignment is made uniform, the surface of the composite oxide may become smooth. It is also said that crystal grains have been aligned. In other words, it is considered that after step S15, the displacement of crystals, etc. that occurs in the composite oxide is alleviated, and the surface of the composite oxide becomes smooth.
  • lithium cobalt oxide with a smooth surface is used as a positive electrode active material, there will be less deterioration during charging and discharging as a secondary battery, and cracking of the positive electrode active material can be prevented.
  • lithium cobalt oxide synthesized in advance may be used in step S14.
  • steps S11 to S13 can be omitted.
  • step S15 By performing step S15 on lithium cobalt oxide synthesized in advance, lithium cobalt oxide with a smooth surface can be obtained.
  • step S20 it is preferable to add additive element A to the lithium cobalt oxide that has undergone initial heating.
  • the additive element A can be added evenly. Therefore, it is preferable to add the additive element A after the initial heating.
  • the step of adding additive element A will be explained using FIG. 25B and FIG. 25C.
  • Step S21 ⁇ Step S23> The steps of preparing the additive element A source (A source) will be explained using FIGS. 25B and 25C.
  • a lithium source may be prepared together with the additive element A source.
  • the additive elements described in the previous embodiment can be used. Specifically, one or more selected from magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, and boron can be used. . Moreover, one or two selected from bromine and beryllium can also be used.
  • the additive element source can be called a magnesium source (Mg source).
  • Mg source magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate, or the like can be used. Further, a plurality of the above-mentioned magnesium sources may be used.
  • the additive element source can be called a fluorine source (F source).
  • fluorine source examples include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), titanium fluoride (TiF 4 ), cobalt fluoride (CoF 2 , CoF 3 ), and fluorine.
  • lithium fluoride is preferable because it has a relatively low melting point of 848° C. and is easily melted in the heating step described below.
  • Magnesium fluoride can be used both as a fluorine source and as a magnesium source. Lithium fluoride can also be used as a lithium source. Another lithium source used in step S21 is lithium carbonate.
  • the fluorine source may be a gas, such as fluorine (F 2 ), fluorocarbon, sulfur fluoride, or fluorinated oxygen (OF 2 , O 2 F 2 , O 3 F 2 , O 4 F 2 , O 5 F 2 , O 6 F 2 , O 2 F) or the like may be used and mixed in the atmosphere in the heating step described later. Further, a plurality of the above-mentioned fluorine sources may be used.
  • lithium fluoride (LiF) is prepared as a fluorine source
  • magnesium fluoride (MgF 2 ) is prepared as a fluorine source and a magnesium source.
  • LiF lithium fluoride
  • MgF 2 magnesium fluoride
  • the effect of lowering the melting point is maximized.
  • the amount of lithium fluoride increases, there is a concern that the amount of lithium will be too much and the cycle characteristics will deteriorate.
  • the term “near” means a value greater than 0.9 times and less than 1.1 times that value.
  • step S22 shown in FIG. 25B the magnesium source and the fluorine source are ground and mixed. This step can be carried out by selecting from the pulverization and mixing conditions described in step S12.
  • step S23 shown in FIG. 25B the materials crushed and mixed above can be recovered to obtain an additive element A source (A source).
  • a source an additive element A source
  • the additive element A source shown in step S23 has a plurality of starting materials and can be called a mixture.
  • the particle size of the above mixture preferably has a D50 (median diameter) of 600 nm or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less. Even when one type of material is used as the additive element source, the D50 (median diameter) is preferably 600 nm or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • Step S21 A process different from that in FIG. 25B will be explained using FIG. 25C.
  • step S21 shown in FIG. 25C four types of additive element sources to be added to lithium cobalt oxide are prepared. That is, FIG. 25C differs from FIG. 25B in the type of additive element source.
  • a lithium source may be prepared together with the additive element source.
  • a magnesium source (Mg source), a fluorine source (F source), a nickel source (Ni source), and an aluminum source (Al source) are prepared as four types of additional element sources. Note that the magnesium source and the fluorine source can be selected from the compounds described in FIG. 25B.
  • the nickel source nickel oxide, nickel hydroxide, etc. can be used.
  • the aluminum source aluminum oxide, aluminum hydroxide, etc. can be used.
  • Step S22 and Step S23 are similar to the steps described in FIG. 25B.
  • step S31 shown in FIG. 25A lithium cobalt oxide and an additive element A source (A source) are mixed.
  • the mixing in step S31 is preferably performed under milder conditions than the mixing in step S12 so as not to destroy the shape of the lithium cobalt oxide particles.
  • the rotational speed is lower or the time is shorter than the mixing in step S12.
  • the dry method has milder conditions than the wet method.
  • a ball mill, a bead mill, etc. can be used for mixing.
  • zirconium oxide balls it is preferable to use, for example, zirconium oxide balls as the media.
  • dry mixing is performed at 150 rpm for 1 hour using a ball mill using zirconium oxide balls with a diameter of 1 mm. Further, the mixing is performed in a dry room with a dew point of -100°C or more and -10°C or less.
  • Step S32 of FIG. 25A the materials mixed above are collected to obtain a mixture 903. During recovery, sieving may be performed after crushing if necessary.
  • FIGS. 25A to 25C describe a manufacturing method in which additive elements are added only after initial heating, the present invention is not limited to the above method.
  • the additive element may be added at other timings or may be added multiple times. The timing may be changed depending on the element.
  • the additive element may be added to the lithium source and the cobalt source at the stage of step S11, that is, at the stage of the starting material of the composite oxide. Thereafter, in step S13, lithium cobalt oxide having additive elements can be obtained. In this case, there is no need to separate the steps S11 to S14 from the steps S21 to S23. It can be said that this is a simple and highly productive method.
  • lithium cobalt oxide having some of the additive elements in advance may be used.
  • steps S11 to S14 and a part of step S20 can be omitted. It can be said that this is a simple and highly productive method.
  • a magnesium source and a fluorine source or a magnesium source, a fluorine source, a nickel source, and an aluminum source are added as in step S20. may be added.
  • step S33 shown in FIG. 25A the mixture 903 is heated.
  • the heating conditions can be selected from the heating conditions explained in step S13.
  • the heating time is preferably 2 hours or more.
  • the pressure inside the furnace may exceed atmospheric pressure in order to increase the oxygen partial pressure in the heating atmosphere. This is because if the oxygen partial pressure in the heating atmosphere is insufficient, cobalt and the like are reduced, and lithium cobalt oxide and the like may not be able to maintain a layered rock salt crystal structure.
  • the lower limit of the heating temperature in step S33 needs to be equal to or higher than the temperature at which the reaction between lithium cobalt oxide and the additive element source progresses.
  • the temperature at which the reaction proceeds may be any temperature at which interdiffusion of the elements of the lithium cobalt oxide and the additional element source occurs, and may be lower than the melting temperature of these materials. This will be explained using an oxide as an example, and it is known that solid phase diffusion occurs from 0.757 times the melting temperature T m (Tammann temperature T d ). Therefore, the heating temperature in step S33 may be 650° C. or higher.
  • the temperature is higher than the temperature at which one or more of the materials selected from the mixture 903 melts, the reaction will more easily proceed.
  • the eutectic point of LiF and MgF 2 is around 742°C, so the lower limit of the heating temperature in step S33 is preferably 742°C or higher.
  • a higher heating temperature is preferable because the reaction progresses more easily, heating time is shorter, and productivity is higher.
  • the upper limit of the heating temperature is lower than the decomposition temperature of lithium cobalt oxide (1130°C). At temperatures near the decomposition temperature, there is concern that lithium cobalt oxide will decompose, albeit in a small amount. Therefore, the temperature is more preferably 1000°C or lower, even more preferably 950°C or lower, and even more preferably 900°C or lower.
  • the heating temperature in step S33 is preferably 650°C or more and 1130°C or less, more preferably 650°C or more and 1000°C or less, even more preferably 650°C or more and 950°C or less, and even more preferably 650°C or more and 900°C or less.
  • the temperature is preferably 742°C or more and 1130°C or less, more preferably 742°C or more and 1000°C or less, even more preferably 742°C or more and 950°C or less, and even more preferably 742°C or more and 900°C or less.
  • the temperature is preferably 800°C or more and 1100°C or less, 830°C or more and 1130°C or less, more preferably 830°C or more and 1000°C or less, even more preferably 830°C or more and 950°C or less, and even more preferably 830°C or more and 900°C or less.
  • the heating temperature in step S33 is preferably higher than that in step S13.
  • some materials for example, LiF, which is a fluorine source, may function as a flux.
  • the heating temperature can be lowered to below the decomposition temperature of lithium cobalt oxide, for example, from 742°C to 950°C, and additive elements such as magnesium are distributed in the surface layer, creating a positive electrode active material with good characteristics. can.
  • LiF has a lower specific gravity than oxygen in a gaseous state
  • LiF will volatilize or sublimate due to heating, and if it volatilizes, LiF in the mixture 903 will decrease. This weakens its function as a flux. Therefore, it is necessary to heat LiF while suppressing its volatilization.
  • LiF is not used as a fluorine source
  • Li on the surface of LiCoO 2 and F of the fluorine source react to generate LiF and volatilize. Therefore, even if a fluoride having a higher melting point than LiF is used, it is necessary to suppress volatilization in the same way.
  • the heating in this step is preferably performed so that the particles of the mixture 903 do not stick to each other. If mixture 903 particles stick to each other during heating, the contact area with oxygen in the atmosphere decreases, and the diffusion path of added elements (e.g. fluorine) is inhibited, thereby preventing the addition of added elements (e.g. magnesium and fluorine) to the surface layer. ) distribution may deteriorate.
  • added elements e.g. fluorine
  • the additive element for example, fluorine
  • a positive electrode active material that is smooth and has few irregularities can be obtained. Therefore, in order for the surface to remain smooth or to become even smoother after the heating in step S15 in this process, it is better that the particles of the mixture 903 do not stick to each other.
  • the flow rate of the atmosphere containing oxygen in the kiln it is preferable to control the flow rate of the atmosphere containing oxygen in the kiln. For example, it is preferable to reduce the flow rate of the atmosphere containing oxygen, to purge the atmosphere first, and to not allow the atmosphere to flow after introducing the oxygen atmosphere into the kiln. Flowing oxygen may cause the fluorine source to evaporate, which is not preferable for maintaining surface smoothness.
  • the mixture 903 can be heated in an atmosphere containing LiF by placing a lid on the container containing the mixture 903, for example.
  • heating time varies depending on conditions such as the heating temperature, the size of the lithium cobalt oxide in step S14, and the composition. If the lithium cobalt oxide is small, lower temperatures or shorter times may be more preferred than if it is larger.
  • the heating temperature is preferably, for example, 650° C. or higher and 950° C. or lower.
  • the heating time is preferably 3 hours or more and 60 hours or less, more preferably 10 hours or more and 30 hours or less, and even more preferably about 20 hours.
  • the time for cooling down after heating is preferably 10 hours or more and 50 hours or less, for example.
  • the heating temperature is preferably, for example, 650° C. or higher and 950° C. or lower.
  • the heating time is preferably 1 hour or more and 10 hours or less, and more preferably about 5 hours. Note that the time for cooling down after heating is preferably 10 hours or more and 50 hours or less, for example.
  • step S34 shown in FIG. 25A the heated material is collected and crushed if necessary to obtain the positive electrode active material 100. At this time, it is preferable to further sieve the collected particles.
  • the positive electrode active material 100 of one embodiment of the present invention can be manufactured.
  • the positive electrode active material of one embodiment of the present invention has a smooth surface.
  • a method 2 for manufacturing a positive electrode active material which is an embodiment of the present invention and is different from the method 1 for manufacturing a positive electrode active material, will be described with reference to FIGS. 26 to 27C.
  • Manufacturing method 2 of the positive electrode active material differs from manufacturing method 1 mainly in the number of times of addition of additive elements and the mixing method. For other descriptions, the description of Production Method 1 can be referred to.
  • steps S11 to S15 are performed in the same manner as in FIG. 25A to prepare lithium cobalt oxide that has undergone initial heating.
  • step S20a a source of additive element A1 is prepared to be used for adding additive element A1 to lithium cobalt oxide that has undergone initial heating.
  • the process of preparing the additive element A1 source will be described using FIG. 27A.
  • Step S21 shown in FIG. 27A will be explained.
  • the additive element A1 can be selected from the elements exemplified as the additive element A explained in step S21 shown in FIG. 25B.
  • the additive element A1 one or more selected from magnesium, fluorine, and calcium can be suitably used.
  • FIG. 27A a case where a magnesium source (Mg source) and a fluorine source (F source) are used is illustrated as a case where magnesium and fluorine are selected as the additive elements A1.
  • Steps S21 to S23 shown in FIG. 27A can be performed under the same conditions as steps S21 to S23 shown in FIG. 25B.
  • an additive element A1 source (A1 source) can be obtained in step S23.
  • steps S31 to S33 shown in FIG. 26 can be performed in the same steps as steps S31 to S33 shown in FIG. 25A.
  • Step S34a Next, the material heated in step S33 is recovered, and lithium cobalt oxide having the additive element A1 is produced. It is also referred to as a second composite oxide to distinguish it from the composite oxide in step S14.
  • Step S40 In step S40 shown in FIG. 26, a source of additive element A2 used for adding additive element A2 to the second composite oxide is prepared. The steps of preparing the additive element A2 source will be explained using FIGS. 27B and 27C.
  • Step S41 shown in FIG. 27B will be explained.
  • the additive element A2 can be selected from the elements exemplified as the additive element A explained in step S21 shown in FIG. 25B.
  • the additive element A2 one or more selected from nickel, titanium, boron, zirconium, and aluminum can be suitably used.
  • FIG. 27B shows an example in which a nickel source (Ni source) and an aluminum source (Al source) are prepared when nickel and aluminum are selected as the additive element A2.
  • Steps S41 to S43 shown in FIG. 27B can be performed under the same conditions as steps S21 to S23 shown in FIG. 25B.
  • an additive element A2 source (A2 source) can be obtained in step S43.
  • FIG. 27C shows a modification of the process of preparing the additive element A2 source described using FIG. 27B.
  • step S41 shown in FIG. 27C a nickel source (Ni source) and an aluminum source (Al source) are prepared, and in step S42a, they are each pulverized independently.
  • step S43 a plurality of additive element A2 sources (A2 sources) are prepared.
  • the step in FIG. 27C differs from that in FIG. 27B in that the added element is independently pulverized in step S42a.
  • steps S51 to S53 shown in FIG. 26 can be performed under the same conditions as steps S31 to S34 shown in FIG. 25A, and a mixture 904 is obtained in step S52. Further, the conditions for step S53 regarding the heating step may be lower temperature and shorter time than step S33.
  • step S54 the positive electrode active material 100 of one embodiment of the present invention can be manufactured.
  • the positive electrode active material of one embodiment of the present invention has a smooth surface.
  • the additive elements to lithium cobalt oxide are introduced separately into additive element A1 and additive element A2.
  • the distribution of each additive element in the depth direction can be changed. For example, it is also possible to add the additive element A1 to a higher concentration in the surface layer 100a than in the interior 100b, and to add the additive element A2 to a higher concentration in the interior 100b than in the surface layer 100a. .
  • the initial heating shown in this embodiment mode is performed on lithium cobalt oxide. Therefore, the conditions for initial heating are preferably lower than the heating temperature for obtaining lithium cobalt oxide and shorter than the heating time for obtaining lithium cobalt oxide.
  • the step of adding additional elements to lithium cobalt oxide is preferably performed after initial heating. The addition step can be divided into two or more steps. It is preferable to follow this process order because the smoothness of the surface obtained by the initial heating is maintained.
  • a positive electrode active material 100 with a smooth surface may be more resistant to physical destruction due to pressure or the like than a positive electrode active material with a smooth surface.
  • the positive electrode active material 100 is less likely to be destroyed in a test involving pressurization such as a nail penetration test, which may result in increased safety.
  • This embodiment can be used in combination with other embodiments.
  • lithium cobalt oxide having a barrier film (surface layer portion 100a) was described as the positive electrode active material 100 that can be used for the positive electrode of a battery according to one embodiment of the present invention.
  • the positive electrode active material used in the battery of one embodiment of the present invention is not limited to lithium cobalt oxide having a barrier film, and a positive electrode active material represented by Li x MO 2 having a barrier film can be used.
  • M is one or more selected from Co, Ni, Mn, and Al.
  • the positive electrode active material represented by Li x MO 2 has a layered rock salt type crystal structure belonging to space group R-3m.
  • Examples of the positive electrode active material represented by Li x MO 2 include lithium cobalt oxide, lithium cobalt-nickelate, lithium nickel-cobalt-manganate, lithium nickel-cobalt-aluminate, and lithium nickel-manganese-aluminate. Any one or more of these can be used.
  • lithium cobalt-nickelate for example, lithium cobalt-nickelate to which magnesium and fluorine are added can be used. Moreover, it is preferable to use cobalt-lithium nickelate to which magnesium, fluorine, and aluminum are added. Note that in cobalt-lithium nickelate, the number of cobalt atoms is greater than the number of nickel atoms.
  • the volume resistivity of the powder is preferably 1.0 ⁇ 10 4 ⁇ cm or more, and 1.0 ⁇ 10 5 ⁇ cm or more at a pressure of 64 MPa. It is more preferable that it is, and it is more preferable that it is 1.0 ⁇ 10 6 ⁇ cm or more. Moreover, at a pressure of 64 MPa, it is preferably 1.0 ⁇ 10 9 ⁇ cm or less, more preferably 1.0 ⁇ 10 8 ⁇ cm or less, and 1.0 ⁇ 10 7 ⁇ cm or less It is more preferable that there be.
  • the positive electrode active material having the above volume resistivity has a stable crystal structure even at high voltages, and can form a good surface layer, which is important for the crystal structure of the positive electrode active material to be stable in the charged state. It can be used as an indicator to show that In other words, the surface layer portion preferably has high resistance.
  • a high-resistance region exists thickly from the surface of the positive electrode active material toward the inside, the battery reaction may be inhibited. Therefore, it is more preferable that only a thin region near the surface of the surface layer portion has high resistance. That is, in the surface layer portion, it is preferable that a high resistance region exist thinly from the surface toward the inside.
  • This embodiment can be used in combination with other embodiments.
  • a secondary battery can typically be applied to an automobile.
  • automobiles include next-generation clean energy vehicles such as hybrid vehicles (HV), electric vehicles (EV), and plug-in hybrid vehicles (PHEV or PHV).
  • a secondary battery can be applied.
  • Vehicles are not limited to automobiles.
  • vehicles include trains, monorails, ships, submersibles (deep sea exploration vehicles, unmanned submarines), flying vehicles (helicopters, unmanned aerial vehicles (drones), airplanes, rockets, artificial satellites), electric bicycles, electric motorcycles, etc.
  • the secondary battery of one embodiment of the present invention can be applied to these vehicles.
  • the electric vehicle is equipped with first batteries 1301a and 1301b as main drive secondary batteries, and a second battery 1311 that supplies power to an inverter 1312 that starts a motor 1304. ing.
  • the second battery 1311 is also called a cranking battery (also called a starter battery).
  • the second battery 1311 only needs to have a high output, and a large capacity is not required, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be a wound type shown in FIG. 6C or FIG. 7A, or a stacked type shown in FIG. 8A or FIG. 8B.
  • this embodiment shows an example in which two first batteries 1301a and 1301b are connected in parallel, three or more may be connected in parallel. Furthermore, if the first battery 1301a can store sufficient power, the first battery 1301b may not be necessary.
  • a battery pack that includes a plurality of secondary batteries, a large amount of electric power can be extracted.
  • a plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • a plurality of secondary batteries is also called an assembled battery.
  • the first battery 1301a has a service plug or circuit breaker that can cut off high voltage without using tools. provided.
  • the electric power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but it is also used to power 42V-based in-vehicle components (electric power steering 1307, heater 1308, defogger 1309, etc.) via a DCDC circuit 1306. ). Even when the rear motor 1317 is provided on the rear wheel, the first battery 1301a is used to rotate the rear motor 1317.
  • the second battery 1311 supplies power to 14V vehicle components (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • FIG. 28A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine prismatic secondary batteries 1300 are connected in series, one electrode is fixed by a fixing part 1413 made of an insulator, and the other electrode is fixed by a fixing part 1414 made of an insulator.
  • this embodiment shows an example in which the battery is fixed using the fixing parts 1413 and 1414, it may also be configured to be housed in a battery housing box (also referred to as a housing). Since it is assumed that vibrations or shaking are applied to the vehicle from the outside (road surface, etc.), it is preferable to fix the plurality of secondary batteries using fixing parts 1413, 1414, a battery housing box, and the like.
  • one electrode is electrically connected to the control circuit section 1320 by a wiring 1421.
  • the other electrode is electrically connected to the control circuit section 1320 by a wiring 1422.
  • FIG. 28B shows an example of a block diagram of the battery pack 1415 shown in FIG. 28A.
  • the control circuit section 1320 includes a switch section 1324 including at least a switch for preventing overcharging and a switch for preventing overdischarge, a control circuit 1322 for controlling the switch section 1324, and a voltage measuring section for the first battery 1301a. has.
  • the control circuit section 1320 has an upper limit voltage and a lower limit voltage set for the secondary battery to be used, and limits the upper limit of the current from the outside or the upper limit of the output current to the outside.
  • the range of the secondary battery's lower limit voltage to upper limit voltage is within the recommended voltage range, and when the voltage is outside of that range, the switch section 1324 is activated and functions as a protection circuit.
  • control circuit section 1320 can also be called a protection circuit because it controls the switch section 1324 to prevent over-discharging and/or over-charging. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the switch section 1324 is turned off to cut off the current. Furthermore, a PTC element may be provided in the charging/discharging path to provide a function of cutting off the current in response to a rise in temperature. Further, the control circuit section 1320 has an external terminal 1325 (+IN) and an external terminal 1326 (-IN).
  • the switch section 1324 can be configured by combining n-channel transistors or p-channel transistors.
  • the switch section 1324 is not limited to a switch having an Si transistor using single crystal silicon, but includes, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), InP (phosphide).
  • the switch portion 1324 may be formed using a power transistor including indium (indium), SiC (silicon carbide), ZnSe (zinc selenide), GaN (gallium nitride), GaOx (gallium oxide; x is a real number greater than 0), or the like.
  • the first batteries 1301a and 1301b mainly supply power to 42V system (high voltage HV) in-vehicle equipment, and the second battery 1311 supplies power to 14V system (low voltage LV) in-vehicle equipment.
  • the second battery 1311 a lead-acid battery is often used because it is advantageous in terms of cost.
  • the second battery 1311 may be a lead-acid battery, an all-solid-state battery, or an electric double layer capacitor.
  • regenerated energy due to the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305, and charged to the second battery 1311 from the motor controller 1303 or the battery controller 1302 via the control circuit section 1321.
  • the first battery 1301a is charged from the battery controller 1302 via the control circuit unit 1320.
  • the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerated energy, it is desirable that the first batteries 1301a and 1301b can be rapidly charged.
  • the battery controller 1302 can set the charging voltage, charging current, etc. of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and perform rapid charging.
  • the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302.
  • Power supplied from an external charger charges the first batteries 1301a and 1301b via the battery controller 1302.
  • a control circuit is provided and the function of the battery controller 1302 is not used in some cases, but in order to prevent overcharging, the first batteries 1301a and 1301b are charged via the control circuit section 1320. It is preferable.
  • the charger outlet or the charger connection cable is provided with a control circuit.
  • the control circuit section 1320 is sometimes called an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Controller Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the ECU includes a microcomputer. Further, the ECU uses a CPU or a GPU.
  • External chargers installed at charging stands etc. include 100V outlet-200V outlet, or 3-phase 200V and 50kW. It is also possible to charge the battery by receiving power from an external charging facility using a non-contact power supply method or the like.
  • the capacity decrease is suppressed even when the electrode layer is made thicker and the loading amount is increased, and the synergistic effect of maintaining high capacity has resulted in a secondary battery with significantly improved electrical characteristics.
  • It is particularly effective for secondary batteries used in vehicles, and provides a vehicle with a long cruising range, specifically a cruising range of 500 km or more on one charge, without increasing the weight ratio of the secondary battery to the total vehicle weight. be able to.
  • the secondary battery of the present embodiment described above can provide a secondary battery for vehicles with excellent safety and reliability by using the battery 10 described in Embodiment 1.
  • next-generation clean energy such as a hybrid vehicle (HV), electric vehicle (EV), or plug-in hybrid vehicle (PHV) can be used.
  • HV hybrid vehicle
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • a car can be realized.
  • secondary batteries in agricultural machinery, motorized bicycles including electric assist bicycles, motorcycles, electric wheelchairs, electric carts, ships, submarines, aircraft, rockets, artificial satellites, space probes, planetary probes, or spacecraft. It can also be installed.
  • the secondary battery of one embodiment of the present invention can be a high capacity secondary battery. Therefore, the secondary battery of one embodiment of the present invention is suitable for reduction in size and weight, and can be suitably used for transportation vehicles.
  • a car 2001 shown in FIG. 29A is an electric car that uses an electric motor as a power source for driving. Alternatively, it is a hybrid vehicle that can appropriately select and use an electric motor and an engine as a power source for driving.
  • a secondary battery is mounted on a vehicle, the example of the secondary battery shown in Embodiment 6 is installed at one or more locations.
  • An automobile 2001 shown in FIG. 29A includes a battery pack 2200, and the battery pack includes a secondary battery module to which a plurality of secondary batteries are connected. Furthermore, it is preferable to include a charging control device electrically connected to the secondary battery module.
  • the automobile 2001 can be charged by receiving power from an external charging facility using a plug-in method, a non-contact power supply method, or the like to a secondary battery of the automobile 2001.
  • a predetermined charging method or connector standard such as CHAdeMO (registered trademark) or combo may be used as appropriate.
  • the charging equipment may be a charging station provided at a commercial facility or may be a home power source.
  • plug-in technology it is possible to charge the power storage device mounted on the vehicle 2001 by supplying power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device can be mounted on a vehicle, and power can be supplied from a ground power transmitting device in a non-contact manner for charging.
  • this non-contact power supply method by incorporating a power transmission device into the road or outside wall, charging can be performed not only while the vehicle is stopped but also while the vehicle is running. Further, electric power may be transmitted and received between two vehicles using this contactless power supply method.
  • a solar cell may be provided on the exterior of the vehicle, and the secondary battery may be charged when the vehicle is stopped or traveling.
  • an electromagnetic induction method or a magnetic resonance method can be used.
  • FIG. 29B shows a large transport vehicle 2002 having an electrically controlled motor as an example of a transport vehicle.
  • the secondary battery module of the transport vehicle 2002 has a maximum voltage of 170V, for example, in which four secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less are connected in series, and 48 cells are connected in series. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2201, it has the same functions as those in FIG. 29A, so a description thereof will be omitted.
  • FIG. 29C shows, as an example, a large transport vehicle 2003 with an electrically controlled motor.
  • the secondary battery module of the transportation vehicle 2003 has a maximum voltage of 600 V, for example, by connecting in series one hundred or more secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less. Therefore, a secondary battery with small variations in characteristics is required. Further, except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2202, etc., it has the same functions as those in FIG. 31A, so a description thereof will be omitted.
  • FIG. 29D shows an example aircraft 2004 with an engine that burns fuel. Since the aircraft 2004 shown in FIG. 29D has wheels for takeoff and landing, it can be said to be a type of transportation vehicle, and a plurality of secondary batteries are connected to form a secondary battery module, and the secondary battery module and charging control are performed. It has a battery pack 2203 that includes a device.
  • the maximum voltage of the secondary battery module of the aircraft 2004 is 32V, which is obtained by connecting eight 4V secondary batteries in series, for example. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2203, etc., it has the same functions as those in FIG. 29A, so a description thereof will be omitted.
  • FIG. 29E shows an artificial satellite 2005 equipped with a secondary battery 2204 as an example. Since the artificial satellite 2005 is used in outer space, it is desired that there be no failure due to ignition, and it is preferable to include the secondary battery 2204, which is an aspect of the present invention and has excellent safety. Furthermore, it is more preferable that the secondary battery 2204 is mounted inside the artificial satellite 2005 while being covered with a heat insulating member.
  • FIG. 30A is an example of an electric bicycle using the power storage device of one embodiment of the present invention.
  • the power storage device of one embodiment of the present invention can be applied to an electric bicycle 8700 illustrated in FIG. 30A.
  • a power storage device according to one embodiment of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • the electric bicycle 8700 includes a power storage device 8702.
  • the power storage device 8702 can supply electricity to a motor that assists the driver. Further, the power storage device 8702 is portable, and is shown in a state removed from the bicycle in FIG. 30B. Further, the power storage device 8702 has a plurality of built-in storage batteries 8701 included in the power storage device of one embodiment of the present invention, and can display the remaining battery level and the like on a display portion 8703.
  • Power storage device 8702 also includes a control circuit 8704 that can control charging or detect abnormality of a secondary battery, an example of which is shown in Embodiment 7. The control circuit 8704 is electrically connected to the positive and negative electrodes of the storage battery 8701.
  • the battery 10 and control circuit 8704 described in Embodiment 1 are highly safe and can greatly contribute to eradicating accidents such as fires caused by secondary batteries.
  • FIG. 30C is an example of a two-wheeled vehicle using the power storage device of one embodiment of the present invention.
  • a scooter 8600 shown in FIG. 30C includes a power storage device 8602, a side mirror 8601, and a direction indicator light 8603.
  • the power storage device 8602 can supply electricity to the direction indicator light 8603.
  • the power storage device 8602 that houses a plurality of batteries 10 obtained in Embodiment 1 can have a high capacity and can contribute to miniaturization.
  • the scooter 8600 shown in FIG. 30C can store a power storage device 8602 in an under-seat storage 8604.
  • the power storage device 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • a secondary battery which is one embodiment of the present invention, is mounted in an electronic device.
  • electronic devices equipped with secondary batteries include television devices (also referred to as televisions or television receivers), computer monitors, digital cameras, digital video cameras, digital photo frames, and mobile phones (mobile phones, etc.).
  • Examples include mobile phone devices (also referred to as mobile phone devices), portable game machines, personal digital assistants, audio playback devices, and large game machines such as pachinko machines.
  • portable information terminals include notebook personal computers, tablet terminals, electronic book terminals, and mobile phones.
  • FIG. 31A shows an example of a mobile phone.
  • the mobile phone 2100 includes a display section 2102 built into a housing 2101, as well as operation buttons 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like.
  • the mobile phone 2100 includes a secondary battery 2107.
  • the configuration can have a high capacity, can accommodate space savings due to the miniaturization of the housing, and has a configuration with excellent safety and reliability. can be realized.
  • the mobile phone 2100 can execute various applications such as mobile phone calls, e-mail, text viewing and creation, music playback, Internet communication, computer games, etc.
  • the operation button 2103 can have various functions such as turning on and off the power, turning on and off wireless communication, executing and canceling silent mode, and executing and canceling power saving mode.
  • the functions of the operation buttons 2103 can be freely set using the operating system built into the mobile phone 2100.
  • the mobile phone 2100 is capable of performing short-range wireless communication according to communication standards. For example, by communicating with a headset capable of wireless communication, it is also possible to make hands-free calls.
  • the mobile phone 2100 is equipped with an external connection port 2104, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the external connection port 2104. Note that the charging operation may be performed by wireless power supply without using the external connection port 2104.
  • the mobile phone 2100 has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like.
  • FIG. 31B is an unmanned aircraft 2300 with multiple rotors 2302.
  • Unmanned aerial vehicle 2300 is sometimes called a drone.
  • Unmanned aircraft 2300 includes a secondary battery 2301, which is one embodiment of the present invention, a camera 2303, and an antenna (not shown).
  • Unmanned aerial vehicle 2300 can be remotely controlled via an antenna.
  • the battery 10 obtained in Embodiment 1 has a high energy density and is highly safe, so it can be used safely for a long time and is suitable as a secondary battery to be mounted on the unmanned aircraft 2300.
  • FIG. 31C shows an example of a robot.
  • the robot 6400 shown in FIG. 31C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display portion 6405, a lower camera 6406, an obstacle sensor 6407, a movement mechanism 6408, a calculation device, and the like.
  • the microphone 6402 has a function of detecting the user's speaking voice, environmental sounds, and the like. Furthermore, the speaker 6404 has a function of emitting sound.
  • the robot 6400 can communicate with a user using a microphone 6402 and a speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display information desired by the user on the display section 6405.
  • the display unit 6405 may include a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing it at a fixed position on the robot 6400, charging and data exchange are possible.
  • the upper camera 6403 and the lower camera 6406 have a function of capturing images around the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction of movement of the robot 6400 when the robot 6400 moves forward using the moving mechanism 6408.
  • the robot 6400 uses an upper camera 6403, a lower camera 6406, and an obstacle sensor 6407 to recognize the surrounding environment and can move safely.
  • the robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or electronic component in its internal area.
  • the battery 10 obtained in Embodiment 1 has a high energy density and is highly safe, so it can be used safely for a long time and is suitable as the secondary battery 6409 mounted on the robot 6400.
  • FIG. 31D shows an example of a portable electric fan.
  • the portable electric fan 6200 includes a secondary battery 6209 according to one embodiment of the present invention, an operation button 6205, a fan 6202, an external connection port 6204, and the like in a housing 6201.
  • the secondary battery 6209 is charged via the external connection port 6204.
  • the fan 6202 is rotated by operating a motor using electric power supplied from the secondary battery 6209.
  • the secondary battery 6209 is an example of a cylindrical secondary battery, the shape is not particularly limited.
  • the battery 10 obtained in Embodiment 1 has a high energy density and a stable crystal structure, is highly reliable, and is suitable as the secondary battery 6209 mounted in the portable electric fan 6200.
  • FIG. 31E shows an example of a cleaning robot.
  • the cleaning robot 6300 includes a display portion 6302 placed on the top surface of a housing 6301, a plurality of cameras 6303 placed on the side, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is equipped with tires, a suction port, and the like.
  • the cleaning robot 6300 is self-propelled, detects dirt 6310, and can suck the dirt from a suction port provided on the bottom surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, or steps. Furthermore, if an object such as wiring that is likely to become entangled with the brush 6304 is detected through image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal area.
  • the battery 10 obtained in Embodiment 1 has a high energy density and a stable crystal structure, is highly reliable, and is suitable as the secondary battery 6306 mounted on the cleaning robot 6300.

Abstract

The present invention provides: a positive electrode active material for which a decrease in discharge capacity during charge and discharge cycles is suppressed; and a battery which uses said positive electrode active material. Alternatively, the present invention provides a battery having high safety. This battery comprises a positive electrode. The positive electrode has a positive electrode current collector and a positive electrode active material layer. The positive electrode current collector has a metal foil, such as a stainless foil, and a covering layer for at least partially covering the surface of the metal foil. The covering layer contains aluminum. The positive electrode active material included in the positive electrode active material layer contains a lithium cobalt oxide containing nickel and magnesium. The detected amount of nickel in a surface layer part of the positive electrode active material is greater than the detected amount of nickel in the inside of the positive electrode active material. The detected amount of magnesium in the surface layer part of the positive electrode active material is greater than the detected amount of magnesium in the inside of the positive electrode active material. The surface layer part of the positive electrode active material has a region where the distribution of nickel and the distribution of magnesium overlap each other.

Description

電池battery
 本発明の一態様は、蓄電装置(電池、二次電池ともいう)に関する。また本発明は上記分野に限定されず、半導体装置、表示装置、発光装置、照明装置、電子機器、車両及びこれらの製造方法に関する。上述の半導体装置、表示装置、発光装置、照明装置、電子機器、及び車両は、必要な電源として、本発明の電池を適用することができる。電池として、リチウムイオン二次電池、ナトリウムイオン二次電池などの二次電池が含まれる。例えば上述の電子機器には、リチウムイオン二次電池を搭載した情報端末装置などが含まれる。さらに上述の蓄電装置には据置型の蓄電装置などが含まれる。 One embodiment of the present invention relates to a power storage device (also referred to as a battery or a secondary battery). Furthermore, the present invention is not limited to the above-mentioned fields, but relates to semiconductor devices, display devices, light emitting devices, lighting devices, electronic equipment, vehicles, and manufacturing methods thereof. The battery of the present invention can be applied to the semiconductor device, display device, light emitting device, lighting device, electronic device, and vehicle described above as a necessary power source. Batteries include secondary batteries such as lithium ion secondary batteries and sodium ion secondary batteries. For example, the above-mentioned electronic devices include information terminal devices equipped with lithium ion secondary batteries. Furthermore, the above-mentioned power storage device includes a stationary power storage device and the like.
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池、全固体電池等、種々の蓄電池の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。 In recent years, various storage batteries, such as lithium ion secondary batteries, lithium ion capacitors, air batteries, and all-solid-state batteries, have been actively developed. In particular, demand for high-output, high-capacity lithium-ion secondary batteries is rapidly expanding along with the development of the semiconductor industry, and they have become indispensable in today's information society as a source of rechargeable energy. .
 リチウムイオン二次電池にて、高容量であることと、安全性を両立させることは難しいと言われている。たとえば層状岩塩型結晶構造を有する正極活物質は、その結晶構造内でリチウムイオンの拡散経路が二次元的に存在するため、高容量化が期待される。しかしながら層状岩塩型結晶構造を有する正極活物質は、充電時にリチウムイオンが脱離しすぎると、結晶構造が壊れるため熱暴走に至りやすいとされており、安全性の観点で課題を抱えていた。安全性試験に釘刺し試験等があるが、釘刺し時等の異常時において、電池温度の上昇を抑制するため、たとえば特許文献1では、正極合材層及び正極集電体の間に保護層を設けた構成が提案されている。 It is said that it is difficult to achieve both high capacity and safety in lithium ion secondary batteries. For example, a positive electrode active material having a layered rock salt crystal structure is expected to have a high capacity because a lithium ion diffusion path exists two-dimensionally within the crystal structure. However, positive electrode active materials with a layered rock-salt crystal structure are said to be susceptible to thermal runaway if too many lithium ions are desorbed during charging, causing the crystal structure to break, leading to safety issues. Safety tests include nail penetration tests, and in order to suppress the rise in battery temperature during abnormal situations such as nail penetration, for example, in Patent Document 1, a protective layer is installed between the positive electrode composite layer and the positive electrode current collector. A configuration has been proposed.
 層状岩塩型結晶構造の正極活物質として、コバルト酸リチウム(LiCoO)等が知られている。コバルト酸リチウムは層状岩塩型結晶構造であり、CoO八面体からなる層間をリチウムイオンが二次元的に移動することができるため、サイクル特性も良好である。しかしコバルト酸リチウムは、充放電に伴う相変化という課題があった。たとえば充電時、リチウムイオンがある程度脱離してしまうと、コバルト酸リチウムは六方晶から単斜晶といった相変化が生じる。そのため、コバルト酸リチウムは、良好なサイクル特性で利用するには、リチウムイオンの脱離量を制限させていた。これらを解決するために、たとえば特許文献2乃至4でコバルト酸リチウムに添加元素を加えた構成を提案されている。添加元素の検討において、シャノンのイオン半径として知られる非特許文献1に記載の内容を参考にされることがある。また、正極活物質の結晶構造に関する研究も行われている(非特許文献2乃至非特許文献5)。 Lithium cobalt oxide (LiCoO 2 ) and the like are known as positive electrode active materials with a layered rock salt crystal structure. Lithium cobalt oxide has a layered rock salt type crystal structure, and lithium ions can move two-dimensionally between layers made of CoO 6 octahedrons, so it also has good cycle characteristics. However, lithium cobalt oxide has had the problem of phase changes during charging and discharging. For example, when lithium ions are released to some extent during charging, lithium cobalt oxide undergoes a phase change from hexagonal to monoclinic. Therefore, in order to use lithium cobalt oxide with good cycle characteristics, the amount of lithium ions released has been limited. In order to solve these problems, for example, Patent Documents 2 to 4 propose a structure in which additive elements are added to lithium cobalt oxide. When considering additive elements, the content described in Non-Patent Document 1, known as Shannon's ionic radius, may be referred to. Research on the crystal structure of positive electrode active materials has also been conducted (Non-Patent Documents 2 to 5).
 またX線回折(XRD)は、正極活物質の二次電池の解析に用いられる手法の一つである。非特許文献6に紹介されているICSD(Inorganic Crystal Structure Database)を用いることにより、XRDデータの解析を行うことができる。例えば非特許文献7に記載されているコバルト酸リチウムの格子定数を、ICSDから参照することができる。またリートベルト法解析には、例えば解析プログラムRIETAN−FP(非特許文献8)を用いることができる。 Furthermore, X-ray diffraction (XRD) is one of the methods used to analyze secondary batteries using positive electrode active materials. XRD data can be analyzed by using ICSD (Inorganic Crystal Structure Database) introduced in Non-Patent Document 6. For example, the lattice constant of lithium cobalt oxide described in Non-Patent Document 7 can be referred to from ICSD. Furthermore, for example, the analysis program RIETAN-FP (Non-Patent Document 8) can be used for the Rietveld method analysis.
 また画像処理ソフトとして、例えばImageJ(非特許文献9乃至非特許文献11)が知られている。該ソフトを用いることで、例えば正極活物質の形状について分析することができる。 Further, as image processing software, for example, ImageJ (Non-Patent Documents 9 to 11) is known. By using this software, for example, the shape of the positive electrode active material can be analyzed.
 極微電子線回折も、正極活物質の二次電池、特に表層部の二次電池の同定に有効である。電子線回折パターンの解析には、例えば解析プログラムReciPro(非特許文献12)を用いることができる。 Ultrafine electron diffraction is also effective in identifying secondary batteries of positive electrode active materials, especially secondary batteries in the surface layer. For example, the analysis program ReciPro (Non-Patent Document 12) can be used to analyze the electron beam diffraction pattern.
 また蛍石(フッ化カルシウム)等のフッ化物は古くから製鉄などにおいて融剤として用いられており、物性の研究がされてきた(非特許文献13)。 Furthermore, fluorides such as fluorite (calcium fluoride) have been used as fluxes in iron and steel manufacturing for a long time, and their physical properties have been studied (Non-Patent Document 13).
 リチウムイオン二次電池は、充電時に温度が上昇すると、いくつかの状態を経て熱暴走に至ることが知られている(非特許文献14及び非特許文献15)。 It is known that when the temperature of a lithium ion secondary battery increases during charging, it goes through several states and reaches thermal runaway (Non-Patent Document 14 and Non-Patent Document 15).
特開2019−129009号公報JP 2019-129009 Publication 特開2019−179758号公報JP2019-179758A WO2020/026078号パンフレットWO2020/026078 pamphlet 特開2020−140954号公報JP2020-140954A
 充電状態において、コバルト酸リチウム(LiCoO、LCOと記すことがある)は、熱安定性が低いと言われている。またリチウムイオン二次電池の安全性試験の一として釘刺し試験がある。釘刺し試験により内部短絡が生じると、ジュール熱が生じるため、上述したようなコバルト酸リチウムを用いた場合、コバルト酸リチウムから放出された酸素は電解液等と反応するため、熱暴走に至ることがある。また高温となった場合に、コバルト酸リチウムは、正極集電体として一般的に用いられるアルミニウムと、テルミット反応を生じることが知られている(非特許文献15)。 In a charged state, lithium cobalt oxide (LiCoO 2 , sometimes referred to as LCO) is said to have low thermal stability. Also, a nail penetration test is one of the safety tests for lithium ion secondary batteries. When an internal short circuit occurs during a nail penetration test, Joule heat is generated, so when using lithium cobalt oxide as described above, the oxygen released from the lithium cobalt oxide reacts with the electrolyte, etc., leading to thermal runaway. There is. Furthermore, it is known that lithium cobalt oxide causes a thermite reaction with aluminum, which is commonly used as a positive electrode current collector, when the temperature becomes high (Non-Patent Document 15).
 テルミット反応が生じると、1000℃以上もの高温となる。そのため、正極活物質と、アルミニウム箔のテルミット反応を抑制することが重要である。 When the thermite reaction occurs, the temperature becomes as high as 1000°C or more. Therefore, it is important to suppress the thermite reaction between the positive electrode active material and the aluminum foil.
 上記記載を鑑み本発明の一態様は、安全性の高い電池を提供することを課題の一とする。さらに本発明の一態様は、高容量、且つ安全性の高い電池を提供することを課題の一とする。 In view of the above description, an object of one embodiment of the present invention is to provide a battery with high safety. Furthermore, an object of one embodiment of the present invention is to provide a battery with high capacity and high safety.
 または、本発明の一態様は、新規な物質、活物質、蓄電装置、又はそれらの作製方法を提供することを課題の一とする。 Alternatively, an object of one embodiment of the present invention is to provide a novel material, active material, power storage device, or method for manufacturing the same.
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。 Note that the description of these issues does not preclude the existence of other issues. Note that one embodiment of the present invention does not need to solve all of these problems. Note that problems other than these can be extracted from the description, drawings, and claims.
 本発明の一態様は、正極を有し、正極は、正極集電体と、正極活物質層と、を有し、正極活物質層は、正極集電体上に設けられ、正極集電体は、金属箔と、金属箔の表面の少なくとも一部を覆う被覆層と、を有する、電池である。 One embodiment of the present invention has a positive electrode, the positive electrode has a positive electrode current collector, and a positive electrode active material layer, the positive electrode active material layer is provided on the positive electrode current collector, and the positive electrode has a positive electrode current collector. is a battery that includes a metal foil and a coating layer that covers at least a portion of the surface of the metal foil.
 上記において、金属箔は、ステンレス箔であり、被覆層は、アルミニウムを有することが好ましい。 In the above, it is preferable that the metal foil is a stainless steel foil and that the coating layer contains aluminum.
 また、上記において、金属箔の厚さは、1μm以上30μm以下であり、被覆層の厚さは、1nm以上1μm以下であることが好ましい。 Furthermore, in the above, the thickness of the metal foil is preferably 1 μm or more and 30 μm or less, and the thickness of the coating layer is preferably 1 nm or more and 1 μm or less.
 また、上記において、電池は、正極を内包する外装体を有し、外装体は、ステンレスラミネートフィルムであることが好ましい。 Furthermore, in the above, the battery preferably has an exterior body that encloses the positive electrode, and the exterior body is preferably a stainless steel laminate film.
 上記の何れか一に記載の電池おいて、正極活物質層は、正極活物質を有し、正極活物質は、ニッケルと、マグネシウムと、を含むコバルト酸リチウムを有し、正極活物質の表層部のニッケル検出量が、正極活物質の内部のニッケル検出量よりも大きく、正極活物質の表層部のマグネシウム検出量が、正極活物質の内部のマグネシウム検出量よりも大きく、正極活物質の表層部において、ニッケルの分布とマグネシウムの分布は重畳する領域を有することが好ましい。 In the battery according to any one of the above, the positive electrode active material layer has a positive electrode active material, the positive electrode active material has lithium cobalt oxide containing nickel and magnesium, and the positive electrode active material layer has a surface layer of the positive electrode active material. The detected amount of nickel in the positive electrode active material is larger than the detected amount of nickel inside the positive electrode active material, and the detected amount of magnesium in the surface layer of the positive electrode active material is larger than the detected amount of magnesium inside the positive electrode active material. It is preferable that the distribution of nickel and the distribution of magnesium have an overlapping region.
 上記において、ニッケルは、正極活物質の表層部のうちコバルト酸リチウムの(001)面以外の面に検出されることが好ましい。 In the above, nickel is preferably detected on a surface other than the (001) surface of lithium cobalt oxide in the surface layer of the positive electrode active material.
 また、上記において、EDX線分析において、正極活物質の表層部における、ニッケルの検出量のピークの深さと、マグネシウムの検出量のピークの深さの差は3nm以内であることが好ましい。 Furthermore, in the above, in the EDX-ray analysis, the difference between the depth of the peak of the detected amount of nickel and the depth of the peak of the detected amount of magnesium in the surface layer of the positive electrode active material is preferably within 3 nm.
 また、上記において、正極活物質はアルミニウムを含み、正極活物質が有するニッケル、マグネシウムおよびアルミニウムのEDX線分析において、アルミニウム検出量の最大値は、ニッケル検出量の最大値およびマグネシウム検出量の最大値よりも内部にあり、アルミニウム検出量の最大値の高さの1/5の高さにおけるピーク幅を、最大値から横軸へ下した垂線で2分したとき、表面側のピーク幅Wsよりも、内部側のピーク幅Wcが大きいことが好ましい。 In addition, in the above, the positive electrode active material contains aluminum, and in the EDX-ray analysis of nickel, magnesium, and aluminum contained in the positive electrode active material, the maximum value of the detected amount of aluminum is the maximum value of the detected amount of nickel and the maximum value of the detected amount of magnesium. When the peak width at a height of 1/5 of the maximum value of the detected amount of aluminum is divided into two by a perpendicular line drawn from the maximum value to the horizontal axis, it is smaller than the peak width Ws on the surface side. , it is preferable that the peak width Wc on the inner side is large.
 上記の何れか一に記載の電池おいて、正極と対極にリチウムを用いる電池を、4.6Vまで充電した状態で、正極をCuKα1線による粉末X線回折で分析したとき、正極活物質の回折パターンは、少なくとも2θが19.13以上19.37未満となる第1のピークと、45.37°以上45.57°未満となる第2のピークを有することが好ましい。 In the battery described in any one of the above, when the battery using lithium for the positive electrode and the counter electrode is charged to 4.6 V and the positive electrode is analyzed by powder X-ray diffraction using CuKα1 ray, the diffraction of the positive electrode active material It is preferable that the pattern has at least a first peak whose 2θ is 19.13 or more and less than 19.37, and a second peak whose 2θ is 45.37° or more and less than 45.57°.
 上記の何れか一に記載の電池おいて、正極活物質はフッ素を含み、正極活物質の表層部のフッ素検出量が、正極活物質の内部のフッ素検出量よりも大きいことが好ましい。 In the battery described in any one of the above, the positive electrode active material preferably contains fluorine, and the amount of fluorine detected in the surface layer of the positive electrode active material is preferably larger than the amount of fluorine detected inside the positive electrode active material.
 本発明の一態様により、安全性の高い電池を提供することができる。本発明の一態様により、高容量、且つ安全性の高い電池を提供することができる。 According to one embodiment of the present invention, a highly safe battery can be provided. According to one embodiment of the present invention, a battery with high capacity and high safety can be provided.
 または、本発明の一態様により、新規な物質、活物質、蓄電装置、又はそれらの作製方法を提供することができる。 Alternatively, according to one embodiment of the present invention, a novel material, active material, power storage device, or method for manufacturing them can be provided.
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not preclude the existence of other effects. Note that one embodiment of the present invention does not necessarily need to have all of these effects. Note that effects other than these will become obvious from the description, drawings, claims, etc., and effects other than these can be extracted from the description, drawings, claims, etc. It is.
図1Aは電池の斜視図であり、図1Bは電池の断面図であり、図1Cは正極の断面図である。
図2A及び図2Bは、電池の内部温度を示すグラフである。
図3A及び図3Bは、釘刺し試験を説明する図である。
図4A乃至図4Dは、正極の構成例を説明する図である。
図5A乃至図5Eは、二次電池の構成例を示す図である。
図6A乃至図6Cは、二次電池の構成例を示す図である。
図7A乃至図7Cは、二次電池の構成例を示す図である。
図8A乃至図8Cは、積層体の構成例を説明する図である。
図9A乃至図9Cは正極活物質の断面図である。
図10A乃至図10Cは正極活物質が有する添加元素の分布の例である。
図11Aは正極活物質が有する添加元素の分布の例である。図11Bは添加元素の分布について説明する図である。
図12はフッ化リチウムとフッ化マグネシウムの組成および温度の関係を示す相図である。
図13はDSC測定の結果を説明する図である。
図14は結晶の配向が概略一致しているTEM像の例である。
図15Aは結晶の配向が概略一致しているSTEM像の例である。図15Bは岩塩型結晶RSの領域のFFTパターン、図15Cは層状岩塩型結晶LRSの領域のFFTパターンである。
図16は正極活物質の結晶構造を説明する図である。
図17は従来の正極活物質の結晶構造を説明する図である。
図18は正極活物質の充電深度と格子定数を説明する図である。
図19は結晶構造から計算されるXRDパターンを示す図である。
図20は結晶構造から計算されるXRDパターンを示す図である。
図21Aおよび図21Bは結晶構造から計算されるXRDパターンを示す図である。
図22A乃至図22CはXRDから算出される格子定数である。
図23A乃至図23CはXRDから算出される格子定数である。
図24Aおよび図24Bは正極活物質の断面図である。
図25A乃至図25Cは正極活物質の作製方法を説明する図である。
図26は正極活物質の作製方法を説明する図である。
図27A乃至図27Cは正極活物質の作製方法を説明する図である。
図28Aは、本発明の一態様を示す電池パックの斜視図であり、図28Bは、電池パックのブロック図であり、図28Cは、電池パックを有する車両のブロック図である。
図29A乃至図29Dは、輸送用車両の一例を説明する図である。図29Eは、人工衛星の一例を説明する図である。
図30Aは、電動自転車を示す図であり、図30Bは、電動自転車の二次電池を示す図であり、図30Cは、スクータを説明する図である。
図31A乃至図31Eは、電子機器の一例を説明する図である。
FIG. 1A is a perspective view of the battery, FIG. 1B is a cross-sectional view of the battery, and FIG. 1C is a cross-sectional view of the positive electrode.
2A and 2B are graphs showing the internal temperature of the battery.
FIGS. 3A and 3B are diagrams illustrating a nail penetration test.
4A to 4D are diagrams illustrating configuration examples of the positive electrode.
5A to 5E are diagrams illustrating configuration examples of secondary batteries.
6A to 6C are diagrams showing configuration examples of secondary batteries.
FIGS. 7A to 7C are diagrams showing configuration examples of a secondary battery.
FIGS. 8A to 8C are diagrams illustrating an example of the structure of a laminate.
9A to 9C are cross-sectional views of the positive electrode active material.
FIGS. 10A to 10C are examples of distributions of additive elements included in the positive electrode active material.
FIG. 11A is an example of the distribution of additive elements included in the positive electrode active material. FIG. 11B is a diagram illustrating the distribution of additive elements.
FIG. 12 is a phase diagram showing the relationship between the composition and temperature of lithium fluoride and magnesium fluoride.
FIG. 13 is a diagram illustrating the results of DSC measurement.
FIG. 14 is an example of a TEM image in which the crystal orientations are approximately the same.
FIG. 15A is an example of a STEM image in which the crystal orientations are approximately the same. FIG. 15B is an FFT pattern of a region of rock salt crystal RS, and FIG. 15C is an FFT pattern of a region of layered rock salt crystal LRS.
FIG. 16 is a diagram illustrating the crystal structure of the positive electrode active material.
FIG. 17 is a diagram illustrating the crystal structure of a conventional positive electrode active material.
FIG. 18 is a diagram illustrating the charging depth and lattice constant of the positive electrode active material.
FIG. 19 is a diagram showing an XRD pattern calculated from the crystal structure.
FIG. 20 is a diagram showing an XRD pattern calculated from the crystal structure.
FIGS. 21A and 21B are diagrams showing XRD patterns calculated from the crystal structure.
22A to 22C show lattice constants calculated from XRD.
23A to 23C show lattice constants calculated from XRD.
24A and 24B are cross-sectional views of the positive electrode active material.
25A to 25C are diagrams illustrating a method for manufacturing a positive electrode active material.
FIG. 26 is a diagram illustrating a method for producing a positive electrode active material.
FIGS. 27A to 27C are diagrams illustrating a method for manufacturing a positive electrode active material.
FIG. 28A is a perspective view of a battery pack showing one embodiment of the present invention, FIG. 28B is a block diagram of the battery pack, and FIG. 28C is a block diagram of a vehicle having the battery pack.
29A to 29D are diagrams illustrating an example of a transportation vehicle. FIG. 29E is a diagram illustrating an example of an artificial satellite.
FIG. 30A is a diagram showing an electric bicycle, FIG. 30B is a diagram showing a secondary battery of the electric bicycle, and FIG. 30C is a diagram explaining a scooter.
31A to 31E are diagrams illustrating an example of an electronic device.
 以下では、本発明を実施するための形態例について図面等を用いて説明する。ただし、本発明は以下の形態例に限定して解釈されるものではない。本発明の趣旨を逸脱しない範囲で発明を実施する形態を変更することは可能である。 Hereinafter, embodiments for implementing the present invention will be described using drawings and the like. However, the present invention is not interpreted as being limited to the following embodiments. It is possible to change the mode of carrying out the invention without departing from the spirit of the invention.
 本明細書等では空間群は国際表記(またはHermann−Mauguin記号)のShort notationを用いて表記する。またミラー指数を用いて結晶面及び結晶方向を表記する。空間群、結晶面、および結晶方向の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では書式の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。また空間群R−3mで表される三方晶は、構造の理解のしやすさのため、一般に六方晶の複合六方格子で表され、本明細書等も特に言及しない限り空間群R−3mは複合六方格子で表すこととする。またミラー指数として(hkl)だけでなく(hkil)を用いることがある。ここでiは−(h+k)である。本明細書等では空間群R−3mについて、特に断らない限り結晶面等を複合六方格子で表記する。 In this specification, space groups are expressed using short notation in international notation (or Hermann-Mauguin symbol). In addition, crystal planes and crystal directions are expressed using Miller indices. Space groups, crystal planes, and crystal directions are expressed in terms of crystallography by adding a superscript bar to the number, but in this specification, etc., due to formatting constraints, instead of adding a bar above the number, they are written in front of the number. It is sometimes expressed by adding a - (minus sign) to it. Also, the individual orientation that indicates the direction within the crystal is [ ], the collective orientation that indicates all equivalent directions is < >, the individual plane that indicates the crystal plane is ( ), and the collective plane that has equivalent symmetry is { }. Express each. In addition, the trigonal crystal represented by the space group R-3m is generally represented by a complex hexagonal lattice of hexagonal crystals for ease of understanding the structure, and unless otherwise mentioned in this specification, the space group R-3m is It is expressed as a complex hexagonal lattice. In addition, not only (hkl) but also (hkil) may be used as the Miller index. Here, i is -(h+k). In this specification and the like, with respect to space group R-3m, unless otherwise specified, crystal planes and the like are expressed in a complex hexagonal lattice.
 なお本明細書等において、粒子とは球形(断面形状が円)のみを指すことに限定されず、個々の粒子の断面形状が楕円形、長方形、台形、三角形、角が丸まった四角形、非対称の形状などが挙げられ、さらに個々の粒子は不定形であってもよい。 In this specification, etc., the term "particles" is not limited to only spherical shapes (circular cross-sectional shapes), but also includes particles whose cross-sectional shapes are elliptical, rectangular, trapezoidal, triangular, square with rounded corners, and asymmetrical. Examples include shape, and further, individual particles may be amorphous.
 また正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。例えば、LiCoOの理論容量は274mAh/g、LiNiOの理論容量は275mAh/g、LiMnの理論容量は148mAh/gである。 Further, the theoretical capacity of the positive electrode active material refers to the amount of electricity when all the lithium that can be intercalated and desorbed from the positive electrode active material is desorbed. For example, the theoretical capacity of LiCoO 2 is 274 mAh/g, the theoretical capacity of LiNiO 2 is 275 mAh/g, and the theoretical capacity of LiMn 2 O 4 is 148 mAh/g.
 また正極活物質中に挿入脱離可能なリチウムがどの程度残っているかを、組成式中のx、例えばLiCoO中のxで示す。リチウムイオン二次電池中の正極活物質の場合、x=(理論容量−充電容量)/理論容量とすることができる。例えばLiCoOを正極活物質に用いたリチウムイオン二次電池を219.2mAh/g充電した場合、Li0.2CoOまたはx=0.2ということができる。LiCoO中のxが小さいとは、例えば0.1<x≦0.24をいう。 Further, the amount of lithium that can be intercalated and desorbed remaining in the positive electrode active material is indicated by x in the composition formula, for example, x in Li x CoO 2 . In the case of a positive electrode active material in a lithium ion secondary battery, x=(theoretical capacity−charge capacity)/theoretical capacity. For example, when a lithium ion secondary battery using LiCoO 2 as the positive electrode active material is charged at 219.2 mAh/g, it can be said that Li 0.2 CoO 2 or x=0.2. When x in Li x CoO 2 is small, it means, for example, 0.1<x≦0.24.
 正極に用いる前の、適切に合成したコバルト酸リチウムが化学量論比をおよそ満たす場合、LiCoOでありx=1である。また放電が終了したリチウムイオン二次電池に含まれるコバルト酸リチウムも、LiCoOでありx=1といってよい。ここでいう放電が終了したとは、例えば100mA/g以下の電流で、電圧が3.0Vまたは2.5V以下となった状態をいう。 When properly synthesized lithium cobalt oxide before being used in the positive electrode approximately satisfies the stoichiometric ratio, it is LiCoO 2 and x=1. Furthermore, the lithium cobalt oxide contained in the lithium ion secondary battery that has finished discharging is also LiCoO 2 and can be said to be x=1. Here, the term "discharge completed" refers to a state where the voltage is 3.0 V or 2.5 V or less at a current of 100 mA/g or less, for example.
 LiCoO中のxの算出に用いる充電容量および/または放電容量は、短絡および/または電解液等の分解の影響がないか、少ない条件で計測することが好ましい。例えば短絡とみられる急激な容量の変化が生じたリチウムイオン二次電池のデータはxの算出に使用してはならない。 The charging capacity and/or discharging capacity used to calculate x in Li x CoO 2 is preferably measured under conditions where there is no or little influence of short circuits and/or decomposition of the electrolytic solution. For example, data from a lithium ion secondary battery that has undergone a sudden change in capacity that appears to be a short circuit must not be used to calculate x.
 またリチウムイオン二次電池の空間群はXRD、電子線回折、中性子線回折等によって同定されるものである。そのため本明細書等において、ある空間群に帰属する、ある空間群に属する、またはある空間群であるという用語は、ある空間群に同定されると言い換えることができる。 Additionally, the space group of a lithium ion secondary battery is identified by XRD, electron beam diffraction, neutron beam diffraction, etc. Therefore, in this specification and the like, the terms belonging to a certain space group, belonging to a certain space group, or being a certain space group can be rephrased as identifying with a certain space group.
 また陰イオンがABCABCのように3層が互いにずれて積み重なる構造であれば、立方最密充填構造と呼ぶこととする。そのため陰イオンは厳密に立方格子でなくてもよい。同時に現実の結晶は必ず欠陥を有するため、分析結果が必ずしも理論通りでなくてもよい。例えば電子線回折パターンまたはTEM像等のFFT(高速フーリエ変換)パターンにおいて、理論上の位置と若干異なる位置にスポットが現れてもよい。例えば理論上の位置との方位が5度以下、または2.5度以下であれば立方最密充填構造をとるといってよい。 In addition, if the anion has a structure in which three layers are shifted from each other and stacked like ABCABC, it is called a cubic close-packed structure. Therefore, the anion does not have to be strictly in a cubic lattice. At the same time, since real crystals always have defects, the analysis results do not necessarily have to match the theory. For example, in an FFT (fast Fourier transform) pattern such as an electron diffraction pattern or a TEM image, a spot may appear at a position slightly different from a theoretical position. For example, if the orientation with respect to the theoretical position is 5 degrees or less, or 2.5 degrees or less, it can be said that the structure has a cubic close-packed structure.
 またある元素の分布とは、ある連続的な分析手法で、該元素がノイズでない範囲で連続的に検出される領域をいうこととする。 Furthermore, the distribution of a certain element refers to a region in which the element is continuously detected in a non-noise range using a certain continuous analysis method.
 また添加元素が添加された正極活物質を複合酸化物、正極材、正極材料、リチウムイオン二次電池用正極材、等と表現する場合がある。また本明細書等において、本発明の一態様の正極活物質は、化合物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、組成物を有することが好ましい。また本明細書等において、本発明の一態様の正極活物質は、複合体を有することが好ましい。 In addition, a positive electrode active material to which additive elements are added may be expressed as a composite oxide, a positive electrode material, a positive electrode material, a positive electrode material for lithium ion secondary batteries, etc. Further, in this specification and the like, the positive electrode active material of one embodiment of the present invention preferably contains a compound. Further, in this specification and the like, the positive electrode active material of one embodiment of the present invention preferably has a composition. Further, in this specification and the like, the positive electrode active material of one embodiment of the present invention preferably has a composite.
 また、以下の実施の形態等で正極活物質の個別の粒子の特徴について述べる場合、必ずしも全ての粒子がその特徴を有していなくてもよい。例えばランダムに3個以上選択した正極活物質の粒子のうち50%以上、好ましくは70%以上、より好ましくは90%以上がその特徴を有していれば、十分に正極活物質およびそれを有するリチウムイオン二次電池の特性を向上させる効果があるということができる。 Furthermore, when describing the characteristics of individual particles of the positive electrode active material in the following embodiments, etc., all particles do not necessarily have to have the characteristics. For example, if 50% or more, preferably 70% or more, more preferably 90% or more of three or more randomly selected positive electrode active material particles have the characteristic, it is sufficient to have the positive electrode active material and the same. It can be said that this has the effect of improving the characteristics of lithium ion secondary batteries.
 リチウムイオン二次電池の充電電圧の上昇に伴い、正極に印加される電圧が一般的に上昇する。本発明の一態様の正極活物質は、充電状態において正極活物質が安定であることにより、充放電の繰り返しに伴う充放電容量の低下を抑制されたリチウムイオン二次電池とすることができる。 As the charging voltage of a lithium ion secondary battery increases, the voltage applied to the positive electrode generally increases. Since the positive electrode active material of one embodiment of the present invention is stable in a charged state, a lithium ion secondary battery can be obtained in which a decrease in charge and discharge capacity due to repeated charging and discharging is suppressed.
 また、リチウムイオン二次電池の内部短絡又は外部短絡はリチウムイオン二次電池の充電動作および/または放電動作における不具合を引き起こすのみでなく、発熱および発火を招く恐れがある。安全なリチウムイオン二次電池を実現するためには、高い充電電圧においても内部短絡又は外部短絡が抑制されることが好ましい。本発明の一態様の正極活物質は、高い充電電圧においても内部短絡又は外部短絡が抑制される。そのため高い放電容量と安全性と、を両立したリチウムイオン二次電池とすることができる。なおリチウムイオン二次電池の内部短絡とは、電池内部で正極と負極とが接触することを指す。またリチウムイオン二次電池の外部短絡とは、誤使用を想定したものであり、電池外部で正極と負極とが接触することを指す。 Moreover, an internal short circuit or an external short circuit of a lithium ion secondary battery not only causes problems in the charging operation and/or discharging operation of the lithium ion secondary battery, but also may cause heat generation and ignition. In order to realize a safe lithium ion secondary battery, it is preferable that internal short circuits or external short circuits be suppressed even at high charging voltages. In the positive electrode active material of one embodiment of the present invention, internal short circuits or external short circuits are suppressed even at high charging voltages. Therefore, a lithium ion secondary battery that has both high discharge capacity and safety can be obtained. Note that an internal short circuit in a lithium ion secondary battery refers to contact between a positive electrode and a negative electrode inside the battery. Furthermore, an external short circuit of a lithium ion secondary battery is assumed to occur due to misuse, and refers to contact between the positive electrode and the negative electrode outside the battery.
 なお特に言及しない限り、リチウムイオン二次電池が有する材料(正極活物質、負極活物質、電解液、セパレータ等)は、劣化前の状態について説明するものとする。なおリチウムイオン二次電池製造段階におけるエージング処理およびバーンイン処理によって放電容量が減少することは劣化とは呼ばないとする。例えば、単電池又は組電池でなるリチウムイオン二次電池の定格容量の97%以上の放電容量を有する場合は、劣化前の状態と言うことができる。定格容量は、ポータブル機器用リチウムイオン二次電池の場合JIS C 8711:2019に準拠する。これ以外のリチウムイオン二次電池の場合、上記JIS規格に限らず電動車両推進用、産業用などの各JIS、IEC規格等に準拠する。 Unless otherwise specified, the materials included in the lithium ion secondary battery (positive electrode active material, negative electrode active material, electrolyte, separator, etc.) will be described in terms of their state before deterioration. Note that a decrease in discharge capacity due to aging treatment and burn-in treatment during the manufacturing stage of a lithium ion secondary battery is not called deterioration. For example, when a lithium ion secondary battery consisting of a single cell or an assembled battery has a discharge capacity of 97% or more of the rated capacity, it can be said to be in a state before deterioration. The rated capacity is based on JIS C 8711:2019 for lithium ion secondary batteries for portable devices. In the case of other lithium ion secondary batteries, they comply with not only the JIS standards mentioned above but also JIS and IEC standards for electric vehicle propulsion, industrial use, etc.
 本明細書等において、リチウムイオン二次電池が有する材料の劣化前の状態を、初期品、または初期状態と呼称し、劣化後の状態(リチウムイオン二次電池の定格容量の97%未満の放電容量を有する場合の状態)を、使用中品または使用中の状態、あるいは使用済み品または使用済み状態と呼称する場合がある。 In this specification, etc., the state of the material of a lithium ion secondary battery before deterioration is referred to as the initial product or initial state, and the state after deterioration (discharge of less than 97% of the rated capacity of the lithium ion secondary battery) The state in which the product has a capacity) is sometimes referred to as a used product or in-use state, or a used product or used state.
 本明細書等においてリチウムイオン二次電池は、キャリアイオンにリチウムイオンを用いた電池を指すが、本発明のキャリアイオンはリチウムイオンに限定されない。例えば本発明のキャリアイオンとしてアルカリ金属イオン、又はアルカリ土類金属イオンを用いることができ、具体的にはナトリウムイオン等を適用することができる。この場合、リチウムイオンをナトリウムイオン等と読み替え、本発明を理解することができる。またキャリアイオンに何ら限定がない場合、二次電池と記すことがある。 In this specification and the like, a lithium ion secondary battery refers to a battery using lithium ions as carrier ions, but the carrier ions of the present invention are not limited to lithium ions. For example, an alkali metal ion or an alkaline earth metal ion can be used as a carrier ion in the present invention, and specifically, a sodium ion or the like can be used. In this case, the present invention can be understood by reading lithium ions as sodium ions, etc. Furthermore, if there are no limitations on carrier ions, the battery may be referred to as a secondary battery.
(実施の形態1)
 本実施の形態では、本発明の一態様の電池の構成例について説明する。
(Embodiment 1)
In this embodiment, a configuration example of a battery according to one embodiment of the present invention will be described.
[電池]
 図1A及び図1Bは本発明の一態様の電池の一例を示す図である。図1Cは本発明の一態様の電池が有する正極の一例を説明する図である。
[battery]
FIGS. 1A and 1B are diagrams illustrating an example of a battery according to one embodiment of the present invention. FIG. 1C is a diagram illustrating an example of a positive electrode included in a battery according to one embodiment of the present invention.
 図1Aに電池10を示す。電池10は、外装体50と、外装体50の内部から外部へ延在する正極リード21及び負極リード31と、を有する。外装体50は、封止部24、封止部34、及び封止部51で封止される。 A battery 10 is shown in FIG. 1A. The battery 10 includes an exterior body 50 and a positive electrode lead 21 and a negative electrode lead 31 extending from the inside of the exterior body 50 to the outside. The exterior body 50 is sealed with the sealing part 24, the sealing part 34, and the sealing part 51.
 図1Bは、図1Aの一点鎖線X1−X2における断面模式図である。電池10は、正極20と、負極30と、セパレータ40と、外装体50と、を有する。正極20、負極30、及びセパレータ40は外装体50に内包される。正極20は、正極集電体22及び正極集電体22上に設けられる正極活物質層23を有する。負極30は、負極集電体32及び負極集電体32上に設けられる負極活物質層33を有する。セパレータ40は、少なくとも正極活物質層23と負極活物質層33の間に位置する領域を有する。 FIG. 1B is a schematic cross-sectional view taken along the dashed-dotted line X1-X2 in FIG. 1A. The battery 10 includes a positive electrode 20, a negative electrode 30, a separator 40, and an exterior body 50. The positive electrode 20, the negative electrode 30, and the separator 40 are enclosed in an exterior body 50. The positive electrode 20 includes a positive electrode current collector 22 and a positive electrode active material layer 23 provided on the positive electrode current collector 22. The negative electrode 30 includes a negative electrode current collector 32 and a negative electrode active material layer 33 provided on the negative electrode current collector 32. Separator 40 has at least a region located between positive electrode active material layer 23 and negative electrode active material layer 33.
 正極集電体22と正極リード21は電気的に接続され、正極リード21は外装体50の内部から外部へ延在する。また、図示しないが、正極集電体22及び正極リード21と同様に、負極集電体32と負極リード31は電気的に接続され、負極リード31は外装体50の内部から外部へ延在する。 The positive electrode current collector 22 and the positive electrode lead 21 are electrically connected, and the positive electrode lead 21 extends from the inside of the exterior body 50 to the outside. Although not shown, the negative electrode current collector 32 and the negative electrode lead 31 are electrically connected in the same manner as the positive electrode current collector 22 and the positive electrode lead 21, and the negative electrode lead 31 extends from the inside of the exterior body 50 to the outside. .
[正極]
 図1Cを用いて、本発明の一態様の電池が有する正極の例について説明する。図1Cは、図1Bにおいて破線で囲まれた領域Aの拡大図の一例である。
[Positive electrode]
An example of a positive electrode included in a battery of one embodiment of the present invention will be described with reference to FIG. 1C. FIG. 1C is an example of an enlarged view of area A surrounded by a broken line in FIG. 1B.
 図1Cに示す正極20の一部を拡大した断面模式図において、正極集電体22上に設けられる正極活物質層23は、正極活物質100とバインダ13とを有する。なお、正極活物質層23は、正極活物質100及びバインダ13以外に導電材14を有してもよいが、正極活物質100の導電性が十分に高い場合は導電材14を有さなくてもよい。正極活物質100は、コバルト酸リチウムなどの、空間群R−3mに帰属する層状岩塩型の結晶構造を有する複合酸化物であることが好ましい。なお、本発明の一態様の正極活物質100の詳細は、実施の形態2乃至実施の形態4で説明する。 In a partially enlarged cross-sectional schematic diagram of the positive electrode 20 shown in FIG. 1C, the positive electrode active material layer 23 provided on the positive electrode current collector 22 includes the positive electrode active material 100 and the binder 13. Note that the positive electrode active material layer 23 may have a conductive material 14 in addition to the positive electrode active material 100 and the binder 13, but if the conductivity of the positive electrode active material 100 is sufficiently high, it may not have the conductive material 14. Good too. The positive electrode active material 100 is preferably a composite oxide having a layered rock salt type crystal structure belonging to space group R-3m, such as lithium cobalt oxide. Note that details of the positive electrode active material 100 of one embodiment of the present invention will be described in Embodiments 2 to 4.
 正極集電体22は、アルミニウム等のイオン化傾向が高く、且つ融点の低い金属の含有量が少ないと好ましい。例えば、正極集電体がアルミニウムを多く有する場合は、正極活物質である複合酸化物と、アルミニウムとのテルミット反応が生じたときに、大きな発熱となる恐れがある。一方で、正極集電体22は、その表面に融点の低い金属である、アルミニウムを有すると好ましい。理由としては、アルミニウムは電解液中で不動態被膜を形成する金属(弁金属と呼ぶ場合がある)であるため、高い酸化電位に対して正極集電体22の安定性を高くすることができるからである。よって、正極集電体22は、電解液と接する領域に、最小限の質量のアルミニウムを有することが好ましい。正極集電体22が有するアルミニウムの質量は例えば、正極集電体22の質量のうち、0.002%以上40%以下であることが好ましく、0.03%以上6%以下であることがより好ましく、0.2%以上2.5%以下であることがより好ましい。 It is preferable that the positive electrode current collector 22 has a low content of a metal such as aluminum that has a high ionization tendency and has a low melting point. For example, if the positive electrode current collector contains a large amount of aluminum, a large amount of heat may be generated when a thermite reaction occurs between the composite oxide that is the positive electrode active material and aluminum. On the other hand, it is preferable that the positive electrode current collector 22 has aluminum, which is a metal with a low melting point, on its surface. The reason is that since aluminum is a metal (sometimes called valve metal) that forms a passive film in the electrolyte, the stability of the positive electrode current collector 22 can be increased against high oxidation potentials. It is from. Therefore, it is preferable that the positive electrode current collector 22 has a minimum mass of aluminum in the region in contact with the electrolyte. The mass of aluminum contained in the positive electrode current collector 22 is, for example, preferably 0.002% or more and 40% or less, more preferably 0.03% or more and 6% or less of the mass of the positive electrode current collector 22. It is preferably 0.2% or more and 2.5% or less.
 そのため、本発明の一態様の電池は、正極集電体22として、積層金属シートを用いることが好ましい。本明細書において積層金属シートとは、ステンレス箔等の、イオン化傾向が低い金属箔、又は融点の高い金属箔に、アルミニウムを薄く被覆したものをいう。 Therefore, in the battery of one embodiment of the present invention, a laminated metal sheet is preferably used as the positive electrode current collector 22. In this specification, the laminated metal sheet refers to a metal foil with a low ionization tendency, such as a stainless steel foil, or a metal foil with a high melting point, coated thinly with aluminum.
 積層金属シートを正極集電体22として用いる場合について、図1Cに示す。積層金属シートは、金属箔22aと被覆層22bを有する。被覆層22bは、金属箔22aの表面の少なくとも一部を覆うことが好ましい。被覆層22bは、金属箔22aの一方の面又は両方の面の全体に設けられることが、より好ましい。また更に、金属箔22aの側端部を含め、金属箔22aの全体を、被覆層22bが覆うことが、より好ましい。 A case where a laminated metal sheet is used as the positive electrode current collector 22 is shown in FIG. 1C. The laminated metal sheet has a metal foil 22a and a covering layer 22b. It is preferable that the coating layer 22b covers at least a portion of the surface of the metal foil 22a. More preferably, the coating layer 22b is provided on one or both surfaces of the metal foil 22a. Furthermore, it is more preferable that the coating layer 22b covers the entire metal foil 22a, including the side edges of the metal foil 22a.
 被覆層22bは、アルミニウムの、フッ化物被膜、またはフッ化物を含む被膜を形成することが可能な金属材料を用いることが好ましい。また、アルミニウムの他、チタン、タンタル、クロム等の弁金属(バルブ金属ともいう)を用いてもよい。なお弁金属は、表面に不動態を形成することが可能な金属のことをいう。 The coating layer 22b is preferably made of aluminum, a fluoride film, or a metal material capable of forming a film containing fluoride. In addition to aluminum, valve metals (also referred to as valve metals) such as titanium, tantalum, and chromium may be used. Note that the valve metal refers to a metal that can form a passive state on its surface.
 被覆層22bが、金属箔22aの表面に設けられる場合、金属箔22aがフッ化物被膜、またはフッ化物を含む被膜を形成できない材料であっても、被覆層22bは、金属箔22aの成分の電解液中への溶出を、抑制することができる。 When the coating layer 22b is provided on the surface of the metal foil 22a, even if the metal foil 22a is made of a material that cannot form a fluoride coating or a coating containing fluoride, the coating layer 22b can prevent the electrolysis of the components of the metal foil 22a. Elution into the liquid can be suppressed.
 なお、金属箔22aの成分が電解液中に溶出する原因としては、リチウムイオン電池の電解液として用いられるLiPFと、電解液中に不純物として含まれる水分、または電池10の外部から浸入する水分、とが反応してフッ化水素を生成し、当該フッ化水素によって、フッ化物被膜を形成できない金属箔22aが溶出してしまう、と考えられる。 The causes of the components of the metal foil 22a eluting into the electrolyte are LiPF 6 used as the electrolyte of lithium ion batteries, moisture contained as an impurity in the electrolyte, or moisture entering from outside the battery 10. It is thought that the metal foil 22a, which cannot form a fluoride film, is eluted by the hydrogen fluoride.
 金属箔22aとして例えば、ステンレス箔、クロム箔、ニッケル箔、モリブデン箔、タンタル箔、タングステン箔、金箔、白金箔、イリジウム箔等の何れか一又は複数が好ましい。金属箔22aは、圧延法を用いて作製することができる。 As the metal foil 22a, for example, one or more of stainless steel foil, chrome foil, nickel foil, molybdenum foil, tantalum foil, tungsten foil, gold foil, platinum foil, iridium foil, etc. is preferable. The metal foil 22a can be produced using a rolling method.
 金属箔22aの厚さは、1μm以上30μm以下であることが好ましく、5μm以上20μm以下であることがより好ましく、5μm以上15μm以下であることがより好ましい。 The thickness of the metal foil 22a is preferably 1 μm or more and 30 μm or less, more preferably 5 μm or more and 20 μm or less, and more preferably 5 μm or more and 15 μm or less.
 被覆層22bは、金属箔22aを基材として、スパッタリング法、蒸着法、CVD(Chemical Vapor Deposition)法、MBE(Molecular Beam Epitaxy)法、PLD(Pulsed Laser Deposition)法、又は、ALD(Atomic Layer Deposition)法を用いて形成することができる。 The coating layer 22b is formed using the metal foil 22a as a base material using a sputtering method, a vapor deposition method, a CVD (Chemical Vapor Deposition) method, an MBE (Molecular Beam Epitaxy) method, or a PLD (Pulsed Laser Deposition) method. ion) method or ALD (Atomic Layer Deposition) ) method.
 被覆層22bの厚さは、1nm以上1μm以下であることが好ましく、10nm以上500nm以下であることがより好ましく、50nm以上200nm以下であることがより好ましい。 The thickness of the coating layer 22b is preferably 1 nm or more and 1 μm or less, more preferably 10 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less.
 このように正極集電体22として、積層金属シートを用いる本発明の一態様の電池は、電池が高温となったときに、正極活物質である複合酸化物と、正極集電体22と、のテルミット反応が生じる恐れが少なく、電池の発火及び電池の周囲への延焼を防止することができる。または、正極活物質である複合酸化物と、正極集電体22と、のテルミット反応が生じたとしても、テルミット反応による発熱量を小さくすることができるため、電池の発火及び電池の周囲への延焼を防止することができる。別言すると、本発明の一態様の電池は、熱暴走を抑制することができる。電池の熱暴走について、以下で説明する。 As described above, in a battery according to one embodiment of the present invention that uses a laminated metal sheet as the positive electrode current collector 22, when the battery reaches a high temperature, the composite oxide that is the positive electrode active material and the positive electrode current collector 22, There is less risk of a thermite reaction occurring, and it is possible to prevent the battery from catching fire and spreading the fire to the surrounding area. Alternatively, even if a thermite reaction occurs between the composite oxide, which is the positive electrode active material, and the positive electrode current collector 22, the amount of heat generated by the thermite reaction can be reduced, thereby preventing battery ignition and the surrounding area of the battery. Fire spread can be prevented. In other words, the battery of one embodiment of the present invention can suppress thermal runaway. The thermal runaway of a battery will be explained below.
[電池の熱暴走]
 一般的なリチウムイオン電池が熱暴走する原理について、非特許文献14の第69頁[図2−11]に示したグラフを引用し、一部修正した図を図2Aに示す。上述したような電池はたとえば充電時、温度(具体的には内部温度)が上昇すると、いくつかの状態を経て熱暴走に至る。図2Aは時間に対する電池の温度のグラフであり、たとえば電池の温度が100℃又はその近傍になると、(1)負極のSEI(Solid Electrolyte Interphase)の崩壊と発熱が生じる。また電池の温度が100℃を超えると(2)負極(黒鉛を用いた場合、負極はCLiとなる)による電解液の還元と発熱が生じ、(3)正極による電解液の酸化と発熱が生じる。そして、電池の温度が180℃又はその近傍になると(4)電解液の熱分解が生じ、(5)正極からの酸素放出と正極の熱分解(当該熱分解には正極活物質の構造変化が含まれる)が生じる。その後、電池の温度が200℃を超えると(6)負極の分解が生じ、最後に(7)正極と負極の直接接触となる。このような状態、特に(5)の状態、(6)の状態、又は(7)の状態を経て、電池は熱暴走に至る。
[Battery thermal runaway]
Regarding the principle of thermal runaway in a general lithium ion battery, the graph shown on page 69 [FIG. 2-11] of Non-Patent Document 14 is quoted, and a partially revised diagram is shown in FIG. 2A. For example, when a battery as described above is charged, when the temperature (specifically, the internal temperature) rises, the battery goes through several states and reaches thermal runaway. FIG. 2A is a graph of battery temperature versus time. For example, when the battery temperature reaches or near 100° C., (1) SEI (Solid Electrolyte Interphase) of the negative electrode collapses and generates heat. Furthermore, when the temperature of the battery exceeds 100°C, (2) the electrolyte is reduced and heat generated by the negative electrode (if graphite is used, the negative electrode becomes C 6 Li), and (3) the electrolyte is oxidized and heat generated by the positive electrode. occurs. When the temperature of the battery reaches 180°C or around 180°C, (4) thermal decomposition of the electrolyte occurs, and (5) oxygen is released from the positive electrode and thermal decomposition of the positive electrode occurs (the thermal decomposition involves structural changes in the positive electrode active material). ) occurs. Thereafter, when the temperature of the battery exceeds 200° C., (6) decomposition of the negative electrode occurs, and finally (7) direct contact between the positive and negative electrodes occurs. After passing through such a state, particularly state (5), state (6), or state (7), the battery goes into thermal runaway.
 また、非特許文献15の図1によると、電池の温度が660℃を超えると、正極集電体として用いられるアルミニウムが溶融し、正極活物質として用いられる酸化物とのテルミット反応が起こり、反応箇所が1000℃以上もの高温となることが記載されている。 Furthermore, according to Figure 1 of Non-Patent Document 15, when the temperature of the battery exceeds 660°C, aluminum used as the positive electrode current collector melts, and a thermite reaction with the oxide used as the positive electrode active material occurs. It is stated that the temperature at some points is as high as 1000°C or more.
 熱暴走に至らないようにするには、電池の温度上昇を抑制することと、電池を構成する部材(負極、正極、電解液など)が高温時に安定であるとよいと考えられる。 In order to prevent thermal runaway, it is considered best to suppress the temperature rise of the battery and to ensure that the components that make up the battery (negative electrode, positive electrode, electrolyte, etc.) are stable at high temperatures.
 上記で説明した積層金属シートを、正極集電体22に用いる本発明の一態様の電池は、電池が高温となったときに、正極活物質である複合酸化物と、正極集電体22と、のテルミット反応が生じる恐れが少ないため、好ましい。または、正極活物質である複合酸化物と、正極集電体22と、のテルミット反応が生じたとしても、テルミット反応による発熱量を小さくすることができるため、好ましい。 In a battery according to one embodiment of the present invention in which the laminated metal sheet described above is used for the positive electrode current collector 22, when the battery reaches a high temperature, the composite oxide that is the positive electrode active material and the positive electrode current collector 22 This is preferable because there is less possibility that the thermite reaction will occur. Alternatively, even if a thermite reaction occurs between the composite oxide that is the positive electrode active material and the positive electrode current collector 22, the amount of heat generated by the thermite reaction can be reduced, which is preferable.
[釘差し試験]
 次に、一般的なリチウムイオン電池に対する釘刺し試験について、図3A及び図3B等を用いて説明する。釘刺し試験は電池500を満充電(States Of Charge:SOC100%に等しい状態)として、2mm以上10mm以下から選ばれた所定の直径を満たす釘1003を、所定の速度で電池へ刺しこむ試験である。釘を差し込む速度は、例えば1mm/s以上20mm/s以下とすることができる。図3Aは電池500に釘1003を刺した状態の断面図を示す。電池500は正極503、セパレータ508、負極506、及び電解液530が外装体531に収容された構造を有する。正極503は正極集電体501と、その両面に形成された正極活物質層502を有し、負極506は負極集電体504と、その両面に形成された負極活物質層505を有する。また図3Bは釘1003及び正極集電体501の拡大図を示しており、正極活物質層502が有する正極活物質100及び導電材553も明示する。
[Nail insertion test]
Next, a nail penetration test for a general lithium ion battery will be explained using FIGS. 3A, 3B, and the like. The nail penetration test is a test in which the battery 500 is fully charged (States of Charge: equivalent to 100% SOC) and a nail 1003 having a predetermined diameter selected from 2 mm to 10 mm is inserted into the battery at a predetermined speed. . The speed at which the nail is inserted can be, for example, 1 mm/s or more and 20 mm/s or less. FIG. 3A shows a cross-sectional view of the battery 500 with a nail 1003 inserted therein. The battery 500 has a structure in which a positive electrode 503, a separator 508, a negative electrode 506, and an electrolyte 530 are housed in an exterior body 531. The positive electrode 503 has a positive electrode current collector 501 and positive electrode active material layers 502 formed on both surfaces thereof, and the negative electrode 506 has a negative electrode current collector 504 and negative electrode active material layers 505 formed on both surfaces thereof. Further, FIG. 3B shows an enlarged view of the nail 1003 and the positive electrode current collector 501, and also clearly shows the positive electrode active material 100 and the conductive material 553 included in the positive electrode active material layer 502.
 図3A及び図3Bに示すように、釘1003が正極503と負極506とを貫通すると、内部短絡が生じる。すると釘1003の電位が負極の電位と等しくなり、釘1003等を介して、矢印で示したように電子(e)が正極503へ流れ、内部短絡箇所及びその近傍にはジュール熱が発生する。また内部短絡により、負極506から脱離したキャリアイオン、代表的にはリチウムイオン(Li)は白抜き矢印のように電解液へ放出される。ここで、電解液530中のアニオンが不足している場合、負極506から電解液530へとリチウムイオンが脱離すると、電解液530の電気的中性が保たれなくなるため、電解液530は電気的中性を保つように分解し始める。これは電気化学反応の一つであり、負極による電解液の還元反応と呼ぶ。 As shown in FIGS. 3A and 3B, when nail 1003 penetrates positive electrode 503 and negative electrode 506, an internal short circuit occurs. Then, the potential of the nail 1003 becomes equal to the potential of the negative electrode, and electrons (e ) flow through the nail 1003 and the like to the positive electrode 503 as shown by the arrow, and Joule heat is generated at the internal short circuit and its vicinity. . Furthermore, due to the internal short circuit, carrier ions, typically lithium ions (Li + ), released from the negative electrode 506 are released into the electrolytic solution as indicated by the white arrow. Here, if there is a shortage of anions in the electrolytic solution 530, if lithium ions are desorbed from the negative electrode 506 to the electrolytic solution 530, the electrical neutrality of the electrolytic solution 530 will not be maintained. Start disassembling it to keep it accurate. This is one of the electrochemical reactions and is called a reduction reaction of the electrolyte by the negative electrode.
 またジュール熱により電池500の温度が上昇することがある。このとき、正極活物質にコバルト酸リチウムを用いている場合には、コバルト酸リチウムの結晶構造の変化が生じ、さらに発熱が生じることがある。 Additionally, the temperature of the battery 500 may rise due to Joule heat. At this time, when lithium cobalt oxide is used as the positive electrode active material, a change in the crystal structure of the lithium cobalt oxide may occur, and further heat generation may occur.
 そして、正極503に流れてきた電子(e)により、充電状態のコバルト酸リチウムにおいて4価であったCoが還元されて3価又は2価となり、この還元反応によりコバルト酸リチウムから酸素が放出される。また電解液530は該酸素による酸化反応によって分解される。これは電気化学反応の一つであり、正極による電解液の酸化反応と呼ぶ。正極活物質100等へ電流が流れ込む速度は、当該正極活物質の絶縁性に応じて異なり、電流が流れる速度が上記電気化学反応に影響を及ぼすとも考えられる。 Then, the electrons (e - ) flowing to the positive electrode 503 reduce the tetravalent Co in the charged lithium cobalt oxide to become trivalent or divalent, and this reduction reaction releases oxygen from the lithium cobalt oxide. be done. Further, the electrolytic solution 530 is decomposed by an oxidation reaction caused by the oxygen. This is one of the electrochemical reactions and is called the oxidation reaction of the electrolyte by the positive electrode. The speed at which current flows into the positive electrode active material 100 and the like varies depending on the insulation properties of the positive electrode active material, and it is also believed that the speed at which the current flows affects the electrochemical reaction.
 電池の内部短絡が生じると、温度が図2Bに示すグラフのように変化すると考えられる。図2Bは、非特許文献14の第70頁[図2−12]に示したグラフを引用し、一部修正した図であり、時間に対する電池の温度(具体的には内部温度)のグラフである。(P0)で内部短絡が生じると、時間とともに電池の温度が上昇する。(P1)に示すように、内部短絡によるジュール熱による発熱によって、電池の温度が100℃の近傍まで上昇すると、電池の熱暴走に至らない限界の温度である基準温度(Ts)を超えてしまう場合がある。すると(P2)では負極(黒鉛を用いた場合、負極はCLiとなる)による電解液の還元と発熱が生じ、(P3)では正極による電解液の酸化と発熱が生じ、(P4)では電解液の熱分解による発熱が生じる。そして電池は熱暴走に至り、発火又は発煙等に至る。 When an internal short circuit occurs in the battery, the temperature is considered to change as shown in the graph shown in FIG. 2B. FIG. 2B is a partially revised diagram based on the graph shown on page 70 [FIG. 2-12] of Non-Patent Document 14, and is a graph of battery temperature (specifically, internal temperature) versus time. be. When an internal short circuit occurs at (P0), the temperature of the battery increases over time. As shown in (P1), when the temperature of the battery rises to around 100℃ due to Joule heat generated by an internal short circuit, it exceeds the reference temperature (Ts), which is the limit temperature that does not lead to thermal runaway of the battery. There are cases. Then, in (P2), the electrolyte is reduced and heat is generated by the negative electrode (when graphite is used, the negative electrode becomes C 6 Li), in (P3), the electrolyte is oxidized and heat is generated by the positive electrode, and in (P4), the electrolyte is oxidized and heat is generated by the positive electrode. Heat generation occurs due to thermal decomposition of the electrolyte. The battery then goes into thermal runaway, resulting in fire or smoke.
 釘刺し試験で発煙、発熱等を生じさせないためには、電池の温度上昇を抑制すること、電池を構成する部材(負極、正極、電解液など)が高温時に安定であるとよいと考えられる。具体的には正極活物質が、高温に曝されても酸素放出しないような安定な構造を有すると好ましい。または正極活物質は、当該活物質へ流れ込む電流の速度が緩やかとなる構造を有すると好ましい。実施の形態2で後述するが、本発明の一態様である正極活物質100は、上記安定な構造と、電流の速度を緩やかにする構造を併せ持つことができる。 In order to prevent smoke, heat generation, etc. from occurring during the nail penetration test, it is considered best to suppress the temperature rise of the battery and to ensure that the components that make up the battery (negative electrode, positive electrode, electrolyte, etc.) are stable at high temperatures. Specifically, it is preferable that the positive electrode active material has a stable structure that does not release oxygen even when exposed to high temperatures. Alternatively, the positive electrode active material preferably has a structure in which the speed of current flowing into the active material is slow. As will be described later in Embodiment 2, the positive electrode active material 100, which is one embodiment of the present invention, can have both the stable structure described above and a structure that slows down the current speed.
 正極は、正極集電体上にスラリーを塗布して乾燥させることによって形成することができる。なお、乾燥後にプレスを加えてもよい。正極は、集電体上に活物質層を形成したものである。 The positive electrode can be formed by applying a slurry onto the positive electrode current collector and drying it. Note that pressing may be applied after drying. The positive electrode has an active material layer formed on a current collector.
 スラリーとは、集電体上に活物質層を形成するために用いる材料液であり、活物質とバインダと溶媒を含有し、好ましくはさらに導電材を混合させたものを指している。なお、スラリーは、電極用スラリーまたは活物質スラリーと呼ばれることもあり、正極活物質層を形成する場合には正極用スラリーと呼ばれることもある。 The slurry is a material liquid used to form an active material layer on a current collector, and contains an active material, a binder, and a solvent, preferably further mixed with a conductive material. Note that the slurry is sometimes called an electrode slurry or an active material slurry, and when forming a positive electrode active material layer, it is also called a positive electrode slurry.
 正極20の作製に用いるバインダ13、及び導電材14として用いることのできる材料について、下記で説明する。 Materials that can be used as the binder 13 and the conductive material 14 used in producing the positive electrode 20 will be described below.
[バインダ]
 バインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
[Binder]
As the binder, it is preferable to use rubber materials such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene-propylene-diene copolymer. Furthermore, fluororubber can be used as the binder.
 また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。 Further, as the binder, it is preferable to use, for example, a water-soluble polymer. As the water-soluble polymer, for example, polysaccharides can be used. As the polysaccharide, cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, regenerated cellulose, or starch can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
 または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。 Or, as a binder, polystyrene, polymethyl acrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride It is preferable to use materials such as polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylene propylene diene polymer, polyvinyl acetate, nitrocellulose, etc. .
 バインダは上記のうち複数を組み合わせて使用してもよい。 The binder may be used in combination of more than one of the above.
 例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力及び弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース及びジアセチルセルロース、再生セルロースなどのセルロース誘導体、または澱粉を用いることができる。 For example, a material with particularly excellent viscosity adjusting effect may be used in combination with other materials. For example, although rubber materials have excellent adhesive strength and elasticity, it may be difficult to adjust the viscosity when mixed with a solvent. In such cases, for example, it is preferable to mix with a material that is particularly effective in controlling viscosity. As a material having a particularly excellent viscosity adjusting effect, for example, a water-soluble polymer may be used. In addition, as water-soluble polymers having particularly excellent viscosity adjusting effects, the above-mentioned polysaccharides, such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, cellulose derivatives such as regenerated cellulose, or starch are used. be able to.
 なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩またはアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質または他の構成要素との分散性を高めることもできる。本明細書等においては、電極のバインダとして使用するセルロース及びセルロース誘導体としては、それらの塩も含むものとする。 Note that by converting a cellulose derivative such as carboxymethyl cellulose into a salt such as a sodium salt or an ammonium salt of carboxymethyl cellulose, the solubility is increased and the effect as a viscosity modifier is more easily exerted. The increased solubility can also improve the dispersibility with the active material or other components when preparing an electrode slurry. In this specification and the like, cellulose and cellulose derivatives used as binders for electrodes include salts thereof.
 水溶性高分子は水に溶解することにより粘度を安定化させ、活物質及びバインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムを水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、水酸基またはカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。 By dissolving the water-soluble polymer in water, the viscosity is stabilized, and other materials to be combined as the active material and binder, such as styrene-butadiene rubber, can be stably dispersed in the aqueous solution. Furthermore, since it has a functional group, it is expected that it will be easily adsorbed stably on the surface of the active material. In addition, many cellulose derivatives such as carboxymethylcellulose have functional groups such as hydroxyl or carboxyl groups, and because of these functional groups, polymers interact with each other and may exist widely covering the surface of the active material. Be expected.
 活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、「不動態膜」とは、電気の伝導性のない膜、または電気電導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。 When the binder forms a film that covers or is in contact with the surface of the active material, it is expected to serve as a passive film and suppress the decomposition of the electrolyte. Here, the "passive film" is a film with no electrical conductivity or a film with extremely low electrical conductivity. For example, when a passive film is formed on the surface of an active material, the battery reaction potential In this case, decomposition of the electrolytic solution can be suppressed. Further, it is more desirable that the passive film suppresses electrical conductivity and can conduct lithium ions.
[導電材]
 導電材は、導電付与剤、導電助剤とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電材を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電材が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電材が覆う場合、活物質の表面凹凸に導電材がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
[Conductive material]
The conductive material is also called a conductivity imparting agent or a conductivity aid, and a carbon material is used. By attaching a conductive material between the plurality of active materials, the plurality of active materials are electrically connected to each other, thereby increasing conductivity. Note that "adhesion" does not only mean that the active material and the conductive material are in close physical contact with each other, but also when a covalent bond occurs or when they bond due to van der Waals forces, the surface of the active material The concept includes cases where a conductive material covers a part of the active material, cases where the conductive material fits into the unevenness of the surface of the active material, cases where the active material is electrically connected even if they are not in contact with each other.
 正極活物質層、負極活物質層、等の活物質層は、導電材を有することが好ましい。 It is preferable that the active material layers, such as the positive electrode active material layer and the negative electrode active material layer, include a conductive material.
 導電材としては、例えば、アセチレンブラック、およびファーネスブラックなどのカーボンブラック、人造黒鉛、および天然黒鉛などの黒鉛、カーボンナノファイバー、およびカーボンナノチューブなどの炭素繊維、ならびにグラフェン化合物、のいずれか一種又は二種以上を用いることができる。 Examples of the conductive material include carbon black such as acetylene black and furnace black, graphite such as artificial graphite and natural graphite, carbon fibers such as carbon nanofibers and carbon nanotubes, and graphene compounds. More than one species can be used.
 炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーまたはカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。 As the carbon fiber, carbon fibers such as mesophase pitch carbon fiber and isotropic pitch carbon fiber can be used. Furthermore, carbon nanofibers, carbon nanotubes, or the like can be used as the carbon fibers. Carbon nanotubes can be produced, for example, by a vapor phase growth method.
 活物質層の総量に対する導電材の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。 The content of the conductive material relative to the total amount of the active material layer is preferably 1 wt% or more and 10 wt% or less, more preferably 1 wt% or more and 5 wt% or less.
 活物質と点接触するカーボンブラック等の粒状の導電材と異なり、グラフェン化合物は接触抵抗の低い面接触を可能とするものであるから、通常の導電材よりも少量で粒状の活物質とグラフェン化合物との電気伝導性を向上させることができる。よって、活物質の活物質層における比率を増加させることができる。これにより、電池の放電容量を増加させることができる。 Unlike granular conductive materials such as carbon black, which make point contact with the active material, graphene compounds enable surface contact with low contact resistance. It is possible to improve electrical conductivity with Therefore, the ratio of active material in the active material layer can be increased. Thereby, the discharge capacity of the battery can be increased.
 カーボンブラック、黒鉛、等の粒子状の炭素含有化合物または、カーボンナノチューブ等の繊維状の炭素含有化合物は微小な空間に入りやすい。微小な空間とは例えば、複数の活物質の間の領域等を指す。微小な空間に入りやすい炭素含有化合物と、複数の粒子にわたって導電性を付与できるグラフェンなどのシート状の炭素含有化合物と、を組み合わせて使用することにより、電極の密度を高め、優れた導電パスを形成することができる。本発明の一態様の作製方法で得られる電池は、体積あたりにおいて高容量密度を有し、かつ安定性を備えることができ、車載用の電池として有効である。 Particulate carbon-containing compounds such as carbon black and graphite, or fibrous carbon-containing compounds such as carbon nanotubes, easily enter minute spaces. The minute space refers to, for example, a region between a plurality of active materials. By using a combination of carbon-containing compounds that can easily enter tiny spaces and sheet-like carbon-containing compounds such as graphene that can impart conductivity across multiple particles, we can increase electrode density and create excellent conductive paths. can be formed. A battery obtained by the manufacturing method of one embodiment of the present invention has a high capacity density per volume, can be stable, and is effective as a vehicle-mounted battery.
 図4A乃至図4Dに、正極20の構成例を示す。図4A乃至図4Dは、図1Cで示す正極20の変形例である。 4A to 4D show configuration examples of the positive electrode 20. 4A to 4D are modifications of the positive electrode 20 shown in FIG. 1C.
 図4Aは、導電材14として用いられる炭素材料としてカーボンブラック15を用い、正極活物質100の粒子同士の間に位置する空隙部に含まれる電解質60を図示しており、正極活物質100だけでなく第2の正極活物質110を更に有する例を示している。 FIG. 4A uses carbon black 15 as the carbon material used as the conductive material 14 and illustrates the electrolyte 60 contained in the voids located between the particles of the positive electrode active material 100. An example is shown in which the second positive electrode active material 110 is further included.
 二次電池の正極として、正極集電体11と、正極活物質100と、を固着させるために、バインダ(樹脂)を混合してもよい。バインダは結着剤とも呼ばれる。バインダは高分子材料であり、バインダを多く含ませると正極における活物質の割合が低下して、二次電池の放電容量が小さくなる。そのため、バインダの量は最小限に混合させることが好ましい。 A binder (resin) may be mixed in order to fix the positive electrode current collector 11 and the positive electrode active material 100 as a positive electrode of a secondary battery. A binder is also called a binding agent. The binder is a polymeric material, and when a large amount of the binder is included, the proportion of the active material in the positive electrode decreases, and the discharge capacity of the secondary battery decreases. Therefore, it is preferable to mix the amount of binder to a minimum.
 なお、図4Aでは正極活物質100を球形として図示した例を示しているが、特に限定されない。例えば、正極活物質100の断面形状は楕円形、長方形、台形、三角形、角が丸まった多角形、非対称の形状であってもよい。例えば、図4Bでは、正極活物質100が、角の丸まった多角形の形状を有する例を示している。 Although FIG. 4A shows an example in which the positive electrode active material 100 is spherical, it is not particularly limited. For example, the cross-sectional shape of the positive electrode active material 100 may be an ellipse, a rectangle, a trapezoid, a triangle, a polygon with rounded corners, or an asymmetric shape. For example, FIG. 4B shows an example in which the positive electrode active material 100 has a polygonal shape with rounded corners.
 また、図4Bの正極では、導電材14として用いられる炭素材料として、グラフェン16を用いている。図4Bは、正極集電体11上に正極活物質100、グラフェン16、カーボンブラック15を有する正極活物質層を形成している。なお、導電材として、カーボンブラック15を用いずに、グラフェン16のみを用いてもよい。 Furthermore, in the positive electrode of FIG. 4B, graphene 16 is used as the carbon material used as the conductive material 14. In FIG. 4B, a positive electrode active material layer including a positive electrode active material 100, graphene 16, and carbon black 15 is formed on the positive electrode current collector 11. Note that graphene 16 alone may be used as the conductive material without using carbon black 15.
 グラフェン16として例えば、グラフェン、多層グラフェン、マルチグラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、又は還元されたマルチ酸化グラフェンなどを用いることができる。 As the graphene 16, for example, graphene, multilayer graphene, multigraphene, reduced graphene oxide, reduced multilayer graphene oxide, reduced multilayer graphene oxide, or the like can be used.
 図4Cでは、グラフェンに代えて炭素繊維17を用いる正極の例を図示している。図4Cは、図4Bと異なる例を示している。炭素繊維17を用いるとカーボンブラック15の凝集を防ぎ、分散性を高めることができる。なお、導電材として、カーボンブラック15を用いずに、炭素繊維17のみを用いてもよい。 FIG. 4C illustrates an example of a positive electrode using carbon fiber 17 instead of graphene. FIG. 4C shows an example different from FIG. 4B. When carbon fiber 17 is used, agglomeration of carbon black 15 can be prevented and dispersibility can be improved. Note that the carbon fiber 17 alone may be used as the conductive material without using the carbon black 15.
 炭素繊維17として例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーまたはカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。 As the carbon fiber 17, carbon fibers such as mesophase pitch carbon fiber and isotropic pitch carbon fiber can be used. Furthermore, carbon nanofibers, carbon nanotubes, or the like can be used as the carbon fibers. Carbon nanotubes can be produced, for example, by a vapor phase growth method.
 また、他の正極の例として、図4Dを図示している。図4Dでは、グラフェン16に加えて炭素繊維17を用いる例を示している。グラフェン16及び炭素繊維17の両方を用いると、カーボンブラック15などのカーボンブラックの凝集を防ぎ、分散性をより高めることができる。 Further, FIG. 4D is illustrated as an example of another positive electrode. FIG. 4D shows an example in which carbon fiber 17 is used in addition to graphene 16. When both graphene 16 and carbon fiber 17 are used, agglomeration of carbon black such as carbon black 15 can be prevented and dispersibility can be further improved.
[負極]
 本発明の一態様の電池が有する負極は、負極活物質層及び負極集電体を有する。また、負極活物質層は負極活物質を有し、さらに導電材及びバインダを有していてもよい。
[Negative electrode]
The negative electrode included in the battery of one embodiment of the present invention includes a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer includes a negative electrode active material, and may further include a conductive material and a binder.
 集電体は、例えば銅箔などの金属箔を用いることができる。負極は、金属箔上にスラリーを塗布して乾燥させることによって形成することができる。なお、乾燥後にプレスを加えてもよい。負極は、集電体上に活物質層を形成したものである。 For the current collector, for example, metal foil such as copper foil can be used. The negative electrode can be formed by applying a slurry onto a metal foil and drying it. Note that pressing may be applied after drying. The negative electrode has an active material layer formed on a current collector.
 スラリーとは、集電体上に活物質層を形成するために用いる材料液であり、活物質とバインダと溶媒を含有し、好ましくはさらに導電材を混合させたものを指している。なお、スラリーは、電極用スラリーまたは活物質スラリーと呼ばれることもあり、負極活物質層を形成する場合には負極用スラリーと呼ばれることもある。 The slurry is a material liquid used to form an active material layer on a current collector, and contains an active material, a binder, and a solvent, preferably further mixed with a conductive material. Note that the slurry is sometimes called an electrode slurry or an active material slurry, and when forming a negative electrode active material layer, it is also called a negative electrode slurry.
<負極活物質>
 負極活物質として、例えば炭素材料または合金系材料を用いることができる。
<Negative electrode active material>
For example, a carbon material or an alloy-based material can be used as the negative electrode active material.
 炭素材料として、例えば黒鉛(天然黒鉛、人造黒鉛)、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、炭素繊維(カーボンナノチューブ)、グラフェン、カーボンブラック等を用いることができる。 As the carbon material, for example, graphite (natural graphite, artificial graphite), graphitizable carbon (soft carbon), non-graphitizable carbon (hard carbon), carbon fiber (carbon nanotube), graphene, carbon black, etc. can be used. can.
 黒鉛としては、人造黒鉛または天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては、例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。 Examples of graphite include artificial graphite and natural graphite. Examples of the artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite. Here, spherical graphite having a spherical shape can be used as the artificial graphite. For example, MCMB may have a spherical shape, which is preferred. Furthermore, it is relatively easy to reduce the surface area of MCMB, which may be preferable. Examples of natural graphite include flaky graphite and spheroidized natural graphite.
 黒鉛は、リチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、黒鉛を用いたリチウムイオン電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。 Graphite exhibits a potential as low as that of lithium metal (0.05 V or more and 0.3 V or less vs. Li/Li + ) when lithium ions are inserted into graphite (when a lithium-graphite intercalation compound is generated). This allows lithium ion batteries using graphite to exhibit high operating voltage. Furthermore, graphite is preferable because it has advantages such as a relatively high capacity per unit volume, a relatively small volumetric expansion, low cost, and higher safety than lithium metal.
 難黒鉛化性炭素は、例えばフェノール樹脂などの合成樹脂、植物由来の有機物を焼成することで得られる。本発明の一態様のリチウムイオン電池の負極活物質が有する難黒鉛化性炭素は、X線回折(XRD)によって測定される(002)面の面間隔が0.34nm以上0.50nm以下であることが好ましく、0.35nm以上0.42nm以下であることがより好ましい。 Non-graphitizable carbon can be obtained, for example, by firing synthetic resins such as phenol resins or organic substances derived from plants. The non-graphitizable carbon included in the negative electrode active material of the lithium ion battery according to one embodiment of the present invention has a (002) plane spacing of 0.34 nm or more and 0.50 nm or less, as measured by X-ray diffraction (XRD). It is preferably 0.35 nm or more and 0.42 nm or less.
 また、負極活物質は、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、及び該元素を有する化合物等を合金系材料と呼ぶ場合がある。 Further, as the negative electrode active material, an element that can perform a charge/discharge reaction by alloying/dealloying reaction with lithium can be used. For example, a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, etc. can be used. These elements have a larger capacity than carbon, and silicon in particular has a high theoretical capacity of 4200 mAh/g. For this reason, it is preferable to use silicon as the negative electrode active material. Further, compounds having these elements may also be used. For example, SiO, Mg2Si , Mg2Ge , SnO , SnO2 , Mg2Sn , SnS2 , V2Sn3 , FeSn2 , CoSn2 , Ni3Sn2 , Cu6Sn5 , Ag3Sn , Ag 3Sb , Ni2MnSb , CeSb3 , LaSn3 , La3Co2Sn7 , CoSb3 , InSb, SbSn, and the like. Here, an element that can perform a charging/discharging reaction by alloying/dealloying reaction with lithium, a compound having the element, etc. may be referred to as an alloy-based material.
 本明細書等において、「SiO」は例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1または1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下がより好ましい。 In this specification and the like, "SiO" refers to silicon monoxide, for example. Alternatively, SiO can also be expressed as SiO x . Here, x preferably has a value of 1 or a value close to 1. For example, x is preferably 0.2 or more and 1.5 or less, more preferably 0.3 or more and 1.2 or less.
 また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。 In addition, as negative electrode active materials, titanium dioxide (TiO 2 ), lithium titanium oxide (Li 4 Ti 5 O 12 ), lithium-graphite intercalation compound (Li x C 6 ), niobium pentoxide (Nb 2 O 5 ), oxidized Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
 また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな放電容量(900mAh/g、1890mAh/cm)を示し好ましい。 Further, as the negative electrode active material, Li 3-x M x N (M=Co, Ni, Cu) having a Li 3 N type structure, which is a double nitride of lithium and a transition metal, can be used. For example, Li 2.6 Co 0.4 N 3 is preferable because it exhibits a large discharge capacity (900 mAh/g, 1890 mAh/cm 3 ).
 リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、予め正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。 When a double nitride of lithium and a transition metal is used, since the negative electrode active material contains lithium ions, it can be combined with materials such as V 2 O 5 and Cr 3 O 8 that do not contain lithium ions as the positive electrode active material, which is preferable. . Note that even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by removing lithium ions contained in the positive electrode active material in advance.
 また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物が挙げられる。 Furthermore, a material that causes a conversion reaction can also be used as the negative electrode active material. For example, transition metal oxides that do not form an alloy with lithium, such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO), may be used as the negative electrode active material. Materials that cause conversion reactions include oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , and Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 , nitrides such as Cu 3 N and Ge 3 N 4 , phosphides such as NiP 2 , FeP 2 and CoP 3 , and fluorides such as FeF 3 and BiF 3 .
 なお、上記に示した負極活物質の中から一種類の負極活物質を用いることができるが、複数種類を組み合わせて用いることもできる。例えば、炭素材料とシリコンとの組み合わせ、炭素材料と一酸化シリコンとの組み合わせ、とすることができる。 Note that one type of negative electrode active material can be used from among the negative electrode active materials shown above, but a combination of multiple types can also be used. For example, it can be a combination of a carbon material and silicon, or a combination of a carbon material and silicon monoxide.
 また、負極の別の形態として、電池の作製終了時点において負極活物質を有さない負極であってもよい。負極活物質を有さない負極として、例えば電池の作製終了時点において負極集電体のみを有する負極であって、電池の充電によって正極活物質から脱離するリチウムイオンが、負極集電体上にリチウム金属として析出し負極活物質層を形成する負極、とすることができる。このような負極を用いた電池は、負極フリー(アノードフリー)電池、負極レス(アノードレス)電池、などと呼ぶことがある。 In addition, as another form of the negative electrode, it may be a negative electrode that does not have a negative electrode active material at the time of completion of battery production. An example of a negative electrode that does not have a negative electrode active material is a negative electrode that has only a negative electrode current collector at the end of battery production, and the lithium ions that are released from the positive electrode active material when the battery is charged are deposited on the negative electrode current collector. It can be a negative electrode that is precipitated as lithium metal to form a negative electrode active material layer. A battery using such a negative electrode is sometimes called a negative electrode-free (anode-free) battery, a negative electrode-less (anode-less) battery, or the like.
 負極活物質を有さない負極を用いる場合、負極集電体上にリチウムの析出を均一化するための膜を有してもよい。リチウムの析出を均一化するための膜として、例えばリチウムイオン伝導性を有する固体電解質を用いることができる。固体電解質として、硫化物系固体電解質、酸化物系固体電解質、及び高分子系固体電解質などを用いることができる。なかでも、高分子系固体電解質は負極集電体上に均一に膜形成することが比較的容易であるため、リチウムの析出を均一化するための膜として好適である。また、リチウムの析出を均一化するための膜として、例えばリチウムと合金を形成する金属膜を用いることができる。リチウムと合金を形成する金属膜として、例えばマグネシウム金属膜を用いることができる。リチウムとマグネシウムとは広い組成範囲において固溶体を形成するため、リチウムの析出を均一化するための膜として好適である。 When using a negative electrode that does not have a negative electrode active material, a film may be provided on the negative electrode current collector to uniformly deposit lithium. For example, a solid electrolyte having lithium ion conductivity can be used as a membrane for uniformly depositing lithium. As the solid electrolyte, sulfide-based solid electrolytes, oxide-based solid electrolytes, polymer-based solid electrolytes, and the like can be used. Among these, a polymer solid electrolyte is suitable as a film for uniformly depositing lithium because it is relatively easy to form a uniform film on the negative electrode current collector. Further, as a film for uniformizing lithium precipitation, for example, a metal film that forms an alloy with lithium can be used. For example, a magnesium metal film can be used as the metal film that forms an alloy with lithium. Since lithium and magnesium form a solid solution over a wide composition range, it is suitable as a film for uniformizing the precipitation of lithium.
[電解質]
 電解質の一つの形態として、溶媒と、溶媒に溶解した電解質と、を有する電解液を用いることができる。電解液は、溶媒とリチウム塩を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等のうちの1種、又はこれらのうちの2種以上を任意の組み合わせ及び比率で用いることができる。
[Electrolytes]
As one form of electrolyte, an electrolytic solution including a solvent and an electrolyte dissolved in the solvent can be used. The electrolyte includes a solvent and a lithium salt. As the solvent for the electrolytic solution, aprotic organic solvents are preferred, such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, γ-butyrolactone, γ-valerolactone, and dimethyl carbonate. (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), methyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 - One or more of dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane, sultone, etc., or any combination and ratio of two or more of these. It can be used in
 電解液に含まれる有機溶媒が、エチレンカーボネート(EC)と、ジエチルカーボネート(DEC)とを含む場合、エチレンカーボネート、及びジエチルカーボネートを100vol%としたとき、エチレンカーボネート、及びジエチルカーボネートの体積比が、x:100−x(ただし、20≦x≦40である。)である混合有機溶媒を用いることができる。より具体的には、ECと、DECと、を、EC:DEC=30:70(体積比)で含んだ混合有機溶媒を用いることができる。 When the organic solvent contained in the electrolytic solution contains ethylene carbonate (EC) and diethyl carbonate (DEC), when ethylene carbonate and diethyl carbonate are 100 vol%, the volume ratio of ethylene carbonate and diethyl carbonate is A mixed organic solvent in which x: 100-x (20≦x≦40) can be used. More specifically, a mixed organic solvent containing EC and DEC in a ratio of EC:DEC=30:70 (volume ratio) can be used.
 また電解液に含まれる有機溶媒が、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)と、を含む場合、エチレンカーボネート、エチルメチルカーボネート、及びジメチルカーボネートを100vol%としたとき、エチレンカーボネート、エチルメチルカーボネート、及びジメチルカーボネートの体積比が、x:y:100−x−y(ただし、5≦x≦35であり、0<y<65である。)である混合有機溶媒を用いることができる。より具体的には、ECと、EMCと、DMCと、を、EC:EMC:DMC=30:35:35(体積比)で含んだ混合有機溶媒を用いることができる。 In addition, when the organic solvent contained in the electrolytic solution contains ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC), ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate are combined at 100 vol%. When the volume ratio of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate is x:y:100-x-y (5≦x≦35 and 0<y<65). Organic solvents can be used. More specifically, a mixed organic solvent containing EC, EMC, and DMC in a ratio of EC:EMC:DMC=30:35:35 (volume ratio) can be used.
 またさらに電解液に含まれる有機溶媒には、フッ化環状カーボネート、又はフッ化鎖状カーボネートを含んだ混合有機溶媒を用いることができる。さらに上記混合有機溶媒は、フッ化環状カーボネート、及びフッ化鎖状カーボネートをともに含むと好ましい。フッ化環状カーボネート及びフッ化鎖状カーボネートは共に、電子求引性を示す置換基を有しており、リチウムイオンの溶媒和エネルギーが低くなり好ましい。そのためフッ化環状カーボネート及びフッ化鎖状カーボネートは共に電解液に好適であり、これらの混合有機溶媒は好適である。 Furthermore, as the organic solvent contained in the electrolytic solution, a fluorinated cyclic carbonate or a mixed organic solvent containing a fluorinated chain carbonate can be used. Furthermore, it is preferable that the mixed organic solvent contains both a fluorinated cyclic carbonate and a fluorinated chain carbonate. Both the fluorinated cyclic carbonate and the fluorinated chain carbonate have a substituent that exhibits electron-withdrawing properties, and are preferred because they lower the solvation energy of lithium ions. Therefore, both the fluorinated cyclic carbonate and the fluorinated chain carbonate are suitable for the electrolytic solution, and a mixed organic solvent thereof is suitable.
 フッ化環状カーボネートとして、例えば、フルオロエチレンカーボネート(炭酸フルオロエチレン、FEC、F1EC)、ジフルオロエチレンカーボネート(DFEC、F2EC)、トリフルオロエチレンカーボネート(F3EC)、又はテトラフルオロエチレンカーボネート(F4EC)等を用いることができる。なお、DFECには、シス−4,5、トランス−4,5等の異性体がある。いずれのフッ化環状カーボネートも電子求引性を示す置換基を有するため、リチウムイオンの溶媒和エネルギーが低いと考えられる。FECにおいて電子求引性の置換基はF基である。 As the fluorinated cyclic carbonate, for example, fluoroethylene carbonate (fluoroethylene carbonate, FEC, F1EC), difluoroethylene carbonate (DFEC, F2EC), trifluoroethylene carbonate (F3EC), or tetrafluoroethylene carbonate (F4EC) can be used. Can be done. Note that DFEC has isomers such as cis-4,5 and trans-4,5. Since any of the fluorinated cyclic carbonates has a substituent that exhibits electron-withdrawing properties, it is thought that the solvation energy of lithium ions is low. In FEC, the electron-withdrawing substituent is the F group.
 フッ化鎖状カーボネートとして、3,3,3−トリフルオロプロピオン酸メチルがある。3,3,3−トリフルオロプロピオン酸メチルの略称は、「MTFP」である。MTFPにおいて、電子求引性の置換基はCF基である。 An example of the fluorinated chain carbonate is methyl 3,3,3-trifluoropropionate. The abbreviation for methyl 3,3,3-trifluoropropionate is "MTFP". In MTFP, the electron-withdrawing substituent is the CF3 group.
 FECは、環状カーボネートの一つであり、高い比誘電率を有するため、有機溶媒に用いると、リチウム塩の解離を促進させる効果を有する。一方でFECは電子求引性を示す置換基を有するため、エチレンカーボネート(EC)よりもリチウムイオンとの脱溶媒和が進み易い。具体的には、FECはリチウムイオンの溶媒和エネルギーが、電子求引性を示す置換基を有さないエチレンカーボネート(EC)よりも小さい。そのため、正極活物質表面および負極活物質表面においてリチウムイオンを離しやすく、二次電池の内部抵抗を低くできる。さらにFECは最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位が深いため、HOMO準位が深いと酸化されにくく耐酸化性が向上する。一方で、FECは粘度が高いことが懸念される。そこで、FECのみではなく、MTFPを更に含んだ混合有機溶媒を電解液に用いるとよい。MTFPは、鎖状カーボネートの一つであり、電解液の粘度を下げる、又は低温下(代表的には0℃)でも室温下(代表的には25℃)の粘度を維持する効果を有することも可能である。さらにMTFPは、電子求引性を示す置換基を有さないプロピオン酸メチル(略称は「MP」である)よりも溶媒和エネルギーが小さいものの、電解液に用いた際にリチウムイオンとの溶媒和を生成することがあってもよい。 FEC is one of the cyclic carbonates and has a high dielectric constant, so when used in an organic solvent, it has the effect of promoting the dissociation of lithium salt. On the other hand, since FEC has a substituent that exhibits electron-withdrawing properties, desolvation with lithium ions progresses more easily than ethylene carbonate (EC). Specifically, the solvation energy of lithium ions in FEC is smaller than that in ethylene carbonate (EC), which does not have a substituent that exhibits electron-withdrawing properties. Therefore, lithium ions are easily released on the surface of the positive electrode active material and the surface of the negative electrode active material, and the internal resistance of the secondary battery can be lowered. Furthermore, since FEC has a deep highest occupied molecular orbital (HOMO) level, a deep HOMO level is less likely to be oxidized and improves oxidation resistance. On the other hand, there is concern that FEC has a high viscosity. Therefore, it is preferable to use a mixed organic solvent containing not only FEC but also MTFP in the electrolytic solution. MTFP is one of the chain carbonates and has the effect of lowering the viscosity of the electrolytic solution or maintaining the viscosity at room temperature (typically 25°C) even at low temperatures (typically 0°C). is also possible. Furthermore, although MTFP has a lower solvation energy than methyl propionate (abbreviated as "MP"), which does not have an electron-withdrawing substituent, it is difficult to solvate lithium ions when used in an electrolyte. may be generated.
 このような物性を有するFEC、及びMTFPを含む混合有機溶媒を100vol%として、体積比がx:100−x(ただし、5≦x≦30、好ましくは10≦x≦20である。)となるように混合して用いるとよい。つまり混合有機溶媒において、MTFPがFECよりも多くなるように混合するとよい。本発明の一態様の負極は、負極活物質表面に被覆層を有しており、被覆層に金属チタンを用いる場合は、上記のFECまたはMTFPを含む電解液中でフッ素イオンが発生した場合においても、金属チタン表面に不動態被膜を形成することができる。そのため、本発明の一態様の負極は、FEC、及びMTFPを含む混合有機溶媒を有する電解液と好適に組み合わせることができる。 Assuming that the mixed organic solvent containing FEC and MTFP having such physical properties is 100 vol%, the volume ratio is x:100-x (5≦x≦30, preferably 10≦x≦20). It is best to mix them and use them. In other words, in the mixed organic solvent, it is preferable to mix the organic solvents so that MTFP is larger than FEC. The negative electrode of one embodiment of the present invention has a coating layer on the surface of the negative electrode active material, and when metallic titanium is used for the coating layer, when fluorine ions are generated in the electrolytic solution containing the above FEC or MTFP, It is also possible to form a passive film on the surface of titanium metal. Therefore, the negative electrode of one embodiment of the present invention can be suitably combined with an electrolytic solution containing a mixed organic solvent containing FEC and MTFP.
 また、電解液の溶媒として、難燃性及び難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部短絡又は過充電等によって内部温度が上昇しても、二次電池の破裂及び/又は発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、及び四級ホスホニウムカチオン等の脂肪族オニウムカチオン、イミダゾリウムカチオン及びピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、又はパーフルオロアルキルホスフェートアニオン等が挙げられる。たとえば、リチウムビス(フルオロスルホニル)イミド(EMI−FSIともいう)を用いることができる。 In addition, by using one or more flame-retardant and non-volatile ionic liquids (room-temperature molten salts) as a solvent for the electrolyte, internal temperature increases due to internal short circuits or overcharging of the secondary battery can be avoided. It is also possible to prevent secondary batteries from bursting and/or catching fire. Ionic liquids are composed of cations and anions, and include organic cations and anions. Examples of the organic cation used in the electrolytic solution include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations. In addition, examples of anions used in the electrolytic solution include monovalent amide anions, monovalent methide anions, fluorosulfonic acid anions, perfluoroalkylsulfonic acid anions, tetrafluoroborate anions, perfluoroalkylborate anions, and hexafluorophosphate anions. , or perfluoroalkyl phosphate anion. For example, lithium bis(fluorosulfonyl)imide (also referred to as EMI-FSI) can be used.
[リチウム塩]
 上記溶媒に溶解させるリチウム塩(電解質とも呼ぶ)としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(SOF)(LiFSIともいう)、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせ及び比率で用いることができる。リチウム塩は溶媒に対して0.5mol/L以上3.0mol/L以下とするとよい。フッ化物であるLiPF、LiBFなどを用いるとリチウムイオン二次電池の安全性が向上する。
[Lithium salt]
Examples of the lithium salt (also called electrolyte) to be dissolved in the above solvent include LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC(CF 3 SO 2 ) 3 , LiC(C 2 F 5 SO 2 ) 3 , LiN(SO 2 F) 2 (also referred to as LiFSI) , LiN(CF 3 SO 2 ) 2 , LiN(C 4 F 9 SO 2 )(CF 3 SO 2 ), LiN(C 2 F 5 SO 2 ) 2 , etc., or two of these. The above can be used in any combination and ratio. The amount of the lithium salt relative to the solvent is preferably 0.5 mol/L or more and 3.0 mol/L or less. Use of fluorides such as LiPF 6 and LiBF 4 improves the safety of lithium ion secondary batteries.
 上述した電解液は、粒状のごみ又は電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比が1wt%以下、好ましくは0.1wt%以下、より好ましくは0.01wt%以下である。 As the electrolytic solution mentioned above, it is preferable to use a highly purified electrolytic solution that has a low content of particulate dust or elements other than the constituent elements of the electrolytic solution (hereinafter also simply referred to as "impurities"). Specifically, the weight ratio of impurities to the electrolytic solution is 1 wt% or less, preferably 0.1 wt% or less, more preferably 0.01 wt% or less.
[添加剤]
 電解液は添加剤を有してもよい。添加剤により、高電圧及び/又は高温で二次電池を動作させるときに、正極表面又は負極表面で生じうる電解質の反応分解を抑制することができる。添加剤として例えばビニレンカーボネート(VC)、プロパンスルトン(PS)、TerT−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)を用いるとよい。LiBOBは良好な被膜を形成しやすく、特に好ましい。VC又はFECは二次電池のエージング時または使用初期の充電時に負極に良好な被膜を形成しサイクル特性を向上させることができ好ましい。
[Additive]
The electrolyte may contain additives. The additive can suppress reaction decomposition of the electrolyte that may occur on the surface of the positive electrode or the negative electrode when operating the secondary battery at high voltage and/or high temperature. As additives, for example, vinylene carbonate (VC), propane sultone (PS), TerT-butylbenzene (TBB), fluoroethylene carbonate (FEC), and lithium bis(oxalate)borate (LiBOB) may be used. LiBOB is particularly preferred because it easily forms a good film. VC or FEC is preferable because it forms a good film on the negative electrode during aging of the secondary battery or during charging at the initial stage of use and improves cycle characteristics.
 添加剤として、ジニトリル化合物のいずれか一種または二種以上を用いることができる。ジニトリル化合物の具体例として、たとえばスクシノニトリル、グルタロニトリル、アジポニトリル(ADN)、又はエチレングリコールビス(プロピオニトリル)エーテル(EGBE)が挙げられる。 As the additive, any one type or two or more types of dinitrile compounds can be used. Specific examples of dinitrile compounds include, for example, succinonitrile, glutaronitrile, adiponitrile (ADN), or ethylene glycol bis(propionitrile) ether (EGBE).
 さらにフルオロベンゼン(FB)を上記有機溶媒に添加してもよい。添加剤の濃度は、例えば電解液全体に対して0.1wt%以上5wt%以下とすればよい。PS又はEGBEは充放電時に正極に良好な被膜を形成しサイクル特性を向上させることができ好ましい。FBは正極及び負極への有機溶媒のぬれ性が向上するため好ましい。ジニトリル化合物は、ニトリル基が正極及び負極に配向して、有機溶媒の酸化分解を阻害するため高電圧耐性を向上させることができ好ましい。さらにジニトリル化合物は、負極に銅を有する集電体を用いた場合、過放電の際に銅の溶解を防ぐことができ好ましい。高電圧での二次電池の使用を踏まえると、ニトリル化合物を添加することが好ましい。 Furthermore, fluorobenzene (FB) may be added to the above organic solvent. The concentration of the additive may be, for example, 0.1 wt% or more and 5 wt% or less based on the entire electrolytic solution. PS or EGBE is preferable because it forms a good film on the positive electrode during charging and discharging and improves cycle characteristics. FB is preferable because it improves the wettability of the organic solvent to the positive electrode and negative electrode. A dinitrile compound is preferable because the nitrile group is oriented toward the positive electrode and the negative electrode, inhibiting oxidative decomposition of the organic solvent, and thus improving high voltage resistance. Furthermore, dinitrile compounds are preferable because they can prevent dissolution of copper during overdischarge when a current collector containing copper is used in the negative electrode. Considering the use of secondary batteries at high voltages, it is preferable to add a nitrile compound.
[ゲル電解質]
 ゲル電解質として、ポリマーを電解液で膨潤させたポリマーゲルを用いてもよい。ポリマーゲル電解質を用いることで、半固体電解質層を提供することができ、漏液性等に対する安全性が高まる。また、二次電池の薄型化及び軽量化が可能である。
[Gel electrolyte]
As the gel electrolyte, a polymer gel obtained by swelling a polymer with an electrolytic solution may be used. By using a polymer gel electrolyte, a semi-solid electrolyte layer can be provided, increasing safety against leakage and the like. Further, it is possible to make the secondary battery thinner and lighter.
 ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。 As the polymer to be gelled, silicone gel, acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluoropolymer gel, etc. can be used.
 ポリマーとしては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、及びポリアクリロニトリル等、及びそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。 As the polymer, for example, polymers having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, and copolymers containing them can be used. For example, PVDF-HFP, which is a copolymer of PVDF and hexafluoropropylene (HFP), can be used. The polymer formed may also have a porous shape.
[固体電解質]
 電解液の代わりに、硫化物系又は酸化物系等の無機物材料を有する固体電解質、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質等を用いることができる。固体電解質を用いる場合には、セパレータ及び/又はスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
[Solid electrolyte]
Instead of the electrolyte, a solid electrolyte containing an inorganic material such as a sulfide or oxide, a solid electrolyte containing a polymeric material such as PEO (polyethylene oxide), or the like can be used. When a solid electrolyte is used, it is not necessary to install a separator and/or spacer. Additionally, since the entire battery can be solidified, there is no risk of leakage, dramatically improving safety.
[セパレータ]
 次に、図1B等で示したセパレータ40について説明する。電解液を有する電池の場合、正極と負極の間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ポリイミド、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
[Separator]
Next, the separator 40 shown in FIG. 1B etc. will be explained. In the case of a battery having an electrolyte, a separator is placed between the positive electrode and the negative electrode. Examples of separators include fibers containing cellulose such as paper, nonwoven fabrics, glass fibers, ceramics, or synthetic materials using nylon (polyamide), polyimide, vinylon (polyvinyl alcohol fiber), polyester, acrylic, polyolefin, and polyurethane. A material made of fiber or the like can be used. It is preferable that the separator is processed into a bag shape and arranged so as to surround either the positive electrode or the negative electrode.
 セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミックス系材料、フッ素系材料、ポリアミド系材料、ポリイミド系材料またはこれらを混合したもの等をコートすることができる。セラミックス系材料としては、例えば酸化アルミニウム粒子(アルミナ、ベーマイト等)、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。 The separator may have a multilayer structure. For example, a film of an organic material such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, a polyimide material, or a mixture thereof. As the ceramic material, for example, aluminum oxide particles (alumina, boehmite, etc.), silicon oxide particles, etc. can be used. As the fluorine-based material, for example, PVDF, polytetrafluoroethylene, etc. can be used. As the polyamide material, for example, nylon, aramid (meta-aramid, para-aramid), etc. can be used.
 セラミックス系材料をコートすると耐酸化性が向上するため、高電圧充電の際のセパレータの劣化を抑制し、電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、電池の安全性を向上させることができる。 Coating with a ceramic material improves oxidation resistance, so it is possible to suppress deterioration of the separator during high voltage charging and improve battery reliability. Furthermore, coating with a fluorine-based material makes it easier for the separator and electrode to come into close contact with each other, thereby improving output characteristics. Coating with a polyamide-based material, especially aramid, improves heat resistance, which can improve the safety of the battery.
 例えば、ポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。 For example, a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film. Alternatively, the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
 多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても電池の安全性を保つことができるため、電池の体積あたりの容量を大きくすることができる。 By using a separator with a multilayer structure, the safety of the battery can be maintained even if the overall thickness of the separator is thin, so the capacity per volume of the battery can be increased.
[外装体]
 次に、図1A等で示した外装体50について説明する。電池が有する外装体としては、例えばアルミニウム、ステンレス、チタンなどの金属材料、または樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、チタン、銅、ニッケル等の可撓性に優れた金属薄膜又は金属箔を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。このような多層構造のフィルムをラミネートフィルムと呼ぶことができる。このときラミネートフィルムが有する金属層の材料名を用いて、アルミ(アルミニウム)ラミネートフィルム、ステンレスラミネートフィルム、チタンラミネートフィルム、銅ラミネートフィルム、ニッケルラミネートフィルム等と呼ぶことがある。
[Exterior body]
Next, the exterior body 50 shown in FIG. 1A etc. will be explained. As the exterior body of the battery, for example, a metal material such as aluminum, stainless steel, or titanium, or a resin material can be used. Moreover, a film-like exterior body can also be used. As a film, for example, a highly flexible metal thin film or metal foil such as aluminum, stainless steel, titanium, copper, or nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, or polyamide. A three-layer film can be used in which an insulating synthetic resin film such as polyamide resin or polyester resin is provided on a thin metal film as the outer surface of the exterior body. A film with such a multilayer structure can be called a laminate film. At this time, the laminate film may be called an aluminum laminate film, a stainless steel laminate film, a titanium laminate film, a copper laminate film, a nickel laminate film, etc. using the name of the material of the metal layer that the laminate film has.
 ラミネートフィルムが有する金属層の材料または厚さは、電池の柔軟性に影響を及ぼすことがある。柔軟性、または軽量化を重視する電池に用いる外装体として例えば、ポリプロピレン層、アルミニウム層およびナイロン層を有するアルミラミネートフィルムを用いることが好ましい。ここで、アルミニウム層の厚さとして、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がより好ましく、20μm以下がより好ましい。なお、アルミニウム層が10μmよりも薄い場合、アルミニウム層のピンホールによるガスバリア性の低下が懸念されるため、アルミニウム層の厚さとして、10μm以上であることが望ましい。 The material or thickness of the metal layer included in the laminate film may affect the flexibility of the battery. For example, it is preferable to use an aluminum laminate film having a polypropylene layer, an aluminum layer, and a nylon layer as an exterior body used in a battery where flexibility or weight reduction is important. Here, the thickness of the aluminum layer is preferably 50 μm or less, more preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. Note that if the aluminum layer is thinner than 10 μm, there is a concern that the gas barrier properties will deteriorate due to pinholes in the aluminum layer, so the thickness of the aluminum layer is preferably 10 μm or more.
 物理的な強度、または安全性を重視する電池に用いる外装体として例えば、ポリプロピレン層、ステンレス層、及びナイロン層を有するステンレスラミネートフィルムを用いることが好ましい。さらに、ナイロン層上にポリエチレンテレフタレート層を有してもよい。ここで、ステンレス層の厚さとして、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がより好ましく、20μm以下がより好ましい。なお、ステンレス層が10μmよりも薄い場合、ステンレス層のピンホールによるガスバリア性の低下が懸念されるため、ステンレス層の厚さとして、10μm以上であることが望ましい。なお、本明細書中でのステンレスとは、クロムを約12%以上含有する鋼(鉄と炭素の合金)を指しており、組成上、マルテンサイト系、フェライト系又はオーステナイト系に大別できる。なお、Ti、Nb、Mo、Cu、Ni、またはSiから選ばれた一種または複数種を添加したステンレス鋼をも含む。 It is preferable to use, for example, a stainless steel laminate film having a polypropylene layer, a stainless steel layer, and a nylon layer as an exterior body for a battery where physical strength or safety is important. Furthermore, a polyethylene terephthalate layer may be provided on the nylon layer. Here, the thickness of the stainless steel layer is preferably 50 μm or less, more preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. Note that if the stainless steel layer is thinner than 10 μm, there is a concern that the gas barrier properties may be deteriorated due to pinholes in the stainless steel layer, so the thickness of the stainless steel layer is preferably 10 μm or more. Note that stainless steel in this specification refers to steel (an alloy of iron and carbon) containing about 12% or more of chromium, and can be roughly classified into martensitic, ferritic, or austenitic based on composition. Note that stainless steel to which one or more selected from Ti, Nb, Mo, Cu, Ni, or Si is added is also included.
 または例えば、ポリプロピレン層、チタン層、及びナイロン層を有するチタンラミネートフィルムを用いることが好ましい。さらに、ナイロン層上にポリエチレンテレフタレート層を有してもよい。ここで、チタン層の厚さとして、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がより好ましく、20μm以下がより好ましい。なお、チタン層が10μmよりも薄い場合、チタン層のピンホールによるガスバリア性の低下が懸念されるため、チタン層の厚さとして、10μm以上であることが望ましい。 Alternatively, for example, it is preferable to use a titanium laminate film having a polypropylene layer, a titanium layer, and a nylon layer. Furthermore, a polyethylene terephthalate layer may be provided on the nylon layer. Here, the thickness of the titanium layer is preferably 50 μm or less, more preferably 40 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. Note that if the titanium layer is thinner than 10 μm, there is a concern that the gas barrier properties will deteriorate due to pinholes in the titanium layer, so the thickness of the titanium layer is preferably 10 μm or more.
 また、ラミネートフィルムとして、上記の金属層のかわりに、グラフェンシートを用いてもよい。グラフェンシートとしては100nm以上30μm以下、好ましくは200nm以上20μm以下の多層グラフェンシートを用いることができる。グラフェンシートが柔軟であること、グラフェンの層間距離が0.34nmでありガスバリア性を有することから、二次電池の外装体に用いるフィルムとして好適である。 Furthermore, a graphene sheet may be used as the laminate film instead of the above metal layer. As the graphene sheet, a multilayer graphene sheet with a size of 100 nm or more and 30 μm or less, preferably 200 nm or more and 20 μm or less can be used. Since the graphene sheet is flexible, has an interlayer distance of 0.34 nm, and has gas barrier properties, it is suitable as a film for use in the exterior of a secondary battery.
[電極積層体の例]
 以下では、積層された複数の電極を有する積層体の構成例について説明する。
[Example of electrode laminate]
Below, a configuration example of a laminate having a plurality of stacked electrodes will be described.
 図5Aに正極集電体22、図5Bにセパレータ40、図5Cに負極集電体32、図5Dに正極リード21及び負極リード31、図5Eにフィルム状の外装体50のぞれぞれの上面図(平面図ともいう)を示す。正極リード21は封止部24とリード金属76aを有し、負極リード31は封止部34とリード金属76bを有する。 5A shows the positive electrode current collector 22, FIG. 5B shows the separator 40, FIG. 5C shows the negative electrode current collector 32, FIG. 5D shows the positive electrode lead 21 and negative electrode lead 31, and FIG. 5E shows the film-like exterior body 50. A top view (also called a plan view) is shown. The positive electrode lead 21 has a sealing part 24 and a lead metal 76a, and the negative electrode lead 31 has a sealing part 34 and a lead metal 76b.
 図5A乃至図5Eの各図においてそれぞれの寸法が概略等しく、図5E中の一点鎖線で囲んだ領域41は、図5Bのセパレータの寸法とほぼ同一である。また、図5E中の破線と端部との間の領域は、封止部51となる。 The dimensions of each of the figures in FIGS. 5A to 5E are approximately the same, and the region 41 surrounded by the dashed line in FIG. 5E is approximately the same as the dimension of the separator in FIG. 5B. Further, the area between the broken line and the end in FIG. 5E becomes the sealing part 51.
 また、正極集電体22の突出部(図5Aの破線部)と負極集電体32の突出部(図5Cの破線部)をタブ部と呼ぶ。 Further, the protruding portion of the positive electrode current collector 22 (the broken line portion in FIG. 5A) and the protruding portion of the negative electrode current collector 32 (the broken line portion in FIG. 5C) are referred to as tab portions.
 図6Aは、正極集電体22の両面に正極活物質層23が設けられた例である。詳細に説明すると、負極集電体32、負極活物質層33、セパレータ40、正極活物質層23、正極集電体22、正極活物質層23、セパレータ40、負極活物質層33、負極集電体32という順に配置されている。この積層構造を平面70によって切断した際の断面図を図6Bに示す。なお、正極活物質層23は、図5Aで説明したタブ部を除いて、正極集電体22の両面に設けることができる。また、負極活物質層33は、図5Cで説明したタブ部を除いて、負極集電体32の片面に設けることができる。 FIG. 6A is an example in which positive electrode active material layers 23 are provided on both sides of the positive electrode current collector 22. To explain in detail, the negative electrode current collector 32, the negative electrode active material layer 33, the separator 40, the positive electrode active material layer 23, the positive electrode current collector 22, the positive electrode active material layer 23, the separator 40, the negative electrode active material layer 33, the negative electrode current collector They are arranged in the order of body 32. A cross-sectional view of this laminated structure taken along a plane 70 is shown in FIG. 6B. Note that the positive electrode active material layer 23 can be provided on both sides of the positive electrode current collector 22, except for the tab portion described in FIG. 5A. Further, the negative electrode active material layer 33 can be provided on one side of the negative electrode current collector 32, excluding the tab portion described in FIG. 5C.
 なお、図6Aにおいてはセパレータを2つ使用している例が示されているが、1枚のセパレータを折り曲げ、両端を封止して袋状にし、その間に正極集電体22を収納する構造とすることも可能である。袋状のセパレータに収納される正極集電体22の両面に正極活物質層23が形成される。 Note that although FIG. 6A shows an example in which two separators are used, a structure in which one separator is bent and sealed at both ends to form a bag shape, and the positive electrode current collector 22 is stored between the two separators is shown. It is also possible to do this. A positive electrode active material layer 23 is formed on both sides of a positive electrode current collector 22 housed in a bag-shaped separator.
 また、負極集電体32の両面にも負極活物質層33を設けることも可能である。図6Cには、片面のみに負極活物質層33を有する2つの負極集電体32の間に、両面に負極活物質層33を有する3つの負極集電体32と、両面に正極活物質層23を有する4つの正極集電体22と、8枚のセパレータ40を挟んだ二次電池を構成する例を示している。図6Cにおいて、負極活物質層33は、図5Cで説明したタブ部を除いて、負極集電体32の両面に設けることができる。この場合も、8枚のセパレータを用いず、袋状のセパレータを4枚用いてもよい。 It is also possible to provide the negative electrode active material layer 33 on both sides of the negative electrode current collector 32. In FIG. 6C, between two negative electrode current collectors 32 having negative electrode active material layers 33 on only one side, three negative electrode current collectors 32 having negative electrode active material layers 33 on both sides, and positive electrode active material layers on both sides. An example is shown in which a secondary battery is constructed by sandwiching four positive electrode current collectors 22 having a diameter of 23 and eight separators 40. In FIG. 6C, the negative electrode active material layer 33 can be provided on both sides of the negative electrode current collector 32, except for the tab portion explained in FIG. 5C. In this case as well, instead of using eight separators, four bag-shaped separators may be used.
 積層数を増やすことで二次電池の容量を増やすことができる。また、正極集電体22の両面に正極活物質層23を設け、負極集電体32の両面に負極活物質層33を設けることで、二次電池の厚みを小さくすることができる。 The capacity of the secondary battery can be increased by increasing the number of layers. Furthermore, by providing the positive electrode active material layers 23 on both sides of the positive electrode current collector 22 and the negative electrode active material layers 33 on both sides of the negative electrode current collector 32, the thickness of the secondary battery can be reduced.
 図7Aは正極集電体22の片面のみに正極活物質層23を設け、負極集電体32の片面のみに負極活物質層33を設けて形成した二次電池の図を示している。詳細に説明すると、負極集電体32の片面に負極活物質層33が設けられ、負極活物質層33に接するようにセパレータ40が積層されている。負極活物質層33に接していない側のセパレータ40の表面は正極活物質層23が片面に形成された正極集電体22の正極活物質層23が接している。正極集電体22の表面には、さらにもう1枚の正極活物質層23が片面に形成された正極集電体22が接している。その際、正極集電体22は正極活物質層23が形成されていない面同士が向かい合うように配置される。そして、さらにセパレータ40が形成され、片面に負極活物質層33が形成された負極集電体32の負極活物質層33がセパレータに接するように積層される。 FIG. 7A shows a diagram of a secondary battery formed by providing the positive electrode active material layer 23 on only one side of the positive electrode current collector 22 and providing the negative electrode active material layer 33 on only one side of the negative electrode current collector 32. To explain in detail, a negative electrode active material layer 33 is provided on one side of the negative electrode current collector 32, and a separator 40 is laminated so as to be in contact with the negative electrode active material layer 33. The surface of the separator 40 on the side not in contact with the negative electrode active material layer 33 is in contact with the positive electrode active material layer 23 of the positive electrode current collector 22 with the positive electrode active material layer 23 formed on one side. The surface of the positive electrode current collector 22 is in contact with the positive electrode current collector 22 on which another positive electrode active material layer 23 is formed on one side. At this time, the positive electrode current collector 22 is arranged so that the surfaces on which the positive electrode active material layer 23 is not formed face each other. Then, a separator 40 is further formed, and the negative electrode active material layer 33 of the negative electrode current collector 32 having the negative electrode active material layer 33 formed on one side thereof is laminated so as to be in contact with the separator.
 図7Aの積層構造を平面71によって切断した際の断面図を図7Bに示す。 A cross-sectional view of the laminated structure of FIG. 7A taken along a plane 71 is shown in FIG. 7B.
 図7Aでは2枚のセパレータを用いているが、1枚のセパレータを折り曲げ、両端を封止して袋状にし、その間に片面に正極活物質層23を配置した正極集電体22を2枚挟んでもよい。 In FIG. 7A, two separators are used, but one separator is bent and both ends are sealed to form a bag shape, and between them, two positive electrode current collectors 22 with a positive electrode active material layer 23 arranged on one side are inserted. You can also sandwich it.
 図7Cは図7Aの積層構造を複数積層した図を示している。図7Cでは負極集電体32の負極活物質層33が形成されていない面同士を向かい合わせて配置させている。図7Cでは12枚の正極集電体22と12枚の負極集電体32と12枚のセパレータ40が積層されている様子を示している。 FIG. 7C shows a diagram in which a plurality of the laminated structures of FIG. 7A are laminated. In FIG. 7C, the surfaces of the negative electrode current collector 32 on which the negative electrode active material layer 33 is not formed are arranged facing each other. FIG. 7C shows a state in which 12 positive electrode current collectors 22, 12 negative electrode current collectors 32, and 12 separators 40 are stacked.
 図7A乃至図7Cに示す構成の場合、正極活物質層23は、図5Aで説明したタブ部を除いて、正極集電体22の片面に設けることができる。また、負極活物質層33は、図5Cで説明したタブ部を除いて、負極集電体32の片面に設けることができる。 In the case of the configuration shown in FIGS. 7A to 7C, the positive electrode active material layer 23 can be provided on one side of the positive electrode current collector 22, except for the tab portion described in FIG. 5A. Further, the negative electrode active material layer 33 can be provided on one side of the negative electrode current collector 32, excluding the tab portion described in FIG. 5C.
 図6及び図7に示すように積層した後、複数の正極集電体22をタブ部において全て固定して電気的に接続する。同様に、複数の負極集電体32をタブ部において全て固定して電気的に接続する。 After stacking as shown in FIGS. 6 and 7, the plurality of positive electrode current collectors 22 are all fixed at the tab portions and electrically connected. Similarly, all of the plurality of negative electrode current collectors 32 are fixed and electrically connected at the tab portion.
 ここで、正極リード21と、複数の正極集電体22と、を同時にタブ部で固定して電気的に接続することが好ましい。同様に、負極リード31と、複数の負極集電体32と、を同時にタブ部で固定して電気的に接続することが好ましい。このように複数の集電体と電極リードを同時に接続することで、作製を効率的に行うことができる。 Here, it is preferable that the positive electrode lead 21 and the plurality of positive electrode current collectors 22 are fixed at the same time using tab portions and electrically connected. Similarly, it is preferable that the negative electrode lead 31 and the plurality of negative electrode current collectors 32 are simultaneously fixed and electrically connected using tab portions. By simultaneously connecting a plurality of current collectors and electrode leads in this manner, production can be performed efficiently.
 複数の集電体及び電極リードを固定する方法として、超音波溶接等の溶接をすることで固定する方法、などを用いることができる。 As a method of fixing the plurality of current collectors and electrode leads, a method of fixing them by welding such as ultrasonic welding, etc. can be used.
 図8A乃至図8Cは、正極20と、負極30と、セパレータ40と、が積層される積層体の例を示す断面模式図である。図8A乃至図8Cに示す断面模式図は、図1Aに示す電池10のY1−Y2の断面の模式図であり、外装体50を省略している。また、正極20及び負極30について、図面の煩雑化を避けるために、集電体及び活物質層の図示を省略している。 FIGS. 8A to 8C are cross-sectional schematic diagrams showing an example of a laminate in which a positive electrode 20, a negative electrode 30, and a separator 40 are laminated. The schematic cross-sectional views shown in FIGS. 8A to 8C are schematic cross-sectional views taken along Y1-Y2 of the battery 10 shown in FIG. 1A, and the exterior body 50 is omitted. Further, regarding the positive electrode 20 and the negative electrode 30, illustration of the current collector and the active material layer is omitted to avoid complication of the drawings.
 図8A乃至図8Cに示すように、セパレータ40は、正極20と負極30の間に位置する領域を有する。別言すると、正極20と負極30はセパレータ40を介して重なる領域を有する。なお、セパレータ40は、正極20と外装体50の間に位置する領域を有してもよく、負極30と外装体50の間に位置する領域を有してもよい。 As shown in FIGS. 8A to 8C, the separator 40 has a region located between the positive electrode 20 and the negative electrode 30. In other words, the positive electrode 20 and the negative electrode 30 have an overlapping region with the separator 40 in between. Note that the separator 40 may have a region located between the positive electrode 20 and the exterior body 50, or may have a region located between the negative electrode 30 and the exterior body 50.
 図8Aに示す積層体のように、複数の正極20と、複数の負極30と、複数のセパレータ40と、を有する積層体とすることができる。 Like the laminate shown in FIG. 8A, a laminate including a plurality of positive electrodes 20, a plurality of negative electrodes 30, and a plurality of separators 40 can be formed.
 また、図8B及び図8Cに示す積層体のように、複数の正極20と、複数の負極30と、1つのセパレータ40と、を有する積層体とすることができる。 Also, like the laminate shown in FIGS. 8B and 8C, a laminate including a plurality of positive electrodes 20, a plurality of negative electrodes 30, and one separator 40 can be formed.
 図8Bに示す積層体のように、セパレータ40は、つづら折りの形状で、複数の正極20と複数の負極30の間に位置することができる。 As in the laminate shown in FIG. 8B, the separator 40 has a meandering shape and can be positioned between the plurality of positive electrodes 20 and the plurality of negative electrodes 30.
 また、図8Cに示す積層体のように、セパレータ40は、捲回の形状で、複数の正極20と複数の負極30の間に位置することができる。 Furthermore, as in the laminate shown in FIG. 8C, the separator 40 can have a wound shape and be positioned between the plurality of positive electrodes 20 and the plurality of negative electrodes 30.
 本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in combination with other embodiments as appropriate.
(実施の形態2)
 本実施の形態では、図9乃至図24を用いて本発明の一態様の電池の正極に用いることのできる正極活物質について説明する。
(Embodiment 2)
In this embodiment, a positive electrode active material that can be used for a positive electrode of a battery according to one embodiment of the present invention will be described with reference to FIGS. 9 to 24.
 図9A乃至図9Cは本発明の一態様である正極活物質100の断面図である。図9Aに示すように、正極活物質100は、表層部100aと、内部100bを有する。これらの図中に破線で表層部100aと内部100bの境界を示す。また図9Bは埋め込み部102を有する正極活物質100である。図中の(001)は、コバルト酸リチウムの(001)面を示す。LiCoOは空間群R−3mに帰属する。また図9Cに一点鎖線で結晶粒界101の一部を示す。なお、表層部100aをバリア膜と呼ぶことができ、表層部100aを有するコバルト酸リチウムのことを、バリア膜を有するコバルト酸リチウムと呼ぶことがある。 9A to 9C are cross-sectional views of a positive electrode active material 100 that is one embodiment of the present invention. As shown in FIG. 9A, the positive electrode active material 100 has a surface layer portion 100a and an interior portion 100b. In these figures, the boundary between the surface layer portion 100a and the interior portion 100b is indicated by a broken line. Further, FIG. 9B shows a positive electrode active material 100 having a buried part 102. (001) in the figure indicates the (001) plane of lithium cobalt oxide. LiCoO 2 belongs to space group R-3m. Further, in FIG. 9C, a part of the grain boundary 101 is shown by a dashed line. Note that the surface layer portion 100a can be referred to as a barrier film, and the lithium cobalt oxide having the surface layer portion 100a may be referred to as lithium cobalt oxide having a barrier film.
 本明細書等において、正極活物質100の表層部100aとは、例えば、表面から内部に向かって50nm以内、より好ましくは表面から内部に向かって35nm以内、さらに好ましくは表面から内部に向かって20nm以内、最も好ましくは表面から内部に向かって、表面から垂直または略垂直に10nm以内の領域をいう。なお略垂直とは、80°以上100°以下とする。ひびおよび/またはクラックにより生じた面も表面といってよい。表層部100aは、表面近傍、表面近傍領域またはシェルと同義である。 In this specification and the like, the surface layer 100a of the positive electrode active material 100 is, for example, within 50 nm from the surface toward the inside, more preferably within 35 nm from the surface toward the inside, and still more preferably 20 nm from the surface toward the inside. most preferably refers to a region within 10 nm perpendicularly or substantially perpendicularly from the surface toward the inside. Note that "substantially perpendicular" is defined as 80° or more and 100° or less. Cracks and/or surfaces caused by cracks may also be referred to as surfaces. The surface layer portion 100a has the same meaning as near-surface, near-surface region, or shell.
 また正極活物質の表層部100aより深い領域を、内部100bと呼ぶ。内部100bは、内部領域またはコアと同義である。 Further, a region deeper than the surface layer portion 100a of the positive electrode active material is referred to as an interior 100b. Interior 100b is synonymous with interior region or core.
 正極活物質100の表面とは、上記表層部100aおよび内部100bを含む複合酸化物の表面をいうこととする。そのため正極活物質100は、酸化アルミニウム(Al)をはじめとする充放電に寄与しうるリチウムサイトを有さない金属酸化物が付着したもの、正極活物質の作製後に化学吸着した炭酸塩、ヒドロキシ基等は含まないとする。なお付着した金属酸化物とは、例えば内部100bと結晶構造が一致しない金属酸化物をいう。 The surface of the positive electrode active material 100 refers to the surface of the composite oxide including the surface layer portion 100a and the interior portion 100b. Therefore, the positive electrode active material 100 is made of materials to which metal oxides such as aluminum oxide (Al 2 O 3 ) that do not have lithium sites that can contribute to charging and discharging are attached, and carbonates chemically adsorbed after the production of the positive electrode active material. , hydroxyl group, etc. are not included. Note that the deposited metal oxide refers to a metal oxide whose crystal structure does not match that of the interior 100b, for example.
 また正極活物質100に付着した電解質、有機溶剤、バインダ、導電材、またはこれら由来の化合物も含まないとする。 It is also assumed that the electrolyte, organic solvent, binder, conductive material, or compounds derived from these that adhere to the positive electrode active material 100 are not included.
 また結晶粒界101とは、例えば正極活物質100の粒子同士が固着している部分、正極活物質100内部で結晶方位が変わる部分、つまりSTEM像等における明線と暗線の繰り返しが不連続になった部分、結晶欠陥を多く含む部分、結晶構造が乱れている部分等をいう。また結晶欠陥とは断面TEM(透過電子顕微鏡)、断面STEM像等で観察可能な欠陥、つまり格子間に他の原子が入り込んだ構造、空洞等をいうこととする。結晶粒界101は、面欠陥の一つといえる。また結晶粒界101の近傍とは、結晶粒界101から10nm以内の領域をいうこととする。 In addition, the crystal grain boundaries 101 are, for example, areas where particles of the positive electrode active material 100 are fixed to each other, areas where the crystal orientation changes inside the positive electrode active material 100, in other words, the repetition of bright lines and dark lines in a STEM image etc. is discontinuous. This refers to areas where the crystal structure is disordered, areas with many crystal defects, areas where the crystal structure is disordered, etc. Furthermore, crystal defects refer to defects that can be observed in cross-sectional TEM (transmission electron microscopy), cross-sectional STEM images, etc., that is, structures where other atoms enter between lattices, cavities, etc. The grain boundary 101 can be said to be one of the planar defects. Further, the vicinity of the grain boundary 101 refers to a region within 10 nm from the grain boundary 101.
<含有元素>
 正極活物質100は、リチウムと、コバルトと、酸素と、添加元素と、を有する。または正極活物質100はコバルト酸リチウム(LiCoO)に添加元素が加えられたものを有する。ただし本発明の一態様の正極活物質100は後述する結晶構造を有すればよい。そのためコバルト酸リチウムの組成が厳密にLi:Co:O=1:1:2に限定されるものではない。
<Contained elements>
The positive electrode active material 100 includes lithium, cobalt, oxygen, and additional elements. Alternatively, the positive electrode active material 100 includes lithium cobalt oxide (LiCoO 2 ) to which an additive element is added. However, the positive electrode active material 100 according to one embodiment of the present invention may have a crystal structure described below. Therefore, the composition of lithium cobalt oxide is not strictly limited to Li:Co:O=1:1:2.
 リチウムイオン二次電池の正極活物質は、リチウムイオンが挿入脱離しても電荷中性を保つために、酸化還元が可能な遷移金属を有する必要がある。本発明の一態様の正極活物質100は酸化還元反応を担う遷移金属として主にコバルトを用いることが好ましい。コバルトに加えて、ニッケルおよびマンガンから選ばれる少なくとも一または二を用いてもよい。正極活物質100が有する遷移金属のうち、コバルトが75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上であると、合成が比較的容易で取り扱いやすく優れたサイクル特性を有するなど利点が多く好ましい。 The positive electrode active material of a lithium ion secondary battery must contain a transition metal capable of redox in order to maintain charge neutrality even when lithium ions are intercalated and desorbed. It is preferable that the positive electrode active material 100 of one embodiment of the present invention mainly uses cobalt as the transition metal responsible for the redox reaction. In addition to cobalt, at least one or two selected from nickel and manganese may be used. Among the transition metals contained in the positive electrode active material 100, if cobalt accounts for 75 atomic % or more, preferably 90 atomic % or more, and more preferably 95 atomic % or more, it is relatively easy to synthesize, easy to handle, and has excellent cycle characteristics. It is preferable as it has many advantages.
 また正極活物質100の遷移金属のうちコバルトが75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上であると、ニッケル酸リチウム(LiNiO)等のニッケルが遷移金属の過半を占めるような複合酸化物と比較して、LiCoO中のxが小さいときの安定性がより優れる。これはニッケルよりもコバルトの方が、ヤーン・テラー効果による歪みの影響が小さいためと考えられる。遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なる。ニッケル酸リチウム等の8面体配位の低スピンニッケル(III)が遷移金属の過半を占めるような層状岩塩型の複合酸化物は、ヤーン・テラー効果の影響が大きく、ニッケルと酸素の8面体からなる層に歪みが生じやすい。そのため充放電サイクルにおいて結晶構造の崩れが生じる懸念が高まる。またニッケルイオンはコバルトイオンと比較して大きく、リチウムイオンの大きさに近い。そのためニッケル酸リチウムのようにニッケルが遷移金属の過半を占めるような層状岩塩型の複合酸化物ではニッケルとリチウムのカチオンミキシングが生じやすいという課題がある。 In addition, when cobalt is 75 atomic % or more, preferably 90 atomic % or more, and more preferably 95 atomic % or more of the transition metals in the positive electrode active material 100, nickel such as lithium nickelate (LiNiO 2 ) accounts for the majority of the transition metals. The stability is better when x in Li x CoO 2 is small compared to complex oxides in which the amount of x in Li x CoO 2 is small. This is thought to be because cobalt is less affected by distortion due to the Jahn-Teller effect than nickel. The strength of the Jahn-Teller effect in transition metal compounds differs depending on the number of electrons in the d orbital of the transition metal. Layered rock-salt complex oxides, such as lithium nickelate, in which octahedral-coordinated low-spin nickel (III) accounts for the majority of the transition metal, are strongly influenced by the Jahn-Teller effect, and are separated from the octahedral structure of nickel and oxygen. Distortion is likely to occur in the layers. Therefore, there is a growing concern that the crystal structure will collapse during charge/discharge cycles. Also, nickel ions are larger than cobalt ions and are close to the size of lithium ions. Therefore, in layered rock salt type composite oxides in which nickel accounts for the majority of the transition metal, such as lithium nickelate, there is a problem that cation mixing of nickel and lithium tends to occur.
 正極活物質100が有する添加元素としては、マグネシウム、フッ素、ニッケル、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、臭素、及びベリリウムから選ばれた一または二以上を用いることが好ましい。また添加元素のうち遷移金属の和は、25原子%未満が好ましく、10原子%未満がより好ましく、5原子%未満がさらに好ましい。 The additive elements included in the positive electrode active material 100 include magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, and beryllium. It is preferable to use one or more selected ones. Moreover, the sum of transition metals among the additional elements is preferably less than 25 atom %, more preferably less than 10 atom %, and even more preferably less than 5 atom %.
 つまり正極活物質100は、マグネシウムおよびフッ素が添加されたコバルト酸リチウム、マグネシウム、フッ素およびチタンが添加されたコバルト酸リチウム、マグネシウム、フッ素およびアルミニウムが添加されたコバルト酸リチウム、マグネシウム、フッ素およびニッケルが添加されたコバルト酸リチウム、マグネシウム、フッ素、ニッケルおよびアルミニウムが添加されたコバルト酸リチウム、等を有することができる。 In other words, the positive electrode active material 100 includes lithium cobalt oxide to which magnesium and fluorine are added, lithium cobalt oxide to which magnesium, fluorine and titanium are added, lithium cobalt oxide to which magnesium, fluorine and aluminum are added, magnesium, fluorine and nickel. It can have added lithium cobalt oxide, lithium cobalt oxide added with magnesium, fluorine, nickel and aluminum, and the like.
 添加元素は、正極活物質100に固溶していることが好ましい。そのため例えば、STEM−EDXの線分析を行った際に、添加元素が検出される量が増加する深さは、遷移金属Mが検出される量が増加する深さよりも、深い位置、すなわち正極活物質100の内部側に位置していることが好ましい。 It is preferable that the additive element is dissolved in the positive electrode active material 100. Therefore, for example, when performing STEM-EDX line analysis, the depth at which the amount of added elements increases is deeper than the depth at which the amount of transition metal M is detected, that is, the positive electrode active area. Preferably, it is located inside the substance 100.
 なお本明細書等において、STEM−EDXの線分析においてある元素が検出される量が増加する深さとは、強度および空間分解能等の観点でノイズでないと判断できる測定値が、連続して得られるようになる深さ、をいうこととする。 In this specification, etc., the depth at which the amount of a certain element detected in STEM-EDX line analysis increases is defined as the depth at which measurement values that can be determined not to be noise from the viewpoint of intensity, spatial resolution, etc. are continuously obtained. This refers to the depth at which it becomes like this.
 これらの添加元素が、後述するように正極活物質100が有する結晶構造をより安定化させる。なお本明細書等において添加元素は混合物、原料の一部と同義である。 These additional elements further stabilize the crystal structure of the positive electrode active material 100, as described below. Note that in this specification and the like, the additive element has the same meaning as a mixture or a part of raw materials.
 なお添加元素として、必ずしもマグネシウム、フッ素、ニッケル、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素、臭素、またはベリリウムを含まなくてもよい。 Note that the additive elements do not necessarily include magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, boron, bromine, or beryllium. .
 例えばマンガンを実質的に含まない正極活物質100とすると、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するといった利点がより大きくなる。正極活物質100に含まれるマンガンの重量は例えば600ppm以下であることが好ましく、100ppm以下であることがより好ましい。 For example, if the positive electrode active material 100 is substantially free of manganese, the advantages of relatively easy synthesis, ease of handling, and excellent cycle characteristics will be greater. The weight of manganese contained in the positive electrode active material 100 is, for example, preferably 600 ppm or less, more preferably 100 ppm or less.
<結晶構造>
≪LiCoO中のxが1のとき≫
 本発明の一態様の正極活物質100は放電状態、つまりLiCoO中のx=1の場合に、空間群R−3mに帰属する層状岩塩型の結晶構造を有することが好ましい。層状岩塩型の複合酸化物は、放電容量が高く、二次元的なリチウムイオンの拡散経路を有しリチウムイオンの挿入/脱離反応に適しており、二次電池の正極活物質として優れる。そのため特に、正極活物質100の体積の大半を占める内部100bが層状岩塩型の結晶構造を有することが好ましい。図16に層状岩塩型の結晶構造をR−3m O3を付して示す。R−3m O3は、格子定数がa=2.81610、b=2.81610、c=14.05360、α=90.0000、β=90.0000、γ=120.0000であり、ユニットセルにおけるリチウム、コバルトおよび酸素の座標が、Li(0、0、0)、Co(0、0、0.5)、O(0、0、0.23951)である(非特許文献7)。
<Crystal structure>
≪When x in Li x CoO 2 is 1≫
The positive electrode active material 100 of one embodiment of the present invention preferably has a layered rock-salt crystal structure belonging to space group R-3m in a discharge state, that is, when x=1 in Li x CoO 2 . Layered rock salt type composite oxides have high discharge capacity, have two-dimensional lithium ion diffusion paths, are suitable for lithium ion insertion/extraction reactions, and are excellent as positive electrode active materials for secondary batteries. Therefore, it is particularly preferable that the interior 100b, which occupies most of the volume of the positive electrode active material 100, has a layered rock salt crystal structure. FIG. 16 shows the layered rock salt type crystal structure with R-3m O3 attached. R-3m O3 has lattice constants a = 2.81610, b = 2.81610, c = 14.05360, α = 90.0000, β = 90.0000, γ = 120.0000, and in the unit cell. The coordinates of lithium, cobalt, and oxygen are Li (0, 0, 0), Co (0, 0, 0.5), and O (0, 0, 0.23951) (Non-Patent Document 7).
 一方、本発明の一態様の正極活物質100の表層部100aは、充電により正極活物質100からリチウムが抜けても、内部100bのコバルトと酸素の8面体からなる層状構造が壊れないよう補強する機能を有することが好ましい。または表層部100aが正極活物質100のバリア膜として機能することが好ましい。または正極活物質100の外周部である表層部100aが正極活物質100を補強することが好ましい。ここでいう補強とは、酸素の脱離、および/またはコバルトと酸素の8面体からなる層状構造のずれ等の正極活物質100の表層部100aおよび内部100bの構造変化を抑制することをいう。および/または電解質が正極活物質100の表面で酸化分解されることを抑制することをいう。 On the other hand, the surface layer 100a of the positive electrode active material 100 according to one embodiment of the present invention is reinforced so that the layered structure made of octahedrons of cobalt and oxygen in the interior 100b will not be broken even if lithium is removed from the positive electrode active material 100 due to charging. It is preferable to have a function. Alternatively, it is preferable that the surface layer portion 100a functions as a barrier film for the positive electrode active material 100. Alternatively, it is preferable that the surface layer portion 100a, which is the outer peripheral portion of the positive electrode active material 100, reinforces the positive electrode active material 100. Reinforcement here refers to suppressing structural changes in the surface layer portion 100a and interior portion 100b of the positive electrode active material 100, such as desorption of oxygen and/or displacement of the layered structure consisting of an octahedron of cobalt and oxygen. and/or suppressing oxidative decomposition of the electrolyte on the surface of the positive electrode active material 100.
 そのため表層部100aは、内部100bと異なる結晶構造を有していることが好ましい。また表層部100aは、内部100bよりも室温(25℃)で安定な組成および結晶構造であることが好ましい。例えば、本発明の一態様の正極活物質100の表層部100aの少なくとも一部が、岩塩型の結晶構造を有することが好ましい。または表層部100aは、層状岩塩型と岩塩型の結晶構造の両方の結晶構造を有していることが好ましい。または表層部100aは、層状岩塩型と岩塩型の結晶構造の両方の特徴を有することが好ましい。 Therefore, it is preferable that the surface layer portion 100a has a crystal structure different from that of the interior portion 100b. Further, it is preferable that the surface layer portion 100a has a composition and crystal structure that are more stable at room temperature (25° C.) than the interior portion 100b. For example, it is preferable that at least a portion of the surface layer portion 100a of the positive electrode active material 100 according to one embodiment of the present invention has a rock salt crystal structure. Alternatively, the surface layer portion 100a preferably has both a layered rock salt type crystal structure and a rock salt type crystal structure. Alternatively, the surface layer portion 100a preferably has characteristics of both a layered rock salt type and a rock salt type crystal structure.
 表層部100aは充電時にリチウムイオンが最初に脱離する領域であり、内部100bよりもリチウム濃度が低くなりやすい領域である。また表層部100aが有する正極活物質100の粒子の表面の原子は、一部の結合が切断された状態ともいえる。そのため表層部100aは不安定になりやすく、結晶構造の劣化が始まりやすい領域といえる。例えば表層部100aにおいてコバルトと酸素の8面体からなる層状構造の結晶構造がずれると、その影響が内部100bに連鎖して、内部100bにおいても層状構造の結晶構造がずれ、正極活物質100全体の結晶構造の劣化につながると考えられる。一方で表層部100aを十分に安定にできれば、LiCoO中のxが小さいときでも、例えばxが0.24以下でも内部100bのコバルトと酸素の8面体からなる層状構造を壊れにくくすることができる。さらには、内部100bのコバルトと酸素の8面体からなる層のずれを抑制することができる。 The surface layer portion 100a is a region where lithium ions are first desorbed during charging, and is a region where the lithium concentration tends to be lower than that in the interior portion 100b. Further, it can be said that some of the bonds of the atoms on the surface of the particles of the positive electrode active material 100 included in the surface layer portion 100a are in a state of being broken. Therefore, the surface layer portion 100a tends to become unstable, and can be said to be a region where the crystal structure tends to deteriorate. For example, if the crystal structure of the layered structure made of octahedrons of cobalt and oxygen shifts in the surface layer 100a, the influence will be chained to the interior 100b, causing the crystal structure of the layered structure to shift in the interior 100b as well. This is thought to lead to deterioration of the crystal structure. On the other hand, if the surface layer 100a can be made sufficiently stable, even when x in Li x CoO 2 is small, for example, even when x is 0.24 or less, the layered structure consisting of cobalt and oxygen octahedrons in the interior 100b will be difficult to break. Can be done. Furthermore, it is possible to suppress misalignment of the octahedral layer of cobalt and oxygen in the interior 100b.
〔分布〕
 表層部100aを安定な組成および結晶構造とするために、表層部100aは添加元素を有することが好ましく、添加元素を複数有することがより好ましい。また表層部100aは内部100bよりも添加元素から選ばれた一または二以上の濃度が高いことが好ましい。また正極活物質100が有する添加元素から選ばれた一または二以上は濃度勾配を有していることが好ましい。また正極活物質100は添加元素によって分布が異なっていることがより好ましい。例えば添加元素によって表層部における検出量のピークの、表面または後述するEDX線分析における基準点からの深さが異なっていることがより好ましい。ここでいう検出量のピークとは、表層部100aまたは表面から50nm以下における検出量の極大値をいうこととする。検出量とは、例えばEDX線分析におけるカウントをいう。
〔distribution〕
In order to make the surface layer portion 100a have a stable composition and crystal structure, the surface layer portion 100a preferably contains an additive element, and more preferably contains a plurality of additive elements. Further, it is preferable that the concentration of one or more selected additive elements is higher in the surface layer portion 100a than in the interior portion 100b. Further, it is preferable that one or more selected from the additive elements included in the positive electrode active material 100 have a concentration gradient. Further, it is more preferable that the distribution of the positive electrode active material 100 differs depending on the added element. For example, it is more preferable that the depth of the detected amount peak in the surface layer from the surface or a reference point in EDX-ray analysis described below differs depending on the added element. The peak of the detected amount here refers to the maximum value of the detected amount in the surface layer portion 100a or 50 nm or less from the surface. The detected amount refers to, for example, a count in EDX-ray analysis.
 本発明の一態様の正極活物質100の、コバルト酸リチウムの(001)面でない結晶面の深さ方向の例として、図9中に矢印X1−X2を示す。この矢印X1−X2においてEDX線分析を行った場合の各添加元素の特性X線の強度分布(EDX線分析のプロファイルともいう)の例を図10A乃至図10Cに示す。 Arrows X1-X2 are shown in FIG. 9 as an example of the depth direction of a crystal plane other than the (001) plane of lithium cobalt oxide in the positive electrode active material 100 of one embodiment of the present invention. Examples of characteristic X-ray intensity distributions (also referred to as EDX-ray analysis profiles) of each additive element when EDX-ray analysis is performed along arrows X1-X2 are shown in FIGS. 10A to 10C.
 図10A乃至図10Cに示すように、添加元素のうち少なくともマグネシウムおよびニッケルは、表層部100aの検出量が内部100bの検出量よりも大きいことが好ましい。さらに表層部100aの中でもより表面に近い領域に巾狭にマグネシウムおよびニッケルの検出量のピークを有することが好ましい。例えば表面、または基準点から3nm以内にマグネシウムおよびニッケルの検出量のピークを有することが好ましい。またマグネシウムとニッケルの分布は重畳していることが好ましい。マグネシウムとニッケルの検出量のピークは同じ深さであってもよく、マグネシウムのピークがより表面側であってもよく、図10Bのようにニッケルのピークがより表面側であってもよい。ニッケルの検出量のピークと、マグネシウムの検出量のピークの深さの差は3nm以内が好ましく、1nm以内であるとさらに好ましい。 As shown in FIGS. 10A to 10C, it is preferable that the amount of at least magnesium and nickel among the added elements detected in the surface layer portion 100a is larger than the amount detected in the interior portion 100b. Furthermore, it is preferable that the detected amounts of magnesium and nickel have a narrow peak in a region closer to the surface in the surface layer portion 100a. For example, it is preferable to have peaks of detected amounts of magnesium and nickel within 3 nm from the surface or a reference point. Moreover, it is preferable that the distributions of magnesium and nickel overlap. The peaks of the detected amounts of magnesium and nickel may be at the same depth, the peak of magnesium may be closer to the surface, and the peak of nickel may be closer to the surface as shown in FIG. 10B. The difference in depth between the peak of the detected amount of nickel and the peak of the detected amount of magnesium is preferably within 3 nm, and more preferably within 1 nm.
 またニッケルは、内部100bの検出量は表層部100aと比較して非常に小さいか、検出されない、すなわち検出下限以下である場合がある。 Further, the amount of nickel detected in the interior 100b may be very small compared to the surface layer 100a, or may not be detected, that is, it may be below the lower limit of detection.
 また図示しないが、フッ素はマグネシウムまたはニッケルと同様に、表層部100aの検出量が内部の検出量よりも大きいことが好ましい。また表層部100aの中でもより表面に近い領域にフッ素の検出量のピークを有することが好ましい。例えば表面、または基準点から3nm以内にフッ素の検出量のピークを有することが好ましい。同様に、チタン、ケイ素、リン、ホウ素および/またはカルシウムも、表層部100aの検出量が内部の検出量よりも大きいことが好ましい。また表層部100aの中でもより表面に近い領域にチタン、ケイ素、リン、ホウ素および/またはカルシウムの検出量のピークを有することが好ましい。例えば表面、または基準点から3nm以内にチタン、ケイ素、リン、ホウ素および/またはカルシウムの検出量のピークを有することが好ましい。 Although not shown, it is preferable that the amount of fluorine detected in the surface layer 100a is larger than the amount detected inside, similar to magnesium or nickel. Moreover, it is preferable that the detected amount of fluorine has a peak in a region closer to the surface of the surface layer portion 100a. For example, it is preferable that the detected amount of fluorine has a peak within 3 nm from the surface or the reference point. Similarly, it is preferable that the amount of titanium, silicon, phosphorus, boron, and/or calcium detected in the surface layer portion 100a is larger than the amount detected inside. Furthermore, it is preferable that the detected amounts of titanium, silicon, phosphorus, boron, and/or calcium have a peak in a region closer to the surface of the surface layer portion 100a. For example, it is preferable to have a peak of the detected amount of titanium, silicon, phosphorus, boron, and/or calcium within 3 nm from the surface or a reference point.
 また添加元素のうち少なくともアルミニウムは、マグネシウムよりも内部に検出量のピークを有することが好ましい。図10Aのようにマグネシウムとアルミニウムの分布は重畳していてもよいし、図10Cのようにマグネシウムとアルミニウムの分布の重畳がほとんどなくてもよい。アルミニウムの検出量のピークは表層部100aに存在してもよいし、表層部100aより深くてもよい。例えば表面、または基準点から内部に向かって5nm以上30nm以下の領域にピークを有することが好ましい。 Also, among the additive elements, it is preferable that at least aluminum has a detected amount peak inside the element compared to magnesium. The distributions of magnesium and aluminum may overlap as shown in FIG. 10A, or the distributions of magnesium and aluminum may not overlap as shown in FIG. 10C. The peak of the detected amount of aluminum may be present in the surface layer portion 100a or may be deeper than the surface layer portion 100a. For example, it is preferable to have a peak in a region of 5 nm or more and 30 nm or less from the surface or the reference point toward the inside.
 またアルミニウムの分布は、正規分布でない場合がある。例えばアルミニウムの分布を最大値MaxAlで分けたとき、表面側と内部側で裾の長さが異なる場合がある。より具体的には、図11Bに示すように、アルミニウム検出量の最大値(MaxAl)の高さの1/5の高さ(1/5 MaxAl)におけるピーク幅を、最大値から横軸へ下した垂線で2分したとき、表面側のピーク幅Wよりも、内部側のピーク幅Wが大きい場合がある。 Further, the distribution of aluminum may not be a normal distribution. For example, when the distribution of aluminum is divided by the maximum value Max Al , the length of the hem may differ between the front side and the inside side. More specifically, as shown in FIG. 11B, the peak width at a height (1/5 Max Al ) of the maximum value (Max Al ) of the detected amount of aluminum is plotted from the maximum value on the horizontal axis. When divided into two by a downward perpendicular line, the peak width Wc on the inner side may be larger than the peak width Ws on the surface side.
 このように、マグネシウムよりもアルミニウムが内部まで分布しているのは、マグネシウムよりもアルミニウムの拡散速度が大きいためと考えられる。一方で最も表面に近い領域におけるアルミニウム検出量が少ないのは、マグネシウム等が高い濃度で固溶している領域よりも、そうでない領域の方が、アルミニウムが安定に存在できるためと推測される。 The reason why aluminum is distributed further into the interior than magnesium is thought to be because the diffusion rate of aluminum is higher than that of magnesium. On the other hand, the reason why the amount of aluminum detected in the region closest to the surface is small is presumed to be because aluminum can exist more stably in regions where magnesium and the like are not dissolved than in regions where magnesium and the like are dissolved in solid solution at a high concentration.
 より詳細に述べれば、空間群R−3mの層状岩塩型、もしくは立方晶系の岩塩型の領域において、マグネシウムが高い濃度で固溶している領域では、層状岩塩型のLiAlOに比べて、陽イオン−酸素間の距離が長いため、アルミニウムが安定に存在しづらい。また、コバルトの周辺ではLiがMg2+に置換した価数変化を、Co3+からCo2+になることで補い、カチオンバランスを取ることができる。しかしAlは3価しかとりえないため、岩塩型または層状岩塩型の構造の中ではマグネシウムと共存しづらいと考えられる。 More specifically, in the layered rock salt type or cubic rock salt type region of space group R-3m, in the region where magnesium is dissolved in solid solution at a high concentration, compared to the layered rock salt type LiAlO2 , Because the distance between the cation and oxygen is long, it is difficult for aluminum to exist stably. Further, in the vicinity of cobalt, the change in valence caused by the substitution of Li + with Mg 2+ can be compensated for by changing from Co 3+ to Co 2+ , thereby achieving cation balance. However, since Al can only be trivalent, it is considered difficult to coexist with magnesium in a rock salt type or layered rock salt type structure.
 また図示しないが、マンガンはアルミニウムと同様に、マグネシウムより内部に検出量のピークを有することが好ましい。 Although not shown, it is preferable that manganese, like aluminum, has a detection peak within the range compared to magnesium.
 ただし必ずしも、正極活物質100の表層部100a全てにおいて添加元素が同じような濃度勾配または分布でなくてもよい。正極活物質100の、コバルト酸リチウムの(001)面の深さ方向の例として、図9中に矢印Y1−Y2を示す。矢印Y1−Y2における添加元素の特性X線の強度分布の例を図11Aに示す。 However, the additive elements do not necessarily have to have the same concentration gradient or distribution in all the surface layer portions 100a of the positive electrode active material 100. As an example of the depth direction of the (001) plane of lithium cobalt oxide of the positive electrode active material 100, arrows Y1-Y2 are shown in FIG. FIG. 11A shows an example of the intensity distribution of the characteristic X-ray of the added element along the arrow Y1-Y2.
(001)配向した表面は、その他の表面と添加元素の分布が異なっていてもよい。例えば、(001)配向した表面とその表層部100aは、(001)配向以外の表面と比較して添加元素から選ばれた一または二以上の検出量が低くてもよい。具体的にはニッケルの検出量が低くてもよい。または、(001)配向した表面とその表層部100aは、添加元素から選ばれた一または二以上の検出量が検出下限以下であってもよい。具体的にはニッケルの検出量が検出下限以下であってもよい。特にEDXのような特性X線を検出する分析方法の場合、コバルトのKβとニッケルのKαのエネルギーが近いため、コバルトが主たる元素である材料中での微量のニッケルは検出しづらい。または、(001)配向した表面とその表層部100aは、添加元素から選ばれた一または二以上の検出量のピークが、(001)配向以外の表面と比較して浅くてもよい。具体的には、(001)配向した表面とその表層部100aは、マグネシウムおよびアルミニウムの検出量のピークの位置が、(001)配向以外の表面と比較して浅くてもよい。 The (001) oriented surface may have a different distribution of additive elements from other surfaces. For example, the (001) oriented surface and its surface layer portion 100a may have a lower detected amount of one or more selected additive elements than the surface other than the (001) oriented surface. Specifically, the detected amount of nickel may be low. Alternatively, in the (001) oriented surface and its surface layer portion 100a, the detected amount of one or more selected from the additive elements may be below the lower detection limit. Specifically, the detected amount of nickel may be below the lower limit of detection. Particularly in the case of an analysis method that detects characteristic X-rays such as EDX, it is difficult to detect trace amounts of nickel in materials whose main element is cobalt because the energies of Kβ of cobalt and Kα of nickel are close. Alternatively, in the (001) oriented surface and its surface layer portion 100a, the peak of the detected amount of one or more selected from the additive elements may be shallower than in the (001) oriented surface. Specifically, in the (001) oriented surface and its surface layer portion 100a, the peak positions of the detected amounts of magnesium and aluminum may be shallower than in the (001) oriented surface.
 R−3mの層状岩塩型の結晶構造では、(001)面に平行に陽イオンが配列している。これはCoO層と、リチウム層と、が(001)面と平行に交互に積層した構造であるということができる。そのためリチウムイオンの拡散経路も(001)面に平行に存在する。 In the layered rock salt crystal structure of R-3m, cations are arranged parallel to the (001) plane. This can be said to be a structure in which two CoO layers and a lithium layer are alternately stacked parallel to the (001) plane. Therefore, the diffusion path of lithium ions also exists parallel to the (001) plane.
 CoO層は比較的安定であるため、正極活物質100の表面は(001)配向である方が安定である。(001)面には充放電におけるリチウムイオンの主な拡散経路は露出していない。 Since the CoO 2 layer is relatively stable, the surface of the positive electrode active material 100 is more stable if it has a (001) orientation. The main diffusion path of lithium ions during charging and discharging is not exposed on the (001) plane.
 一方、(001)配向以外の表面ではリチウムイオンの拡散経路が露出している。そのため(001)配向以外の表面およびその表層部100aは、リチウムイオンの拡散経路を保つために重要な領域であると同時に、リチウムイオンが最初に脱離する領域であるため不安定になりやすい。そのため(001)配向以外の表面およびその表層部100aを補強することが、正極活物質100全体の結晶構造を保つために極めて重要である。 On the other hand, lithium ion diffusion paths are exposed on surfaces other than the (001) orientation. Therefore, the surface other than the (001) orientation and its surface layer portion 100a are important regions for maintaining the diffusion path of lithium ions, and at the same time, they are easily unstable because they are the regions from which lithium ions are first desorbed. Therefore, it is extremely important to reinforce the surface other than the (001) orientation and its surface layer portion 100a in order to maintain the crystal structure of the entire positive electrode active material 100.
 そのため本発明の別の一態様の正極活物質100では、(001)配向以外の表面およびその表層部100aの添加元素の特性X線の強度分布が図10A乃至図10Cのいずれかに示すような分布となっていることが重要である。添加元素の中でも特にニッケルが(001)配向以外の表面およびその表層部100aに検出されることが好ましい。一方、(001)配向した表面およびその表層部100aでは上述のように添加元素の濃度は低くてもよいし、またはなくてもよい。 Therefore, in the positive electrode active material 100 according to another embodiment of the present invention, the characteristic X-ray intensity distribution of the additive element on the surface other than the (001) orientation and the surface layer portion 100a is as shown in any of FIGS. 10A to 10C. It is important that the distribution is consistent. Among the additive elements, it is particularly preferable that nickel is detected on the surface other than the (001) orientation and on the surface layer portion 100a thereof. On the other hand, in the (001) oriented surface and its surface layer portion 100a, the concentration of the additive element may be low as described above, or may be absent.
 例えば、(001)配向した表面とその表層部100aにおけるマグネシウムの分布は、その半値幅が10nm以上200nm以下であることが好ましく、50nm以上150nm以下であることがより好ましく、80nm以上120nm以下であるとさらに好ましい。また(001)配向でない表面とその表層部100aにおけるマグネシウムの分布は、その半値幅が200nmを超えて500nm以下であることが好ましく、200nmを超えて300nm以下であることがより好ましく、230nm以上270nm以下であることがさらに好ましい。 For example, the distribution of magnesium in the (001) oriented surface and its surface layer 100a preferably has a half width of 10 nm or more and 200 nm or less, more preferably 50 nm or more and 150 nm or less, and 80 nm or more and 120 nm or less. and even more preferable. Further, the distribution of magnesium on the non-(001) oriented surface and its surface layer 100a preferably has a half width of more than 200 nm and less than 500 nm, more preferably more than 200 nm and less than 300 nm, and more preferably more than 230 nm and 270 nm. It is more preferable that it is the following.
 また(001)配向でない表面とその表層部100aにおけるニッケルの分布は、その半値幅が30nm以上150nm以下であることが好ましく、50nm以上130nm以下であることがより好ましく、70nm以上110nm以下であることがさらに好ましい。 Further, the half width of the distribution of nickel on the non-(001) oriented surface and its surface layer 100a is preferably 30 nm or more and 150 nm or less, more preferably 50 nm or more and 130 nm or less, and 70 nm or more and 110 nm or less. is even more preferable.
 後の実施の形態で説明する、純度の高いLiCoOを作製した後に、添加元素を後から混合して加熱する作製方法は、主にリチウムイオンの拡散経路を介して添加元素が広がる。そのため(001)配向以外の表面およびその表層部100aの添加元素の分布を好ましい範囲にしやすい。 In the manufacturing method described in the later embodiment, in which high-purity LiCoO 2 is manufactured, an additive element is mixed and heated later, the additive element spreads mainly through the diffusion path of lithium ions. Therefore, it is easy to set the distribution of additive elements on the surface other than the (001) orientation and the surface layer portion 100a within a preferable range.
〔マグネシウム〕
 マグネシウムは2価で、マグネシウムイオンは層状岩塩型の結晶構造におけるコバルトサイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが表層部100aのリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすくできる。これはリチウムサイトに存在するマグネシウムが、CoO層同士を支える柱として機能するためと推測される。またマグネシウムが存在することで、LiCoO中のxが例えば0.24以下の状態においてマグネシウムの周囲の酸素の脱離を抑制することができる。またマグネシウムが存在することで正極活物質100の密度が高くなることが期待できる。また表層部100aのマグネシウム濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
〔magnesium〕
Magnesium is divalent, and magnesium ions are more stable in lithium sites than in cobalt sites in a layered rock salt crystal structure, so they easily enter lithium sites. The presence of magnesium at an appropriate concentration in the lithium sites of the surface layer 100a makes it easier to maintain the layered rock salt crystal structure. This is presumed to be because the magnesium present at the lithium site functions as a pillar that supports the two CoO layers. Furthermore, the presence of magnesium can suppress desorption of oxygen around magnesium when x in Li x CoO 2 is, for example, 0.24 or less. Furthermore, the presence of magnesium can be expected to increase the density of the positive electrode active material 100. Furthermore, when the magnesium concentration in the surface layer portion 100a is high, it can be expected that the corrosion resistance against hydrofluoric acid produced by decomposition of the electrolytic solution will be improved.
 マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入および脱離に悪影響を及ぼさず上記のメリットを享受できる。しかしマグネシウムが過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。さらに結晶構造の安定化への効果が小さくなってしまう場合がある。これはマグネシウムが、リチウムサイトに加えてコバルトサイトにも入るようになるためと考えられる。加えて、リチウムサイトにもコバルトサイトにも置換しない、不要なマグネシウム化合物(酸化物およびフッ化物等)が正極活物質の表面等に偏析し、二次電池の抵抗成分となる恐れがある。また正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の放電容量が減少することがある。これはリチウムサイトにマグネシウムが入りすぎ、充放電に寄与するリチウム量が減少するためと考えられる。 If magnesium is at an appropriate concentration, it will not adversely affect the insertion and desorption of lithium during charging and discharging, and the above benefits can be enjoyed. However, an excess of magnesium may have an adverse effect on lithium intercalation and deintercalation. Furthermore, the effect on stabilizing the crystal structure may be reduced. This is thought to be because magnesium enters the cobalt site in addition to the lithium site. In addition, unnecessary magnesium compounds (oxides, fluorides, etc.) that do not substitute for either lithium sites or cobalt sites may segregate on the surface of the positive electrode active material and become a resistance component of the secondary battery. Furthermore, as the magnesium concentration of the positive electrode active material increases, the discharge capacity of the positive electrode active material may decrease. This is thought to be because too much magnesium enters the lithium site, reducing the amount of lithium that contributes to charging and discharging.
 そのため、正極活物質100全体が有するマグネシウムが適切な量であることが好ましい。例えばマグネシウムの原子数はコバルトの原子数の0.002倍以上0.06倍以下が好ましく、0.005倍以上0.03倍以下がより好ましく、0.01倍程度がさらに好ましい。ここでいう正極活物質100全体が有するマグネシウムの量とは、例えばGD−MS、ICP−MS等を用いて正極活物質100の全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいたものであってもよい。 Therefore, it is preferable that the entire positive electrode active material 100 has an appropriate amount of magnesium. For example, the number of magnesium atoms is preferably 0.002 times or more and 0.06 times or less, more preferably 0.005 times or more and 0.03 times or less, and even more preferably about 0.01 times the number of cobalt atoms. The amount of magnesium contained in the entire positive electrode active material 100 herein may be a value obtained by elemental analysis of the entire positive electrode active material 100 using, for example, GD-MS, ICP-MS, etc. It may be based on the value of the composition of raw materials in the process of producing the substance 100.
〔ニッケル〕
 ニッケルは、LiMeOの層状岩塩型の結晶構造では、コバルトサイトとリチウムサイトのどちらにも存在しうる。コバルトサイトに存在する場合、コバルトと比較して酸化還元電位が低いため、例えば充電においてはリチウムおよび電子を手放しやすい、ともいえる。そのため充放電スピードが速くなることが期待できる。そのため、同じ充電電圧でも、遷移金属Mがコバルトの場合よりもニッケルの場合の方が大きな充放電容量が得られる。
〔nickel〕
Nickel can exist at both cobalt sites and lithium sites in the layered rock salt crystal structure of LiMeO 2 . When it exists in a cobalt site, it can be said to have a lower oxidation-reduction potential than cobalt, so it can easily give up lithium and electrons during charging, for example. Therefore, it can be expected that the charging and discharging speed will be faster. Therefore, even at the same charging voltage, a larger charge/discharge capacity can be obtained when the transition metal M is nickel than when the transition metal M is cobalt.
 またニッケルがリチウムサイトに存在する場合、コバルトと酸素の8面体からなる層状構造のずれが抑制されうる。また充放電に伴う体積の変化が抑制される。また弾性係数が大きくなる、つまり硬くなる。これはリチウムサイトに存在するニッケルも、CoO層同士を支える柱として機能するためと推測される。そのため特に高温、例えば45℃以上での充電状態において結晶構造がより安定になることが期待でき好ましい。 Further, when nickel exists at the lithium site, displacement of the layered structure consisting of octahedrons of cobalt and oxygen can be suppressed. Further, changes in volume due to charging and discharging are suppressed. Also, the elastic modulus becomes larger, that is, it becomes harder. This is presumably because nickel present at the lithium site also functions as a pillar supporting the two CoO layers. Therefore, it is expected that the crystal structure will become more stable especially in a charged state at a high temperature, for example, 45° C. or higher, which is preferable.
 また酸化ニッケル(NiO)の陽イオンと陰イオン間の距離は、岩塩型MgOおよび岩塩型CoOよりも、LiCoOの陽イオンと陰イオン間の距離の平均に近く、LiCoOと配向が一致しやすい。 In addition, the distance between the cation and anion of nickel oxide (NiO) is closer to the average distance between the cation and anion of LiCoO 2 than that of rock salt-type MgO and rock salt-type CoO, and the orientation matches that of LiCoO 2 . Cheap.
 またマグネシウム、アルミニウム、コバルト、ニッケルの順でイオン化傾向が大きい。そのため充電時にニッケルは上記の他の元素より電解液に溶出しにくいと考えられる。そのため充電状態において表層部の結晶構造を安定化させる効果が高いと考えられる。 Additionally, magnesium, aluminum, cobalt, and nickel have a greater tendency to ionize in that order. Therefore, it is thought that nickel is less eluted into the electrolyte than the other elements mentioned above during charging. Therefore, it is considered to be highly effective in stabilizing the crystal structure of the surface layer in the charged state.
 さらにニッケルはNi2+、Ni3+、Ni4+のうちNi2+が最も安定であり、ニッケルはコバルトと比較して3価のイオン化エネルギーが大きい。そのためニッケルと酸素のみではスピネル型の結晶構造を取らないことが知られている。そのためニッケルは、層状岩塩型からスピネル型の結晶構造への相変化を抑制する効果があると考えられる。 Further, among nickel, Ni 2+ , Ni 3+ , and Ni 4+ , Ni 2+ is the most stable, and nickel has a higher trivalent ionization energy than cobalt. Therefore, it is known that nickel and oxygen alone do not form a spinel-type crystal structure. Therefore, nickel is considered to have the effect of suppressing the phase change from a layered rock salt type crystal structure to a spinel type crystal structure.
 一方でニッケルが過剰であるとヤーン・テラー効果による歪みの影響が強まり好ましくない。またニッケルが過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。 On the other hand, if nickel is present in excess, the influence of distortion due to the Jahn-Teller effect will be increased, which is undesirable. Moreover, if nickel is in excess, there is a possibility that intercalation and deintercalation of lithium will be adversely affected.
 そのため正極活物質100全体が有するニッケルが適切な量であることが好ましい。例えば正極活物質100が有するニッケルの原子数は、コバルトの原子数の0%を超えて7.5%以下が好ましく、0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.2%以上1%以下がより好ましい。または0%を超えて4%以下が好ましい。または0%を超えて2%以下が好ましい。または0.05%以上7.5%以下が好ましい。または0.05%以上2%以下が好ましい。または0.1%以上7.5%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すニッケルの量は例えば、GD−MS、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。 Therefore, it is preferable that the entire positive electrode active material 100 has an appropriate amount of nickel. For example, the number of nickel atoms in the positive electrode active material 100 is preferably more than 0% and less than 7.5% of the number of cobalt atoms, preferably 0.05% or more and 4% or less, and preferably 0.1% or more and 2% or less. is preferable, and more preferably 0.2% or more and 1% or less. Alternatively, it is preferably more than 0% and 4% or less. Alternatively, it is preferably more than 0% and 2% or less. Or preferably 0.05% or more and 7.5% or less. Or preferably 0.05% or more and 2% or less. Or preferably 0.1% or more and 7.5% or less. Or preferably 0.1% or more and 4% or less. The amount of nickel shown here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material using GD-MS, ICP-MS, etc., or a value obtained by mixing raw materials in the process of producing the positive electrode active material. may be based on the value of
〔アルミニウム〕
 またアルミニウムは層状岩塩型の結晶構造におけるコバルトサイトに存在しうる。アルミニウムは3価の典型元素であり価数が変化しないため、充放電の際もアルミニウム周辺のリチウムは移動しにくい。そのためアルミニウムとその周辺のリチウムが柱として機能し、結晶構造の変化を抑制しうる。そのため後述するように正極活物質100がリチウムイオンの挿入脱離によってc軸方向に伸縮する力が働いても、すなわち充電深度あるいは充電率を変えることによってc軸方向に伸縮する力が働いても、正極活物質100の劣化を抑制することができる。
〔aluminum〕
Aluminum can also exist in cobalt sites in a layered rock salt type crystal structure. Aluminum is a typical trivalent element and its valence does not change, so lithium around aluminum is difficult to move during charging and discharging. Therefore, aluminum and the lithium surrounding it function as pillars and can suppress changes in the crystal structure. Therefore, as will be described later, even if the positive electrode active material 100 is subjected to a force that expands and contracts in the c-axis direction due to insertion and desorption of lithium ions, that is, even if a force that expands and contracts in the c-axis direction is applied by changing the charging depth or charging rate. , deterioration of the positive electrode active material 100 can be suppressed.
 またアルミニウムは周囲のコバルトの溶出を抑制し、連続充電耐性を向上する効果がある。またAl−Oの結合はCo−O結合よりも強いため、アルミニウムの周囲の酸素の脱離を抑制することができる。これらの効果により、熱安定性が向上する。そのため添加元素としてアルミニウムを有すると、二次電池に正極活物質100を用いたときの安全性を向上できる。また充放電を繰り返しても結晶構造が崩れにくい正極活物質100とすることができる。 Additionally, aluminum has the effect of suppressing the elution of surrounding cobalt and improving continuous charging resistance. Furthermore, since the Al--O bond is stronger than the Co--O bond, desorption of oxygen around aluminum can be suppressed. These effects improve thermal stability. Therefore, when aluminum is included as an additive element, safety can be improved when the positive electrode active material 100 is used in a secondary battery. Moreover, the positive electrode active material 100 can be made such that the crystal structure does not easily collapse even after repeated charging and discharging.
 一方でアルミニウムが過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。 On the other hand, if aluminum is present in excess, there is a risk that insertion and deintercalation of lithium will be adversely affected.
 そのため正極活物質100全体が有するアルミニウムが適切な量であることが好ましい。例えば正極活物質100の全体が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.3%以上1.5%以下がより好ましい。または0.05%以上2%以下が好ましい。または0.1%以上4%以下が好ましい。ここでいう正極活物質100全体が有する量とは例えば、GD−MS、ICP−MS等を用いて正極活物質100の全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。 Therefore, it is preferable that the entire positive electrode active material 100 has an appropriate amount of aluminum. For example, the number of aluminum atoms contained in the entire positive electrode active material 100 is preferably 0.05% or more and 4% or less, preferably 0.1% or more and 2% or less, and 0.3% or more and 1.5% or less of the number of cobalt atoms. % or less is more preferable. Or preferably 0.05% or more and 2% or less. Or preferably 0.1% or more and 4% or less. The amount that the entire positive electrode active material 100 has here may be, for example, a value obtained by elemental analysis of the entire positive electrode active material 100 using GD-MS, ICP-MS, etc., or the amount that the entire positive electrode active material 100 has. It may also be based on the value of the composition of raw materials during the production process.
〔フッ素〕
 フッ素は1価の陰イオンであり、表層部100aにおいて酸素の一部がフッ素に置換されていると、リチウム脱離エネルギーが小さくなる。これは、リチウム脱離に伴うコバルトイオンの酸化還元電位が、フッ素の有無によって異なることによる。つまりフッ素を有さない場合は、リチウム脱離に伴いコバルトイオンは3価から4価に変化する。一方フッ素を有する場合は、リチウム脱離に伴いコバルトイオンは2価から3価に変化する。両者で、コバルトイオンの酸化還元電位が異なる。そのため正極活物質100の表層部100aにおいて酸素の一部がフッ素に置換されていると、フッ素近傍のリチウムイオンの脱離および挿入がスムースに起きやすいと言える。そのため正極活物質100を二次電池に用いたときに充放電特性、大電流特性等を向上させることができる。また電解液に接する部分である表面を有する表層部100aにフッ素が存在することで、または表面にフッ化物が付着することで、正極活物質100と、電解液との過剰な反応を抑制することができる。またフッ酸に対する耐食性を効果的に向上させることができる。
[Fluorine]
Fluorine is a monovalent anion, and when part of the oxygen in the surface layer portion 100a is replaced with fluorine, the lithium desorption energy decreases. This is because the redox potential of cobalt ions accompanying lithium desorption differs depending on the presence or absence of fluorine. In other words, when fluorine is not present, cobalt ions change from trivalent to tetravalent as lithium is eliminated. On the other hand, when fluorine is present, cobalt ions change from divalent to trivalent as lithium is eliminated. The redox potential of cobalt ions is different between the two. Therefore, if part of the oxygen in the surface layer 100a of the positive electrode active material 100 is replaced with fluorine, it can be said that desorption and insertion of lithium ions near fluorine are likely to occur smoothly. Therefore, when the positive electrode active material 100 is used in a secondary battery, charging/discharging characteristics, large current characteristics, etc. can be improved. In addition, the presence of fluorine in the surface layer portion 100a, which has a surface that is in contact with the electrolytic solution, or the adhesion of fluoride to the surface suppresses excessive reaction between the positive electrode active material 100 and the electrolytic solution. Can be done. Furthermore, corrosion resistance against hydrofluoric acid can be effectively improved.
 またフッ化リチウムをはじめとするフッ化物の融点が、他の添加元素源の融点より低い場合、その他の添加元素源の融点を下げる融剤(フラックス剤ともいう)として機能しうる。図12(非特許文献13、図5より引用し加筆)に示すようにLiFとMgFの共融点Pは742℃付近(T1)である。そのため、フッ化物としてLiF及びMgFを有する混合フッ化物を添加元素源に用いる場合は、添加元素を混合した後の加熱工程において、加熱温度を742℃以上とすると好ましい。 Further, when the melting point of fluoride such as lithium fluoride is lower than the melting point of other additive element sources, it can function as a fluxing agent (also referred to as a fluxing agent) that lowers the melting point of the other additive element sources. As shown in FIG. 12 (quoted and added from Non-Patent Document 13, FIG. 5), the eutectic point P of LiF and MgF 2 is around 742° C. (T1). Therefore, when a mixed fluoride containing LiF and MgF 2 as the fluoride is used as an additive element source, it is preferable to set the heating temperature to 742° C. or higher in the heating step after mixing the additive elements.
 ここで、混合フッ化物および混合物についての示差走査熱量測定(DSC測定)について図13を用いて説明する。図13において混合フッ化物と付したカーブは、LiFおよびMgFの混合物のDSC測定の結果である。混合フッ化物は、LiF:MgF=1:3(モル比)となるように混合して作製した。図13において混合物と付したカーブは、コバルト酸リチウム、LiFおよびMgFを用いて混合した混合物のDSC測定の結果である。混合物は、LiCoO:LiF:MgF=100:0.33:1(モル比)となるように混合して作製した。 Here, differential scanning calorimetry (DSC measurement) for mixed fluorides and mixtures will be explained using FIG. 13. The curve labeled mixed fluoride in FIG. 13 is the result of a DSC measurement of a mixture of LiF and MgF2 . The mixed fluoride was prepared by mixing LiF:MgF 2 at a molar ratio of 1:3. The curve labeled “Mixture” in FIG. 13 is the result of DSC measurement of a mixture of lithium cobalt oxide, LiF and MgF 2 . The mixture was prepared by mixing LiCoO 2 :LiF:MgF 2 =100:0.33:1 (molar ratio).
 図13に示すように、混合フッ化物では735℃付近に吸熱ピークが観測される。また混合物では830℃付近に吸熱ピークが観測される。よって、添加元素を混合した後の加熱温度としては、742℃以上が好ましく、830℃以上がより好ましい。またこれらの間である800℃(図12中のT2)以上でもよい。 As shown in FIG. 13, an endothermic peak is observed around 735°C in the mixed fluoride. In addition, an endothermic peak is observed in the mixture at around 830°C. Therefore, the heating temperature after mixing the additive elements is preferably 742°C or higher, more preferably 830°C or higher. Further, the temperature may be 800° C. (T2 in FIG. 12) or higher, which is between these values.
〔その他の添加元素〕
 チタンの酸化物は超親水性を有することが知られている。そのため、表層部100aにチタン酸化物を有する正極活物質100とすることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質100と、極性の高い電解液との界面の接触が良好となり、内部抵抗の上昇を抑制できる可能性がある。
[Other additive elements]
Titanium oxides are known to have superhydrophilic properties. Therefore, by using the positive electrode active material 100 having titanium oxide in the surface layer portion 100a, the wettability with respect to a highly polar solvent may be improved. When used as a secondary battery, the interface between the positive electrode active material 100 and the highly polar electrolytic solution becomes good, and there is a possibility that an increase in internal resistance can be suppressed.
 またリンを表層部100aに有すると、LiCoO中のxが小さい状態を保持した場合において、ショートを抑制できる場合があり好ましい。例えばリンと酸素を含む化合物として表層部100aに存在することが好ましい。 Further, it is preferable to have phosphorus in the surface layer portion 100a because short circuits may be suppressed when x in Li x CoO 2 is maintained in a small state. For example, it is preferable to exist in the surface layer portion 100a as a compound containing phosphorus and oxygen.
 正極活物質100がリンを有する場合には、電解液または電解質の分解により発生したフッ化水素とリンが反応し、電解質中のフッ化水素濃度を低下できる可能性があり好ましい。 When the positive electrode active material 100 contains phosphorus, it is preferable because the phosphorus reacts with hydrogen fluoride generated by decomposition of the electrolytic solution or electrolyte, and there is a possibility that the hydrogen fluoride concentration in the electrolyte can be reduced.
 電解質がLiPFを有する場合、加水分解により、フッ化水素が発生する恐れがある。また、正極の構成要素として用いられるポリフッ化ビニリデン(PVDF)とアルカリとの反応によりフッ化水素が発生する恐れもある。電解質中のフッ化水素濃度が低下することにより、集電体の腐食および/または被覆部104のはがれを抑制できる場合がある。また、PVDFのゲル化および/または不溶化による接着性の低下を抑制できる場合がある。 When the electrolyte contains LiPF 6 , hydrogen fluoride may be generated due to hydrolysis. Furthermore, there is a possibility that hydrogen fluoride may be generated due to the reaction between polyvinylidene fluoride (PVDF) used as a component of the positive electrode and an alkali. By reducing the concentration of hydrogen fluoride in the electrolyte, corrosion of the current collector and/or peeling of the coating portion 104 may be suppressed. Further, it may be possible to suppress a decrease in adhesiveness due to gelation and/or insolubilization of PVDF.
 正極活物質100がマグネシウムと共にリンを有すると、LiCoO中のxが小さい状態における安定性が極めて高くなり好ましい。正極活物質100がリンを有する場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましい。または1%以上10%以下が好ましい。または1%以上8%以下が好ましい。または2%以上20%以下が好ましい。または2%以上8%以下が好ましい。または3%以上20%以下が好ましい。または3%以上10%以下が好ましい。加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がより好ましい。または0.1%以上5%以下が好ましい。または0.1%以上4%以下が好ましい。または0.5%以上10%以下が好ましい。または0.5%以上4%以下が好ましい。または0.7%以上10%以下が好ましい。または0.7%以上5%以下が好ましい。ここで示すリンおよびマグネシウムの濃度は例えば、GD−MS、ICP−MS等を用いて正極活物質100の全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。 It is preferable that the positive electrode active material 100 contains phosphorus together with magnesium because stability in a state where x in Li x CoO 2 is small is extremely high. When the positive electrode active material 100 contains phosphorus, the number of phosphorus atoms is preferably 1% or more and 20% or less of the number of cobalt atoms, more preferably 2% or more and 10% or less, and even more preferably 3% or more and 8% or less. Or preferably 1% or more and 10% or less. Or preferably 1% or more and 8% or less. Or preferably 2% or more and 20% or less. Or preferably 2% or more and 8% or less. Or preferably 3% or more and 20% or less. Or preferably 3% or more and 10% or less. In addition, the number of magnesium atoms is preferably 0.1% or more and 10% or less of the number of cobalt atoms, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less. Or preferably 0.1% or more and 5% or less. Or preferably 0.1% or more and 4% or less. Or preferably 0.5% or more and 10% or less. Or preferably 0.5% or more and 4% or less. Or preferably 0.7% or more and 10% or less. Or preferably 0.7% or more and 5% or less. The concentrations of phosphorus and magnesium shown here may be, for example, values obtained by elemental analysis of the entire positive electrode active material 100 using GD-MS, ICP-MS, etc., or values obtained during the manufacturing process of the positive electrode active material 100. It may be based on the value of the raw material composition in .
 また正極活物質100がクラックを有する場合、クラックを表面とした正極活物質の内部、例えば埋め込み部102にリン、より具体的には例えばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制されうる。 Further, when the positive electrode active material 100 has a crack, the crack progresses due to the presence of phosphorus, more specifically, a compound containing phosphorus and oxygen, inside the positive electrode active material with the crack as the surface, for example, in the embedded part 102. can be suppressed.
〔複数の添加元素の相乗効果〕
 さらに表層部100aにマグネシウムとニッケルを併せて有する場合、2価のマグネシウムの近くでは2価のニッケルがより安定に存在できる可能性がある。そのためLiCoO中のxが小さい状態でもマグネシウムの溶出が抑制されうる。そのため表層部100aの安定化に寄与しうる。
[Synergistic effect of multiple additive elements]
Furthermore, when the surface layer portion 100a contains both magnesium and nickel, there is a possibility that divalent nickel can exist more stably near divalent magnesium. Therefore, elution of magnesium can be suppressed even when x in Li x CoO 2 is small. Therefore, it can contribute to stabilization of the surface layer portion 100a.
 同様の理由で、作製工程においては、コバルト酸リチウムに添加元素を加える際、マグネシウムはニッケルよりも前の工程で添加されることが好ましい。またはマグネシウムとニッケルは同じ工程で添加されることが好ましい。マグネシウムはイオン半径が大きく、どの工程で添加してもコバルト酸リチウムの表層部に留まりやすいのに対して、ニッケルはマグネシウムが存在しない場合、コバルト酸リチウムの内部に広く拡散しうる。そのためマグネシウムの前にニッケルが添加されると、ニッケルがコバルト酸リチウムの内部に拡散してしまい、表層部に好ましい量で残らない懸念がある。 For the same reason, when adding additive elements to lithium cobalt oxide in the manufacturing process, it is preferable that magnesium be added in a step before nickel. Alternatively, it is preferable that magnesium and nickel are added in the same step. Magnesium has a large ionic radius and tends to remain in the surface layer of lithium cobalt oxide no matter what process it is added to, whereas nickel can diffuse widely into the interior of lithium cobalt oxide if magnesium is not present. Therefore, if nickel is added before magnesium, there is a concern that nickel will diffuse into the interior of lithium cobalt oxide and will not remain in the desired amount on the surface layer.
 また分布が異なる添加元素を併せて有すると、より広い領域の結晶構造を安定化でき好ましい。例えば正極活物質100は表層部100aのなかでもより表面に近い領域に分布するマグネシウムおよびニッケルと、これらよりも深い領域に分布するアルミニウムと、を共に有すると、いずれかしか有さない場合よりも広い領域の結晶構造を安定化できる。このように正極活物質100が分布の異なる添加元素を併せて有する場合は、表面の安定化はマグネシウム、ニッケル等によって十分に果たせるため、アルミニウムは表面に必須ではない。むしろアルミニウムはより深い領域に広く分布することが好ましい。例えば表面から深さ方向1nm以上25nm以下の領域では連続的にアルミニウムが検出されることが好ましい。表面から0nm以上100nm以下の領域、好ましくは表面から0.5nm以上50nm以内の領域に広く分布する方が、より広い領域の結晶構造を安定化でき好ましい。 It is also preferable to have additional elements with different distributions, as this can stabilize the crystal structure over a wider area. For example, if the positive electrode active material 100 has both magnesium and nickel distributed in a region closer to the surface in the surface layer portion 100a, and aluminum distributed in a deeper region than these, the positive electrode active material 100 is more It is possible to stabilize the crystal structure in a wide range. In this way, when the positive electrode active material 100 has additional elements with different distributions, aluminum is not essential for the surface because the surface can be sufficiently stabilized by magnesium, nickel, etc. Rather, it is preferable that aluminum is widely distributed in a deeper region. For example, it is preferable that aluminum is continuously detected in a region from the surface in a depth direction of 1 nm or more and 25 nm or less. It is preferable that the crystal structure be widely distributed in a region of 0 nm or more and 100 nm or less from the surface, preferably 0.5 nm or more and 50 nm or less from the surface, since the crystal structure can be stabilized over a wider region.
 上記のように複数の添加元素を有すると、それぞれの添加元素の効果が相乗し表層部100aのさらなる安定化に寄与しうる。特にマグネシウム、ニッケルおよびアルミニウムを有すると安定な組成および結晶構造とする効果が高く好ましい。 When a plurality of additive elements are included as described above, the effects of each additive element can be synergized and contribute to further stabilization of the surface layer portion 100a. In particular, magnesium, nickel and aluminum are highly effective in providing a stable composition and crystal structure.
 ただし表層部100aが添加元素と酸素の化合物のみで占められると、リチウムの挿入脱離が難しくなってしまうため好ましくない。例えば表層部100aが、MgO、MgOとNiO(II)が固溶した構造、および/またはMgOとCoO(II)が固溶した構造のみで占められるのは好ましくない。そのため表層部100aは少なくともコバルトを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。 However, if the surface layer portion 100a is occupied only by the compound of the additive element and oxygen, it is not preferable because it becomes difficult to insert and extract lithium. For example, it is not preferable that the surface layer portion 100a is occupied only by MgO, a structure in which MgO and NiO(II) are dissolved in solid solution, and/or a structure in which MgO and CoO(II) are dissolved in solid solution. Therefore, the surface layer portion 100a must contain at least cobalt, also contain lithium in the discharge state, and have a path for inserting and extracting lithium.
 十分にリチウムの挿入脱離の経路を確保するために、表層部100aはマグネシウムよりもコバルトの濃度が高いことが好ましい。例えばXPSで正極活物質100の表面から測定したとき、マグネシウムの原子数Mgとコバルトの原子数Coの比Mg/Coは0.62以下であることが好ましい。また表層部100aはニッケルよりもコバルトの濃度が高いことが好ましい。また表層部100aはアルミニウムよりもコバルトの濃度が高いことが好ましい。また表層部100aはフッ素よりもコバルトの濃度が高いことが好ましい。 In order to ensure a sufficient path for insertion and desorption of lithium, it is preferable that the surface layer portion 100a has a higher concentration of cobalt than magnesium. For example, when measured from the surface of the positive electrode active material 100 by XPS, the ratio Mg/Co of the number of atoms of magnesium to the number of atoms of cobalt, Co, is preferably 0.62 or less. Further, it is preferable that the surface layer portion 100a has a higher concentration of cobalt than nickel. Further, it is preferable that the surface layer portion 100a has a higher concentration of cobalt than aluminum. Further, it is preferable that the surface layer portion 100a has a higher concentration of cobalt than fluorine.
 さらにニッケルが多すぎるとリチウムの拡散を阻害する恐れがあるため、表層部100aはニッケルよりもマグネシウムの濃度が高いことが好ましい。例えばXPSで正極活物質100の表面から測定したとき、ニッケルの原子数はマグネシウムの原子数の1/6以下であることが好ましい。 Furthermore, since too much nickel may inhibit the diffusion of lithium, it is preferable that the surface layer portion 100a has a higher concentration of magnesium than nickel. For example, when measured from the surface of the positive electrode active material 100 by XPS, the number of nickel atoms is preferably 1/6 or less of the number of magnesium atoms.
 また添加元素の一部、特にマグネシウム、ニッケルおよびアルミニウムは、内部100bよりも表層部100aの濃度が高いことが好ましいものの、内部100bにもランダムかつ希薄に存在することが好ましい。マグネシウムおよびアルミニウムが内部100bのリチウムサイトに適切な濃度で存在すると、上記と同様に層状岩塩型の結晶構造を保持しやすくできるといった効果がある。またニッケルが内部100bに適切な濃度で存在すると、上記と同様にコバルトと酸素の8面体からなる層状構造のずれが抑制されうる。またマグネシウムとニッケルを併せて有する場合も上記と同様にマグネシウムの溶出を抑制する相乗効果が期待できる。 Although some of the additive elements, particularly magnesium, nickel, and aluminum, are preferably present in a higher concentration in the surface layer 100a than in the interior 100b, they are also preferably randomly and dilutely present in the interior 100b. When magnesium and aluminum are present at appropriate concentrations in the lithium sites in the interior 100b, there is an effect that the layered rock salt type crystal structure can be easily maintained, similar to the above. Furthermore, if nickel exists in the interior 100b at an appropriate concentration, the shift of the layered structure consisting of octahedrons of cobalt and oxygen can be suppressed in the same manner as described above. Further, when magnesium and nickel are contained together, a synergistic effect of suppressing the elution of magnesium can be expected as described above.
 上述のような添加元素の濃度勾配に起因して、内部100bから、表面に向かって結晶構造が連続的に変化することが好ましい。または表層部100aと内部100bの結晶の配向が概略一致していることが好ましい。 It is preferable that the crystal structure changes continuously from the interior 100b toward the surface due to the concentration gradient of the additive element as described above. Alternatively, it is preferable that the crystal orientations of the surface layer portion 100a and the interior portion 100b are approximately the same.
 例えば層状岩塩型の内部100bから、岩塩型、または岩塩型と層状岩塩型の両方の特徴を有する表面および表層部100aに向かって結晶構造が連続的に変化することが好ましい。または岩塩型、または岩塩型と層状岩塩型の両方の特徴を有する表層部100aと、層状岩塩型の内部100bの結晶の配向が概略一致していることが好ましい。 For example, it is preferable that the crystal structure changes continuously from the layered rock salt-type interior 100b toward the surface and surface layer portion 100a that has the characteristics of the rock salt type or both the rock salt type and the layered rock salt type. Alternatively, it is preferable that the crystal orientations of the surface layer portion 100a, which has the characteristics of a rock salt type or both of a rock salt type and a layered rock salt type, and the crystal orientation of the layered rock salt type interior 100b are generally the same.
 なお本明細書等において、リチウムとコバルトをはじめとする遷移金属を含む複合酸化物が有する、空間群R−3mに帰属する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。 In this specification, etc., the layered rock salt type crystal structure belonging to space group R-3m, which is possessed by a composite oxide containing transition metals such as lithium and cobalt, refers to a structure in which cations and anions are arranged alternately. It has a rock salt-type ion arrangement, and the transition metal and lithium are regularly arranged to form a two-dimensional plane, so it is a crystal structure that allows two-dimensional diffusion of lithium. Note that there may be defects such as cation or anion deficiency. Strictly speaking, the layered rock salt crystal structure may have a structure in which the lattice of the rock salt crystal is distorted.
 また岩塩型の結晶構造とは、空間群Fm−3mに属する結晶構造をはじめとする立方晶系の結晶構造を有し、陽イオンと陰イオンが交互に配列している構造をいう。なお陽イオンまたは陰イオンの欠損があってもよい。 Further, the term "rock salt type crystal structure" refers to a structure having a cubic system crystal structure, such as a crystal structure belonging to the space group Fm-3m, in which cations and anions are arranged alternately. Note that there may be a deficiency of cations or anions.
 また層状岩塩型と岩塩型の結晶構造の特徴の両方を有することは、電子線回折、TEM像、断面STEM像等によって判断することができる。 Furthermore, the presence of both layered rock salt type and rock salt type crystal structure characteristics can be determined by electron beam diffraction, TEM images, cross-sectional STEM images, etc.
 岩塩型は陽イオンのサイトに区別がないが、層状岩塩型は結晶構造の陽イオンのサイトが2種あり、1つはリチウムが大半を占有し、もう1つは遷移金属が占有する。陽イオンの二次元平面と陰イオンの二次元平面とが交互に配列する積層構造は、岩塩型も層状岩塩型も同じである。この二次元平面を形成する結晶面に対応する電子線回折パターンの輝点の中で、中心のスポット(透過斑点)を原点000とした際、中心のスポットに最も近い輝点は、理想的な状態の岩塩型では例えば(111)面、層状岩塩型では例えば(003)面になる。例えば岩塩型MgOと層状岩塩型LiCoOの電子線回折パターンを比較する場合、LiCoOの(003)面の輝点間の距離は、MgOの(111)面の輝点間の距離のおよそ半分程度の距離に観察される。そのため分析領域に、例えば岩塩型MgOと層状岩塩型LiCoOの2相を有する場合、電子線回折パターンでは、強い輝度の輝点と、弱い輝度の輝点とが交互に配列する面方位が存在する。岩塩型と層状岩塩型で共通する輝点は強い輝度となり、層状岩塩型のみで生じる輝点は弱い輝度となる。 The rock salt type has no distinction in cation sites, but the layered rock salt type has two types of cation sites in its crystal structure, one mostly occupied by lithium and the other occupied by transition metals. The layered structure in which two-dimensional planes of cations and two-dimensional planes of anions are arranged alternately is the same for both the rock salt type and the layered rock salt type. Among the bright spots of the electron beam diffraction pattern corresponding to the crystal planes forming this two-dimensional plane, when the central spot (transparent spot) is set as the origin 000, the bright spot closest to the central spot is the ideal one. For example, a state rock salt type has a (111) plane, and a layered rock salt type has a (003) plane, for example. For example, when comparing the electron diffraction patterns of rock salt type MgO and layered rock salt type LiCoO 2 , the distance between the bright spots on the (003) plane of LiCoO 2 is approximately half the distance between the bright spots on the (111) plane of MgO. observed at a distance of about Therefore, when the analysis region has two phases, for example, rock salt type MgO and layered rock salt type LiCoO2 , the electron diffraction pattern has a plane orientation in which bright spots with strong brightness and bright spots with weak brightness are arranged alternately. do. Bright spots common to the halite type and layered halite type have strong brightness, and bright spots that occur only in the layered halite type have weak brightness.
 また断面STEM像等では、層状岩塩型の結晶構造をc軸に垂直な方向から観察したとき、強い輝度で観察される層と、弱い輝度で観察される層が交互に観察される。岩塩型は陽イオンのサイトに区別がないためこのような特徴はみられない。岩塩型と層状岩塩型の両方の特徴を有する結晶構造の場合、特定の結晶方位から観察すると、断面STEM像等では強い輝度で観察される層と、弱い輝度で観察される層が交互に観察され、さらに弱い輝度の層、すなわちリチウム層の一部にリチウムより原子番号の大きい金属が存在する。 In addition, in a cross-sectional STEM image, etc., when a layered rock salt crystal structure is observed from a direction perpendicular to the c-axis, layers observed with strong brightness and layers observed with weak brightness are observed alternately. The rock salt type does not have these characteristics because there is no distinction in the cation sites. In the case of a crystal structure that has the characteristics of both a rock salt type and a layered rock salt type, when observed from a specific crystal orientation, layers that are observed with strong brightness and layers that are observed with weak brightness are observed alternately in cross-sectional STEM images, etc. In addition, a metal with a higher atomic number than lithium exists in a part of the lithium layer, which has an even weaker brightness.
 層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。後述するO3’型および単斜晶O1(15)結晶も、陰イオンは立方最密充填構造をとると推定される。そのため層状岩塩型結晶と岩塩型結晶が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。 Layered rock salt crystals and anions of rock salt crystals have a cubic close-packed structure (face-centered cubic lattice structure). In the O3'-type and monoclinic O1(15) crystals described below, the anions are also presumed to have a cubic close-packed structure. Therefore, when a layered rock salt crystal and a rock salt crystal come into contact, there is a crystal plane in which the cubic close-packed structure composed of anions is oriented in the same direction.
 または、以下のように説明することもできる。立方晶の結晶構造の{111}面における陰イオンは三角格子を有する。層状岩塩型は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の(0001)面は六角格子を有する。立方晶{111}面の三角格子は、層状岩塩型の(0001)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。 Alternatively, it can also be explained as follows. Anions in the {111} plane of the cubic crystal structure have a triangular lattice. The layered rock salt type has a space group R-3m and has a rhombohedral structure, but to facilitate understanding of the structure, it is generally expressed as a complex hexagonal lattice, and the (0001) plane of the layered rock salt type has a hexagonal lattice. The triangular lattice of the cubic {111} plane has an atomic arrangement similar to the hexagonal lattice of the (0001) plane of the layered rock salt type. When both lattices are consistent, it can be said that the orientations of the cubic close-packed structures are aligned.
 ただし、層状岩塩型結晶およびO3’型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶およびO3’型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、O3’型および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。また、結晶の配向が概略一致するような三次元的な構造上の類似性を有すること、または結晶学的に同じ配向であることをトポタキシ(topotaxy)という。 However, the space group of layered rock salt crystals and O3' type crystals is R-3m, which is different from the space group Fm-3m of rock salt crystals (the space group of general rock salt crystals), so the above conditions are The Miller index of the crystal planes to be satisfied is different between a layered rock salt type crystal and an O3' type crystal and a rock salt type crystal. In this specification, in a layered rock salt type crystal, an O3' type crystal, and a rock salt type crystal, when the directions of the cubic close-packed structures constituted by anions are aligned, it may be said that the orientations of the crystals are approximately the same. Furthermore, having three-dimensional structural similarity such that the crystal orientations roughly match, or having the same crystallographic orientation is called topotaxy.
 二つの領域の結晶の配向が概略一致することは、TEM(Transmission Electron Microscope、透過電子顕微鏡)像、STEM(Scanning Transmission Electron Microscope、走査透過電子顕微鏡)像、HAADF−STEM(High−angle Annular Dark Field Scanning TEM、高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(Annular Bright−Field Scanning Transmission Electron Microscope、環状明視野走査透過電子顕微鏡)像、電子線回折パターン等から判断することができる。またTEM像のFFTパターン、およびSTEM像等のFFTパターンによっても判断することができる。さらにXRD(X−ray Diffraction、X線回折)、中性子線回折等も判断の材料にすることができる。 The fact that the orientations of the crystals in the two regions roughly match can be seen in TEM (Transmission Electron Microscope) images and STEM (Scanning Transmission Electron Microscope) images. , HAADF-STEM (High-angle Annular Dark Field Scanning TEM (high-angle scattering annular dark-field scanning transmission electron microscope) image, ABF-STEM (annular bright-field scanning transmission electron microscope) image , an electron beam diffraction pattern, etc. It can also be determined based on FFT patterns of TEM images, STEM images, etc. Furthermore, XRD (X-ray diffraction), neutron beam diffraction, etc. can also be used as materials for judgment.
 図14に、層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているTEM像の例を示す。TEM像、STEM像、HAADF−STEM像、ABF−STEM像等では、結晶構造を反映した像が得られる。 FIG. 14 shows an example of a TEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are approximately the same. A TEM image, a STEM image, a HAADF-STEM image, an ABF-STEM image, etc., provide images that reflect the crystal structure.
 例えばTEMの高分解能像等では、結晶面に由来するコントラストが得られる。電子線の回折および干渉によって、例えば層状岩塩型の複合六方格子のc軸と垂直に電子線が入射した場合、(0003)面に由来するコントラストが明るい帯(明るいストリップ)と暗い帯(暗いストリップ)の繰り返しとして得られる。そのためTEM像において明線と暗線の繰り返しが観察され、明線同士(例えば図14に示すLRSとLLRS)の角度が5度以下、または2.5度以下である場合、結晶面が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。 For example, in a high-resolution TEM image, contrast derived from crystal planes can be obtained. Due to electron beam diffraction and interference, for example, when an electron beam is incident perpendicularly to the c-axis of a layered rock-salt complex hexagonal lattice, the contrast originating from the (0003) plane is divided into bright bands (bright strips) and dark bands (dark strips). ) is obtained by repeating. Therefore, repeating bright lines and dark lines are observed in the TEM image, and if the angle between the bright lines (for example, L RS and L LRS shown in FIG. 14) is 5 degrees or less or 2.5 degrees or less, the crystal plane is approximately It can be determined that they match, that is, the crystal orientations approximately match. Similarly, when the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less, it can be determined that the orientations of the crystals approximately match.
 またHAADF−STEM像では、原子番号に比例したコントラストが得られ、原子番号が大きい元素ほど明るく観察される。例えば空間群R−3mに属する層状岩塩型のコバルト酸リチウムの場合、コバルト(原子番号27)が最も原子番号が大きいため、コバルト原子の位置で電子線が強く散乱され、コバルト原子の配列が明線もしくは強い輝度の点の配列として観察される。そのため層状岩塩型の結晶構造を有するコバルト酸リチウムをc軸と垂直に観察した場合、c軸と垂直にコバルト原子の配列が明線もしくは強い輝度の点の配列として観察され、リチウム原子、酸素原子の配列は暗線もしくは輝度の低い領域として観察される。コバルト酸リチウムの添加元素としてフッ素(原子番号9)およびマグネシウム(原子番号12)を有する場合も同様である。 Furthermore, in the HAADF-STEM image, a contrast proportional to the atomic number is obtained, and elements with larger atomic numbers are observed brighter. For example, in the case of layered rock salt type lithium cobalt oxide belonging to space group R-3m, cobalt (atomic number 27) has the highest atomic number, so the electron beam is strongly scattered at the position of the cobalt atom, making the arrangement of the cobalt atoms clear. It can be observed as a line or as an array of bright points. Therefore, when lithium cobalt oxide, which has a layered rock salt crystal structure, is observed perpendicular to the c-axis, the arrangement of cobalt atoms perpendicular to the c-axis is observed as a bright line or an arrangement of strong bright points, and lithium atoms and oxygen atoms are observed perpendicularly to the c-axis. The arrangement is observed as a dark line or region of low brightness. The same applies to the case where lithium cobalt oxide contains fluorine (atomic number 9) and magnesium (atomic number 12) as additive elements.
 そのためHAADF−STEM像において、結晶構造の異なる二つの領域で明線と暗線の繰り返しが観察され、明線同士の角度が5度以下、または2.5度以下である場合、原子の配列が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。 Therefore, in a HAADF-STEM image, repeating bright lines and dark lines are observed in two regions with different crystal structures, and if the angle between the bright lines is 5 degrees or less or 2.5 degrees or less, the atomic arrangement is approximately It can be determined that they match, that is, the crystal orientations approximately match. Similarly, when the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less, it can be determined that the orientations of the crystals approximately match.
 なおABF−STEMでは原子番号が小さい元素ほど明るく観察されるが、原子番号に応じたコントラストが得られる点ではHAADF−STEMと同様であるため、HAADF−STEM像と同様に結晶の配向を判断することができる。 Note that in ABF-STEM, elements with smaller atomic numbers are observed brighter, but since it is similar to HAADF-STEM in that contrast depending on the atomic number can be obtained, the crystal orientation is determined in the same way as in HAADF-STEM images. be able to.
 図15Aに層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているSTEM像の例を示す。岩塩型結晶RSの領域のFFTパターンを図15Bに、層状岩塩型結晶LRSの領域のFFTパターンを図15Cに示す。図15Bおよび図15Cの左に組成、JCPDSのカードナンバー、およびJCPDSカードのデータから計算されるd値および角度を示す。右に実測値を示す。Oを付したスポットは0次回折である。 FIG. 15A shows an example of a STEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are approximately the same. FIG. 15B shows the FFT pattern of the region of the rock salt crystal RS, and FIG. 15C shows the FFT pattern of the region of the layered rock salt crystal LRS. The left side of FIGS. 15B and 15C shows the composition, the JCPDS card number, and the d value and angle calculated from the JCPDS card data. Actual measurements are shown on the right. Spots marked with O are 0th order diffraction.
 図15BでAを付したスポットは立方晶の11−1反射に由来するものである。図15CでAを付したスポットは層状岩塩型の0003反射に由来するものである。図15Bおよび図15Cから、立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致していることがわかる。すなわち図15BのAOを通る直線と、図15CのAOを通る直線と、が概略平行であることがわかる。ここでいう概略一致および概略平行とは、角度が5度以下、または2.5度以下であることをいう。 The spots labeled A in FIG. 15B originate from the 11-1 reflection of the cubic crystal. The spots labeled A in FIG. 15C are derived from layered rock salt type 0003 reflections. It can be seen from FIGS. 15B and 15C that the orientation of the 11-1 reflection of the cubic crystal and the orientation of the 0003 reflection of the layered rock salt type roughly match. That is, it can be seen that the straight line passing through AO in FIG. 15B and the straight line passing through AO in FIG. 15C are approximately parallel. As used herein, "approximately matching" and "approximately parallel" mean that the angle is 5 degrees or less, or 2.5 degrees or less.
 このようにFFTパターンおよび電子線回折パターンでは、層状岩塩型結晶と岩塩型結晶の配向が概略一致していると、層状岩塩型の〈0003〉方位と、岩塩型の〈11−1〉方位と、が概略一致する場合がある。このとき、これらの逆格子点はスポット状であること、つまり他の逆格子点と連続していないことが好ましい。逆格子点がスポット状で、他の逆格子点と連続していないことは、結晶性が高いことを意味する。 In this way, in the FFT pattern and the electron diffraction pattern, if the orientations of the layered rock salt type crystal and the rock salt type crystal roughly match, the <0003> orientation of the layered rock salt type and the <11-1> orientation of the rock salt type. , may roughly match. At this time, it is preferable that these reciprocal lattice points are spot-like, that is, not continuous with other reciprocal lattice points. The fact that the reciprocal lattice points are spot-like and not continuous with other reciprocal lattice points means that the crystallinity is high.
 また、上述のように立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致している場合、電子線の入射方位によっては、層状岩塩型の0003反射の方位とは異なる逆格子空間上に、層状岩塩型の0003反射由来ではないスポットが観測されることがある。例えば図15CでBを付したスポットは、層状岩塩型の1014反射に由来するものである。これは、層状岩塩型の0003反射由来の逆格子点(図15CのA)の方位から、52°以上56°以下の角度であり(すなわち∠AOBが52°以上56°以下であり)、dが0.19nm以上0.21nm以下の箇所に観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、0003と1014と等価な逆格子点でも良い。 Furthermore, if the direction of the 11-1 reflection of the cubic crystal and the direction of the 0003 reflection of the layered rock salt type are approximately the same as described above, depending on the incident direction of the electron beam, the direction of the 0003 reflection of the layered rock salt type may vary. On a reciprocal lattice space different from the orientation, a spot that is not derived from layered rock salt type 0003 reflection may be observed. For example, the spots labeled B in FIG. 15C are derived from layered rock salt type 1014 reflections. This is an angle of 52° or more and 56° or less (that is, ∠AOB is 52° or more and 56° or less) from the orientation of the reciprocal lattice point (A in Figure 15C) derived from the 0003 reflection of the layered rock salt type, and d may be observed at a location of 0.19 nm or more and 0.21 nm or less. Note that this index is just an example, and does not necessarily have to match this index. For example, reciprocal lattice points equivalent to 0003 and 1014 may be used.
 同様に立方晶の11−1反射が観測された方位とは別の逆格子空間上に、立方晶の11−1反射由来ではないスポットが観測されることがある。例えば、図15BでBを付したスポットは、立方晶の200反射に由来するものである。これは、立方晶の11−1反射由来の逆格子点(図15BのA)の方位から、54°以上56°以下の角度である(すなわち∠AOBが54°以上56°以下である)箇所に回折スポットが観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、11−1と200と等価な逆格子点でも良い。 Similarly, a spot that is not derived from the 11-1 reflection of the cubic crystal may be observed on a reciprocal lattice space different from the direction in which the 11-1 reflection of the cubic crystal was observed. For example, the spot labeled B in FIG. 15B is derived from 200 reflections of a cubic crystal. This is a point that is at an angle of 54° or more and 56° or less (that is, ∠AOB is 54° or more and 56° or less) from the orientation of the reciprocal lattice point (A in Figure 15B) derived from the 11-1 reflection of the cubic crystal. Diffraction spots may be observed. Note that this index is just an example, and does not necessarily have to match this index. For example, reciprocal lattice points equivalent to 11-1 and 200 may be used.
 なお、コバルト酸リチウムをはじめとする層状岩塩型の正極活物質は、(0003)面およびこれと等価な面、並びに(10−14)面およびこれと等価な面が結晶面として現れやすいことが知られている。そのため例えば(0003)面をTEM等で観察する場合は、まずSEM等で(0003)面と予想される結晶面が観察される正極活物質粒子を選び、TEM等において電子線が[12−10]入射として(0003)面を観察できるように当該正極活物質粒子をFIB等で薄片加工するとよい。結晶の配向の一致について判断したいときは、層状岩塩型の(0003)面が観察しやすいよう薄片化することが好ましい。 In layered rock salt type positive electrode active materials such as lithium cobalt oxide, (0003) plane and planes equivalent to this, and (10-14) plane and planes equivalent to this tend to appear as crystal planes. Are known. Therefore, for example, when observing a (0003) plane using a TEM, etc., first select a positive electrode active material particle in which a crystal plane expected to be a (0003) plane is observed using a SEM, etc., and when an electron beam is observed using a TEM etc. ] It is preferable to process the positive electrode active material particles into thin sections using FIB or the like so that the (0003) plane can be observed as the incident light. When it is desired to judge whether the crystal orientation matches, it is preferable to thin the layered rock salt so that the (0003) plane can be easily observed.
≪LiCoO中のxが小さい状態≫
 本発明の一態様の正極活物質100は、放電状態において上述のような添加元素の分布および/または結晶構造を有することに起因して、LiCoO中のxが小さい状態での結晶構造が、従来の正極活物質と異なる。なおここでxが小さいとは、0.1<x≦0.24をいうこととする。
≪Status where x in Li x CoO 2 is small≫
The positive electrode active material 100 of one embodiment of the present invention has the above-described distribution of additive elements and/or crystal structure in a discharge state, and thus has a crystal structure in a state where x in Li x CoO 2 is small. However, it is different from conventional positive electrode active materials. Note that x is small here, meaning 0.1<x≦0.24.
 図16乃至図21を用いて、LiCoO中のxの変化に伴う結晶構造の変化について、従来の正極活物質と本発明の一態様の正極活物質100を比較しながら説明する。 A change in the crystal structure due to a change in x in Li x CoO 2 will be explained using FIGS. 16 to 21 while comparing a conventional cathode active material and the cathode active material 100 of one embodiment of the present invention.
 従来の正極活物質の結晶構造の変化を図17に示す。図17に示す従来の正極活物質は、特に添加元素を有さないコバルト酸リチウム(LiCoO)である。特に添加元素を有さないコバルト酸リチウムの結晶構造の変化は非特許文献2乃至非特許文献5等に述べられている。 FIG. 17 shows changes in the crystal structure of a conventional positive electrode active material. The conventional positive electrode active material shown in FIG. 17 is lithium cobalt oxide (LiCoO 2 ) without any particular additive element. In particular, changes in the crystal structure of lithium cobalt oxide without additive elements are described in Non-Patent Documents 2 to 5.
 図17にR−3m O3を付してLiCoO中のx=1のコバルト酸リチウムが有する結晶構造を示す。この結晶構造はリチウムが8面体(Octahedral)サイトを占有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造をO3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面に連続した構造をいうこととする。これをコバルトと酸素の8面体からなる層、という場合もある。 FIG. 17 shows the crystal structure of lithium cobalt oxide with x=1 in Li x CoO 2 with R-3m O3. In this crystal structure, lithium occupies octahedral sites, and three CoO 2 layers exist in the unit cell. Therefore, this crystal structure is sometimes called an O3 type crystal structure. Note that the CoO 2 layer refers to a structure in which an octahedral structure in which six oxygen atoms are coordinated with cobalt is continuous in a plane in a shared edge state. This is sometimes referred to as a layer consisting of an octahedron of cobalt and oxygen.
 また従来のコバルト酸リチウムは、x=0.5程度のときリチウムの対称性が高まり、単斜晶系の空間群P2/mに帰属する結晶構造を有することが知られている。この構造はユニットセル中にCoO層が1層存在する。そのためO1型、または単斜晶O1型と呼ぶ場合がある。 Furthermore, it is known that conventional lithium cobalt oxide has a crystal structure in which the symmetry of lithium increases when x=0.5 and belongs to the monoclinic space group P2/m. In this structure, one CoO 2 layer exists in the unit cell. Therefore, it is sometimes called O1 type or monoclinic O1 type.
 またx=0のときの正極活物質は、三方晶系の空間群P−3m1の結晶構造を有し、やはりユニットセル中にCoO層が1層存在する。そのためこの結晶構造を、O1型、または三方晶O1型と呼ぶ場合がある。また三方晶を複合六方格子に変換し、六方晶O1型と呼ぶ場合もある。 Further, when x=0, the positive electrode active material has a trigonal space group P-3m1 crystal structure, and one CoO 2 layer is also present in the unit cell. Therefore, this crystal structure is sometimes called O1 type or trigonal O1 type. In addition, the trigonal crystal is sometimes converted into a complex hexagonal lattice and is called the hexagonal O1 type.
 またx=0.12程度のときの従来のコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、三方晶O1型のようなCoOの構造と、R−3m O3のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。なお、実際のリチウムの挿入脱離が正極活物質内で均一に生じるとは限らず、リチウムの濃度がまだらになりうるため、実験的にはx=0.25程度からH1−3型結晶構造が観測される。また実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図17をはじめ本明細書では、他の結晶構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。 Furthermore, conventional lithium cobalt oxide when x=about 0.12 has a crystal structure of space group R-3m. This structure can also be said to be a structure in which a CoO 2 structure like trigonal O1 type and a LiCoO 2 structure like R-3m O3 are stacked alternately. Therefore, this crystal structure is sometimes called an H1-3 type crystal structure. Note that the actual intercalation and desorption of lithium does not necessarily occur uniformly within the positive electrode active material, and the lithium concentration may become mottled. is observed. In fact, the H1-3 type crystal structure has twice the number of cobalt atoms per unit cell as other structures. However, in this specification including FIG. 17, in order to facilitate comparison with other crystal structures, the c-axis of the H1-3 type crystal structure is shown as 1/2 of the unit cell.
 H1−3型結晶構造は一例として、非特許文献4に記載があるように、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.42150±0.00016)、O1(0,0,0.27671±0.00045)、O2(0,0,0.11535±0.00045)と表すことができる。O1およびO2はそれぞれ酸素原子である。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すべきかは、例えばXRDパターンのリートベルト解析により判断することができる。この場合はGOF(goodness of fit)の値が小さくなるユニットセルを採用すればよい。 As an example of the H1-3 type crystal structure, as described in Non-Patent Document 4, the coordinates of cobalt and oxygen in the unit cell are Co(0,0,0.42150±0.00016), O1(0, 0,0.27671±0.00045), O2 (0,0,0.11535±0.00045). O1 and O2 are each oxygen atoms. Which unit cell should be used to represent the crystal structure of the positive electrode active material can be determined, for example, by Rietveld analysis of the XRD pattern. In this case, a unit cell with a small GOF (goodness of fit) value may be used.
 LiCoO中のxが0.24以下になるような充電と、放電とを繰り返すと、従来のコバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m O3の構造と、の間で結晶構造の変化(つまり非平衡な相変化)を繰り返すことになる。 When charging and discharging are repeated such that x in Li x CoO 2 becomes 0.24 or less, conventional lithium cobalt oxide has an H1-3 type crystal structure, an R-3m O3 structure in a discharged state, The crystal structure changes (that is, non-equilibrium phase changes) repeatedly between the two.
 しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図17に点線および矢印で示すように、H1−3型結晶構造では、CoO層が放電状態のR−3m O3から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。 However, these two crystal structures have a large misalignment of the CoO 2 layers. As shown by the dotted lines and arrows in FIG. 17, in the H1-3 type crystal structure, the CoO2 layer is largely deviated from the R-3mO3 in the discharge state. Such dynamic structural changes can adversely affect the stability of the crystal structure.
 さらにこれらの2つの結晶構造は体積の差も大きい。コバルト酸リチウムは、充電深度の変化、すなわちLiCoO中のxの変化に応じて、結晶構造およびユニットセルの体積が変化する。非特許文献5に記載されている従来のコバルト酸リチウムのc軸長の変化を図18に示す。丸いマーカーは六方晶系、ひし形のマーカーは単斜晶系の相である。H1−3相では図18のひし形のマーカーで示すように、c軸長が収縮する。O3からH1−3相への相転移はリチウムイオンの脱離に伴う相転移であるため、リチウムイオンが最初に抜ける領域である正極活物質の表面から相転移が生じると考えられるが、やがて正極活物質全体に及びうる。 Furthermore, there is a large difference in volume between these two crystal structures. The crystal structure and unit cell volume of lithium cobalt oxide change depending on the change in the depth of charge, that is, the change in x in Li x CoO 2 . FIG. 18 shows the change in the c-axis length of the conventional lithium cobalt oxide described in Non-Patent Document 5. Round markers indicate hexagonal phase, and diamond-shaped markers indicate monoclinic phase. In the H1-3 phase, the c-axis length contracts, as shown by the diamond-shaped marker in FIG. Since the phase transition from O3 to H1-3 phase is a phase transition accompanying the desorption of lithium ions, it is thought that the phase transition occurs from the surface of the positive electrode active material, which is the region from which lithium ions first escape, but eventually the positive electrode It can extend to the entire active material.
 なおコバルト酸リチウムのc軸長の変化は、XRDパターンにおけるコバルト酸リチウムの例えば(003)面のピークが出現する角度の変化と対応する。CuKα1線によるXRDでは、コバルト酸リチウムの(003)面のピークは2θが19°から20°付近に生じることが知られている。 Note that the change in the c-axis length of lithium cobalt oxide corresponds to the change in the angle at which the peak of, for example, the (003) plane of lithium cobalt oxide appears in the XRD pattern. It is known that in XRD using CuKα1 rays, the peak of the (003) plane of lithium cobalt oxide occurs at a 2θ of around 19° to 20°.
 そのため、同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と放電状態のR−3m O3型結晶構造の体積の差は3.5%を超え、代表的には3.9%以上である。 Therefore, when comparing the same number of cobalt atoms, the difference in volume between the H1-3 type crystal structure and the R-3m O3 type crystal structure in the discharge state exceeds 3.5%, typically 3.9% or more. It is.
 加えて、H1−3型結晶構造が有する、三方晶O1型のようにCoO層が連続した構造は不安定である可能性が高い。 In addition, a structure in which two CoO layers are continuous, such as the trigonal O1 type, which the H1-3 type crystal structure has, is likely to be unstable.
 そのため、xが0.24以下になるような充電と、放電とを繰り返すと従来のコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなるためである。 Therefore, if charging and discharging are repeated such that x becomes 0.24 or less, the crystal structure of conventional lithium cobalt oxide collapses. The collapse of the crystal structure causes deterioration of cycle characteristics. This is because as the crystal structure collapses, the number of sites where lithium can exist stably decreases, and insertion and extraction of lithium becomes difficult.
 一方図16に示す本発明の一態様の正極活物質100では、LiCoO中のxが1の放電状態と、xが0.24以下の状態における結晶構造の変化が従来の正極活物質よりも少ない。より具体的には、xが1の状態と、xが0.24以下の状態におけるCoO層のずれを小さくすることができる。またコバルト原子あたりで比較した場合の体積の変化を小さくすることができる。よって、本発明の一態様の正極活物質100は、xが0.24以下になるような充電と、放電とを繰り返しても結晶構造が崩れにくく、優れたサイクル特性を実現することができる。また、本発明の一態様の正極活物質100は、LiCoO中のxが0.24以下の状態において従来の正極活物質よりも安定な結晶構造を取り得る。よって、本発明の一態様の正極活物質100は、LiCoO中のxが0.24以下の状態を保持した場合において、ショートが生じづらい。そのような場合には二次電池の安全性がより向上し好ましい。 On the other hand, in the positive electrode active material 100 of one embodiment of the present invention shown in FIG. 16, the change in crystal structure between the discharge state where x in Li x CoO 2 is 1 and the state where x is 0.24 or less is different from that of the conventional positive electrode active material. less than. More specifically, the deviation between the two CoO layers between the state where x is 1 and the state where x is 0.24 or less can be reduced. Further, the change in volume when compared per cobalt atom can be reduced. Therefore, in the cathode active material 100 of one embodiment of the present invention, even if charging and discharging are repeated such that x becomes 0.24 or less, the crystal structure does not easily collapse, and excellent cycle characteristics can be achieved. Further, the positive electrode active material 100 of one embodiment of the present invention can have a more stable crystal structure than conventional positive electrode active materials when x in Li x CoO 2 is 0.24 or less. Therefore, in the cathode active material 100 of one embodiment of the present invention, short circuits are unlikely to occur when x in Li x CoO 2 is maintained at 0.24 or less. In such a case, the safety of the secondary battery is further improved, which is preferable.
 LiCoO中のxが1、0.2程度および0.15程度のときに正極活物質100の内部100bが有する結晶構造を図16に示す。内部100bは正極活物質100の体積の大半を占め、充放電に大きく寄与する部分であるため、CoO層のずれおよび体積の変化が最も問題となる部分といえる。 FIG. 16 shows the crystal structure that the interior 100b of the positive electrode active material 100 has when x in Li x CoO 2 is about 1, 0.2, and about 0.15. Since the interior 100b occupies most of the volume of the positive electrode active material 100 and is a part that greatly contributes to charging and discharging, it can be said that the displacement of the CoO 2 layer and the change in volume are the most problematic part.
 正極活物質100はx=1のとき、従来のコバルト酸リチウムと同じR−3m O3の結晶構造を有する。 When x=1, the positive electrode active material 100 has the same R-3mO3 crystal structure as conventional lithium cobalt oxide.
 しかし正極活物質100は、従来のコバルト酸リチウムがH1−3型結晶構造となるようなxが0.24以下、例えば0.2程度および0.15程度のとき、これと異なる構造の結晶を有する。 However, when x is 0.24 or less, for example, about 0.2 and 0.15, where conventional lithium cobalt oxide has an H1-3 type crystal structure, the positive electrode active material 100 forms a crystal with a different structure. have
 x=0.2程度のときの本発明の一態様の正極活物質100は、三方晶系の空間群R−3mに帰属される結晶構造を有する。これはCoO層の対称性がO3と同じである。よって、この結晶構造をO3’型結晶構造と呼ぶこととする。図16にR−3m O3’を付してこの結晶構造を示す。 The positive electrode active material 100 of one embodiment of the present invention when x=0.2 has a crystal structure belonging to the trigonal space group R-3m. This is because the symmetry of the CoO 2 layer is the same as that of O3. Therefore, this crystal structure will be referred to as an O3' type crystal structure. This crystal structure is shown in FIG. 16 with R-3m O3'.
 O3’型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。またユニットセルの格子定数は、a軸は2.797≦a≦2.837(×10−1nm)が好ましく、2.807≦a≦2.827(×10−1nm)がより好ましく、代表的にはa=2.817(×10−1nm)である。c軸は13.681≦c≦13.881(×10−1nm)が好ましく、13.751≦c≦13.811(×10−1nm)がより好ましく、代表的にはc=13.781(×10−1nm)である。 The crystal structure of the O3' type has the coordinates of cobalt and oxygen in the unit cell within the range of Co(0,0,0.5), O(0,0,x), 0.20≦x≦0.25. It can be shown as Further, the lattice constant of the unit cell is preferably 2.797≦a≦2.837 (×10 −1 nm) on the a-axis, more preferably 2.807≦a≦2.827 (×10 −1 nm), Typically, a=2.817 (×10 −1 nm). The c-axis preferably has 13.681≦c≦13.881 (×10 −1 nm), more preferably 13.751≦c≦13.811 (×10 −1 nm), and typically c=13. 781 (×10 −1 nm).
 またx=0.15程度のときの本発明の一態様の正極活物質100は、単斜晶系の空間群P2/mに帰属される結晶構造を有する。これはユニットセル中にCoO層が1層存在する。またこのとき正極活物質100中に存在するリチウムは放電状態の15原子%程度である。よってこの結晶構造を単斜晶O1(15)型結晶構造と呼ぶこととする。図16にP2/m 単斜晶O1(15)を付してこの結晶構造を示す。 Further, when x=about 0.15, the positive electrode active material 100 of one embodiment of the present invention has a crystal structure belonging to a monoclinic space group P2/m. In this case, one CoO 2 layer exists in the unit cell. Further, at this time, the amount of lithium present in the positive electrode active material 100 is about 15 atomic % in the discharged state. Therefore, this crystal structure will be referred to as a monoclinic O1(15) type crystal structure. This crystal structure is shown in FIG. 16 with P2/m monoclinic O1 (15).
 単斜晶O1(15)型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、
Co1(0.5,0,0.5)、
Co2(0,0.5,0.5)、
O1(XO1,0,ZO1)、
0.23≦XO1≦0.24、0.61≦ZO1≦0.65、
O2(XO2,0.5,ZO2)、
0.75≦XO2≦0.78、0.68≦ZO2≦0.71、の範囲内で示すことができる。またユニットセルの格子定数は、
a=4.880±0.05(×10−1nm)、
b=2.817±0.05(×10−1nm)、
c=4.839±0.05(×10−1nm)、
α=90°、
β=109.6±0.1°、
γ=90°である。
The monoclinic O1(15) type crystal structure has the coordinates of cobalt and oxygen in the unit cell as
Co1(0.5,0,0.5),
Co2 (0, 0.5, 0.5),
O1 (X O1 , 0, Z O1 ),
0.23≦X O1 ≦0.24, 0.61≦Z O1 ≦0.65,
O2( XO2,0.5 , ZO2 ),
It can be shown within the range of 0.75≦X O2 ≦0.78, 0.68≦Z O2 ≦0.71. Also, the lattice constant of the unit cell is
a=4.880±0.05 (×10 −1 nm),
b=2.817±0.05 (×10 −1 nm),
c=4.839±0.05 (×10 −1 nm),
α=90°,
β=109.6±0.1°,
γ=90°.
 なおこの結晶構造は、ある程度の誤差を許容すれば空間群R−3mでも格子定数を示すことが可能である。この場合のユニットセルにおけるコバルトと酸素の座標は、
Co(0,0,0.5)、
O(0,0,Z)、
0.21≦Z≦0.23、の範囲内で示すことができる。
またユニットセルの格子定数は、
a=2.817±0.02(×10−1nm)、
c=13.68±0.1(×10−1nm)である。
Note that this crystal structure can exhibit a lattice constant even in the space group R-3m if a certain degree of error is allowed. The coordinates of cobalt and oxygen in the unit cell in this case are
Co(0,0,0.5),
O(0,0,Z O ),
It can be shown within the range of 0.21≦Z O ≦0.23.
Also, the lattice constant of the unit cell is
a=2.817±0.02 (×10 −1 nm),
c=13.68±0.1 (×10 −1 nm).
 O3’型および単斜晶O1(15)型結晶構造のいずれも、コバルト、ニッケル、マグネシウム等のイオンが酸素6配位位置を占める。なおリチウムおよびマグネシウムなどの軽元素は酸素4配位位置を占める場合がありうる。 In both the O3' type and monoclinic O1 (15) type crystal structures, ions such as cobalt, nickel, and magnesium occupy six oxygen coordination positions. Note that light elements such as lithium and magnesium may occupy the 4-coordination position of oxygen.
 図16中に点線で示すように、放電状態のR−3m O3と、O3’および単斜晶O1(15)型結晶構造とではCoO層のずれがほとんどない。 As shown by the dotted line in FIG. 16, there is almost no displacement of the CoO 2 layer between the R-3m O3 in the discharge state and the O3' and monoclinic O1(15) type crystal structures.
 また放電状態のR−3m O3と、O3’型結晶構造の同数のコバルト原子あたりの体積の差は2.5%以下、より詳細には2.2%以下、代表的には1.8%である。 Also, the difference in volume per same number of cobalt atoms between R-3m O3 in the discharge state and the O3' type crystal structure is 2.5% or less, more specifically 2.2% or less, typically 1.8%. It is.
 また放電状態のR−3m O3と、単斜晶O1(15)型結晶構造の同数のコバルト原子あたりの体積の差は3.3%以下、より詳細には3.0%以下、代表的には2.5%である。 In addition, the difference in volume per the same number of cobalt atoms between R-3m O3 in the discharge state and the monoclinic O1 (15) type crystal structure is less than 3.3%, more specifically less than 3.0%, typically is 2.5%.
 表1に、放電状態のR−3m O3と、O3’、単斜晶O1(15)、H1−3型および三方晶O1のコバルト原子1つあたりの体積の差を示す。表1の算出に用いた放電状態のR−3m O3及び三方晶O1の各結晶構造の格子定数は、ICSD coll.code.172909および88721を参照することができる。H1−3については非特許文献4を参照することができる。O3’、単斜晶O1(15)についてはXRDの実験値から算出することができる。なお1Å=10−10mである。 Table 1 shows the difference in volume per cobalt atom between R-3m O3 in the discharge state and O3', monoclinic O1 (15), H1-3 type, and trigonal O1. The lattice constants of the crystal structures of R-3m O3 and trigonal O1 in the discharge state used in the calculations in Table 1 are given in ICSD coll. code. 172909 and 88721. Regarding H1-3, reference can be made to Non-Patent Document 4. O3' and monoclinic O1 (15) can be calculated from experimental values of XRD. Note that 1 Å=10 −10 m.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように本発明の一態様の正極活物質100では、LiCoO中のxが小さいとき、つまり多くのリチウムが脱離したときの結晶構造の変化が、従来の正極活物質よりも抑制されている。また同数のコバルト原子あたりで比較した場合の体積の変化も抑制されている。そのため正極活物質100は、xが0.24以下になるような充電と、放電とを繰り返しても結晶構造が崩れにくい。そのため、正極活物質100は充放電サイクルにおける充放電容量の低下が抑制される。また従来の正極活物質よりも多くのリチウムを安定して利用できるため、正極活物質100は重量あたりおよび体積あたりの放電容量が大きい。そのため正極活物質100を用いることで、重量あたりおよび体積あたりの放電容量の高い二次電池を作製できる。 As described above, in the cathode active material 100 of one embodiment of the present invention, changes in the crystal structure when x in Li x CoO 2 is small, that is, when a large amount of lithium is released, are suppressed more than in conventional cathode active materials. has been done. In addition, changes in volume are also suppressed when comparing the same number of cobalt atoms. Therefore, the crystal structure of the positive electrode active material 100 does not easily collapse even after repeated charging and discharging such that x becomes 0.24 or less. Therefore, in the positive electrode active material 100, a decrease in charge/discharge capacity during charge/discharge cycles is suppressed. Furthermore, since more lithium can be stably utilized than conventional positive electrode active materials, the positive electrode active material 100 has a large discharge capacity per weight and per volume. Therefore, by using the positive electrode active material 100, a secondary battery with high discharge capacity per weight and per volume can be manufactured.
 なお正極活物質100は、LiCoO中のxが0.15以上0.24以下のときO3’型の結晶構造を有する場合があることが確認され、xが0.24を超えて0.27以下でもO3’型の結晶構造を有すると推定されている。またLiCoO中のxが0.1を超えて0.2以下、代表的にはxが0.15以上0.17以下のとき単斜晶O1(15)型の結晶構造を有する場合があることが確認されている。しかし結晶構造はLiCoO中のxだけでなく充放電サイクル数、充放電電流、温度、電解質等の影響を受けるため、必ずしも上記のxの範囲に限定されない。 It has been confirmed that the positive electrode active material 100 may have an O3' type crystal structure when x in Li x CoO 2 is 0.15 or more and 0.24 or less, and when x exceeds 0.24 and 0. It is estimated that even if it is less than .27, it has an O3' type crystal structure. In addition, when x in Li x CoO 2 exceeds 0.1 and is 0.2 or less, typically x is 0.15 or more and 0.17 or less, it has a monoclinic O1 (15) type crystal structure. It has been confirmed that there is. However, since the crystal structure is influenced not only by x in Li x CoO 2 but also by the number of charge/discharge cycles, charge/discharge current, temperature, electrolyte, etc., it is not necessarily limited to the above range of x.
 そのため正極活物質100はLiCoO中のxが0.1を超えて0.24以下のとき、O3’型のみを有してもよいし、単斜晶O1(15)型のみを有してもよいし、両方の結晶構造を有してもよい。また正極活物質100の内部100bの粒子のすべてがO3’型および/または単斜晶O1(15)型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。 Therefore, when x in Li x CoO 2 exceeds 0.1 and is 0.24 or less, the positive electrode active material 100 may have only the O3' type or only the monoclinic O1 (15) type. or may have both crystal structures. Further, all of the particles in the interior 100b of the positive electrode active material 100 do not have to have an O3' type and/or a monoclinic O1(15) type crystal structure. It may contain other crystal structures or may be partially amorphous.
 またLiCoO中のxが小さい状態にするには、一般的には高い充電電圧で充電する必要がある。そのためLiCoO中のxが小さい状態を、高い充電電圧で充電した状態と言い換えることができる。例えばリチウム金属の電位を基準として4.6V以上の電圧で、25℃の環境でCC/CV充電すると、従来の正極活物質ではH1−3型結晶構造が現れる。そのためリチウム金属の電位を基準として4.6V以上の充電電圧は高い充電電圧ということができる。本明細書等において、特に言及しない場合、充電電圧はリチウム金属の電位を基準として表すとする。 Furthermore, in order to make x in Li x CoO 2 small, it is generally necessary to charge at a high charging voltage. Therefore, a state in which x in Li x CoO 2 is small can be rephrased as a state in which the battery is charged at a high charging voltage. For example, when CC/CV charging is performed in an environment of 25° C. at a voltage of 4.6 V or more based on the potential of lithium metal, an H1-3 type crystal structure appears in a conventional positive electrode active material. Therefore, a charging voltage of 4.6 V or more can be said to be a high charging voltage with reference to the potential of lithium metal. In this specification and the like, unless otherwise specified, charging voltage is expressed based on the potential of lithium metal.
 そのため本発明の一態様の正極活物質100は、高い充電電圧、例えば25℃において4.6V以上の電圧で充電しても、R−3m O3の対称性を有する結晶構造を保持できるため好ましい、と言い換えることができる。またより高い充電電圧、例えば25℃において4.65V以上4.7V以下の電圧で充電したときO3’型の結晶構造を取り得るため好ましい、と言い換えることができる。さらに高い充電電圧、例えば25℃において4.7Vを超えて4.8V以下の電圧で充電したとき単斜晶O1(15)型の結晶構造を取り得るため好ましい、と言い換えることができる。 Therefore, the positive electrode active material 100 of one embodiment of the present invention can maintain a crystal structure with R-3mO3 symmetry even when charged at a high charging voltage, for example, 4.6 V or higher at 25° C., and is therefore preferable. It can be rephrased as In other words, it is preferable because an O3' type crystal structure can be obtained when charged at a higher charging voltage, for example, a voltage of 4.65 V or more and 4.7 V or less at 25° C. In other words, it is preferable because a monoclinic O1 (15) type crystal structure can be obtained when the battery is charged at a higher charging voltage, for example, a voltage exceeding 4.7 V and not more than 4.8 V at 25°C.
 正極活物質100でもさらに充電電圧を高めるとようやく、H1−3型結晶構造が観測される場合がある。また上述したように結晶構造は充放電サイクル数、充放電電流、温度、電解質等の影響を受けるため、充電電圧がより低い場合、例えば充電電圧が25℃において4.5V以上4.6V未満でも、本発明の一態様の正極活物質100はO3’型結晶構造を取り得る場合が有る。同様に25℃において4.65V以上4.7V以下の電圧で充電したときに単斜晶O1(15)型の結晶構造を取り得る場合がある。 Even in the positive electrode active material 100, the H1-3 type crystal structure may be finally observed when the charging voltage is further increased. Furthermore, as mentioned above, the crystal structure is affected by the number of charge/discharge cycles, charge/discharge current, temperature, electrolyte, etc., so if the charging voltage is lower, for example, if the charging voltage is 4.5 V or more and less than 4.6 V at 25°C, In some cases, the positive electrode active material 100 of one embodiment of the present invention can have an O3' type crystal structure. Similarly, when charged at a voltage of 4.65 V or more and 4.7 V or less at 25° C., a monoclinic O1 (15) type crystal structure may be obtained.
 なお、二次電池において例えば負極活物質として黒鉛を用いる場合、上記よりも黒鉛の電位の分だけ二次電池の電圧が低下する。黒鉛の電位はリチウム金属の電位を基準として0.05V乃至0.2V程度である。そのため負極活物質として黒鉛を用いた二次電池の場合は、上記の電圧から黒鉛の電位を差し引いた電圧のとき、上記と同様の結晶構造を有する。 Note that when graphite is used as a negative electrode active material in a secondary battery, for example, the voltage of the secondary battery is lowered by the potential of graphite than the above. The potential of graphite is about 0.05V to 0.2V based on the potential of lithium metal. Therefore, in the case of a secondary battery using graphite as a negative electrode active material, it has the same crystal structure as above when the voltage is obtained by subtracting the potential of graphite from the above voltage.
 また図16のO3’および単斜晶O1(15)ではリチウムが全てのリチウムサイトに等しい確率で存在するように示したが、これに限らない。一部のリチウムサイトに偏って存在していてもよいし、例えば図17に示す単斜晶O1(Li0.5CoO)のような対称性を有していてもよい。リチウムの分布は、例えば中性子線回折により分析することができる。 Further, in O3' and monoclinic O1 (15) in FIG. 16, lithium is shown to exist at all lithium sites with equal probability, but the present invention is not limited to this. It may exist biasedly at some lithium sites, or it may have symmetry such as monoclinic O1 (Li 0.5 CoO 2 ) shown in FIG. 17, for example. The distribution of lithium can be analyzed, for example, by neutron diffraction.
 またO3’および単斜晶O1(15)型の結晶構造は、層間にランダムにリチウムを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムをLi0.06NiOまで充電したときの結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常CdCl型の結晶構造を取らないことが知られている。 It can also be said that the O3' and monoclinic O1(15) type crystal structures are similar to the CdCl 2 type crystal structure, although they have lithium randomly between the layers. This crystal structure similar to CdCl type 2 is close to the crystal structure when lithium nickelate is charged to Li 0.06 NiO 2 , but pure lithium cobalt oxide or a layered rock salt type positive electrode active material containing a large amount of cobalt is It is known that CdCl does not normally have a type 2 crystal structure.
≪結晶粒界≫
 本発明の一態様の正極活物質100が有する添加元素は、上記のような分布に加え、少なくとも一部は結晶粒界101およびその近傍に偏在していることがより好ましい。
≪Grain boundaries≫
In addition to the above-mentioned distribution, it is more preferable that at least a portion of the additive elements included in the positive electrode active material 100 of one embodiment of the present invention be unevenly distributed in and near the grain boundaries 101.
 なお本明細書等において、偏在とはある領域における元素の濃度が他の領域と異なることをいう。偏析、析出、不均一、偏り、または濃度が高い箇所と濃度が低い箇所が混在する、と同義である。 Note that in this specification and the like, maldistribution refers to the concentration of an element in a certain region being different from that in other regions. It has the same meaning as segregation, precipitation, non-uniformity, deviation, or a mixture of areas with high concentration and areas with low concentration.
 例えば正極活物質100の結晶粒界101およびその近傍のマグネシウム濃度が、内部100bの他の領域よりも高いことが好ましい。また結晶粒界101およびその近傍のフッ素濃度も内部100bの他の領域より高いことが好ましい。また結晶粒界101およびその近傍のニッケル濃度も内部100bの他の領域より高いことが好ましい。また結晶粒界101およびその近傍のアルミニウム濃度も内部100bの他の領域より高いことが好ましい。 For example, it is preferable that the magnesium concentration in and around the grain boundaries 101 of the positive electrode active material 100 is higher than in other regions of the interior 100b. Further, it is preferable that the fluorine concentration in the grain boundaries 101 and the vicinity thereof is also higher than in other regions of the interior 100b. Further, it is preferable that the nickel concentration in the grain boundaries 101 and the vicinity thereof is also higher than in other regions of the interior 100b. Further, it is preferable that the aluminum concentration in the grain boundaries 101 and the vicinity thereof is also higher than in other regions of the interior 100b.
 結晶粒界101は面欠陥の一つである。そのため粒子表面と同様不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界101およびその近傍の添加元素濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。 The grain boundary 101 is one of the planar defects. Therefore, like the particle surface, it tends to become unstable and the crystal structure tends to change. Therefore, if the concentration of the additive element at and near the grain boundaries 101 is high, changes in the crystal structure can be suppressed more effectively.
 また、結晶粒界101およびその近傍のマグネシウム濃度およびフッ素濃度が高い場合、本発明の一態様の正極活物質100の結晶粒界101に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍でマグネシウム濃度およびフッ素濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。 Further, when the magnesium concentration and fluorine concentration at the grain boundary 101 and the vicinity thereof are high, even if a crack occurs along the grain boundary 101 of the positive electrode active material 100 of one embodiment of the present invention, the surface Magnesium and fluorine concentrations increase in the vicinity. Therefore, the corrosion resistance against hydrofluoric acid can be improved even in the positive electrode active material after cracks have occurred.
<粒径>
 本発明の一態様の正極活物質100の粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、電解液との反応が過剰に進む等の問題点も生じる。そのため、メディアン径(D50)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。または1μm以上40μm以下が好ましい。または1μm以上30μm以下が好ましい。または2μm以上100μm以下が好ましい。または2μm以上30μm以下が好ましい。または5μm以上100μm以下が好ましい。または5μm以上40μm以下が好ましい。
<Particle size>
If the particle size of the positive electrode active material 100 of one embodiment of the present invention is too large, there are problems such as difficulty in lithium diffusion and the surface of the active material layer becoming too rough when applied to a current collector. On the other hand, if it is too small, problems such as excessive reaction with the electrolyte will occur. Therefore, the median diameter (D50) is preferably 1 μm or more and 100 μm or less, more preferably 2 μm or more and 40 μm or less, and even more preferably 5 μm or more and 30 μm or less. Alternatively, the thickness is preferably 1 μm or more and 40 μm or less. Alternatively, the thickness is preferably 1 μm or more and 30 μm or less. Alternatively, the thickness is preferably 2 μm or more and 100 μm or less. Or preferably 2 μm or more and 30 μm or less. Alternatively, the thickness is preferably 5 μm or more and 100 μm or less. Alternatively, the thickness is preferably 5 μm or more and 40 μm or less.
 また、粒径の異なる粒子を混合して正極に用いると、電極密度を増大させることができ、エネルギー密度の高い二次電池とすることができ好ましい。相対的に粒径の小さい正極活物質100は充放電レート特性が高いことが期待される。相対的に粒径の大きい正極活物質100を用いた二次電池は、充放電サイクル特性が高く、放電容量を高く保てることが期待される。 Furthermore, it is preferable to use a mixture of particles with different particle sizes in the positive electrode, since the electrode density can be increased and a secondary battery with high energy density can be obtained. The positive electrode active material 100 having a relatively small particle size is expected to have high charge/discharge rate characteristics. A secondary battery using the positive electrode active material 100 having a relatively large particle size is expected to have high charge/discharge cycle characteristics and maintain a high discharge capacity.
<分析方法>
 正極活物質が、LiCoO中のxが小さいときO3’型および/または単斜晶O1(15)型の結晶構造を有する本発明の一態様の正極活物質100であるか否かは、LiCoO中のxが小さい正極活物質を有する正極を、XRD、電子線回折、中性子線回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。
<Analysis method>
Whether the positive electrode active material is the positive electrode active material 100 of one embodiment of the present invention having an O3' type and/or monoclinic O1(15) type crystal structure when x in Li x CoO 2 is small , Li can.
 特にXRDは、正極活物質が有するコバルト等の遷移金属の対称性を高分解能で解析できる、結晶性の高さおよび結晶の配向性を比較できる、格子の周期性歪みおよび結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。XRDのなかでも粉末XRDでは、正極活物質100の体積の大半を占める正極活物質100の内部100bの結晶構造を反映した回折ピークが得られる。 In particular, XRD can analyze the symmetry of transition metals such as cobalt in the positive electrode active material with high resolution, compare the height of crystallinity and crystal orientation, and analyze the periodic strain of the lattice and crystallite size. This is preferable because sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery is directly measured. Among XRD, powder XRD provides a diffraction peak that reflects the crystal structure of the interior 100b of the positive electrode active material 100, which occupies most of the volume of the positive electrode active material 100.
 なお粉末XRDで結晶子サイズを解析する場合、加圧等による正極活物質粒子の配向の影響を除いて測定することが好ましい。例えば二次電池を解体して得た正極から正極活物質を取り出し、粉末サンプルとしてから測定することが好ましい。 Note that when analyzing the crystallite size by powder XRD, it is preferable to perform the measurement without the influence of the orientation of the positive electrode active material particles due to pressurization or the like. For example, it is preferable to take out the positive electrode active material from a positive electrode obtained by disassembling a secondary battery and prepare a powder sample for measurement.
 本発明の一態様の正極活物質100は、これまで述べたようにLiCoO中のxが1のときと、0.24以下のときで結晶構造の変化が少ないことが特徴である。高電圧で充電したとき、結晶構造の変化が大きな結晶構造が50%以上を占める材料は、高電圧の充電と、放電との繰り返しに耐えられないため好ましくない。 As described above, the positive electrode active material 100 of one embodiment of the present invention is characterized by a small change in crystal structure between when x in Li x CoO 2 is 1 and when x is 0.24 or less. A material in which 50% or more of the crystal structure changes significantly when charged at a high voltage is not preferable because it cannot withstand repeated high voltage charging and discharging.
 また添加元素を添加するだけではO3’型または単斜晶O1(15)型の結晶構造をとらない場合があることに注意が必要である。例えばマグネシウムおよびフッ素を有するコバルト酸リチウム、またはマグネシウムおよびアルミニウムを有するコバルト酸リチウム、という点で共通していても、添加元素の濃度および分布次第で、LiCoO中のxが0.24以下でO3’型および/または単斜晶O1(15)型の結晶構造が60%以上になる場合と、H1−3型結晶構造が50%以上を占める場合と、がある。 Furthermore, it should be noted that there are cases where the O3' type or monoclinic O1 (15) type crystal structure is not achieved simply by adding additional elements. For example, even if lithium cobalt oxide has magnesium and fluorine, or lithium cobalt oxide has magnesium and aluminum, depending on the concentration and distribution of the added elements, x in Li x CoO 2 may be 0.24 or less. In some cases, the O3' type and/or monoclinic O1(15) type crystal structure accounts for 60% or more, and in other cases, the H1-3 type crystal structure accounts for 50% or more.
 また本発明の一態様の正極活物質100でも、xが0.1以下など小さすぎる場合、または充電電圧が4.9Vを超えるような条件ではH1−3型または三方晶O1型の結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質100であるか否かを判断するには、XRDをはじめとする結晶構造についての解析と、充電容量または充電電圧等の情報が必要である。 In addition, even with the positive electrode active material 100 of one embodiment of the present invention, if x is too small, such as 0.1 or less, or under conditions where the charging voltage exceeds 4.9 V, the crystal structure of the H1-3 type or trigonal O1 type will change. This may occur in some cases. Therefore, in order to determine whether the positive electrode active material 100 of one embodiment of the present invention is used, analysis of the crystal structure such as XRD, and information such as charging capacity or charging voltage are required.
 ただし、xが小さい状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。例えばO3’型および単斜晶O1(15)型の結晶構造からH1−3型結晶構造に変化する場合がある。そのため、結晶構造の分析に供するサンプルはすべてアルゴン雰囲気等の不活性雰囲気でハンドリングすることが好ましい。 However, the positive electrode active material in a state where x is small may undergo a change in crystal structure when exposed to the atmosphere. For example, the O3' type and monoclinic O1(15) type crystal structures may change to the H1-3 type crystal structure. Therefore, it is preferable that all samples subjected to crystal structure analysis be handled in an inert atmosphere such as an argon atmosphere.
 また、正極活物質が有する添加元素の分布が、上記で説明したような状態であるか否かは、例えばXPS、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて解析することで判断できる。 In addition, whether the distribution of additive elements in the positive electrode active material is in the state described above can be determined by, for example, XPS, energy dispersive X-ray spectroscopy (EDX), EPMA ( This can be determined by analysis using methods such as electronic probe microanalysis.
 また表層部100a、結晶粒界101等の結晶構造は、正極活物質100の断面の電子線回折等で分析することができる。 Further, the crystal structure of the surface layer 100a, grain boundaries 101, etc. can be analyzed by electron beam diffraction of a cross section of the positive electrode active material 100.
≪充電方法≫
 ある複合酸化物が、本発明の一態様の正極活物質100であるか否かを判断するための充電は、例えば正極に当該複合酸化物を用い、対極にリチウム金属を用いたコインセル(CR2032タイプ、直径20mm高さ3.2mm)を作製して充電することができる。コインセルは、電解液、セパレータ、正極缶、および負極缶を有する。
≪Charging method≫
Charging to determine whether a certain composite oxide is the positive electrode active material 100 of one embodiment of the present invention is performed using, for example, a coin cell (CR2032 type) using the composite oxide for the positive electrode and lithium metal for the counter electrode. , 20 mm in diameter and 3.2 mm in height) can be made and charged. A coin cell has an electrolyte, a separator, a positive electrode can, and a negative electrode can.
 より具体的には、正極には、正極活物質、導電材およびバインダを混合したスラリーを、アルミニウム箔の正極集電体に塗工したものを用いることができる。 More specifically, the positive electrode may be prepared by coating a positive electrode current collector made of aluminum foil with a slurry containing a positive electrode active material, a conductive material, and a binder.
 対極にはリチウム金属を用いることができる。なお対極にリチウム金属以外の材料を用いたときは、二次電池の電位と正極の電位が異なる。本明細書等における電圧および電位は、特に言及しない場合、正極の電位である。 Lithium metal can be used for the counter electrode. Note that when a material other than lithium metal is used for the counter electrode, the potential of the secondary battery and the potential of the positive electrode are different. Voltages and potentials in this specification and the like are the potentials of the positive electrode unless otherwise mentioned.
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。 The electrolytic solution contains 1 mol/L lithium hexafluorophosphate (LiPF 6 ), and the electrolytic solution contains ethylene carbonate (EC) and diethyl carbonate (DEC) at EC:DEC=3:7 ( (volume ratio), vinylene carbonate (VC) mixed at 2 wt % can be used.
 セパレータには厚さ25μmのポリプロピレン多孔質フィルムを用いることができる。 A polypropylene porous film with a thickness of 25 μm can be used as the separator.
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いることができる。 The positive electrode can and the negative electrode can may be made of stainless steel (SUS).
 上記条件で作製したコインセルを、任意の電圧(例えば4.5V、4.55V、4.6V、4.65V、4.7V、4.75Vまたは4.8V)で充電する。任意の電圧で十分に時間をかけて充電できれば充電方法は特に限定されない。例えばCCCVで充電する場合、CC充電における電流は、20mA/g以上100mA/g以下で行うことができる。CV充電は2mA/g以上10mA/g以下で終了することができる。正極活物質の相変化を観測するためには、このような小さい電流値で充電を行うことが望ましい。一方で長時間CV充電を行っても電流が2mA/g以上10mA/g以下とならない場合、正極活物質の充電ではなく電解液の分解に電流が消費されていると考えられるため、開始から十分な時間が経過した時点でCV充電を終了してもよい。このときの十分な時間とは、例えば1.5時間以上3時間以下とすることができる。温度は25℃または45℃とする。このようにして充電した後に、コインセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、任意の充電容量の正極活物質を得られる。この後に各種分析を行う際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。例えばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。また充電完了後、速やかに正極を取り出し分析に供することが好ましい。具体的には充電完了後1時間以内が好ましく、30分以内がより好ましい。 The coin cell produced under the above conditions is charged at an arbitrary voltage (for example, 4.5V, 4.55V, 4.6V, 4.65V, 4.7V, 4.75V or 4.8V). The charging method is not particularly limited as long as it can be charged at any voltage for a sufficient amount of time. For example, when charging with CCCV, the current in CC charging can be 20 mA/g or more and 100 mA/g or less. CV charging can be completed at 2 mA/g or more and 10 mA/g or less. In order to observe the phase change of the positive electrode active material, it is desirable to perform charging at such a small current value. On the other hand, if the current does not decrease to 2 mA/g or more and 10 mA/g or less even after long-term CV charging, it is thought that the current is being consumed to decompose the electrolyte rather than charging the positive electrode active material, so make sure that the current is sufficient from the start. CV charging may be terminated when a certain amount of time has elapsed. The sufficient time at this time can be, for example, 1.5 hours or more and 3 hours or less. The temperature is 25°C or 45°C. After charging in this manner, the coin cell is disassembled in a glove box with an argon atmosphere and the positive electrode is taken out, thereby obtaining a positive electrode active material with an arbitrary charging capacity. When performing various analyzes after this, it is preferable to seal the chamber with an argon atmosphere in order to suppress reactions with external components. For example, XRD can be performed in a sealed container with an argon atmosphere. Further, it is preferable to take out the positive electrode immediately after charging is completed and use it for analysis. Specifically, it is preferably within 1 hour, more preferably within 30 minutes after charging is completed.
 また複数回充放電した後の充電状態の結晶構造を分析する場合、該複数回の充放電条件は上記の充電条件と異なっていてもよい。例えば充電は任意の電圧(例えば4.6V、4.65V、4.7V、4.75Vまたは4.8V)まで、電流値20mA/g以上100mA/g以下で定電流充電し、その後電流値が2mA/g以上10mA/g以下となるまで定電圧充電し、放電は2.5V、20mA/g以上100mA/g以下で定電流放電とすることができる。 Furthermore, when analyzing the crystal structure of the charged state after charging and discharging multiple times, the conditions for charging and discharging the multiple times may be different from the above-mentioned charging conditions. For example, charging is performed by constant current charging at a current value of 20 mA/g or more and 100 mA/g or less to an arbitrary voltage (for example, 4.6 V, 4.65 V, 4.7 V, 4.75 V or 4.8 V), and then the current value is Constant voltage charging can be performed until the voltage is 2 mA/g or more and 10 mA/g or less, and discharging can be performed at a constant current of 2.5 V and 20 mA/g or more and 100 mA/g or less.
 さらに複数回充放電した後の放電状態の結晶構造を分析する場合も、例えば2.5V、電流値20mA/g以上100mA/g以下で定電流放電とすることができる。 Further, when analyzing the crystal structure in the discharged state after charging and discharging multiple times, constant current discharge can be performed at, for example, 2.5V and a current value of 20 mA/g or more and 100 mA/g or less.
≪XRD≫
 XRD測定の装置および条件は特に限定されない。例えば下記のような装置および条件で測定することができる。
XRD装置 :Bruker AXS社製、D8 ADVANCE
X線 :CuKα
出力 :40kV、40mA
発散角 :Div.Slit、0.5°
検出器:LynxEye
スキャン方式 :2θ/θ連続スキャン
測定範囲(2θ) :15°以上90°以下
ステップ幅(2θ) :0.01°設定
計数時間 :1秒間/ステップ
試料台回転 :15rpm
≪XRD≫
The equipment and conditions for XRD measurement are not particularly limited. For example, it can be measured using the following equipment and conditions.
XRD device: Bruker AXS, D8 ADVANCE
X-ray: CuKα 1- ray output: 40kV, 40mA
Divergence angle: Div. Slit, 0.5°
Detector: LynxEye
Scan method: 2θ/θ continuous scan Measurement range (2θ): 15° or more and 90° or less Step width (2θ): 0.01° Setting Counting time: 1 second/step Sample table rotation: 15 rpm
 測定サンプルが粉末の場合は、ガラスのサンプルホルダーに入れる、またはグリースを塗ったシリコン無反射板にサンプルを振りかける、等の手法でセッティングすることができる。測定サンプルが正極の場合は、正極を基板に両面テープで貼り付け、正極活物質層を装置の要求する測定面に合わせてセッティングすることができる。 If the sample to be measured is a powder, it can be set by placing it in a glass sample holder or by sprinkling the sample on a greased silicone non-reflective plate. When the measurement sample is a positive electrode, the positive electrode can be attached to the substrate with double-sided tape, and the positive electrode active material layer can be set according to the measurement surface required by the apparatus.
 O3’型の結晶構造と、単斜晶O1(15)型の結晶構造と、H1−3型結晶構造のモデルから計算される、CuKα線による理想的な粉末XRDパターンを図19、図20、図21Aおよび図21Bに示す。また比較のためLiCoO中のx=1のLiCoO O3と、x=0の三方晶O1の結晶構造から計算される理想的なXRDパターンも示す。図21Aおよび図21Bは、O3’型結晶構造、単斜晶O1(15)型結晶構造とH1−3型結晶構造のXRDパターンを併記したものであり、図21Aは2θの範囲が18°以上21°以下の領域、図21Bは2θの範囲が42°以上46°以下の領域について拡大したものである。なお、LiCoO(O3)およびCoO(O1)のパターンはICSD(Inorganic Crystal Structure Database)(非特許文献6参照)より入手した結晶構造情報からMaterials Studio(BIOVIA)のモジュールの一つである、Reflex Powder Diffractionを用いて作成した。2θの範囲は15°から75°とし、Step size=0.01、波長λ1=1.540562×10−10m、λ2は設定なし、Monochromatorはsingleとした。H1−3型結晶構造のパターンは非特許文献4に記載の結晶構造情報から同様に作成した。O3’型および単斜晶O1(15)型の結晶構造のパターンは本発明の一態様の正極活物質のXRDパターンから結晶構造を推定し、TOPAS ver.3(Bruker社製結晶構造解析ソフトウェア)を用いてフィッティングし、他と同様にXRDパターンを作成した。 Figures 19 and 20 show the ideal powder XRD pattern using the CuKα 1 line, which is calculated from the models of the O3' type crystal structure, the monoclinic O1 (15) type crystal structure, and the H1-3 type crystal structure. , shown in FIGS. 21A and 21B. For comparison, ideal XRD patterns calculated from the crystal structures of LiCoO 2 O3 with x=1 in Li x CoO 2 and trigonal O1 with x=0 are also shown. 21A and 21B show the XRD patterns of the O3' type crystal structure, the monoclinic O1(15) type crystal structure, and the H1-3 type crystal structure, and in FIG. 21A, the 2θ range is 18° or more. FIG. 21B is an enlarged view of the region where the 2θ range is 42° or more and 46° or less. Note that the patterns of LiCoO 2 (O3) and CoO 2 (O1) are one of the modules of Materials Studio (BIOVIA) from crystal structure information obtained from ICSD (Inorganic Crystal Structure Database) (see Non-Patent Document 6). It was created using Reflex Powder Diffraction. The range of 2θ was 15° to 75°, Step size=0.01, wavelength λ1=1.540562×10 −10 m, λ2 was not set, and the monochromator was single. The pattern of the H1-3 type crystal structure was similarly created from the crystal structure information described in Non-Patent Document 4. The crystal structure patterns of the O3' type and the monoclinic O1 (15) type were estimated from the XRD pattern of the positive electrode active material of one embodiment of the present invention, and the crystal structures were estimated using TOPAS ver. 3 (crystal structure analysis software manufactured by Bruker), and an XRD pattern was created in the same manner as the others.
 図19、図21Aおよび図21Bに示すように、O3’型の結晶構造では、2θ=19.25±0.12°(19.13°以上19.37°未満)、および2θ=45.47±0.10°(45.37°以上45.57°未満)に回折ピークが出現する。 As shown in FIGS. 19, 21A, and 21B, in the O3' type crystal structure, 2θ=19.25±0.12° (19.13° or more and less than 19.37°), and 2θ=45.47 A diffraction peak appears at ±0.10° (45.37° or more and less than 45.57°).
 また単斜晶O1(15)型の結晶構造では、2θ=19.47±0.10°(19.37°以上19.57°以下)、および2θ=45.62±0.05°(45.57°以上45.67°以下)に回折ピークが出現する。 In addition, in the monoclinic O1 (15) type crystal structure, 2θ = 19.47 ± 0.10° (19.37° or more and 19.57° or less), and 2θ = 45.62 ± 0.05° (45 A diffraction peak appears at .57° or more and 45.67° or less).
 しかし図20、図21Aおよび図21Bに示すように、H1−3型結晶構造および三方晶O1ではこれらの位置にピークは出現しない。そのため、LiCoO中のxが小さい状態で、2θが19.13°以上19.37°未満および/または19.37°以上19.57°以下、並びに45.37°以上45.57°未満および/または45.57°以上45.67°以下の位置にピークが出現することは、本発明の一態様の正極活物質100の特徴であるといえる。 However, as shown in FIGS. 20, 21A, and 21B, no peaks appear at these positions in the H1-3 type crystal structure and trigonal O1. Therefore, when x in Li x CoO 2 is small, 2θ is 19.13° or more and less than 19.37° and/or 19.37° or more and 19.57° or less, and 45.37° or more and 45.57° It can be said that the appearance of a peak at a position of 45.57° or more and 45.67° or less is a characteristic of the positive electrode active material 100 of one embodiment of the present invention.
 これは、本発明の一態様の正極活物質100ではx=1と、x≦0.24の結晶構造で、XRDの回折ピークが出現する位置が近いということもできる。より具体的には、x=1と、x≦0.24の結晶構造の主な回折ピークのうち2θが42°以上46°以下に出現するピークについて、2θの差が、0.7°以下、より好ましくは0.5°以下であるということができる。 This can also be said to be that in the positive electrode active material 100 of one embodiment of the present invention, the positions where the XRD diffraction peaks appear are close to each other in the crystal structure where x=1 and x≦0.24. More specifically, among the main diffraction peaks of the crystal structure where x=1 and x≦0.24, the difference in 2θ is 0.7° or less between the peaks that appear at 2θ of 42° or more and 46° or less. , more preferably 0.5° or less.
 なお、本発明の一態様の正極活物質100はLiCoO中のxが小さいときO3’型および/または単斜晶O1(15)型の結晶構造を有するが、粒子のすべてがO3’型および/または単斜晶O1(15)型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。ただし、XRDパターンについてリートベルト解析を行ったとき、O3’型および/または単斜晶O1(15)型の結晶構造が50%以上であることが好ましく、60%以上であることがより好ましく、66%以上であることがさらに好ましい。O3’型および/または単斜晶O1(15)型の結晶構造が50%以上、より好ましくは60%以上、さらに好ましくは66%以上あれば、十分にサイクル特性に優れた正極活物質とすることができる。 Note that the positive electrode active material 100 of one embodiment of the present invention has an O3' type and/or monoclinic O1(15) type crystal structure when x in Li x CoO 2 is small; however, all of the particles are O3' type and/or monoclinic O1 (15) type crystal structure. It may contain other crystal structures, or may be partially amorphous. However, when performing Rietveld analysis on the XRD pattern, the O3' type and/or monoclinic O1 (15) type crystal structure is preferably 50% or more, more preferably 60% or more, More preferably, it is 66% or more. If the O3' type and/or monoclinic O1(15) type crystal structure is 50% or more, more preferably 60% or more, and even more preferably 66% or more, the positive electrode active material has sufficiently excellent cycle characteristics. be able to.
 また、同様にリートベルト解析を行ったとき、H1−3型およびO1型結晶構造が50%以下であることが好ましい。または34%以下であることがより好ましい。または実質的に観測されないことがより好ましい。 Furthermore, when Rietveld analysis is similarly performed, it is preferable that the H1-3 type and O1 type crystal structures are 50% or less. Or, it is more preferably 34% or less. Or, it is more preferable that it is substantially not observed.
 また、測定開始から100サイクル以上の充放電を経ても、リートベルト解析を行ったときO3’型および/または単斜晶O1(15)型の結晶構造が35%以上であることが好ましく、40%以上であることがより好ましく、43%以上であることがさらに好ましい。 In addition, even after 100 cycles or more of charging and discharging from the start of measurement, it is preferable that the O3' type and/or monoclinic O1(15) type crystal structure remains 35% or more when Rietveld analysis is performed. % or more, more preferably 43% or more.
 またXRDパターンにおける回折ピークの鋭さは結晶性の高さを示す。そのため、充電後の各回折ピークは鋭い、すなわち半値幅が狭い方が好ましい。例えば半値全幅が狭い方が好ましい。半値幅は、同じ結晶相から生じたピークでも、XRDの測定条件および2θの値によっても異なる。上述した測定条件の場合は、2θ=43°以上46°以下に観測されるピークにおいて、半値全幅は例えば0.2°以下が好ましく、0.15°以下がより好ましく、0.12°以下がさらに好ましい。なお必ずしも全てのピークがこの要件を満たしていなくてもよい。一部のピークがこの要件を満たせば、その結晶相の結晶性が高いことがいえる。このような高い結晶性は、十分に充電後の結晶構造の安定化に寄与する。 Furthermore, the sharpness of the diffraction peak in the XRD pattern indicates the high degree of crystallinity. Therefore, it is preferable that each diffraction peak after charging be sharp, that is, have a narrow half-width. For example, it is preferable that the full width at half maximum is narrower. The half width varies depending on the XRD measurement conditions and the 2θ value even for peaks generated from the same crystal phase. In the case of the measurement conditions described above, in the peak observed at 2θ=43° or more and 46° or less, the full width at half maximum is preferably 0.2° or less, more preferably 0.15° or less, and 0.12° or less. More preferred. Note that not all peaks necessarily satisfy this requirement. If some peaks satisfy this requirement, it can be said that the crystallinity of the crystal phase is high. Such high crystallinity contributes to sufficient stabilization of the crystal structure after charging.
 また、正極活物質100が有するO3’型および単斜晶O1(15)の結晶構造の結晶子サイズは、放電状態のLiCoO(O3)の1/20程度までしか低下しない。そのため、充放電前の正極と同じXRDの測定条件であっても、LiCoO中のxが小さいとき明瞭なO3’型および/または単斜晶O1(15)の結晶構造のピークが確認できる。一方従来のLiCoOでは、一部がO3’型および/または単斜晶O1(15)の結晶構造に似た構造を取りえたとしても、結晶子サイズが小さくなり、ピークはブロードで小さくなる。結晶子サイズは、XRDピークの半値幅から求めることができる。 Further, the crystallite size of the O3' type and monoclinic O1 (15) crystal structure that the positive electrode active material 100 has decreases only to about 1/20 of LiCoO 2 (O3) in the discharge state. Therefore, even under the same XRD measurement conditions as the positive electrode before charging and discharging, when x in Li x CoO 2 is small, a clear O3' type and/or monoclinic O1(15) crystal structure peak is confirmed. can. On the other hand, in conventional LiCoO 2 , even if a part of the crystal structure can be similar to the O3' type and/or monoclinic O1 (15), the crystallite size is small and the peak is broad and small. The crystallite size can be determined from the half width of the XRD peak.
 本発明の一態様の正極活物質100においては、前述の通りヤーン・テラー効果の影響が小さいことが好ましい。ヤーン・テラー効果の影響が小さい範囲であれば、コバルトの他に添加元素としてニッケル、マンガン等の遷移金属を有してもよい。 In the positive electrode active material 100 of one embodiment of the present invention, it is preferable that the influence of the Jahn-Teller effect is small as described above. In addition to cobalt, transition metals such as nickel and manganese may be included as additive elements, as long as the influence of the Jahn-Teller effect is small.
 正極活物質において、XRD分析を用いて、ヤーン・テラー効果の影響が小さいと推測されるニッケルおよびマンガンの割合および格子定数の範囲について考察する。 In the positive electrode active material, using XRD analysis, we will discuss the proportions and lattice constant ranges of nickel and manganese, which are assumed to have a small influence from the Jahn-Teller effect.
 図22は、本発明の一態様の正極活物質100が層状岩塩型の結晶構造を有し、コバルトとニッケルを有する場合において、XRDを用いてa軸およびc軸の格子定数を算出した結果を示す。図22Aがa軸、図22Bがc軸の結果である。なお、これらの算出に用いたXRDパターンは、正極活物質の合成を行った後の粉体であり、正極に組み込む前のものである。横軸のニッケル濃度は、コバルトとニッケルの原子数の和を100%とした場合のニッケルの濃度を示す。正極活物質は、アルミニウム源を用いない他は図25の作製方法に準じて作製した。 FIG. 22 shows the results of calculating the a-axis and c-axis lattice constants using XRD when the positive electrode active material 100 according to one embodiment of the present invention has a layered rock salt crystal structure and contains cobalt and nickel. show. FIG. 22A shows the results for the a-axis, and FIG. 22B shows the results for the c-axis. Note that the XRD pattern used for these calculations is the powder after the synthesis of the positive electrode active material, but before it is incorporated into the positive electrode. The nickel concentration on the horizontal axis indicates the nickel concentration when the sum of the numbers of cobalt and nickel atoms is taken as 100%. The positive electrode active material was manufactured according to the manufacturing method shown in FIG. 25, except that an aluminum source was not used.
 図23には、本発明の一態様の正極活物質100が層状岩塩型の結晶構造を有し、コバルトとマンガンを有する場合において、XRDを用いてa軸およびc軸の格子定数を見積もった結果を示す。図23Aがa軸、図23Bがc軸の結果である。なお、図23に示す格子定数は、正極活物質の合成を行った後の粉体であり、正極に組み込む前に測定したXRDによるものである。横軸のマンガン濃度は、コバルトとマンガンの原子数の和を100%とした場合のマンガンの濃度を示す。正極活物質は、ニッケル源に代えてマンガン源を用い、さらにアルミニウム源を用いない他は図25の作製方法に準じて作製した。 FIG. 23 shows the results of estimating the a-axis and c-axis lattice constants using XRD when the positive electrode active material 100 according to one embodiment of the present invention has a layered rock salt crystal structure and contains cobalt and manganese. shows. FIG. 23A shows the results for the a-axis, and FIG. 23B shows the results for the c-axis. Note that the lattice constant shown in FIG. 23 is for the powder after the synthesis of the positive electrode active material, and is based on XRD measurement before incorporating it into the positive electrode. The manganese concentration on the horizontal axis indicates the manganese concentration when the sum of the numbers of cobalt and manganese atoms is taken as 100%. The positive electrode active material was manufactured according to the manufacturing method shown in FIG. 25, except that a manganese source was used instead of a nickel source and an aluminum source was not used.
 図22Cには、図22Aおよび図22Bに格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。図23Cには、図23Aおよび図23Bに格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。 FIG. 22C shows the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant (a-axis/c-axis) for the positive electrode active materials whose lattice constant results are shown in FIGS. 22A and 22B. FIG. 23C shows the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant (a-axis/c-axis) for the positive electrode active materials whose lattice constant results are shown in FIGS. 23A and 23B.
 図22Cより、ニッケル濃度が5%と7.5%ではa軸/c軸が顕著に変化する傾向がみられ、ニッケル濃度7.5%ではa軸の歪みが大きくなっている。この歪みは三価のニッケルのヤーン・テラー歪みに起因する可能性がある。ニッケル濃度が7.5%未満において、ヤーン・テラー歪みの小さい、優れた正極活物質が得られることが示唆される。 From FIG. 22C, there is a tendency for the a-axis/c-axis to change significantly when the nickel concentration is 5% and 7.5%, and the distortion of the a-axis becomes large when the nickel concentration is 7.5%. This distortion may be due to the Jahn-Teller distortion of trivalent nickel. It is suggested that when the nickel concentration is less than 7.5%, an excellent positive electrode active material with low Jahn-Teller distortion can be obtained.
 次に、図23Aより、マンガン濃度が5%以上においては、格子定数の変化の挙動が異なり、ベガード則に従わないことが示唆される。よって、マンガン濃度が5%以上では結晶構造が異なることが示唆される。よって、マンガンの濃度は例えば、4%以下が好ましい。 Next, from FIG. 23A, it is suggested that when the manganese concentration is 5% or more, the behavior of the change in the lattice constant is different and does not follow Vegard's law. Therefore, it is suggested that the crystal structure is different when the manganese concentration is 5% or more. Therefore, the concentration of manganese is preferably 4% or less, for example.
 なお、上記のニッケル濃度およびマンガン濃度の範囲は、表層部100aにおいては必ずしもあてはまらない。すなわち、表層部100aにおいては、上記の濃度より高くてもよい。 Note that the above ranges of nickel concentration and manganese concentration do not necessarily apply to the surface layer portion 100a. That is, in the surface layer portion 100a, the concentration may be higher than the above concentration.
 以上より、格子定数の好ましい範囲について考察を行ったところ、本発明の一態様の正極活物質において、XRDパターンから推定できる、充放電を行わない状態、あるいは放電状態の正極活物質100が有する層状岩塩型の結晶構造において、a軸の格子定数が2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さいことが好ましいことがわかった。充放電を行わない状態とは例えば、二次電池の正極を作製する前の粉体の状態であってもよい。 Based on the above, we considered the preferable range of the lattice constant, and found that in the positive electrode active material of one embodiment of the present invention, the layered structure of the positive electrode active material 100 in a state in which no charging and discharging is performed or in a discharged state, which can be estimated from the XRD pattern. In the rock salt type crystal structure, the a-axis lattice constant is greater than 2.814×10 −10 m and smaller than 2.817×10 −10 m, and the c-axis lattice constant is less than 14.05×10 −10 m. It was found that it is preferable that the diameter be larger than 14.07×10 −10 m. The state where charging and discharging are not performed may be, for example, the state of the powder before producing the positive electrode of the secondary battery.
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質100が有する層状岩塩型の結晶構造において、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)が0.20000より大きく0.20049より小さいことが好ましい。 Alternatively, in the layered rock salt crystal structure of the cathode active material 100 in a state where no charging/discharging is performed or in a discharged state, the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant (a-axis/c-axis) is It is preferably greater than 0.20000 and smaller than 0.20049.
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質100が有する層状岩塩型の結晶構造において、XRD分析をしたとき、2θが18.50°以上19.30°以下に第1のピークが観測され、かつ2θが38.00°以上38.80°以下に第2のピークが観測される場合がある。 Alternatively, when XRD analysis is performed on the layered rock salt crystal structure of the cathode active material 100 in a state where no charging/discharging is performed or in a discharged state, a first peak is observed at 2θ of 18.50° or more and 19.30° or less. is observed, and a second peak may be observed at 2θ of 38.00° or more and 38.80° or less.
≪XPS≫
 X線光電子分光(XPS)では、無機酸化物の場合で、X線として単色アルミニウムのKα線を用いると、表面から2乃至8nm程度(通常5nm以下)の深さまでの領域の分析が可能であるため、表層部100aの深さに対して約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
≪XPS≫
With X-ray photoelectron spectroscopy (XPS), in the case of inorganic oxides, if monochromatic aluminum Kα rays are used as the X-rays, it is possible to analyze a region from the surface to a depth of about 2 to 8 nm (usually 5 nm or less). Therefore, the concentration of each element can be quantitatively analyzed in a region that is approximately half the depth of the surface layer 100a. Additionally, narrow scan analysis allows the bonding state of elements to be analyzed. Note that the quantitative accuracy of XPS is about ±1 atomic % in most cases, and the lower limit of detection is about 1 atomic %, although it depends on the element.
 本発明の一態様の正極活物質100は、添加元素から選ばれた一または二以上の濃度が内部100bよりも表層部100aにおいて高いことが好ましい。これは表層部100aにおける添加元素から選ばれた一または二以上の濃度が、正極活物質100全体の平均よりも高いことが好ましい、と同義である。そのため例えば、XPS等で測定される表層部100aから選ばれた一または二以上の添加元素の濃度が、ICP−MS(誘導結合プラズマ質量分析)、あるいはGD−MS(グロー放電質量分析法)等で測定される正極活物質100全体の平均の添加元素の濃度よりも高いことが好ましい、ということができる。例えばXPS等で測定される表層部100aの少なくとも一部のマグネシウムの濃度が、正極活物質100全体のマグネシウム濃度の平均よりも高いことが好ましい。また表層部100aの少なくとも一部のニッケルの濃度が、正極活物質100全体のニッケル濃度よりも高いことが好ましい。また表層部100aの少なくとも一部のアルミニウムの濃度が、正極活物質100全体のアルミニウム濃度よりも高いことが好ましい。また表層部100aの少なくとも一部のフッ素の濃度が、正極活物質100全体のフッ素濃度よりも高いことが好ましい。 In the positive electrode active material 100 of one embodiment of the present invention, it is preferable that the concentration of one or more selected from the additive elements is higher in the surface layer portion 100a than in the interior portion 100b. This is synonymous with the fact that the concentration of one or more selected additive elements in the surface layer portion 100a is preferably higher than the average of the entire positive electrode active material 100. Therefore, for example, the concentration of one or more additive elements selected from the surface layer 100a measured by It can be said that it is preferable that the concentration of the added element be higher than the average concentration of the added element of the entire positive electrode active material 100 measured by . For example, it is preferable that the magnesium concentration of at least a portion of the surface layer portion 100a measured by XPS or the like is higher than the average magnesium concentration of the entire positive electrode active material 100. Further, it is preferable that the nickel concentration in at least a portion of the surface layer portion 100a is higher than the nickel concentration in the entire positive electrode active material 100. Further, it is preferable that the aluminum concentration in at least a portion of the surface layer portion 100a is higher than the aluminum concentration in the entire positive electrode active material 100. Further, it is preferable that the fluorine concentration in at least a portion of the surface layer portion 100a is higher than the fluorine concentration in the entire positive electrode active material 100.
 なお本発明の一態様の正極活物質100の表面および表層部100aには、正極活物質100作製後に化学吸着した炭酸塩、ヒドロキシ基等は含まないとする。また正極活物質100の表面に付着した電解液、バインダ、導電材、またはこれら由来の化合物も含まないとする。そのため正極活物質が有する元素を定量するときは、XPSをはじめとする表面分析で検出されうる炭素、水素、過剰な酸素、過剰なフッ素等を除外する補正をしてもよい。例えば、XPSでは結合の種類を解析で分離することが可能であり、バインダ由来のC−F結合を除外する補正をおこなってもよい。 Note that the surface and surface layer portion 100a of the positive electrode active material 100 according to one embodiment of the present invention do not contain carbonate, hydroxyl groups, etc. that were chemically adsorbed after the positive electrode active material 100 was produced. It is also assumed that the electrolytic solution, binder, conductive material, or compounds derived from these adhered to the surface of the positive electrode active material 100 are not included. Therefore, when quantifying the elements contained in the positive electrode active material, correction may be made to exclude carbon, hydrogen, excess oxygen, excess fluorine, etc. that can be detected by surface analysis such as XPS. For example, in XPS, it is possible to separate the types of bonds by analysis, and correction may be performed to exclude binder-derived C-F bonds.
 さらに各種分析に供する前に、正極活物質の表面に付着した電解液、バインダ、導電材、またはこれら由来の化合物を除くために、正極活物質および正極活物質層等の試料に対して洗浄等を行ってもよい。このとき洗浄に用いる溶媒等にリチウムが溶け出す場合があるが、たとえその場合であっても、添加元素は溶け出しにくいため、添加元素の原子数比に影響があるものではない。 Furthermore, before subjecting to various analyses, samples such as the positive electrode active material and the positive electrode active material layer are washed to remove the electrolyte, binder, conductive material, or compounds derived from these that have adhered to the surface of the positive electrode active material. You may do so. At this time, lithium may dissolve into the solvent used for cleaning, but even in that case, the additive elements are difficult to dissolve, so the atomic ratio of the additive elements is not affected.
 また添加元素の濃度は、コバルトとの比で比較してもよい。コバルトとの比を用いることにより、正極活物質を作製後に化学吸着した炭酸塩等の影響を減じて比較することができ好ましい。例えばXPSの分析によるマグネシウムとコバルトの原子数の比Mg/Coは、0.4以上1.5以下であることが好ましい。一方ICP−MSの分析によるMg/Coは0.001以上0.06以下であることが好ましい。 The concentration of the added element may also be compared in terms of its ratio to cobalt. By using the ratio to cobalt, it is possible to reduce the influence of carbonate, etc. chemically adsorbed after the positive electrode active material is produced, and to make a comparison, which is preferable. For example, the ratio Mg/Co of the number of atoms of magnesium and cobalt as determined by XPS analysis is preferably 0.4 or more and 1.5 or less. On the other hand, Mg/Co as determined by ICP-MS analysis is preferably 0.001 or more and 0.06 or less.
 同様に正極活物質100は、十分にリチウムの挿入脱離の経路を確保するために、表層部100aにおいて各添加元素よりもリチウムおよびコバルトの濃度が高いことが好ましい。これはXPS等で測定される表層部100aが有する添加元素から選ばれた一または二以上の各添加元素の濃度よりも、表層部100aのリチウムおよびコバルトの濃度が高いことが好ましい、ということができる。例えばXPS等で測定される表層部100aの少なくとも一部のマグネシウムの濃度よりも、XPS等で測定される表層部100aの少なくとも一部のコバルトの濃度が高いことが好ましい。同様にマグネシウムの濃度よりも、リチウムの濃度が高いことが好ましい。またニッケルの濃度よりも、コバルトの濃度が高いことが好ましい。同様にニッケルの濃度よりも、リチウムの濃度が高いことが好ましい。またアルミニウムよりもコバルトの濃度が高いことが好ましい。同様にアルミニウムの濃度よりも、リチウムの濃度が高いことが好ましい。またフッ素よりもコバルトの濃度が高いことが好ましい。同様にフッ素よりもリチウムの濃度が高いことが好ましい。 Similarly, the positive electrode active material 100 preferably has a higher concentration of lithium and cobalt than each additive element in the surface layer portion 100a in order to sufficiently secure a path for insertion and desorption of lithium. This means that the concentration of lithium and cobalt in the surface layer 100a is preferably higher than the concentration of one or more of the additive elements selected from the additive elements contained in the surface layer 100a, which is measured by XPS or the like. can. For example, it is preferable that the concentration of cobalt in at least a portion of the surface layer portion 100a measured by XPS or the like is higher than the concentration of magnesium in at least a portion of the surface layer portion 100a measured by XPS or the like. Similarly, it is preferable that the concentration of lithium is higher than the concentration of magnesium. Further, it is preferable that the concentration of cobalt is higher than the concentration of nickel. Similarly, it is preferable that the concentration of lithium is higher than the concentration of nickel. Further, it is preferable that the concentration of cobalt is higher than that of aluminum. Similarly, it is preferable that the concentration of lithium is higher than the concentration of aluminum. Further, it is preferable that the concentration of cobalt is higher than that of fluorine. Similarly, it is preferable that the concentration of lithium is higher than that of fluorine.
 さらにアルミニウムは深い領域、例えば表面、または基準点からの深さが5nm以上50nm以内の領域に広く分布する方がより好ましい。そのため、ICP−MS、GD−MS等を用いた正極活物質100全体の分析ではアルミニウムが検出されるものの、XPS等ではこれの濃度が検出下限以下であると、より好ましい。 Furthermore, it is more preferable that aluminum is widely distributed in a deep region, for example, in a region where the depth from the surface or the reference point is 5 nm or more and 50 nm or less. Therefore, although aluminum is detected in the analysis of the entire positive electrode active material 100 using ICP-MS, GD-MS, etc., it is more preferable that the concentration of aluminum is below the detection limit in XPS etc.
 さらに本発明の一態様の正極活物質100についてXPS分析をしたとき、コバルトの原子数に対して、マグネシウムの原子数は0.4倍以上1.2倍以下が好ましく、0.65倍以上1.0倍以下がより好ましい。またコバルトの原子数に対して、ニッケルの原子数は0.15倍以下が好ましく、0.03倍以上0.13倍以下がより好ましい。またコバルトの原子数に対して、アルミニウムの原子数は0.12倍以下が好ましく、0.09倍以下がより好ましい。またコバルトの原子数に対して、フッ素の原子数は0.3倍以上0.9倍以下が好ましく、0.1倍以上1.1倍以下がより好ましい。上記のような範囲であることは、これらの添加元素が正極活物質100の表面の狭い範囲に付着するのではなく、正極活物質100の表層部100aに好ましい濃度で広く分布していることを示すといえる。 Furthermore, when performing XPS analysis on the positive electrode active material 100 of one embodiment of the present invention, the number of magnesium atoms is preferably 0.4 times or more and 1.2 times or less, and 0.65 times or more and 1 times or less, relative to the number of cobalt atoms. More preferably, it is .0 times or less. Further, the number of nickel atoms is preferably 0.15 times or less, more preferably 0.03 times or more and 0.13 times or less relative to the number of cobalt atoms. Furthermore, the number of aluminum atoms is preferably 0.12 times or less, more preferably 0.09 times or less, relative to the number of cobalt atoms. The number of fluorine atoms is preferably 0.3 times or more and 0.9 times or less, more preferably 0.1 times or more and 1.1 times or less, relative to the number of cobalt atoms. The above range indicates that these additive elements are not attached to a narrow area on the surface of the positive electrode active material 100, but are widely distributed in the surface layer 100a of the positive electrode active material 100 at a preferable concentration. It can be said that it shows.
 XPS分析を行う場合には例えば、X線として単色化アルミニウムKα線を用いることができる。また、取出角は例えば45°とすればよい。例えば下記の装置および条件で測定することができる。
測定装置 :PHI 社製QuanteraII
X線 :単色化Al Kα(1486.6eV)
 検出領域 :100μmφ
検出深さ :約4~5nm(取出角45°)
 測定スペクトル :ワイドスキャン,各検出元素のナロースキャン
When performing XPS analysis, for example, monochromatic aluminum Kα rays can be used as the X-rays. Further, the take-out angle may be, for example, 45°. For example, it can be measured using the following equipment and conditions.
Measuring device: Quantera II manufactured by PHI
X-ray: Monochromatic Al Kα (1486.6eV)
Detection area: 100μmφ
Detection depth: Approximately 4~5 nm (takeout angle 45°)
Measurement spectrum: wide scan, narrow scan for each detected element
 また本発明の一態様の正極活物質100についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、およびフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。 Furthermore, when the positive electrode active material 100 of one embodiment of the present invention is subjected to XPS analysis, the peak indicating the bond energy between fluorine and other elements is preferably 682 eV or more and less than 685 eV, and more preferably about 684.3 eV. This value is different from both the binding energy of lithium fluoride, 685 eV, and the binding energy of magnesium fluoride, 686 eV.
 さらに、本発明の一態様の正極活物質100についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。 Further, when the positive electrode active material 100 of one embodiment of the present invention is subjected to XPS analysis, the peak indicating the bond energy between magnesium and other elements is preferably 1302 eV or more and less than 1304 eV, and more preferably about 1303 eV. This value is different from the binding energy of magnesium fluoride, 1305 eV, and is close to the binding energy of magnesium oxide.
≪EDX≫
 正極活物質100が有する添加元素から選ばれた一または二以上は濃度勾配を有していることが好ましい。また正極活物質100は添加元素によって、濃度ピークの表面からの深さが異なっていることがより好ましい。添加元素の濃度勾配は例えば、FIB(Focused Ion Beam)等により正極活物質100の断面を露出させ、その断面をエネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて分析することで評価できる。
≪EDX≫
It is preferable that one or more selected from the additive elements included in the positive electrode active material 100 have a concentration gradient. Further, it is more preferable that the depth of the concentration peak from the surface of the positive electrode active material 100 differs depending on the added element. The concentration gradient of the additive element can be determined by, for example, exposing a cross section of the positive electrode active material 100 using FIB (Focused Ion Beam) or the like, and then using the cross section by energy dispersive X-ray spectroscopy (EDX) or EPMA (electronic electron beam). It can be evaluated by analysis using probe microanalysis).
 EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ。また線状に走査しながら測定し、原子濃度について正極活物質内の分布を評価することを線分析と呼ぶ。さらにEDXの面分析から、線状の領域のデータを抽出したものを線分析と呼ぶ場合もある。またある領域について走査せずに測定することを点分析と呼ぶ。 Among EDX measurements, measuring while scanning the area and evaluating the area two-dimensionally is called EDX surface analysis. Also, measuring while scanning linearly and evaluating the distribution of atomic concentration within the positive electrode active material is called line analysis. Furthermore, data on a linear region extracted from the EDX surface analysis is sometimes called line analysis. Also, measuring a certain area without scanning it is called point analysis.
 EDX面分析(例えば元素マッピング)により、正極活物質100の表層部100a、内部100bおよび結晶粒界101近傍等における、添加元素の濃度を定量的に分析することができる。また、EDX線分析により、添加元素の濃度分布および最大値を分析することができる。またSTEM−EDXのように薄片化したサンプルを用いる分析は、奥行き方向の分布の影響を受けずに、特定の領域における正極活物質の表面から中心に向かった深さ方向の濃度分布を分析でき、より好適である。 By EDX plane analysis (for example, elemental mapping), the concentration of added elements in the surface layer 100a, interior 100b, vicinity of crystal grain boundaries 101, etc. of the positive electrode active material 100 can be quantitatively analyzed. Further, the concentration distribution and maximum value of the added element can be analyzed by EDX-ray analysis. In addition, analysis using a thin sample like STEM-EDX can analyze the concentration distribution in the depth direction from the surface of the cathode active material toward the center in a specific region without being affected by the distribution in the depth direction. , is more suitable.
 正極活物質100はリチウムの挿入脱離が可能な遷移金属と酸素を有する化合物であるため、リチウムの挿入脱離に伴い酸化還元する遷移金属M(例えばCo、Ni、Mn、Fe等)および酸素が存在する領域と、存在しない領域の界面を、正極活物質の表面とする。正極活物質を分析に供する際、表面に保護膜を付ける場合があるが、保護膜は正極活物質には含まれない。保護膜としては、炭素、金属、酸化物、樹脂などの単層膜または多層膜が用いられる場合がある。 Since the positive electrode active material 100 is a compound containing a transition metal and oxygen that are capable of intercalating and deintercalating lithium, the transition metal M (for example, Co, Ni, Mn, Fe, etc.) and oxygen that undergo oxidation and reduction as lithium intercalates and deintercalates. The interface between the region where is present and the region where is not is defined as the surface of the positive electrode active material. When a positive electrode active material is subjected to analysis, a protective film is sometimes attached to the surface, but the protective film is not included in the positive electrode active material. As the protective film, a single layer film or a multilayer film of carbon, metal, oxide, resin, etc. may be used.
 そのためSTEM−EDX線分析等において深さ方向に言及する際は、上記遷移金属Mの特性X線の検出量が、内部の上記遷移金属Mの特性X線の検出量の平均値MAVEと、バックグラウンドの上記遷移金属Mの特性X線の検出量の平均値MBGとの和の50%になる点、又は酸素の特性X線の検出量が、内部の酸素の特性X線の検出量の平均値OAVEと、バックグラウンドの酸素の特性X線の検出量の平均値OBGとの和の50%になる点を基準点とする。なお、上記遷移金属Mの特性X線の検出量が内部の上記遷移金属Mの特性X線の検出量の平均値とバックグラウンドの上記遷移金属Mの特性X線の検出量の平均値の和の50%になる点と、酸素の特性X線の検出量が内部の酸素の特性X線の検出量の平均値とバックグラウンドの酸素の特性X線の検出量の平均値の和の50%になる点とが異なる場合は、表面に付着する酸素を含む金属酸化物、炭酸塩等の影響と考えられるため、上記遷移金属Mの特性X線の検出量が内部の上記遷移金属Mの特性X線の検出量の平均値MAVEと、バックグラウンドの上記遷移金属Mの特性X線の検出量の平均値MBGとの和の50%の点を基準点として採用することができる。また遷移金属Mを複数有する正極活物質の場合、内部における特性X線の検出量が最も多い元素のMAVEおよびMBGを用いて上記基準点を求めることができる。 Therefore, when referring to the depth direction in STEM-EDX-ray analysis, etc., the detected amount of characteristic X-rays of the transition metal M is the average value M AVE of the detected amount of characteristic X-rays of the transition metal M inside, The point where the detected amount of characteristic X-rays of the above-mentioned transition metal M in the background becomes 50% of the sum with the average value M BG , or the detected amount of characteristic X-rays of oxygen is the detected amount of characteristic X-rays of internal oxygen. The reference point is a point that is 50% of the sum of the average value OAVE and the average value OBG of the detected amount of characteristic X-rays of background oxygen. The detected amount of characteristic X-rays of the transition metal M is the sum of the average detected amount of characteristic X-rays of the internal transition metal M and the average detected amount of characteristic X-rays of the background transition metal M. and the detected amount of characteristic X-rays of oxygen is 50% of the sum of the average value of the detected amount of characteristic X-rays of internal oxygen and the average value of the detected amount of characteristic X-rays of background oxygen. If the point differs from that of , it is considered to be due to the influence of oxygen-containing metal oxides, carbonates, etc. adhering to the surface, so the detected amount of characteristic X-rays of the transition metal M differs from the characteristic of the transition metal M inside. A point that is 50% of the sum of the average value MAVE of detected amounts of X-rays and the average value MBG of detected amounts of characteristic X-rays of the background transition metal M can be adopted as the reference point. Further, in the case of a positive electrode active material having a plurality of transition metals M, the reference point can be determined using M AVE and M BG of the elements whose internal characteristic X-rays are detected in the largest amount.
 バックグラウンドの上記遷移金属Mの特性X線の検出量の平均値MBGは、例えば遷移金属Mの特性X線の検出量が増加を始める近辺を避けて正極活物質の外側の2nm以上、好ましくは3nm以上の範囲を平均して求めることができる。また内部の遷移金属Mの特性X線の検出量の平均値MAVEは、遷移金属Mおよび酸素の特性X線の検出量が飽和し安定した領域、例えば遷移金属Mの特性X線の検出量が増加を始める領域から深さ30nm以上、好ましくは50nmを超える部分で、2nm以上、好ましくは3nm以上の範囲を平均して求めることができる。バックグラウンドの酸素の特性X線の検出量の平均値OBGおよび内部の酸素の特性X線の検出量の平均値OAVEも同様に求めることができる。 The average value MBG of the detected amount of characteristic X-rays of the transition metal M in the background is preferably 2 nm or more outside the positive electrode active material, avoiding the vicinity where the detected amount of characteristic X-rays of the transition metal M starts to increase. can be determined by averaging over a range of 3 nm or more. In addition, the average value MAVE of the detected amount of characteristic X-rays of the internal transition metal M is a region where the detected amounts of characteristic X-rays of transition metal M and oxygen are saturated and stable, for example, the detected amount of characteristic X-rays of transition metal M A range of 2 nm or more, preferably 3 nm or more can be determined on average at a depth of 30 nm or more, preferably more than 50 nm from the region where . The average value O BG of the detected amount of characteristic X-rays of background oxygen and the average value O AVE of the detected amount of characteristic X-rays of internal oxygen can be similarly determined.
 また断面STEM(走査型透過電子顕微鏡)像等における正極活物質100の表面とは、正極活物質の結晶構造に由来する像が観察される領域と、観察されない領域の境界であって、正極活物質を構成する金属元素の中でリチウムより原子番号の大きな金属元素の原子核に由来する原子カラムが確認される領域の最も外側とする。 In addition, the surface of the positive electrode active material 100 in a cross-sectional STEM (scanning transmission electron microscope) image, etc. is the boundary between a region where an image derived from the crystal structure of the positive electrode active material is observed and a region where it is not observed. This is the outermost region in which an atomic column originating from the nucleus of a metal element with a higher atomic number than lithium among the metal elements constituting the substance is confirmed.
 また、STEM−EDXの空間分解能は1nm程度である。そのため添加元素の特性X線の検出量が最大値となる位置は1nm程度ずれることがあり得る。例えば上記で求めた表面より外側にマグネシウム等の添加元素の特性X線の検出量が最大値となる位置があっても、最大値と表面の差が1nm未満であれば、誤差とみなすことができる。 Additionally, the spatial resolution of STEM-EDX is approximately 1 nm. Therefore, the position where the detected amount of characteristic X-rays of the added element reaches its maximum value may be shifted by about 1 nm. For example, even if there is a position where the detected amount of characteristic X-rays of an additive element such as magnesium has a maximum value outside the surface determined above, if the difference between the maximum value and the surface is less than 1 nm, it can be considered as an error. can.
 またSTEM−EDX線分析におけるピークとは、各元素の特性X線の検出強度、または最大値となる位置をいうこととする。なおSTEM−EDX線分析におけるノイズとしては、空間分解能(R)以下、例えばR/2以下の半値幅の測定値などが考えられる。 In addition, the peak in STEM-EDX-ray analysis refers to the detected intensity of characteristic X-rays of each element, or the position where the maximum value is reached. Note that noise in STEM-EDX-ray analysis may include a measured value of half-width that is less than the spatial resolution (R), for example, less than R/2.
 同一箇所を同一条件で複数回スキャンすることでノイズの影響を軽減できる。例えば6スキャン測定した積算値を各元素の特性X線の検出量とすることができる。スキャン回数は6に限られず、それ以上行って、その平均を各元素の特性X線の検出量とすることもできる。 The effects of noise can be reduced by scanning the same location multiple times under the same conditions. For example, the integrated value obtained by measuring six scans can be used as the detected amount of characteristic X-rays of each element. The number of scans is not limited to six, and it is also possible to perform more scans and use the average as the detected amount of characteristic X-rays of each element.
 STEM−EDX線分析は、例えば以下のように行うことができる。まず正極活物質の表面に保護膜を蒸着する。例えばイオンスパッタ装置(日立ハイテク製MC1000)にて、炭素を蒸着することができる。 STEM-EDX-ray analysis can be performed, for example, as follows. First, a protective film is deposited on the surface of the positive electrode active material. For example, carbon can be deposited using an ion sputtering device (MC1000 manufactured by Hitachi High-Tech).
 次に正極活物質を薄片化しSTEM断面試料を作製する。例えばFIB−SEM装置(日立ハイテク製XVision200TBS)にて薄片化加工を行うことができる。その際ピックアップはMPS(マイクロプロービングシステム)で行い、仕上げ加工の条件は例えば加速電圧10kVとすることができる。 Next, the positive electrode active material is cut into thin pieces to prepare a STEM cross-sectional sample. For example, thinning processing can be performed using a FIB-SEM device (XVision 200TBS manufactured by Hitachi High-Technology). At that time, the pickup is performed using an MPS (micro probing system), and the finishing conditions can be, for example, an accelerating voltage of 10 kV.
 STEM−EDX線分析は、例えばSTEM装置(日立ハイテク製HD−2700)を用いて、EDX検出器は、EDAXのOctane T Ultra Wを使用することができる。EDX線分析時は、STEM装置のエミッション電流が6μA以上10μA以下になるよう設定し、薄片化した試料のうち奥行きおよび凹凸の少ない箇所を測定する。倍率は例えば15万倍程度とする。EDX線分析の条件は、ドリフト補正有り、線幅42nm、ピッチ0.2nm、フレーム数6回以上とすることができる。 For STEM-EDX-ray analysis, for example, a STEM device (HD-2700 manufactured by Hitachi High-Tech) may be used, and an EDAX Octane T Ultra W may be used as the EDX detector. At the time of EDX-ray analysis, the emission current of the STEM device is set to be 6 μA or more and 10 μA or less, and the depth and portions of the thin sectioned sample with few irregularities are measured. The magnification is, for example, about 150,000 times. The conditions for the EDX-ray analysis may include drift correction, line width of 42 nm, pitch of 0.2 nm, and number of frames of 6 or more.
 本発明の一態様の正極活物質100についてEDX面分析またはEDX点分析したとき、表層部100aのマグネシウム等の添加元素の濃度が、内部100bのそれよりも高いことが好ましい。 When the positive electrode active material 100 of one embodiment of the present invention is subjected to EDX plane analysis or EDX point analysis, it is preferable that the concentration of the additive element such as magnesium in the surface layer portion 100a is higher than that in the interior portion 100b.
 例えば添加元素としてマグネシウムを有する正極活物質100についてEDX面分析またはEDX点分析したとき、表層部100aのマグネシウム濃度が、内部100bのマグネシウム濃度よりも高いことが好ましい。またEDX線分析をしたとき、表層部100aのマグネシウム濃度のピークは、正極活物質100の表面、または基準点から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。またマグネシウムの濃度はピークから深さ1nmの点でピークの60%以下に減衰することが好ましい。またピークから深さ2nmの点でピークの30%以下に減衰することが好ましい。なおここでいう濃度のピーク(ピークトップともいう)とは、濃度の極大値をいうこととする。 For example, when EDX plane analysis or EDX point analysis is performed on the positive electrode active material 100 having magnesium as an additive element, it is preferable that the magnesium concentration in the surface layer portion 100a is higher than the magnesium concentration in the interior portion 100b. Furthermore, when EDX-ray analysis is performed, the peak of the magnesium concentration in the surface layer 100a preferably exists within a depth of 3 nm from the surface or reference point toward the center of the positive electrode active material 100, and preferably exists within a depth of 1 nm. It is more preferable to do so, and it is still more preferable to exist at a depth of 0.5 nm. Further, it is preferable that the magnesium concentration attenuates to 60% or less of the peak at a depth of 1 nm from the peak. Further, it is preferable that the attenuation decreases to 30% or less of the peak at a depth of 2 nm from the peak. Note that the concentration peak (also referred to as peak top) herein refers to the maximum value of concentration.
 またEDX線分析をしたとき、表層部100aのマグネシウム濃度(マグネシウム検出量/(マグネシウム、酸素、コバルト、フッ素、アルミニウム、シリコンの検出量の和)は、0.5原子%以上10原子%以下であることが好ましく、1原子%以上5原子%以下であることがより好ましい。 Further, when EDX-ray analysis was performed, the magnesium concentration (detected amount of magnesium/(sum of detected amounts of magnesium, oxygen, cobalt, fluorine, aluminum, and silicon) in the surface layer 100a was 0.5 at.% or more and 10 at.% or less). It is preferably at least 1 atomic % and at most 5 atomic %.
 また添加元素としてマグネシウムおよびフッ素を有する正極活物質100では、フッ素の分布は、マグネシウムの分布と重畳することが好ましい。例えばフッ素濃度のピークと、マグネシウム濃度のピークの深さ方向の差が10nm以内であると好ましく、3nm以内であるとより好ましく、1nm以内であるとさらに好ましい。 In the positive electrode active material 100 containing magnesium and fluorine as additive elements, the distribution of fluorine preferably overlaps with the distribution of magnesium. For example, the difference in the depth direction between the peak of fluorine concentration and the peak of magnesium concentration is preferably within 10 nm, more preferably within 3 nm, and even more preferably within 1 nm.
 またEDX線分析をしたとき、表層部100aのフッ素濃度のピークは、正極活物質100の表面、または基準点から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。またフッ素濃度のピークはマグネシウムの濃度のピークよりもわずかに表面側に存在すると、フッ酸への耐性が増してより好ましい。例えばフッ素濃度のピークはマグネシウムの濃度のピークよりも0.5nm以上表面側であるとより好ましく、1.5nm以上表面側であるとさらに好ましい。 In addition, when performing EDX-ray analysis, the peak of fluorine concentration in the surface layer 100a preferably exists within a depth of 3 nm from the surface or reference point toward the center of the positive electrode active material 100, and preferably exists within a depth of 1 nm. It is more preferable to do so, and it is still more preferable to exist at a depth of 0.5 nm. Further, it is more preferable that the peak of the fluorine concentration be present slightly closer to the surface than the peak of the magnesium concentration, since this increases resistance to hydrofluoric acid. For example, the peak of fluorine concentration is more preferably 0.5 nm or more closer to the surface than the peak of magnesium concentration, and even more preferably 1.5 nm or more closer to the surface.
 また添加元素としてニッケルを有する正極活物質100では、表層部100aのニッケル濃度のピークは、正極活物質100の表面、または基準点から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。またマグネシウムおよびニッケルを有する正極活物質100では、ニッケルの分布は、マグネシウムの分布と重畳することが好ましい。例えばニッケル濃度のピークと、マグネシウム濃度のピークの深さ方向の差が3nm以内であると好ましく、1nm以内であるとより好ましい。 In the positive electrode active material 100 having nickel as an additive element, the peak of the nickel concentration in the surface layer 100a is preferably present within a depth of 3 nm from the surface or reference point toward the center of the positive electrode active material 100. It is more preferable to exist within a depth of 1 nm, and even more preferably to exist within a depth of 0.5 nm. In the positive electrode active material 100 containing magnesium and nickel, the distribution of nickel preferably overlaps with the distribution of magnesium. For example, the difference in the depth direction between the peak of nickel concentration and the peak of magnesium concentration is preferably within 3 nm, more preferably within 1 nm.
 また正極活物質100が添加元素としてアルミニウムを有する場合は、EDX線分析をしたとき、表層部100aのアルミニウム濃度のピークよりも、マグネシウム、ニッケルまたはフッ素の濃度のピークが表面に近いことが好ましい。例えばアルミニウム濃度のピークは正極活物質100の表面、または基準点から中心に向かった深さ0.5nm以上50nm以下に存在することが好ましく、深さ5nm以上50nm以下に存在することがより好ましい。 In addition, when the positive electrode active material 100 has aluminum as an additive element, when EDX-ray analysis is performed, it is preferable that the peak of the concentration of magnesium, nickel, or fluorine is closer to the surface than the peak of the aluminum concentration in the surface layer portion 100a. For example, the peak of aluminum concentration preferably exists at a depth of 0.5 nm or more and 50 nm or less from the surface of the positive electrode active material 100 or the reference point toward the center, and more preferably at a depth of 5 nm or more and 50 nm or less.
 また正極活物質100についてEDX線分析、面分析または点分析をしたとき、マグネシウム濃度のピークにおけるマグネシウムMgとコバルトCoの原子数の比(Mg/Co)は0.05以上0.6以下が好ましく、0.1以上0.4以下がより好ましい。アルミニウム濃度のピークにおけるアルミニウムAlとコバルトCoの原子数の比(Al/Co)は0.05以上0.6以下が好ましく、0.1以上0.45以下がより好ましい。ニッケル濃度のピークにおけるニッケルNiとコバルトCoの原子数の比(Ni/Co)は0以上0.2以下が好ましく、0.01以上0.1以下がより好ましい。フッ素濃度のピークにおけるフッ素FとコバルトCoの原子数の比(F/Co)は0以上1.6以下が好ましく、0.1以上1.4以下がより好ましい。 Further, when the positive electrode active material 100 is subjected to EDX-ray analysis, area analysis, or point analysis, the ratio of the number of atoms of magnesium Mg and cobalt Co (Mg/Co) at the peak of magnesium concentration is preferably 0.05 or more and 0.6 or less. , more preferably 0.1 or more and 0.4 or less. The ratio of the number of atoms of aluminum Al and cobalt Co (Al/Co) at the peak of the aluminum concentration is preferably 0.05 or more and 0.6 or less, more preferably 0.1 or more and 0.45 or less. The ratio of the number of atoms of nickel Ni and cobalt Co (Ni/Co) at the peak of the nickel concentration is preferably 0 or more and 0.2 or less, more preferably 0.01 or more and 0.1 or less. The ratio of the number of atoms of fluorine F and cobalt Co (F/Co) at the peak of the fluorine concentration is preferably 0 or more and 1.6 or less, more preferably 0.1 or more and 1.4 or less.
 また正極活物質100について線分析または面分析をしたとき、結晶粒界101近傍における添加元素AとコバルトCoの原子数の比(A/Co)は0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または0.020以上0.30以下が好ましい。または0.020以上0.20以下が好ましい。または0.025以上0.50以下が好ましい。または0.025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。 Further, when line analysis or surface analysis is performed on the positive electrode active material 100, the ratio of the number of atoms of the additive element A to cobalt Co (A/Co) in the vicinity of the grain boundary 101 is preferably 0.020 or more and 0.50 or less. More preferably, it is 0.025 or more and 0.30 or less. More preferably, it is 0.030 or more and 0.20 or less. Or preferably 0.020 or more and 0.30 or less. Or preferably 0.020 or more and 0.20 or less. Or preferably 0.025 or more and 0.50 or less. Or preferably 0.025 or more and 0.20 or less. Or preferably 0.030 or more and 0.50 or less. Or preferably 0.030 or more and 0.30 or less.
 例えば添加元素がマグネシウムのとき、正極活物質100について線分析または面分析をしたとき、結晶粒界101近傍におけるマグネシウムとコバルトの原子数の比(Mg/Co)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または0.020以上0.30以下が好ましい。または0.020以上0.20以下が好ましい。または0.025以上0.50以下が好ましい。または0.025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。また正極活物質100の複数個所、例えば3箇所以上において上記の範囲であると、添加元素が正極活物質100の表面の狭い範囲に付着するのではなく、正極活物質100の表層部100aに好ましい濃度で広く分布していることを示しているといえる。 For example, when the additive element is magnesium, when line analysis or surface analysis is performed on the positive electrode active material 100, the ratio of the number of magnesium and cobalt atoms (Mg/Co) near the grain boundary 101 is 0.020 or more and 0.50. The following are preferred. More preferably, it is 0.025 or more and 0.30 or less. More preferably, it is 0.030 or more and 0.20 or less. Or preferably 0.020 or more and 0.30 or less. Or preferably 0.020 or more and 0.20 or less. Or preferably 0.025 or more and 0.50 or less. Or preferably 0.025 or more and 0.20 or less. Or preferably 0.030 or more and 0.50 or less. Or preferably 0.030 or more and 0.30 or less. Furthermore, if the above range is present at multiple locations of the positive electrode active material 100, for example at three or more locations, the additive element will not adhere to a narrow area on the surface of the positive electrode active material 100, but will preferably be applied to the surface layer 100a of the positive electrode active material 100. This can be said to indicate that the concentration is widely distributed.
≪EPMA≫
 EPMA(電子プローブ微小分析)も元素の定量が可能である。面分析ならば各元素の分布を分析することができる。
≪EPMA≫
EPMA (Electron Probe Microanalysis) is also capable of quantifying elements. Area analysis allows analysis of the distribution of each element.
 本発明の一態様の正極活物質100の断面についてEPMA面分析をしたとき、EDXの分析結果と同様に、添加元素から選ばれた一または二以上は濃度勾配を有していることが好ましい。また添加元素によって、濃度ピークの表面からの深さが異なっていることがより好ましい。各添加元素の濃度ピークの好ましい範囲も、EDXの場合と同様である。 When EPMA surface analysis is performed on a cross section of the positive electrode active material 100 according to one embodiment of the present invention, it is preferable that one or more selected additive elements have a concentration gradient, similar to the EDX analysis results. Further, it is more preferable that the depth of the concentration peak from the surface differs depending on the added element. The preferred range of the concentration peak of each additive element is also the same as in the case of EDX.
 ただしEPMAでは表面から1μm程度の深さまでの領域を分析する。そのため、各元素の定量値が他の分析法を用いた測定結果と異なる場合がある。例えば正極活物質100の表面分析をEPMAで行ったとき、表層部100aに存在する各添加元素の濃度が、XPSの結果より低くなる場合がある。 However, EPMA analyzes a region from the surface to a depth of about 1 μm. Therefore, the quantitative value of each element may differ from the measurement results using other analysis methods. For example, when the surface of the positive electrode active material 100 is analyzed by EPMA, the concentration of each additive element present in the surface layer portion 100a may be lower than the result of XPS.
≪ラマン分光法≫
 本発明の一態様の正極活物質100は、上述したように、表層部100aの少なくとも一部が、岩塩型の結晶構造を有することが好ましい。そのため、正極活物質100およびこれを有する正極をラマン分光法で分析したとき、層状岩塩の結晶構造と共に、岩塩型をはじめとする立方晶系の結晶構造も観測されることが好ましい。後述するHAADF−STEM像および極微電子線回折パターンでは、観察時の奥行き方向にある程度の頻度でリチウム位置に置換したコバルト、および酸素4配位位置に存在するコバルト等が無いと、HAADF−STEM像および極微電子線回折パターンの輝点として検出することができない。一方で、ラマン分光法はCo−Oなどの結合の振動モードをとらえる分析であるため、該当するCo−O結合の存在量が少なくても、対応する振動モードの波数のピークが観測できる場合がある。さらに、ラマン分光法は、表層部の面積数μm、深さ1μmくらいの範囲を測定できるため、粒子表面にのみ存在する状態を感度よく捉えることができる。
≪Raman spectroscopy≫
As described above, in the positive electrode active material 100 of one embodiment of the present invention, at least a portion of the surface layer portion 100a preferably has a rock salt crystal structure. Therefore, when the positive electrode active material 100 and the positive electrode containing the same are analyzed by Raman spectroscopy, it is preferable that not only the layered rock salt crystal structure but also the cubic crystal structure including the rock salt type is observed. In the HAADF-STEM image and ultrafine electron diffraction pattern described below, it is found that if there is no cobalt substituted at the lithium position with a certain frequency in the depth direction at the time of observation, and cobalt present at the 4-coordination position of oxygen, the HAADF-STEM image will be different. and cannot be detected as a bright spot in the ultrafine electron diffraction pattern. On the other hand, since Raman spectroscopy is an analysis that captures the vibrational mode of bonds such as Co-O, even if the amount of the corresponding Co-O bond is small, it may be possible to observe the wavenumber peak of the corresponding vibrational mode. be. Furthermore, since Raman spectroscopy can measure a surface area of several μm 2 and a depth of about 1 μm, it is possible to sensitively capture states that exist only on the particle surface.
 例えばレーザ波長532nmのとき、層状岩塩型のLiCoOでは、470cm−1乃至490cm−1、580cm−1乃至600cm−1にピーク(振動モード:E、A1g)が観測される。一方、立方晶系CoO(0<x<1)(岩塩型Co1−yO(0<y<1)またはスピネル型Co)では、665cm−1乃至685cm−1にピーク(振動モード:A1g)が観測される。 For example, when the laser wavelength is 532 nm, peaks (vibration modes: E g , A 1g ) are observed at 470 cm −1 to 490 cm −1 and 580 cm −1 to 600 cm −1 in layered rock salt type LiCoO 2 . On the other hand, in cubic CoO x (0<x<1) (rock salt Co 1-y O (0<y<1) or spinel Co 3 O 4 ), the peak (vibration mode: A 1g ) is observed.
 そのため、各ピークの積分強度を470cm−1乃至490cm−1をI1、580cm−1乃至600cm−1をI2、665cm−1乃至685cm−1をI3としたとき、I3/I2の値が1%以上10%以下であることが好ましく、3%以上9%以下であることがより好ましい。 Therefore, when the integrated intensity of each peak is 470 cm -1 to 490 cm -1 as I1, 580 cm -1 to 600 cm -1 as I2, and 665 cm -1 to 685 cm -1 as I3, the value of I3/I2 is 1% or more. It is preferably 10% or less, and more preferably 3% or more and 9% or less.
 上記のような範囲で岩塩型をはじめとする立方晶系の結晶構造が観測されれば、正極活物質100の表層部100aに好ましい範囲で岩塩型の結晶構造を有しているといえる。 If a cubic crystal structure including a rock salt type is observed in the above range, it can be said that the surface layer 100a of the positive electrode active material 100 has a rock salt type crystal structure in a preferable range.
≪極微電子線回折パターン≫
 ラマン分光法と同様に極微電子線回折パターンでも、層状岩塩の結晶構造と共に、岩塩型の結晶構造の特徴も観察されることが好ましい。ただしSTEM像および極微電子線回折パターンにおいては、上述の感度の違いも踏まえ、表層部100a、なかでも最表面(例えば表面から深さ1nm)において岩塩型の結晶構造の特徴が強くなりすぎないことが好ましい。最表面が岩塩型の結晶構造で覆われるよりも、層状岩塩型の結晶構造を有したままリチウム層にマグネシウム等の添加元素が存在する方が、リチウムの拡散経路を確保でき、かつ結晶構造を安定化させる機能がより強くなるためである。
≪Ultrafine electron diffraction pattern≫
It is preferable that the characteristics of the rock salt type crystal structure as well as the layered rock salt crystal structure be observed in the ultrafine electron diffraction pattern as well as in Raman spectroscopy. However, in the STEM image and ultrafine electron diffraction pattern, taking into account the above-mentioned difference in sensitivity, the characteristics of the rock salt crystal structure should not be too strong at the surface layer 100a, especially at the outermost surface (for example, at a depth of 1 nm from the surface). is preferred. Rather than having the outermost surface covered with a rock-salt-type crystal structure, it is better to have an additive element such as magnesium in the lithium layer while maintaining the layered rock-salt-type crystal structure. This is because the stabilizing function becomes stronger.
 そのため、例えば表面から深さ1nm以下の領域の極微電子線回折パターンと、深さ3nm以上10nm以下までの領域の極微電子線回折パターンとを取得したとき、これらから算出される格子定数の差が小さい方が好ましい。 Therefore, for example, when obtaining a microelectron diffraction pattern in a region with a depth of 1 nm or less from the surface and a microelectron diffraction pattern in a region with a depth of 3 nm or more and 10 nm or less, the difference in the lattice constants calculated from them is Smaller is preferable.
 例えば表面から深さ1nm以下の測定箇所と、深さ3nm以上10nm以下までの測定箇所から算出される格子定数の差は、a軸について0.1×10−1nm以下であると好ましく、c軸について1.0×10−1nm以下であると好ましい。またa軸について0.05×10−1nm以下であるとより好ましく、c軸について0.6×10−1nm以下であるとより好ましい。またa軸について0.04×10−1nm以下であるとさらに好ましく、c軸について0.3×10−1nm以下であるとさらに好ましい。 For example, the difference in lattice constant calculated from a measurement point at a depth of 1 nm or less from the surface and a measurement point at a depth of 3 nm or more and 10 nm or less is preferably 0.1 × 10 -1 nm or less about the a-axis, and c It is preferable that the diameter is 1.0×10 −1 nm or less along the axis. Moreover, it is more preferable that the a-axis is 0.05×10 −1 nm or less, and the c-axis is more preferably 0.6×10 −1 nm or less. Further, it is more preferable that the a-axis is 0.04×10 −1 nm or less, and even more preferable that the c-axis is 0.3×10 −1 nm or less.
≪表面粗さと比表面積≫
 本発明の一態様の正極活物質100は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、後述する融剤の効果が十分に発揮されて、添加元素源とコバルト酸リチウムの表面が溶融したことを示す。そのため表層部100aにおける添加元素の分布が良好であることを示す一つの要素である。
≪Surface roughness and specific surface area≫
The positive electrode active material 100 according to one embodiment of the present invention preferably has a smooth surface with few irregularities. The fact that the surface is smooth and has few irregularities indicates that the effect of the flux described below was sufficiently exerted and the surfaces of the additive element source and lithium cobalt oxide were melted. Therefore, this is one factor indicating that the distribution of the additive elements in the surface layer portion 100a is good.
 表面がなめらかで凹凸が少ないことは、例えば正極活物質100の断面SEM像または断面TEM像、正極活物質100の比表面積等から判断することができる。 The fact that the surface is smooth and has few irregularities can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100, the specific surface area of the positive electrode active material 100, etc.
 例えば以下のように、正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。 For example, the surface smoothness can be quantified from a cross-sectional SEM image of the positive electrode active material 100 as shown below.
 まず正極活物質100をFIB等により加工して断面を露出させる。このとき保護膜、保護剤等で正極活物質100を覆うことが好ましい。次に保護膜等と正極活物質100との界面のSEM像を撮影する。該SEM像に画像処理ソフトでノイズ処理を行う。例えばガウスぼかし(σ=2)を行った後、二値化を行う。さらに画像処理ソフトで界面抽出を行う。さらに自動選択ツール等で保護膜等と正極活物質100との界面ラインを選択し、データを表計算ソフト等に抽出する。表計算ソフト等の機能を用いて、回帰曲線(二次回帰)から補正を行い、傾き補正後データからラフネス算出用パラメータを求め、標準偏差を算出した二乗平均平方根表面粗さ(RMS)を求める。また、この表面粗さは、正極活物質は少なくとも粒子外周の400nmにおける表面粗さである。 First, the positive electrode active material 100 is processed by FIB or the like to expose a cross section. At this time, it is preferable to cover the positive electrode active material 100 with a protective film, a protective agent, or the like. Next, a SEM image of the interface between the protective film and the like and the positive electrode active material 100 is taken. Noise processing is performed on the SEM image using image processing software. For example, after Gaussian blurring (σ=2) is performed, binarization is performed. Furthermore, interface extraction is performed using image processing software. Furthermore, the interface line between the protective film or the like and the positive electrode active material 100 is selected using an automatic selection tool or the like, and the data is extracted into spreadsheet software or the like. Using functions such as spreadsheet software, perform correction from the regression curve (quadratic regression), obtain parameters for roughness calculation from the data after slope correction, and obtain root mean square surface roughness (RMS) with standard deviation calculated. . The surface roughness of the positive electrode active material is at least 400 nm around the outer periphery of the particles.
 本実施の形態の正極活物質100の粒子表面においては、ラフネスの指標である二乗平均平方根(RMS)表面粗さは3nm未満、好ましくは1nm未満、さらに好ましくは0.5nm未満の二乗平均平方根表面粗さ(RMS)であることが好ましい。 In the particle surface of the positive electrode active material 100 of this embodiment, the root mean square (RMS) surface roughness, which is an index of roughness, is less than 3 nm, preferably less than 1 nm, and more preferably less than 0.5 nm. Roughness (RMS) is preferred.
 なおノイズ処理、界面抽出等を行う画像処理ソフトについては特に限定されないが、例えば非特許文献9乃至非特許文献11に記載の「ImageJ」を用いることができる。また表計算ソフト等についても特に限定されないが、例えばMicrosoft Office Excelを用いることができる。 Note that the image processing software that performs noise processing, interface extraction, etc. is not particularly limited, but for example, "ImageJ" described in Non-Patent Documents 9 to 11 can be used. Further, spreadsheet software and the like are not particularly limited, but Microsoft Office Excel can be used, for example.
 また例えば、定容法によるガス吸着法にて測定した実際の比表面積Sと、理想的な比表面積Sとの比からも、正極活物質100の表面のなめらかさを数値化することができる。 For example, the surface smoothness of the positive electrode active material 100 can also be quantified from the ratio of the actual specific surface area S R measured by a gas adsorption method using a constant volume method and the ideal specific surface area S i . can.
 理想的な比表面積Sは、すべての粒子の直径がD50と同じであり、重量が同じであり、形状は理想的な球であるとして計算して求める。 The ideal specific surface area S i is calculated by assuming that all particles have the same diameter as D50, the same weight, and an ideal spherical shape.
 メディアン径D50は、レーザ回折・散乱法を用いた粒度分布計等によって測定することができる。比表面積は、例えば定容法によるガス吸着法を用いた比表面積測定装置等によって測定することができる。 The median diameter D50 can be measured using a particle size distribution meter using a laser diffraction/scattering method. The specific surface area can be measured by, for example, a specific surface area measuring device using a gas adsorption method using a constant volume method.
 本発明の一態様の正極活物質100は、メディアン径D50から求めた理想的な比表面積Sと、実際の比表面積Sの比S/Sが2.1以下であることが好ましい。 In the positive electrode active material 100 of one embodiment of the present invention, the ratio S R /S i of the ideal specific surface area S i determined from the median diameter D50 and the actual specific surface area S R is preferably 2.1 or less. .
 または、下記のような方法によっても正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。 Alternatively, the surface smoothness can also be quantified from a cross-sectional SEM image of the positive electrode active material 100 by the following method.
 まず正極活物質100の表面SEM像を取得する。このとき観察前処理として導電性コーティングを施してもよい。観察面は電子線と垂直であることが好ましい。複数のサンプルを比較する場合は測定条件および観察面積を同じとする。 First, a surface SEM image of the positive electrode active material 100 is obtained. At this time, a conductive coating may be applied as a pretreatment for observation. Preferably, the observation plane is perpendicular to the electron beam. When comparing multiple samples, use the same measurement conditions and observation area.
 次に画像処理ソフト(例えば「ImageJ」)を用いて上記のSEM像を例えば8ビットに変換した画像(これをグレースケール画像と呼ぶ)を取得する。グレースケール画像は輝度(明るさ情報)を含んでいる。例えば8ビットのグレースケール画像では、輝度を2の8乗=256階調で表すことができる。暗い部分は階調数が低くなり、明るい部分は階調数が高くなる。階調数と関連付けて輝度変化を数値化することができる。当該数値をグレースケール値と呼ぶ。グレースケール値を取得することで正極活物質の凹凸を数値として評価することが可能となる。 Next, an image obtained by converting the above SEM image into, for example, 8 bits (this is called a grayscale image) is obtained using image processing software (for example, "ImageJ"). A grayscale image includes luminance (brightness information). For example, in an 8-bit gray scale image, brightness can be represented by 2 to the 8th power = 256 gradations. The number of gradations is low in dark areas, and the number of gradations is high in bright areas. Luminance changes can be quantified in association with the number of gradations. This numerical value is called a grayscale value. By obtaining the gray scale value, it becomes possible to evaluate the unevenness of the positive electrode active material numerically.
 さらに対象領域の輝度変化をヒストグラムで表すことも可能となる。ヒストグラムとは対象領域における階調分布を立体的に示したもので、輝度ヒストグラムとも呼ぶ。輝度ヒストグラムを取得することで正極活物質の凹凸を視覚的にわかりやすく、評価することが可能となる。 Furthermore, it is also possible to represent the brightness changes in the target area using a histogram. A histogram is a three-dimensional representation of the gradation distribution in a target area, and is also called a brightness histogram. Obtaining a brightness histogram makes it possible to visually understand and evaluate the unevenness of the positive electrode active material.
 本発明の一態様の正極活物質100は、上記グレースケール値の最大値と最小値との差が120以下であることが好ましく、115以下であることがより好ましく、70以上115以下であることがさらに好ましい。またグレースケール値の標準偏差は、11以下となることが好ましく、8以下であることがより好ましく、4以上8以下であることがさらに好ましい。 In the positive electrode active material 100 of one embodiment of the present invention, the difference between the maximum value and the minimum value of the gray scale value is preferably 120 or less, more preferably 115 or less, and 70 or more and 115 or less. is even more preferable. Further, the standard deviation of the gray scale value is preferably 11 or less, more preferably 8 or less, and even more preferably 4 or more and 8 or less.
<追加の特徴>
 正極活物質100は凹部、クラック、窪み、断面V字形などを有する場合がある。これらは欠陥の一つであり、充放電を繰り返すとこれらからコバルトの溶出、結晶構造の崩れ、正極活物質100の割れ、酸素の脱離などが生じる恐れがある。しかこれらを埋め込むように図9Bに示すような埋め込み部102が存在すると、コバルトの溶出などを抑制することができる。そのため正極活物質100を用いた二次電池の信頼性およびサイクル特性を向上することができる。
<Additional features>
The positive electrode active material 100 may have a recess, a crack, a depression, a V-shaped cross section, or the like. These are one type of defects, and when charging and discharging are repeated, cobalt may be eluted, the crystal structure may collapse, the positive electrode active material 100 may be cracked, and oxygen may be eliminated. However, if there is an embedded part 102 as shown in FIG. 9B to embed these elements, elution of cobalt, etc. can be suppressed. Therefore, the reliability and cycle characteristics of a secondary battery using the positive electrode active material 100 can be improved.
 上述したように正極活物質100が有する添加元素は、過剰であるとリチウムの挿入および脱離に悪影響が出る恐れがある。また正極活物質100を二次電池に用いたときに内部抵抗の上昇、充放電容量の低下等を招く恐れもある。一方、不足であると表層部100a全体に分布せず、結晶構造の劣化を抑制する効果が不十分になる恐れがある。このように添加元素は正極活物質100において適切な濃度である必要があるが、その調整は容易ではない。 As described above, if the additive element contained in the positive electrode active material 100 is in excess, there is a risk that insertion and desorption of lithium will be adversely affected. Furthermore, when the positive electrode active material 100 is used in a secondary battery, there is a possibility that an increase in internal resistance, a decrease in charge/discharge capacity, etc. may occur. On the other hand, if it is insufficient, it may not be distributed throughout the surface layer portion 100a, and the effect of suppressing the deterioration of the crystal structure may become insufficient. As described above, it is necessary that the additive element has an appropriate concentration in the positive electrode active material 100, but it is not easy to adjust the concentration.
 そのため正極活物質100が、添加元素が偏在する領域を有していると、過剰な添加元素の原子の一部が正極活物質100の内部100bから除かれ、内部100bにおいて適切な添加元素濃度とすることができる。これにより二次電池としたときの内部抵抗の上昇、充放電容量の低下等を抑制することができる。二次電池の内部抵抗の上昇を抑制できることは、特に大電流での充放電、例えば400mA/g以上での充放電において極めて好ましい特性である。 Therefore, if the positive electrode active material 100 has a region where the additive element is unevenly distributed, some of the atoms of the excessive additive element are removed from the interior 100b of the positive electrode active material 100, and the concentration of the additive element is adjusted to an appropriate concentration in the interior 100b. can do. This can suppress an increase in internal resistance, a decrease in charge/discharge capacity, etc. when used as a secondary battery. Being able to suppress an increase in the internal resistance of a secondary battery is an extremely desirable characteristic, particularly when charging and discharging at a large current, for example, at 400 mA/g or more.
 また添加元素が偏在している領域を有する正極活物質100では、作製工程においてある程度過剰に添加元素を混合することが許容される。そのため生産におけるマージンが広くなり好ましい。 Furthermore, in the positive electrode active material 100 having a region where the additive element is unevenly distributed, it is permissible to mix the additive element in a certain amount of excess during the manufacturing process. Therefore, the production margin is wide, which is preferable.
 また正極活物質100の表面の少なくとも一部に、被覆部が付着していてもよい。図24Aおよび図24Bに被覆部104が付着した正極活物質100の例を示す。 Further, a coating portion may be attached to at least a portion of the surface of the positive electrode active material 100. FIGS. 24A and 24B show an example of the positive electrode active material 100 to which the coating portion 104 is attached.
 被覆部104は例えば充放電に伴い電解質および有機電解液の分解物が堆積して形成されたものであることが好ましい。特にLiCoO中のxが0.24以下となるような充電を繰り返す場合、正極活物質100の表面に電解液由来の被覆部を有することで、充放電サイクル特性が向上することが期待される。これは正極活物質表面のインピーダンスの上昇を抑制する、またはコバルトの溶出を抑制する、等の理由による。被覆部104は例えば炭素、酸素およびフッ素を有することが好ましい。さらに電解液にLiBOB、および/またはSUN(スベロニトリル)を用いた場合などは良質な被覆部を得られやすい。そのため、ホウ素、窒素、硫黄およびフッ素から選ばれた一または二以上を有する被覆部104は良質な被覆部である場合があり好ましい。また被覆部104は正極活物質100の全てを覆っていなくてもよい。例えば、正極活物質100の表面の50%以上を覆っていればよく、70%以上であればより好ましく、90%以上であればさらに好ましい。 The covering portion 104 is preferably formed by, for example, depositing decomposition products of an electrolyte and an organic electrolyte during charging and discharging. In particular, when charging is repeated such that x in Li x CoO 2 is 0.24 or less, it is expected that the charge-discharge cycle characteristics will be improved by having a coating derived from the electrolyte on the surface of the positive electrode active material 100. be done. This is for reasons such as suppressing an increase in impedance on the surface of the positive electrode active material or suppressing elution of cobalt. Preferably, the covering portion 104 contains carbon, oxygen, and fluorine, for example. Furthermore, when LiBOB and/or SUN (suberonitrile) is used as the electrolyte, it is easy to obtain a high-quality coating. Therefore, the coating portion 104 containing one or more selected from boron, nitrogen, sulfur, and fluorine may be a high-quality coating portion and is therefore preferable. Further, the covering portion 104 does not need to cover all of the positive electrode active material 100. For example, it is sufficient to cover 50% or more of the surface of the positive electrode active material 100, more preferably 70% or more, and even more preferably 90% or more.
≪粉体抵抗≫
 本発明の一態様の正極活物質100は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う充放電容量の低下を抑制することができる。上記のように優れた特性を有する正極活物質100の特徴として、上記の<<XRD>>において、LiCoO中のxが小さいときO3’型および/または単斜晶O1(15)型の結晶構造を有することを説明した。また、上記の<<EDX>>にて、正極活物質100をSTEM−EDX分析をした場合における、添加元素の好ましい存在分布について、説明した。さらに、本発明の一態様の正極活物質100は、粉体の体積抵抗率においても特徴を有する。
≪Powder resistance≫
The positive electrode active material 100 of one embodiment of the present invention has a stable crystal structure even at high voltage. Since the crystal structure of the positive electrode active material is stable in the charged state, it is possible to suppress a decrease in charge/discharge capacity due to repeated charging/discharging. As a feature of the positive electrode active material 100 having excellent properties as described above, in the above <<XRD>>, when x in Li x CoO 2 is small, O3' type and/or monoclinic O1 (15) type It was explained that it has a crystal structure of Moreover, in the above <<EDX>>, a preferable distribution of the additive elements in the case where the positive electrode active material 100 is subjected to STEM-EDX analysis was explained. Furthermore, the positive electrode active material 100 of one embodiment of the present invention is also characterized by the volume resistivity of the powder.
 本発明の一態様の正極活物質100の特徴として、正極活物質100の粉体における体積抵抗率は、64MPaの圧力において1.0×10Ω・cm以上であることが好ましく、1.0×10Ω・cm以上であることがより好ましく、1.0×10Ω・cm以上であることがより好ましい。また、64MPaの圧力において1.0×10Ω・cm以下であることが好ましく、1.0×10Ω・cm以下であることがより好ましく、1.0×10Ω・cm以下であることがより好ましい。 As a feature of the positive electrode active material 100 of one embodiment of the present invention, the volume resistivity of the powder of the positive electrode active material 100 is preferably 1.0×10 4 Ω·cm or more at a pressure of 64 MPa, and 1.0 It is more preferably ×10 5 Ω·cm or more, and more preferably 1.0 × 10 6 Ω·cm or more. Moreover, at a pressure of 64 MPa, it is preferably 1.0×10 9 Ω・cm or less, more preferably 1.0×10 8 Ω・cm or less, and 1.0×10 7 Ω・cm or less It is more preferable that there be.
 上記の体積抵抗率を有する正極活物質100は、高い電圧においても安定な結晶構造を有する。そのため、正極活物質100の、粉体における体積抵抗率が上記の範囲内であることは、充電状態において正極活物質の結晶構造が安定であるために重要である表層部100aを、良好に形成できたことを示す指標とすることができる。つまり、表層部100aは、高抵抗であることが好ましい。 The positive electrode active material 100 having the above volume resistivity has a stable crystal structure even at high voltage. Therefore, the fact that the volume resistivity of the powder of the positive electrode active material 100 is within the above range allows the surface layer portion 100a to be formed well, which is important for the crystal structure of the positive electrode active material to be stable in the charged state. It can be used as an indicator to show what has been achieved. That is, it is preferable that the surface layer portion 100a has high resistance.
 ただし、高抵抗な領域が、正極活物質100の表面から内部に向かって厚く存在する場合は、電池反応が阻害される恐れがある。そのため、表層部100aの表面付近の薄い領域のみが、高抵抗であることがより好ましい。つまり、表層部100aにおいて、高抵抗な領域が、表面から内部に向かって薄く存在することが好ましい。 However, if a high-resistance region exists thickly from the surface of the positive electrode active material 100 toward the inside, the battery reaction may be inhibited. Therefore, it is more preferable that only a thin region near the surface of the surface layer portion 100a has high resistance. That is, in the surface layer portion 100a, it is preferable that a high resistance region exist thinly from the surface toward the inside.
 本実施の形態は、他の実施の形態と組み合わせて用いることができる。 This embodiment can be used in combination with other embodiments.
(実施の形態3)
 本実施の形態では、本発明の一態様の電池の正極に用いることのできる正極活物質の作製方法の例について説明する。
(Embodiment 3)
In this embodiment, an example of a method for manufacturing a positive electrode active material that can be used for a positive electrode of a battery according to one embodiment of the present invention will be described.
 先の実施の形態で説明したような添加元素の分布、組成、および/または結晶構造を有する正極活物質100を作製するためには、添加元素の加え方が重要である。同時に内部100bの結晶性が良好であることも重要である。 In order to produce the positive electrode active material 100 having the distribution, composition, and/or crystal structure of the additive elements as described in the previous embodiment, how to add the additive elements is important. At the same time, it is also important that the interior 100b has good crystallinity.
 そのため正極活物質100の作製工程において、まずコバルト酸リチウムを合成し、その後添加元素源を混合して加熱処理を行うことが好ましい。 Therefore, in the manufacturing process of the positive electrode active material 100, it is preferable to first synthesize lithium cobalt oxide, then mix the additive element source and perform heat treatment.
 コバルト源と、リチウム源と同時に添加元素源を混合して、添加元素を有するコバルト酸リチウムを合成する方法では、表層部100aの添加元素濃度を高めることが難しい。またコバルト酸リチウムを合成した後、添加元素源を混合するのみで加熱を行わなければ、添加元素はコバルト酸リチウムに固溶することなく付着するのみである。十分な加熱を経なければ、添加元素を良好に分布させることが難しい。そのためコバルト酸リチウムを合成してから添加元素源を混合し、加熱処理を行うことが好ましい。この添加元素源を混合した後の加熱処理をアニールという場合がある。 In the method of synthesizing lithium cobalt oxide having an additive element by mixing a cobalt source, a lithium source, and an additive element source at the same time, it is difficult to increase the additive element concentration in the surface layer portion 100a. Further, after synthesizing lithium cobalt oxide, if the additive element source is only mixed and no heating is performed, the additive element will simply adhere to the lithium cobalt oxide without being dissolved in solid form. Without sufficient heating, it is difficult to distribute the additive elements well. Therefore, it is preferable to synthesize lithium cobalt oxide, mix the additive element source, and perform heat treatment. This heat treatment after mixing the additive element source is sometimes called annealing.
 しかしながらアニールの温度が高すぎると、カチオンミキシングが生じて添加元素、例えばマグネシウムがコバルトサイトに入る可能性が高まる。コバルトサイトに存在するマグネシウムは、LiCoO中のxが小さいときR−3mの層状岩塩型の結晶構造を保つ効果がない。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散するなどの悪影響も懸念される。 However, if the annealing temperature is too high, cation mixing will occur, increasing the possibility that additional elements, such as magnesium, will enter the cobalt sites. Magnesium present in the cobalt site has no effect on maintaining the layered rock salt type crystal structure of R-3m when x in Li x CoO 2 is small. Furthermore, if the temperature of the heat treatment is too high, there are concerns that there will be adverse effects such as cobalt being reduced to become divalent and lithium evaporating.
 そこで添加元素源と共に、融剤として機能する材料を混合することが好ましい。コバルト酸リチウムより融点が低ければ、融剤として機能する材料といえる。例えばフッ化リチウムをはじめとするフッ素化合物が好適である。融剤を加えることで、添加元素源と、コバルト酸リチウムの融点降下が起こる。融点降下させることでカチオンミキシングが生じにくい温度で、添加元素を良好に分布させることが容易となる。 Therefore, it is preferable to mix a material that functions as a flux together with the additive element source. If it has a lower melting point than lithium cobalt oxide, it can be said to be a material that functions as a fluxing agent. For example, fluorine compounds such as lithium fluoride are suitable. Addition of the flux lowers the melting point of the additive element source and the lithium cobalt oxide. By lowering the melting point, it becomes easier to distribute the additive element well at a temperature at which cation mixing is less likely to occur.
〔初期加熱〕
 さらにコバルト酸リチウムを合成した後、添加元素を混合する前にも加熱を行うとより好ましい。この加熱を初期加熱という場合がある。
[Initial heating]
Furthermore, it is more preferable to perform heating after synthesizing lithium cobalt oxide and before mixing additional elements. This heating may be called initial heating.
 初期加熱により、コバルト酸リチウムの表層部100aの一部からリチウムが脱離する影響で、添加元素の分布がさらに良好になる。 Due to the initial heating, lithium is desorbed from a part of the surface layer 100a of lithium cobalt oxide, so that the distribution of the added elements becomes even better.
 より詳細には以下のような機序で、初期加熱により添加元素によって分布を異ならせやすくなると考えられる。まず初期加熱により表層部100aの一部からリチウムが脱離する。次にこのリチウムが欠乏した表層部100aを有するコバルト酸リチウムと、ニッケル源、アルミニウム源、マグネシウム源をはじめとする添加元素源を混合し加熱する。添加元素のうちマグネシウムは2価の典型元素であり、ニッケルは遷移金属であるが2価のイオンになりやすい。そのため表層部100aの一部に、Mg2+およびNi2+と、リチウムの欠乏により還元されたCo2+と、を有する岩塩型の相が形成される。ただし、この相が形成されるのは表層部100aの一部であるため、STEMなどの電子顕微鏡像および電子線回折パターンにおいて明瞭に確認できない場合もある。 More specifically, it is thought that the initial heating makes it easier to vary the distribution depending on the added element through the following mechanism. First, lithium is desorbed from a portion of the surface layer portion 100a due to initial heating. Next, this lithium cobalt oxide having the surface layer portion 100a deficient in lithium and additional element sources including a nickel source, an aluminum source, and a magnesium source are mixed and heated. Among the additive elements, magnesium is a typical divalent element, and nickel is a transition metal but tends to become a divalent ion. Therefore, a rock salt-type phase containing Mg 2+ , Ni 2+ , and Co 2+ reduced due to lithium deficiency is formed in a part of the surface layer 100a. However, since this phase is formed in a part of the surface layer portion 100a, it may not be clearly visible in an electron microscope image such as STEM or in an electron beam diffraction pattern.
 添加元素のうちニッケルは、表層部100aが層状岩塩型のコバルト酸リチウムの場合は固溶しやすく内部100bまで拡散するが、表層部100aの一部が岩塩型の場合は表層部100aにとどまりやすい。そのため、初期加熱を行うことでニッケルをはじめとする2価の添加元素を表層部100aに留まりやすくすることができる。この初期加熱の効果は特に正極活物質100の(001)配向以外の表面およびその表層部100aにおいて大きい。 Among the additive elements, nickel tends to form a solid solution when the surface layer 100a is layered rock salt type lithium cobalt oxide and diffuses to the interior 100b, but when a part of the surface layer 100a is rock salt type, it tends to stay in the surface layer 100a. . Therefore, by performing initial heating, divalent additive elements such as nickel can be easily retained in the surface layer portion 100a. The effect of this initial heating is particularly large on the surface of the positive electrode active material 100 other than the (001) orientation and the surface layer portion 100a thereof.
 またこれらの岩塩型では、金属Meと酸素の結合距離(Me−O距離)が層状岩塩型よりも長くなる傾向にある。 In addition, in these rock salt types, the bond distance between metal Me and oxygen (Me-O distance) tends to be longer than in the layered rock salt type.
 例えば岩塩型Ni0.5Mg0.5OにおけるMe−O距離は2.09×10−1nm、岩塩型MgOにおけるMe−O距離は2.11×10−1nmである。また仮に表層部100aの一部にスピネル型の相が形成されたとしても、スピネル型NiAlのMe−O距離は2.0125×10−1nm、スピネル型MgAlのMe−O距離は2.02×10−1nmである。いずれもMe−O距離は2×10−1nmを超える。 For example, the Me-O distance in rock salt-type Ni 0.5 Mg 0.5 O is 2.09×10 −1 nm, and the Me-O distance in rock salt-type MgO is 2.11×10 −1 nm. Furthermore, even if a spinel-type phase is formed in a part of the surface layer 100a, the Me-O distance of spinel-type NiAl 2 O 4 is 2.0125×10 −1 nm, and the Me-O distance of spinel-type MgAl 2 O 4 is 2.0125×10 −1 nm. The O distance is 2.02×10 −1 nm. In both cases, the Me-O distance exceeds 2×10 −1 nm.
 一方、層状岩塩型では、リチウム以外の金属と酸素の結合距離は上記より短い。例えば層状岩塩型LiAlOにおけるAl−O距離は1.905×10−1nm(Li−O距離は2.11×10−1nm)である。また層状岩塩型LiCoOにおけるCo−O距離は1.9224×10−1nm(Li−O距離は2.0916×10−1nm)である。 On the other hand, in the layered rock salt type, the bond distance between metals other than lithium and oxygen is shorter than the above. For example, the Al-O distance in layered rock salt type LiAlO 2 is 1.905×10 −1 nm (Li—O distance is 2.11×10 −1 nm). Moreover, the Co-O distance in layered rock salt type LiCoO 2 is 1.9224×10 −1 nm (Li—O distance is 2.0916×10 −1 nm).
 なおシャノンのイオン半径(非特許文献1)によれば、6配位のアルミニウムのイオン半径は0.535×10−1nm、6配位の酸素のイオン半径は1.4×10−1nmであり、これらの和は1.935×10−1nmである。 According to Shannon's ionic radius (Non-Patent Document 1), the ionic radius of six-coordinated aluminum is 0.535×10 −1 nm, and the ionic radius of six-coordinated oxygen is 1.4×10 −1 nm. and the sum of these is 1.935×10 −1 nm.
 以上から、アルミニウムは、岩塩型よりも層状岩塩型のリチウム以外のサイトでより安定に存在すると考えられる。そのため、アルミニウムは表層部100aの中でも岩塩型の相を有する表面に近い領域よりも、層状岩塩型を有するより深い領域、および/または内部100bに分布しやすい。 From the above, it is thought that aluminum exists more stably at sites other than lithium in the layered rock salt type than in the rock salt type. Therefore, aluminum is more likely to be distributed in a deeper region having a layered rock salt phase and/or inside 100b than in a region near the surface having a rock salt phase in the surface layer 100a.
 また初期加熱により、内部100bの層状岩塩型の結晶構造の結晶性を高める効果も期待できる。 Further, the initial heating can also be expected to have the effect of increasing the crystallinity of the layered rock salt crystal structure of the interior 100b.
 そのため、特にLiCoO中のxが例えば0.15以上0.17以下のときに単斜晶O1(15)型結晶構造を有する正極活物質100を作製するには、この初期加熱を行うことが好ましい。 Therefore, in order to produce the positive electrode active material 100 having a monoclinic O1 (15) type crystal structure especially when x in Li x CoO 2 is, for example, 0.15 or more and 0.17 or less, this initial heating is required. It is preferable.
 しかし、必ずしも初期加熱は行わなくてもよい。他の加熱工程、例えばアニールにおいて、雰囲気、温度、時間等を制御することで、LiCoO中のxが小さいときにO3’型および/または単斜晶O1(15)型を有する正極活物質100を作製できる場合がある。 However, initial heating does not necessarily have to be performed. In other heating steps, such as annealing, by controlling the atmosphere, temperature, time, etc., when x in Li In some cases, the substance 100 can be produced.
《正極活物質の作製方法1》
 アニールおよび初期加熱を経る正極活物質100の作製方法1について、図25A乃至図25Cを用いて説明する。
《Method for producing positive electrode active material 1》
A method 1 for manufacturing the positive electrode active material 100 through annealing and initial heating will be described with reference to FIGS. 25A to 25C.
<ステップS11>
 図25Aに示すステップS11では、出発材料であるリチウム及び遷移金属の材料として、それぞれリチウム源(Li源)及びコバルト源(Co源)を準備する。
<Step S11>
In step S11 shown in FIG. 25A, a lithium source (Li source) and a cobalt source (Co source) are prepared as starting materials for lithium and transition metal materials, respectively.
 リチウム源としては、リチウムを有する化合物を用いると好ましく、例えば炭酸リチウム、水酸化リチウム、硝酸リチウム、又はフッ化リチウム等を用いることができる。リチウム源は純度が高いと好ましく、例えば純度が99.99%以上の材料を用いるとよい。 As the lithium source, it is preferable to use a compound containing lithium, such as lithium carbonate, lithium hydroxide, lithium nitrate, or lithium fluoride. It is preferable that the lithium source has high purity; for example, a material with a purity of 99.99% or more may be used.
 コバルト源としては、コバルトを有する化合物を用いると好ましく、例えば四酸化三コバルト等の酸化コバルト、水酸化コバルト等を用いることができる。 As the cobalt source, it is preferable to use a compound containing cobalt, and for example, cobalt oxide such as tricobalt tetroxide, cobalt hydroxide, etc. can be used.
 コバルト源は純度が高いと好ましく、例えば純度が3N(99.9%)以上、好ましくは4N(99.99%)以上、より好ましくは4N5(99.995%)以上、さらに好ましくは5N(99.999%)以上の材料を用いるとよい。高純度の材料を用いることで、正極活物質の不純物を制御することができる。その結果、二次電池の容量が高まり、及び/または二次電池の信頼性が向上する。 The cobalt source preferably has a high purity, for example, the purity is 3N (99.9%) or higher, preferably 4N (99.99%) or higher, more preferably 4N5 (99.995%) or higher, and even more preferably 5N (99%) or higher. .999%) or more is preferably used. By using high-purity materials, impurities in the positive electrode active material can be controlled. As a result, the capacity of the secondary battery increases and/or the reliability of the secondary battery improves.
 加えて、コバルト源の結晶性が高いと好ましく、例えば単結晶粒を有するとよい。コバルト源の結晶性の評価としては、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等による評価、またはX線回折(XRD)、電子線回折、中性子線回折等の評価がある。なお、上記の結晶性の評価に関する手法は、コバルト源だけではなく、その他の結晶性の評価にも適用することができる。 In addition, it is preferable that the cobalt source has high crystallinity, for example, it may have single crystal grains. For evaluation of the crystallinity of the cobalt source, TEM (transmission electron microscope) images, STEM (scanning transmission electron microscope) images, HAADF-STEM (high angle scattering annular dark field scanning transmission electron microscope) images, ABF-STEM (annular bright field scanning electron microscope) images, Evaluations include scanning transmission electron microscopy) images, X-ray diffraction (XRD), electron diffraction, neutron diffraction, and the like. Note that the above method for evaluating crystallinity can be applied not only to cobalt sources but also to evaluating other crystallinities.
<ステップS12>
 次に、図25Aに示すステップS12として、リチウム源及びコバルト源を粉砕及び混合して、混合材料を作製する。粉砕及び混合は、乾式または湿式で行うことができる。湿式はより小さく解砕することができるため好ましい。湿式で行う場合は、溶媒を準備する。溶媒としてはアセトン等のケトン、エタノール及びイソプロパノール等のアルコール、エーテル、ジオキサン、アセトニトリル、N−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、純度が99.5%以上の脱水アセトンを用いることとする。水分含有量を10ppm以下まで抑えた、純度が99.5%以上の脱水アセトンにリチウム源及びコバルト源を混合して、粉砕及び混合を行うと好適である。上記のような純度の脱水アセトンを用いることで、混入しうる不純物を低減することができる。
<Step S12>
Next, in step S12 shown in FIG. 25A, a lithium source and a cobalt source are ground and mixed to produce a mixed material. Grinding and mixing can be done dry or wet. The wet method is preferable because it can be crushed into smaller pieces. If using a wet method, prepare a solvent. As the solvent, ketones such as acetone, alcohols such as ethanol and isopropanol, ethers, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP), etc. can be used. It is more preferable to use an aprotic solvent that hardly reacts with lithium. In this embodiment, dehydrated acetone with a purity of 99.5% or more is used. It is preferable to mix the lithium source and the cobalt source with dehydrated acetone having a purity of 99.5% or more and suppressing the water content to 10 ppm or less, and perform the pulverization and mixing. By using dehydrated acetone of the purity described above, possible impurities can be reduced.
 粉砕及び混合の手段にはボールミル、またはビーズミル等を用いることができる。ボールミルを用いる場合は、粉砕メディアとして酸化アルミニウムボール又は酸化ジルコニウムボールを用いるとよい。酸化ジルコニウムボールは不純物の排出が少なく好ましい。また、ボールミル、またはビーズミル等を用いる場合、メディアからのコンタミネーションを抑制するために、周速を、100mm/s以上2000mm/s以下とするとよい。本実施の形態では、周速838mm/s(回転数400rpm、ボールミルの直径40mm)として実施する。 A ball mill, bead mill, or the like can be used as a means for grinding and mixing. When using a ball mill, aluminum oxide balls or zirconium oxide balls may be used as the grinding media. Zirconium oxide balls are preferable because they emit fewer impurities. Furthermore, when using a ball mill, bead mill, or the like, the circumferential speed is preferably 100 mm/s or more and 2000 mm/s or less in order to suppress contamination from the media. In this embodiment, the peripheral speed is 838 mm/s (rotation speed 400 rpm, ball mill diameter 40 mm).
<ステップS13>
 次に、図25Aに示すステップS13として、上記混合材料を加熱する。加熱は、800℃以上1100℃以下で行うことが好ましく、900℃以上1000℃以下で行うことがより好ましく、950℃程度がさらに好ましい。温度が低すぎると、リチウム源及びコバルト源の分解及び溶融が不十分となるおそれがある。一方温度が高すぎると、リチウム源からリチウムが蒸散する、及び/またはコバルトが過剰に還元される、などが原因となり欠陥が生じるおそれがある。例えばコバルトが3価から2価へ変化し、酸素欠陥などが誘発されることがある。
<Step S13>
Next, in step S13 shown in FIG. 25A, the mixed material is heated. The heating is preferably performed at a temperature of 800°C or more and 1100°C or less, more preferably 900°C or more and 1000°C or less, and even more preferably about 950°C. If the temperature is too low, the lithium source and cobalt source may be insufficiently decomposed and melted. On the other hand, if the temperature is too high, defects may occur due to evaporation of lithium from the lithium source and/or excessive reduction of cobalt. For example, cobalt changes from trivalent to divalent, which may induce oxygen defects.
 加熱時間は短すぎるとコバルト酸リチウムが合成されないが、長すぎると生産性が低下する。例えば加熱時間は1時間以上100時間以下とするとよく、2時間以上20時間以下とすることがさらに好ましい。 If the heating time is too short, lithium cobalt oxide will not be synthesized, but if the heating time is too long, productivity will decrease. For example, the heating time is preferably 1 hour or more and 100 hours or less, and more preferably 2 hours or more and 20 hours or less.
 昇温レートは、加熱温度の到達温度によるが、80℃/h以上250℃/h以下がよい。例えば1000℃で10時間加熱する場合、昇温レートは200℃/hとするとよい。 The temperature increase rate depends on the temperature reached by the heating temperature, but is preferably 80°C/h or more and 250°C/h or less. For example, when heating at 1000°C for 10 hours, the temperature increase rate is preferably 200°C/h.
 加熱は、乾燥空気等の水が少ない雰囲気で行うことが好ましく、例えば露点が−50℃以下、より好ましくは露点が−80℃以下の雰囲気がよい。本実施の形態においては、露点−93℃の雰囲気にて、加熱を行うこととする。また材料中に混入しうる不純物を抑制するためには、加熱雰囲気におけるCH、CO、CO、及びH等の不純物濃度が、それぞれ5ppb(parts per billion)以下にするとよい。 Heating is preferably carried out in an atmosphere with little water such as dry air, for example an atmosphere with a dew point of -50°C or less, more preferably -80°C or less. In this embodiment, heating is performed in an atmosphere with a dew point of -93°C. Further, in order to suppress impurities that may be mixed into the material, the concentration of impurities such as CH 4 , CO, CO 2 , H 2 , etc. in the heating atmosphere is preferably set to 5 ppb (parts per billion) or less.
 加熱雰囲気として酸素を有する雰囲気が好ましい。例えば反応室に乾燥空気を導入し続ける方法がある。この場合、乾燥空気の流量は10L/minとすることが好ましい。酸素を反応室へ導入し続け、酸素が反応室内を流れている方法をフローと呼ぶ。 An atmosphere containing oxygen is preferable as the heating atmosphere. For example, there is a method of continuously introducing dry air into the reaction chamber. In this case, the flow rate of dry air is preferably 10 L/min. The method in which oxygen is continuously introduced into the reaction chamber and the oxygen flows within the reaction chamber is called flow.
 加熱雰囲気を、酸素を有する雰囲気とする場合、フローさせないやり方でもよい。例えば反応室を減圧してから酸素を充填し(パージし、といってもよい)、当該酸素が反応室から出入りしないようにする方法でもよい。例えば反応室を−970hPaまで減圧してから、50hPaまで酸素を充填すればよい。 When the heating atmosphere is an atmosphere containing oxygen, a method without flow may be used. For example, a method may be used in which the reaction chamber is depressurized and then filled with oxygen (also referred to as purging) to prevent the oxygen from entering or exiting the reaction chamber. For example, the reaction chamber may be depressurized to -970 hPa and then filled with oxygen to 50 hPa.
 加熱後の冷却は自然放冷でよいが、規定温度から室温までの降温時間が10時間以上50時間以下に収まると好ましい。ただし、必ずしも室温までの冷却は要せず、次のステップが許容する温度まで冷却されればよい。 Cooling after heating may be allowed to cool naturally, but it is preferable that the temperature drop time from the specified temperature to room temperature is within 10 hours or more and 50 hours or less. However, cooling to room temperature is not necessarily required, and cooling to a temperature permitted by the next step is sufficient.
 本工程の加熱は、ロータリーキルン又はローラーハースキルンによる加熱を行ってもよい。ロータリーキルンによる加熱は、連続式、バッチ式いずれの場合でも攪拌しながら加熱することができる。 Heating in this step may be performed using a rotary kiln or a roller hearth kiln. Heating with a rotary kiln can be carried out while stirring in either a continuous type or a batch type.
 加熱の際に用いる、るつぼは酸化アルミニウムのるつぼが好ましい。酸化アルミニウムのるつぼは不純物を放出しにくい材質である。本実施の形態においては、純度が99.9%の酸化アルミニウムのるつぼを用いる。るつぼには蓋を配して加熱すると好ましい。材料の揮発を防ぐことができる。 The crucible used during heating is preferably an aluminum oxide crucible. An aluminum oxide crucible is a material that does not easily release impurities. In this embodiment, an aluminum oxide crucible with a purity of 99.9% is used. It is preferable to heat the crucible with a lid on it. It can prevent material volatilization.
 またるつぼは新品のものよりも、中古のものを用いることが好ましい。本明細書等において新品のるつぼとは、リチウム、遷移金属M、および/または添加元素を含む材料を入れて加熱する工程が2回以下のものをいうこととする。また中古のるつぼとは、リチウム、遷移金属Mおよび/または添加元素を含む材料を入れて加熱する工程を3回以上経たものということとする。これは新品のるつぼを用いると、加熱の際にフッ化リチウムをはじめとする材料の一部がさやに吸収、拡散、移動および/または付着する恐れがあるためである。これらにより材料の一部が失われると、特に正極活物質の表層部の元素の分布が好ましい範囲にならない懸念が高まる。一方で中古のるつぼではこの恐れが少ない。 Also, it is preferable to use a used crucible rather than a new one. In this specification, etc., a new crucible refers to one in which a material containing lithium, a transition metal M, and/or an additive element is charged and heated twice or less. Furthermore, a used crucible is one that has undergone the step of charging and heating materials containing lithium, transition metal M, and/or additive elements three or more times. This is because if a new crucible is used, there is a risk that some of the material, including lithium fluoride, will be absorbed, diffused, moved and/or attached to the sheath during heating. If a part of the material is lost due to these factors, there is a growing concern that the distribution of elements, particularly in the surface layer of the positive electrode active material, will not be within the preferred range. On the other hand, this fear is less with second-hand crucibles.
 加熱が終わったあと、必要に応じて粉砕し、さらにふるいを実施してもよい。加熱後の材料を回収する際に、るつぼから乳鉢へ移動させたのち回収してもよい。また、当該乳鉢は酸化アルミニウムの乳鉢を用いると好適である。酸化アルミニウムの乳鉢は不純物を放出しにくい材質である。具体的には、純度が90%以上、好ましくは純度が99%以上の酸化アルミニウムの乳鉢を用いる。なお、ステップS13以外の後述の加熱の工程においても、ステップS13と同等の加熱条件を適用できる。 After heating is completed, it may be crushed and further sieved if necessary. When recovering the heated material, it may be transferred from the crucible to the mortar and then recovered. Further, it is preferable to use an aluminum oxide mortar as the mortar. Aluminum oxide mortar is a material that does not easily release impurities. Specifically, an aluminum oxide mortar with a purity of 90% or more, preferably 99% or more is used. Note that the same heating conditions as in step S13 can be applied to heating steps other than step S13, which will be described later.
<ステップS14>
 以上の工程により、図25Aに示すステップS14で示すコバルト酸リチウム(LiCoO)を合成することができる。
<Step S14>
Through the above steps, lithium cobalt oxide (LiCoO 2 ) shown in step S14 shown in FIG. 25A can be synthesized.
 ステップS11乃至ステップS14のように固相法で複合酸化物を作製する例を示したが、共沈法で複合酸化物を作製してもよい。また水熱法で複合酸化物を作製してもよい。 Although an example has been shown in which the composite oxide is produced by a solid phase method as in steps S11 to S14, the composite oxide may also be produced by a coprecipitation method. Alternatively, the composite oxide may be produced by a hydrothermal method.
<ステップS15>
 次に、図25Aに示すステップS15としてコバルト酸リチウムを加熱する。コバルト酸リチウムに対する最初の加熱のため、ステップS15の加熱を初期加熱と呼ぶことがある。または以下に示すステップS20の前に加熱するものであるため、予備加熱又は前処理と呼ぶことがある。
<Step S15>
Next, in step S15 shown in FIG. 25A, lithium cobalt oxide is heated. Since the lithium cobalt oxide is first heated, the heating in step S15 may be referred to as initial heating. Alternatively, since it is heated before step S20 shown below, it may be called preheating or pretreatment.
 初期加熱により、上述したようにコバルト酸リチウムの表層部100aの一部からリチウムが脱離する。また内部100bの結晶性を高める効果が期待できる。またステップS11等で準備したリチウム源および/またはコバルト源には、不純物が混入していることがある。ステップS14で完成したコバルト酸リチウムから不純物を低減させることが、初期加熱によって可能である。 Due to the initial heating, lithium is desorbed from a part of the surface layer portion 100a of lithium cobalt oxide as described above. Moreover, the effect of increasing the crystallinity of the interior 100b can be expected. Further, impurities may be mixed in the lithium source and/or cobalt source prepared in step S11 and the like. It is possible to reduce impurities from the lithium cobalt oxide completed in step S14 by initial heating.
 さらに初期加熱を経ることで、コバルト酸リチウムの表面がなめらかになる効果がある。コバルト酸リチウムの表面がなめらかとは、凹凸が少なく、複合酸化物が全体的に丸みを帯び、さらに角部が丸みを帯びる様子をいう。さらに、表面へ付着した異物が少ない状態をなめらかと呼ぶ。異物は凹凸の要因となると考えられ、表面へ付着しない方が好ましい。 Additionally, initial heating has the effect of smoothing the surface of lithium cobalt oxide. When the surface of lithium cobalt oxide is smooth, it means that there are few irregularities, the composite oxide is rounded overall, and the corners are rounded. Furthermore, a state in which there are few foreign substances attached to the surface is called smooth. Foreign matter is considered to be a cause of unevenness, and it is preferable that it does not adhere to the surface.
 この初期加熱には、リチウム源を用意しなくてよい。または、添加元素源を用意しなくてよい。または、融剤として機能する材料を用意しなくてよい。 There is no need to prepare a lithium source for this initial heating. Alternatively, it is not necessary to prepare an additive element source. Alternatively, there is no need to prepare a material that functions as a flux.
 本工程の加熱時間は短すぎると十分な効果が得られないが、長すぎると生産性が低下する。例えばステップS13で説明した加熱条件から選択して実施することができる。当該加熱条件に補足すると、本工程の加熱温度は、複合酸化物の結晶構造を維持するため、ステップS13の温度より低くするとよい。また本工程の加熱時間は、複合酸化物の結晶構造を維持するため、ステップS13の時間より短くするとよい。例えば700℃以上1000℃以下の温度で、2時間以上20時間以下の加熱を行うとよい。 If the heating time of this step is too short, a sufficient effect will not be obtained, but if it is too long, productivity will decrease. For example, the heating conditions can be selected from those described in step S13. Adding to the heating conditions, the heating temperature in this step is preferably lower than the temperature in step S13 in order to maintain the crystal structure of the composite oxide. Further, the heating time in this step is preferably shorter than the time in step S13 in order to maintain the crystal structure of the composite oxide. For example, heating is preferably performed at a temperature of 700° C. or more and 1000° C. or less for 2 hours or more and 20 hours or less.
 また内部100bの結晶性を高める効果とは、例えばステップS13で作製したコバルト酸リチウムが有する収縮差等に由来する歪み、ずれ等を緩和する効果である。 The effect of increasing the crystallinity of the interior 100b is, for example, the effect of alleviating distortion, displacement, etc. resulting from the shrinkage difference of the lithium cobalt oxide produced in step S13.
 コバルト酸リチウムは、ステップS13の加熱によって、コバルト酸リチウムの表面と内部に温度差が生じることがある。温度差が生じると収縮差が誘発されることがある。温度差により、表面と内部の流動性が異なるため収縮差が生じるとも考えられる。収縮差に関連するエネルギーは、コバルト酸リチウムに内部応力の差を与えてしまう。内部応力の差は歪みとも称され、当該エネルギーを歪みエネルギーと呼ぶことがある。内部応力はステップS15の初期加熱により除去され、別言すると歪みエネルギーはステップS15の初期加熱により均質化されると考えられる。歪みエネルギーが均質化されるとコバルト酸リチウムの歪みが緩和される。これに伴いコバルト酸リチウムの表面がなめらかになる可能性がある。表面が改善されたとも称する。別言すると、ステップS15を経るとコバルト酸リチウムに生じた収縮差が緩和され、複合酸化物の表面がなめらかになると考えられる。 In the lithium cobalt oxide, a temperature difference may occur between the surface and the inside of the lithium cobalt oxide due to the heating in step S13. Temperature differences can induce differential shrinkage. It is also thought that the temperature difference causes a difference in shrinkage due to the difference in fluidity between the surface and the inside. The energy associated with differential shrinkage imparts differential internal stress to lithium cobalt oxide. The difference in internal stress is also called strain, and the energy is sometimes called strain energy. It is considered that the internal stress is removed by the initial heating in step S15, and in other words, the strain energy is homogenized by the initial heating in step S15. When the strain energy is homogenized, the strain in lithium cobalt oxide is relaxed. As a result, the surface of lithium cobalt oxide may become smooth. It is also said that the surface has been improved. In other words, it is considered that after step S15, the shrinkage difference that occurs in the lithium cobalt oxide is alleviated, and the surface of the composite oxide becomes smooth.
 また収縮差は上記コバルト酸リチウムにミクロなずれ、例えば結晶のずれを生じさせることがある。当該ずれを低減するためにも、本工程を実施するとよい。本工程を経ると、上記複合酸化物のずれを均一化させることが可能である。ずれが均一化されると、複合酸化物の表面がなめらかになる可能性がある。結晶粒の整列が行われたとも称する。別言すると、ステップS15を経ると複合酸化物に生じた結晶等のずれが緩和され、複合酸化物の表面がなめらかになると考えられる。 Furthermore, the difference in shrinkage may cause microscopic shifts in the lithium cobalt oxide, such as crystal shifts. This step may also be carried out in order to reduce the deviation. Through this step, it is possible to equalize the deviation of the composite oxide. If the misalignment is made uniform, the surface of the composite oxide may become smooth. It is also said that crystal grains have been aligned. In other words, it is considered that after step S15, the displacement of crystals, etc. that occurs in the composite oxide is alleviated, and the surface of the composite oxide becomes smooth.
 表面がなめらかなコバルト酸リチウムを正極活物質として用いると、二次電池として充放電した際の劣化が少なくなり、正極活物質の割れを防ぐことができる。 If lithium cobalt oxide with a smooth surface is used as a positive electrode active material, there will be less deterioration during charging and discharging as a secondary battery, and cracking of the positive electrode active material can be prevented.
 なお、ステップS14としてあらかじめ合成されたコバルト酸リチウムを用いてもよい。この場合、ステップS11乃至ステップS13を省略することができる。あらかじめ合成されたコバルト酸リチウムに対してステップS15を実施することで、表面がなめらかなコバルト酸リチウムを得ることができる。 Note that lithium cobalt oxide synthesized in advance may be used in step S14. In this case, steps S11 to S13 can be omitted. By performing step S15 on lithium cobalt oxide synthesized in advance, lithium cobalt oxide with a smooth surface can be obtained.
<ステップS20>
 次にステップS20に示すように、初期加熱を経たコバルト酸リチウムに添加元素Aを加えることが好ましい。初期加熱を経たコバルト酸リチウムに添加元素Aを加えると、添加元素Aをムラなく添加することができる。よって、初期加熱後に添加元素Aを添加する順が好ましい。添加元素Aを添加するステップについて、図25B、及び図25Cを用いて説明する。
<Step S20>
Next, as shown in step S20, it is preferable to add additive element A to the lithium cobalt oxide that has undergone initial heating. When the additive element A is added to the lithium cobalt oxide that has undergone initial heating, the additive element A can be added evenly. Therefore, it is preferable to add the additive element A after the initial heating. The step of adding additive element A will be explained using FIG. 25B and FIG. 25C.
<ステップS21~ステップS23>
 図25B及び図25Cを用いて、添加元素A源(A源)を用意する工程について、それぞれ説明する。添加元素A源と合わせて、リチウム源を準備してもよい。
<Step S21~Step S23>
The steps of preparing the additive element A source (A source) will be explained using FIGS. 25B and 25C. A lithium source may be prepared together with the additive element A source.
 添加元素Aとしては、先の実施の形態で説明した添加元素を用いることができる。具体的にはマグネシウム、フッ素、ニッケル、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、マンガン、クロム、ニオブ、ヒ素、亜鉛、ケイ素、硫黄、リンおよびホウ素から選ばれた一または二以上を用いることができる。また臭素、及びベリリウムから選ばれた一または二を用いることもできる。 As the additive element A, the additive elements described in the previous embodiment can be used. Specifically, one or more selected from magnesium, fluorine, nickel, aluminum, titanium, zirconium, vanadium, iron, manganese, chromium, niobium, arsenic, zinc, silicon, sulfur, phosphorus, and boron can be used. . Moreover, one or two selected from bromine and beryllium can also be used.
<ステップS21>
 図25Bに示すステップS21について説明する。添加元素にマグネシウムを選んだとき、添加元素源はマグネシウム源(Mg源)と呼ぶことができる。当該マグネシウム源としては、フッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、又は炭酸マグネシウム等を用いることができる。また上述したマグネシウム源を複数用いてもよい。
<Step S21>
Step S21 shown in FIG. 25B will be explained. When magnesium is selected as the additive element, the additive element source can be called a magnesium source (Mg source). As the magnesium source, magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate, or the like can be used. Further, a plurality of the above-mentioned magnesium sources may be used.
 添加元素にフッ素を選んだとき、添加元素源はフッ素源(F源)と呼ぶことができる。当該フッ素源としては、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化アルミニウム(AlF)、フッ化チタン(TiF)、フッ化コバルト(CoF、CoF)、フッ化ニッケル(NiF)、フッ化ジルコニウム(ZrF)、フッ化バナジウム(VF)、フッ化マンガン、フッ化鉄、フッ化クロム、フッ化ニオブ、フッ化亜鉛(ZnF)、フッ化カルシウム(CaF)、フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化バリウム(BaF)、フッ化セリウム(CeF、CeF)、フッ化ランタン(LaF)、又は六フッ化アルミニウムナトリウム(NaAlF)等を用いることができる。なかでも、フッ化リチウムは融点が848℃と比較的低く、後述する加熱工程で溶融しやすいため好ましい。 When fluorine is selected as the additive element, the additive element source can be called a fluorine source (F source). Examples of the fluorine source include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), titanium fluoride (TiF 4 ), cobalt fluoride (CoF 2 , CoF 3 ), and fluorine. Nickel fluoride (NiF 2 ), zirconium fluoride (ZrF 4 ), vanadium fluoride (VF 5 ), manganese fluoride, iron fluoride, chromium fluoride, niobium fluoride, zinc fluoride (ZnF 2 ), calcium fluoride (CaF 2 ), sodium fluoride (NaF), potassium fluoride (KF), barium fluoride (BaF 2 ), cerium fluoride (CeF 3 , CeF 4 ), lanthanum fluoride (LaF 3 ), or hexafluoride Sodium aluminum (Na 3 AlF 6 ) or the like can be used. Among these, lithium fluoride is preferable because it has a relatively low melting point of 848° C. and is easily melted in the heating step described below.
 フッ化マグネシウムはフッ素源としてもマグネシウム源としても用いることができる。またフッ化リチウムはリチウム源としても用いることができる。ステップS21に用いられるその他のリチウム源は炭酸リチウムがある。 Magnesium fluoride can be used both as a fluorine source and as a magnesium source. Lithium fluoride can also be used as a lithium source. Another lithium source used in step S21 is lithium carbonate.
 またフッ素源は気体でもよく、フッ素(F)、フッ化炭素、フッ化硫黄、又はフッ化酸素(OF、O、O、O、O、O、OF)等を用い、後述する加熱工程において雰囲気中に混合させてもよい。また上述したフッ素源を複数用いてもよい。 Further, the fluorine source may be a gas, such as fluorine (F 2 ), fluorocarbon, sulfur fluoride, or fluorinated oxygen (OF 2 , O 2 F 2 , O 3 F 2 , O 4 F 2 , O 5 F 2 , O 6 F 2 , O 2 F) or the like may be used and mixed in the atmosphere in the heating step described later. Further, a plurality of the above-mentioned fluorine sources may be used.
 本実施の形態では、フッ素源としてフッ化リチウム(LiF)を準備し、フッ素源及びマグネシウム源としてフッ化マグネシウム(MgF)を準備する。フッ化リチウムとフッ化マグネシウムは、LiF:MgF=65:35(モル比)程度で混合すると融点を下げる効果が最も高くなる。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎサイクル特性が悪化する懸念がある。そのため、フッ化リチウムとフッ化マグネシウムのモル比は、LiF:MgF=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF=x:1(x=0.33又はその近傍)がさらに好ましい。なお本明細書等において近傍とは、その値の0.9倍より大きく1.1倍より小さい値とする。 In this embodiment, lithium fluoride (LiF) is prepared as a fluorine source, and magnesium fluoride (MgF 2 ) is prepared as a fluorine source and a magnesium source. When lithium fluoride and magnesium fluoride are mixed at a molar ratio of about 65:35 (LiF:MgF 2 ), the effect of lowering the melting point is maximized. On the other hand, if the amount of lithium fluoride increases, there is a concern that the amount of lithium will be too much and the cycle characteristics will deteriorate. Therefore, the molar ratio of lithium fluoride and magnesium fluoride is preferably LiF:MgF 2 =x:1 (0≦x≦1.9), and LiF:MgF 2 =x:1 (0.1≦ x≦0.5) is more preferable, and LiF:MgF 2 =x:1 (x=0.33 or its vicinity) is even more preferable. Note that in this specification and the like, the term "near" means a value greater than 0.9 times and less than 1.1 times that value.
<ステップS22>
 次に、図25Bに示すステップS22では、マグネシウム源及びフッ素源を粉砕及び混合する。本工程は、ステップS12で説明した粉砕及び混合の条件から選択して実施することができる。
<Step S22>
Next, in step S22 shown in FIG. 25B, the magnesium source and the fluorine source are ground and mixed. This step can be carried out by selecting from the pulverization and mixing conditions described in step S12.
<ステップS23>
 次に、図25Bに示すステップS23では、上記で粉砕、混合した材料を回収して、添加元素A源(A源)を得ることができる。なお、ステップS23に示す添加元素A源は、複数の出発材料を有するものであり、混合物と呼ぶことができる。
<Step S23>
Next, in step S23 shown in FIG. 25B, the materials crushed and mixed above can be recovered to obtain an additive element A source (A source). Note that the additive element A source shown in step S23 has a plurality of starting materials and can be called a mixture.
 上記混合物の粒径は、D50(メディアン径)が600nm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。添加元素源として、一種の材料を用いた場合においても、D50(メディアン径)が600nm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましい。 The particle size of the above mixture preferably has a D50 (median diameter) of 600 nm or more and 10 μm or less, more preferably 1 μm or more and 5 μm or less. Even when one type of material is used as the additive element source, the D50 (median diameter) is preferably 600 nm or more and 10 μm or less, more preferably 1 μm or more and 5 μm or less.
 このような微粉化された混合物(添加元素が1種の場合も含む)であると、後の工程でコバルト酸リチウムと混合したときに、コバルト酸リチウムの粒子の表面に混合物を均一に付着させやすい。コバルト酸リチウムの粒子の表面に混合物が均一に付着していると、加熱後に複合酸化物の表層部100aに均一に添加元素を分布又は拡散させやすいため好ましい。 When such a finely powdered mixture (including cases where only one type of additive element is added) is mixed with lithium cobalt oxide in a later step, it is difficult to uniformly adhere the mixture to the surface of the lithium cobalt oxide particles. Cheap. It is preferable that the mixture is uniformly adhered to the surface of the lithium cobalt oxide particles because it is easy to uniformly distribute or diffuse the additive element in the surface layer portion 100a of the composite oxide after heating.
<ステップS21>
 図25Bとは異なる工程について図25Cを用いて説明する。図25Cに示すステップS21では、コバルト酸リチウムに添加する添加元素源を4種用意する。すなわち図25Cは図25Bとは添加元素源の種類が異なる。添加元素源と合わせて、リチウム源を準備してもよい。
<Step S21>
A process different from that in FIG. 25B will be explained using FIG. 25C. In step S21 shown in FIG. 25C, four types of additive element sources to be added to lithium cobalt oxide are prepared. That is, FIG. 25C differs from FIG. 25B in the type of additive element source. A lithium source may be prepared together with the additive element source.
 4種の添加元素源として、マグネシウム源(Mg源)、フッ素源(F源)、ニッケル源(Ni源)、及びアルミニウム源(Al源)を準備する。なお、マグネシウム源及びフッ素源は図25Bで説明した化合物等から選択することができる。ニッケル源としては、酸化ニッケル、水酸化ニッケル等を用いることができる。アルミニウム源としては、酸化アルミニウム、水酸化アルミニウム、等を用いることができる。 A magnesium source (Mg source), a fluorine source (F source), a nickel source (Ni source), and an aluminum source (Al source) are prepared as four types of additional element sources. Note that the magnesium source and the fluorine source can be selected from the compounds described in FIG. 25B. As the nickel source, nickel oxide, nickel hydroxide, etc. can be used. As the aluminum source, aluminum oxide, aluminum hydroxide, etc. can be used.
<ステップS22及びステップS23>
 図25Cに示すステップS22及びステップS23は、図25Bで説明したステップと同様である。
<Step S22 and Step S23>
Steps S22 and S23 shown in FIG. 25C are similar to the steps described in FIG. 25B.
<ステップS31>
 次に、図25Aに示すステップS31では、コバルト酸リチウムと、添加元素A源(A源)とを混合する。コバルト酸リチウム中のコバルトの原子数Coと、添加元素A源が有するマグネシウムの原子数Mgとの比は、Co:Mg=100:y(0.1≦y≦6)であることが好ましく、M:Mg=100:y(0.3≦y≦3)であることがより好ましい。
<Step S31>
Next, in step S31 shown in FIG. 25A, lithium cobalt oxide and an additive element A source (A source) are mixed. The ratio of the number of cobalt atoms Co in the lithium cobalt oxide to the number of magnesium atoms Mg included in the additive element A source is preferably Co:Mg=100:y (0.1≦y≦6), It is more preferable that M:Mg=100:y (0.3≦y≦3).
 ステップS31の混合は、コバルト酸リチウムの粒子の形状を破壊させないためにステップS12の混合よりも穏やかな条件とすることが好ましい。例えば、ステップS12の混合よりも回転数が少ない、または時間が短い条件とすることが好ましい。また湿式よりも乾式のほうが穏やかな条件であると言える。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えばメディアとして酸化ジルコニウムボールを用いることが好ましい。 The mixing in step S31 is preferably performed under milder conditions than the mixing in step S12 so as not to destroy the shape of the lithium cobalt oxide particles. For example, it is preferable that the rotational speed is lower or the time is shorter than the mixing in step S12. It can also be said that the dry method has milder conditions than the wet method. For example, a ball mill, a bead mill, etc. can be used for mixing. When using a ball mill, it is preferable to use, for example, zirconium oxide balls as the media.
 本実施の形態では、直径1mmの酸化ジルコニウムボールを用いたボールミルで、150rpm、1時間、乾式で混合することとする。また該混合は、露点が−100℃以上−10℃以下のドライルームで行うこととする。 In this embodiment, dry mixing is performed at 150 rpm for 1 hour using a ball mill using zirconium oxide balls with a diameter of 1 mm. Further, the mixing is performed in a dry room with a dew point of -100°C or more and -10°C or less.
<ステップS32>
 次に、図25AのステップS32において、上記で混合した材料を回収し、混合物903を得る。回収の際、必要に応じて解砕した後にふるいを実施してもよい。
<Step S32>
Next, in step S32 of FIG. 25A, the materials mixed above are collected to obtain a mixture 903. During recovery, sieving may be performed after crushing if necessary.
 なお図25A乃至図25Cでは、初期加熱を経た後にのみ添加元素を加える作製方法について説明しているが、本発明は上記方法に限定されない。添加元素は他のタイミングで加えてもよいし、複数回にわたって加えてもよい。元素によってタイミングを変えてもよい。 Although FIGS. 25A to 25C describe a manufacturing method in which additive elements are added only after initial heating, the present invention is not limited to the above method. The additive element may be added at other timings or may be added multiple times. The timing may be changed depending on the element.
 例えばステップS11の段階、つまり複合酸化物の出発材料の段階で添加元素をリチウム源及びコバルト源へ添加してもよい。その後ステップS13で添加元素を有するコバルト酸リチウムを得ることができる。この場合は、ステップS11乃至ステップS14の工程と、ステップS21乃至ステップS23の工程を分ける必要がない。簡便で生産性が高い方法であるといえる。 For example, the additive element may be added to the lithium source and the cobalt source at the stage of step S11, that is, at the stage of the starting material of the composite oxide. Thereafter, in step S13, lithium cobalt oxide having additive elements can be obtained. In this case, there is no need to separate the steps S11 to S14 from the steps S21 to S23. It can be said that this is a simple and highly productive method.
 また、あらかじめ添加元素の一部を有するコバルト酸リチウムを用いてもよい。例えばマグネシウム及びフッ素が添加されたコバルト酸リチウムを用いれば、ステップS11乃至ステップS14、およびステップS20の一部の工程を省略することができる。簡便で生産性が高い方法であるといえる。 Alternatively, lithium cobalt oxide having some of the additive elements in advance may be used. For example, if lithium cobalt oxide to which magnesium and fluorine are added is used, steps S11 to S14 and a part of step S20 can be omitted. It can be said that this is a simple and highly productive method.
 また、あらかじめマグネシウム及びフッ素が添加されたコバルト酸リチウムに対して、ステップS15の加熱を行った後、ステップS20のようにマグネシウム源及びフッ素源、又はマグネシウム源、フッ素源、ニッケル源、及びアルミニウム源を添加してもよい。 Further, after heating the lithium cobalt oxide to which magnesium and fluorine have been added in advance in step S15, a magnesium source and a fluorine source, or a magnesium source, a fluorine source, a nickel source, and an aluminum source are added as in step S20. may be added.
<ステップS33>
 次に、図25Aに示すステップS33では、混合物903を加熱する。ステップS13で説明した加熱条件から選択して実施することができる。加熱時間は2時間以上が好ましい。このとき、加熱雰囲気の酸素分圧を高めるため、炉内は大気圧を超えた圧力であってもよい。加熱雰囲気の酸素分圧が不足すると、コバルト等が還元され、コバルト酸リチウム等が層状岩塩型の結晶構造を保てなくなる恐れがあるためである。
<Step S33>
Next, in step S33 shown in FIG. 25A, the mixture 903 is heated. The heating conditions can be selected from the heating conditions explained in step S13. The heating time is preferably 2 hours or more. At this time, the pressure inside the furnace may exceed atmospheric pressure in order to increase the oxygen partial pressure in the heating atmosphere. This is because if the oxygen partial pressure in the heating atmosphere is insufficient, cobalt and the like are reduced, and lithium cobalt oxide and the like may not be able to maintain a layered rock salt crystal structure.
 ここで加熱温度について補足する。ステップS33の加熱温度の下限は、コバルト酸リチウムと添加元素源との反応が進む温度以上である必要がある。反応が進む温度とは、コバルト酸リチウムと添加元素源との有する元素の相互拡散が起きる温度であればよく、これらの材料の溶融温度よりも低くてもよい。酸化物を例にして説明するが、溶融温度Tの0.757倍(タンマン温度T)から固相拡散が起こることがわかっている。そのため、ステップS33における加熱温度としては、650℃以上であればよい。 Here is some additional information about heating temperature. The lower limit of the heating temperature in step S33 needs to be equal to or higher than the temperature at which the reaction between lithium cobalt oxide and the additive element source progresses. The temperature at which the reaction proceeds may be any temperature at which interdiffusion of the elements of the lithium cobalt oxide and the additional element source occurs, and may be lower than the melting temperature of these materials. This will be explained using an oxide as an example, and it is known that solid phase diffusion occurs from 0.757 times the melting temperature T m (Tammann temperature T d ). Therefore, the heating temperature in step S33 may be 650° C. or higher.
 勿論、混合物903が有する材料から選ばれた一または二以上が溶融する温度以上であると、より反応が進みやすい。例えば、添加元素源として、LiF及びMgFを有する場合、LiFとMgFの共融点は742℃付近であるため、ステップS33の加熱温度の下限は742℃以上とすると好ましい。 Of course, if the temperature is higher than the temperature at which one or more of the materials selected from the mixture 903 melts, the reaction will more easily proceed. For example, when LiF and MgF 2 are used as the additive element source, the eutectic point of LiF and MgF 2 is around 742°C, so the lower limit of the heating temperature in step S33 is preferably 742°C or higher.
 また、LiCoO:LiF:MgF=100:0.33:1(モル比)となるように混合して得られた混合物903は、示差走査熱量測定(DSC測定)において830℃付近に吸熱ピークが観測される。よって、加熱温度の下限は830℃以上がより好ましい。 In addition, the mixture 903 obtained by mixing LiCoO 2 :LiF:MgF 2 =100:0.33:1 (molar ratio) has an endothermic peak at around 830°C in differential scanning calorimetry (DSC measurement). is observed. Therefore, the lower limit of the heating temperature is more preferably 830°C or higher.
 加熱温度は高い方が反応が進みやすく、加熱時間が短く済み、生産性が高く好ましい。 A higher heating temperature is preferable because the reaction progresses more easily, heating time is shorter, and productivity is higher.
 加熱温度の上限はコバルト酸リチウムの分解温度(1130℃)未満とする。分解温度の近傍の温度では、微量ではあるがコバルト酸リチウムの分解が懸念される。そのため、1000℃以下であるとより好ましく、950℃以下であるとさらに好ましく、900℃以下であるとさらに好ましい。 The upper limit of the heating temperature is lower than the decomposition temperature of lithium cobalt oxide (1130°C). At temperatures near the decomposition temperature, there is concern that lithium cobalt oxide will decompose, albeit in a small amount. Therefore, the temperature is more preferably 1000°C or lower, even more preferably 950°C or lower, and even more preferably 900°C or lower.
 これらを踏まえると、ステップS33における加熱温度としては、650℃以上1130℃以下が好ましく、650℃以上1000℃以下がより好ましく、650℃以上950℃以下がさらに好ましく、650℃以上900℃以下がさらに好ましい。また、742℃以上1130℃以下が好ましく、742℃以上1000℃以下がより好ましく、742℃以上950℃以下がさらに好ましく、742℃以上900℃以下がさらに好ましい。また、800℃以上1100℃以下、830℃以上1130℃以下が好ましく、830℃以上1000℃以下がより好ましく、830℃以上950℃以下がさらに好ましく、830℃以上900℃以下がさらに好ましい。なおステップS33における加熱温度は、ステップS13よりも高いとよい。 Based on these, the heating temperature in step S33 is preferably 650°C or more and 1130°C or less, more preferably 650°C or more and 1000°C or less, even more preferably 650°C or more and 950°C or less, and even more preferably 650°C or more and 900°C or less. preferable. Further, the temperature is preferably 742°C or more and 1130°C or less, more preferably 742°C or more and 1000°C or less, even more preferably 742°C or more and 950°C or less, and even more preferably 742°C or more and 900°C or less. Further, the temperature is preferably 800°C or more and 1100°C or less, 830°C or more and 1130°C or less, more preferably 830°C or more and 1000°C or less, even more preferably 830°C or more and 950°C or less, and even more preferably 830°C or more and 900°C or less. Note that the heating temperature in step S33 is preferably higher than that in step S13.
 さらに混合物903を加熱する際、フッ素源等に起因するフッ素またはフッ化物の分圧を適切な範囲に制御することが好ましい。 Further, when heating the mixture 903, it is preferable to control the partial pressure of fluorine or fluoride caused by a fluorine source or the like within an appropriate range.
 本実施の形態で説明する作製方法では、一部の材料、例えばフッ素源であるLiFが融剤として機能する場合がある。この機能により加熱温度をコバルト酸リチウムの分解温度未満、例えば742℃以上950℃以下にまで低温化でき、表層部にマグネシウムをはじめとする添加元素を分布させ、良好な特性の正極活物質を作製できる。 In the manufacturing method described in this embodiment, some materials, for example, LiF, which is a fluorine source, may function as a flux. With this function, the heating temperature can be lowered to below the decomposition temperature of lithium cobalt oxide, for example, from 742°C to 950°C, and additive elements such as magnesium are distributed in the surface layer, creating a positive electrode active material with good characteristics. can.
 しかし、LiFは酸素よりも気体状態での比重が軽いため、加熱によりLiFが揮発又は昇華する可能性があり、揮発すると混合物903中のLiFが減少してしまう。すると融剤としての機能が弱くなってしまう。よって、LiFの揮発を抑制しつつ、加熱する必要がある。なお、フッ素源等としてLiFを用いなかったとしても、LiCoO表面のLiとフッ素源のFが反応して、LiFが生じ、揮発する可能性もある。そのため、LiFより融点が高いフッ化物を用いたとしても、同じように揮発の抑制が必要である。 However, since LiF has a lower specific gravity than oxygen in a gaseous state, there is a possibility that LiF will volatilize or sublimate due to heating, and if it volatilizes, LiF in the mixture 903 will decrease. This weakens its function as a flux. Therefore, it is necessary to heat LiF while suppressing its volatilization. Note that even if LiF is not used as a fluorine source, there is a possibility that Li on the surface of LiCoO 2 and F of the fluorine source react to generate LiF and volatilize. Therefore, even if a fluoride having a higher melting point than LiF is used, it is necessary to suppress volatilization in the same way.
 そこで、LiFを含む雰囲気で混合物903を加熱すること、すなわち、加熱炉内のLiFの分圧が高い状態で混合物903を加熱することが好ましい。このような加熱により混合物903中のLiFの揮発を抑制することができる。 Therefore, it is preferable to heat the mixture 903 in an atmosphere containing LiF, that is, to heat the mixture 903 in a state where the partial pressure of LiF in the heating furnace is high. Such heating can suppress volatilization of LiF in the mixture 903.
 本工程の加熱は、混合物903の粒子同士が固着しないように加熱すると好ましい。加熱中に混合物903粒子同士が固着すると、雰囲気中の酸素との接触面積が減る、及び添加元素(例えばフッ素)が拡散する経路を阻害することにより、表層部への添加元素(例えばマグネシウム及びフッ素)の分布が悪化する可能性がある。 The heating in this step is preferably performed so that the particles of the mixture 903 do not stick to each other. If mixture 903 particles stick to each other during heating, the contact area with oxygen in the atmosphere decreases, and the diffusion path of added elements (e.g. fluorine) is inhibited, thereby preventing the addition of added elements (e.g. magnesium and fluorine) to the surface layer. ) distribution may deteriorate.
 また、添加元素(例えばフッ素)が表層部に均一に分布するとなめらかで凹凸が少ない正極活物質を得られると考えられている。そのため本工程でステップS15の加熱を経た、表面がなめらかな状態を維持する又はより一層なめらかになるためには、混合物903の粒子同士が固着しない方がよい。 It is also believed that if the additive element (for example, fluorine) is uniformly distributed in the surface layer, a positive electrode active material that is smooth and has few irregularities can be obtained. Therefore, in order for the surface to remain smooth or to become even smoother after the heating in step S15 in this process, it is better that the particles of the mixture 903 do not stick to each other.
 また、ロータリーキルンによって加熱する場合は、キルン内の酸素を含む雰囲気の流量を制御して加熱することが好ましい。例えば酸素を含む雰囲気の流量を少なくする、最初に雰囲気をパージしキルン内に酸素雰囲気を導入した後は雰囲気のフローはしない、等が好ましい。酸素をフローするとフッ素源が蒸散する可能性があり、表面のなめらかさを維持するためには好ましくない。 Furthermore, when heating is performed using a rotary kiln, it is preferable to control the flow rate of the atmosphere containing oxygen in the kiln. For example, it is preferable to reduce the flow rate of the atmosphere containing oxygen, to purge the atmosphere first, and to not allow the atmosphere to flow after introducing the oxygen atmosphere into the kiln. Flowing oxygen may cause the fluorine source to evaporate, which is not preferable for maintaining surface smoothness.
 ローラーハースキルンによって加熱する場合は、例えば混合物903の入った容器に蓋を配することでLiFを含む雰囲気で混合物903を加熱することができる。 In the case of heating with a roller hearth kiln, the mixture 903 can be heated in an atmosphere containing LiF by placing a lid on the container containing the mixture 903, for example.
 加熱時間について補足する。加熱時間は、加熱温度、ステップS14のコバルト酸リチウムの大きさ、及び組成等の条件により変化する。コバルト酸リチウムが小さい場合は、大きい場合よりも低い温度または短い時間がより好ましい場合がある。 A note about heating time. The heating time varies depending on conditions such as the heating temperature, the size of the lithium cobalt oxide in step S14, and the composition. If the lithium cobalt oxide is small, lower temperatures or shorter times may be more preferred than if it is larger.
 図25AのステップS14のコバルト酸リチウムのメディアン径(D50)が12μm程度の場合、加熱温度は、例えば650℃以上950℃以下が好ましい。加熱時間は例えば3時間以上60時間以下が好ましく、10時間以上30時間以下がより好ましく、20時間程度がさらに好ましい。なお、加熱後の降温時間は、例えば10時間以上50時間以下とすることが好ましい。 When the median diameter (D50) of the lithium cobalt oxide in step S14 of FIG. 25A is about 12 μm, the heating temperature is preferably, for example, 650° C. or higher and 950° C. or lower. The heating time is preferably 3 hours or more and 60 hours or less, more preferably 10 hours or more and 30 hours or less, and even more preferably about 20 hours. Note that the time for cooling down after heating is preferably 10 hours or more and 50 hours or less, for example.
 一方、ステップS14のコバルト酸リチウムのメディアン径(D50)が5μm程度の場合、加熱温度は例えば650℃以上950℃以下が好ましい。加熱時間は例えば1時間以上10時間以下が好ましく、5時間程度がより好ましい。なお、加熱後の降温時間は、例えば10時間以上50時間以下とすることが好ましい。 On the other hand, when the median diameter (D50) of the lithium cobalt oxide in step S14 is about 5 μm, the heating temperature is preferably, for example, 650° C. or higher and 950° C. or lower. The heating time is preferably 1 hour or more and 10 hours or less, and more preferably about 5 hours. Note that the time for cooling down after heating is preferably 10 hours or more and 50 hours or less, for example.
<ステップS34>
 次に、図25Aに示すステップS34では、加熱した材料を回収し、必要に応じて解砕して、正極活物質100を得る。このとき、回収された粒子をさらに、ふるいにかけると好ましい。以上の工程により、本発明の一態様の正極活物質100を作製することができる。本発明の一態様の正極活物質は表面がなめらかである。
<Step S34>
Next, in step S34 shown in FIG. 25A, the heated material is collected and crushed if necessary to obtain the positive electrode active material 100. At this time, it is preferable to further sieve the collected particles. Through the above steps, the positive electrode active material 100 of one embodiment of the present invention can be manufactured. The positive electrode active material of one embodiment of the present invention has a smooth surface.
《正極活物質の作製方法2》
 次に、本発明を実施する一形態であって、正極活物質の作製方法1とは異なる正極活物質の作製方法2について、図26乃至図27Cを用いて説明する。正極活物質の作製方法2は主に添加元素を加える回数および混合方法が作製方法1とは異なる。その他の記載は作製方法1の記載を参酌することができる。
《Method for producing positive electrode active material 2》
Next, a method 2 for manufacturing a positive electrode active material, which is an embodiment of the present invention and is different from the method 1 for manufacturing a positive electrode active material, will be described with reference to FIGS. 26 to 27C. Manufacturing method 2 of the positive electrode active material differs from manufacturing method 1 mainly in the number of times of addition of additive elements and the mixing method. For other descriptions, the description of Production Method 1 can be referred to.
 図26において、図25Aと同様にステップS11乃至S15までを行い、初期加熱を経たコバルト酸リチウムを準備する。 In FIG. 26, steps S11 to S15 are performed in the same manner as in FIG. 25A to prepare lithium cobalt oxide that has undergone initial heating.
<ステップS20a>
 次にステップS20aでは、初期加熱を経たコバルト酸リチウムに添加元素A1を加えるために用いる添加元素A1源を用意する。図27Aを用いて、添加元素A1源を用意する工程について説明する。
<Step S20a>
Next, in step S20a, a source of additive element A1 is prepared to be used for adding additive element A1 to lithium cobalt oxide that has undergone initial heating. The process of preparing the additive element A1 source will be described using FIG. 27A.
<ステップS21>
 図27Aに示すステップS21について説明する。添加元素A1としては、図25Bに示すステップS21で説明した添加元素Aで例示した元素の中から選択して用いることができる。例えば、添加元素A1としては、マグネシウム、フッ素、及びカルシウムの中から選ばれるいずれか一または複数を好適に用いることができる。図27Aでは、添加元素A1にマグネシウム及びフッ素を選んだ場合として、マグネシウム源(Mg源)、及びフッ素源(F源)を用いる場合を例示する。
<Step S21>
Step S21 shown in FIG. 27A will be explained. The additive element A1 can be selected from the elements exemplified as the additive element A explained in step S21 shown in FIG. 25B. For example, as the additive element A1, one or more selected from magnesium, fluorine, and calcium can be suitably used. In FIG. 27A, a case where a magnesium source (Mg source) and a fluorine source (F source) are used is illustrated as a case where magnesium and fluorine are selected as the additive elements A1.
 図27Aに示すステップS21乃至ステップS23については、図25Bに示すステップS21乃至ステップS23と同様の条件で行うことができる。その結果、ステップS23で添加元素A1源(A1源)を得ることができる。 Steps S21 to S23 shown in FIG. 27A can be performed under the same conditions as steps S21 to S23 shown in FIG. 25B. As a result, an additive element A1 source (A1 source) can be obtained in step S23.
 また、図26に示すステップS31乃至S33については、図25Aに示すステップS31乃至S33と同様の工程にて行うことができる。 Furthermore, steps S31 to S33 shown in FIG. 26 can be performed in the same steps as steps S31 to S33 shown in FIG. 25A.
<ステップS34a>
 次に、ステップS33で加熱した材料を回収し、添加元素A1を有するコバルト酸リチウムを作製する。ステップS14の複合酸化物と区別するため第2の複合酸化物とも呼ぶ。
<Step S34a>
Next, the material heated in step S33 is recovered, and lithium cobalt oxide having the additive element A1 is produced. It is also referred to as a second composite oxide to distinguish it from the composite oxide in step S14.
<ステップS40>
 図26に示すステップS40では、第2の複合酸化物に添加元素A2を添加するために用いる添加元素A2源を用意する。図27B及び図27Cを用いて、添加元素A2源を用意する工程について、それぞれ説明する。
<Step S40>
In step S40 shown in FIG. 26, a source of additive element A2 used for adding additive element A2 to the second composite oxide is prepared. The steps of preparing the additive element A2 source will be explained using FIGS. 27B and 27C.
<ステップS41>
 図27Bに示すステップS41について説明する。添加元素A2としては、図25Bに示すステップS21で説明した添加元素Aで例示した元素の中から選択して用いることができる。例えば、添加元素A2としては、ニッケル、チタン、ホウ素、ジルコニウム、及びアルミニウムの中から選ばれるいずれか一または複数を好適に用いることができる。図27Bでは添加元素A2にニッケル及びアルミニウムを選んだ場合として、ニッケル源(Ni源)、及びアルミニウム源(Al源)を用意する例を示す。
<Step S41>
Step S41 shown in FIG. 27B will be explained. The additive element A2 can be selected from the elements exemplified as the additive element A explained in step S21 shown in FIG. 25B. For example, as the additive element A2, one or more selected from nickel, titanium, boron, zirconium, and aluminum can be suitably used. FIG. 27B shows an example in which a nickel source (Ni source) and an aluminum source (Al source) are prepared when nickel and aluminum are selected as the additive element A2.
 図27Bに示すステップS41乃至ステップS43については、図25Bに示すステップS21乃至ステップS23と同様の条件で行うことができる。その結果、ステップS43で添加元素A2源(A2源)を得ることができる。 Steps S41 to S43 shown in FIG. 27B can be performed under the same conditions as steps S21 to S23 shown in FIG. 25B. As a result, an additive element A2 source (A2 source) can be obtained in step S43.
 また、図27Cには、図27Bを用いて説明した添加元素A2源を用意する工程の変形例を示す。図27Cに示すステップS41ではニッケル源(Ni源)、及びアルミニウム源(Al源)を準備し、ステップS42aではそれぞれ独立に粉砕する。その結果、ステップS43では、複数の添加元素A2源(A2源)を準備することとなる。図27Cのステップは、ステップS42aにて添加元素を独立に粉砕していることが図27Bと異なる。 Further, FIG. 27C shows a modification of the process of preparing the additive element A2 source described using FIG. 27B. In step S41 shown in FIG. 27C, a nickel source (Ni source) and an aluminum source (Al source) are prepared, and in step S42a, they are each pulverized independently. As a result, in step S43, a plurality of additive element A2 sources (A2 sources) are prepared. The step in FIG. 27C differs from that in FIG. 27B in that the added element is independently pulverized in step S42a.
<ステップS51乃至ステップS53>
 次に、図26に示すステップS51乃至ステップS53は、図25Aに示すステップS31乃至ステップS34と同様の条件にて行うことができ、ステップS52では混合物904を得る。また、加熱工程に関するステップS53の条件はステップS33より低い温度且つ短い時間でもよい。以上の工程により、ステップS54では、本発明の一態様の正極活物質100を作製することができる。本発明の一態様の正極活物質は表面がなめらかである。
<Step S51 to Step S53>
Next, steps S51 to S53 shown in FIG. 26 can be performed under the same conditions as steps S31 to S34 shown in FIG. 25A, and a mixture 904 is obtained in step S52. Further, the conditions for step S53 regarding the heating step may be lower temperature and shorter time than step S33. Through the above steps, in step S54, the positive electrode active material 100 of one embodiment of the present invention can be manufactured. The positive electrode active material of one embodiment of the present invention has a smooth surface.
 図26乃至図27Cに示すように、作製方法2では、コバルト酸リチウムへの添加元素を添加元素A1と、添加元素A2とに分けて導入する。分けて導入することにより、各添加元素の深さ方向の存在分布を変えることができる。例えば、添加元素A1を内部100bに比べて表層部100aで高い濃度となるように添加し、添加元素A2を表層部100aに比べて内部100bで高い濃度となるように添加することも可能である。 As shown in FIGS. 26 to 27C, in manufacturing method 2, the additive elements to lithium cobalt oxide are introduced separately into additive element A1 and additive element A2. By introducing each element separately, the distribution of each additive element in the depth direction can be changed. For example, it is also possible to add the additive element A1 to a higher concentration in the surface layer 100a than in the interior 100b, and to add the additive element A2 to a higher concentration in the interior 100b than in the surface layer 100a. .
 本実施の形態で示した初期加熱を経ると表面がなめらかな正極活物質を得ることができる。 After the initial heating shown in this embodiment mode, a positive electrode active material with a smooth surface can be obtained.
 本実施の形態で示した初期加熱は、コバルト酸リチウムに対して実施する。よって初期加熱は、コバルト酸リチウムを得るための加熱温度よりも低く、かつコバルト酸リチウムを得るための加熱時間よりも短い条件が好ましい。コバルト酸リチウムに添加元素を添加する工程は、初期加熱後が好ましい。当該添加工程は2回以上に分けることが可能である。このような工程順に従うと、初期加熱で得られた表面のなめらかさは維持されるため好ましい。 The initial heating shown in this embodiment mode is performed on lithium cobalt oxide. Therefore, the conditions for initial heating are preferably lower than the heating temperature for obtaining lithium cobalt oxide and shorter than the heating time for obtaining lithium cobalt oxide. The step of adding additional elements to lithium cobalt oxide is preferably performed after initial heating. The addition step can be divided into two or more steps. It is preferable to follow this process order because the smoothness of the surface obtained by the initial heating is maintained.
 表面がなめらかな正極活物質100は、そうでない正極活物質よりも加圧等による物理的な破壊に強い可能性がある。例えば、釘刺し試験のような加圧を伴う試験において正極活物質100が破壊されにくく、結果として安全性が高まる可能性がある。 A positive electrode active material 100 with a smooth surface may be more resistant to physical destruction due to pressure or the like than a positive electrode active material with a smooth surface. For example, the positive electrode active material 100 is less likely to be destroyed in a test involving pressurization such as a nail penetration test, which may result in increased safety.
 本実施の形態は、他の実施の形態と組み合わせて用いることができる。 This embodiment can be used in combination with other embodiments.
(実施の形態4)
 本実施の形態では、本発明の一態様の電池の正極に用いることのできる正極活物質について説明する。
(Embodiment 4)
In this embodiment, a positive electrode active material that can be used for a positive electrode of a battery according to one embodiment of the present invention will be described.
 実施の形態1において、本発明の一態様の電池の正極に用いることのできる正極活物質100として、バリア膜(表層部100a)を有するコバルト酸リチウムについて説明した。本発明の一態様の電池に用いる正極活物質はバリア膜を有するコバルト酸リチウムに限られず、バリア膜を有するLiMOで表される正極活物質を用いることができる。なお、Mは、Co、Ni、Mn、及びAlから選ばれる一又は複数である。また、LiMOで表される正極活物質は、空間群R−3mに属する層状岩塩型の結晶構造を有する。 In Embodiment 1, lithium cobalt oxide having a barrier film (surface layer portion 100a) was described as the positive electrode active material 100 that can be used for the positive electrode of a battery according to one embodiment of the present invention. The positive electrode active material used in the battery of one embodiment of the present invention is not limited to lithium cobalt oxide having a barrier film, and a positive electrode active material represented by Li x MO 2 having a barrier film can be used. Note that M is one or more selected from Co, Ni, Mn, and Al. Further, the positive electrode active material represented by Li x MO 2 has a layered rock salt type crystal structure belonging to space group R-3m.
 LiMOで表される正極活物質として、例えばコバルト酸リチウム、コバルト−ニッケル酸リチウム、ニッケル−コバルト−マンガン酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、およびニッケル−マンガン−アルミニウム酸リチウムのうちのいずれか一または複数を用いることができる。 Examples of the positive electrode active material represented by Li x MO 2 include lithium cobalt oxide, lithium cobalt-nickelate, lithium nickel-cobalt-manganate, lithium nickel-cobalt-aluminate, and lithium nickel-manganese-aluminate. Any one or more of these can be used.
 コバルト−ニッケル酸リチウムとして例えば、マグネシウムおよびフッ素が添加されたコバルト−ニッケル酸リチウムを用いることができる。また、マグネシウム、フッ素、及びアルミニウムが添加されたコバルト−ニッケル酸リチウムを用いることが好ましい。なお、コバルト−ニッケル酸リチウムにおいて、コバルト原子の数は、ニッケル原子の数より多い。 As the lithium cobalt-nickelate, for example, lithium cobalt-nickelate to which magnesium and fluorine are added can be used. Moreover, it is preferable to use cobalt-lithium nickelate to which magnesium, fluorine, and aluminum are added. Note that in cobalt-lithium nickelate, the number of cobalt atoms is greater than the number of nickel atoms.
 ニッケル−コバルト−マンガン酸リチウムとして例えば、ニッケルの原子数、コバルトの原子数、及びマンガンの原子数の比率として、ニッケル:コバルト:マンガン=1:1:1、ニッケル:コバルト:マンガン=5:2:3、ニッケル:コバルト:マンガン=6:2:2、ニッケル:コバルト:マンガン=8:1:1、およびニッケル:コバルト:マンガン=9:0.5:0.5、並びにこれらの近傍の比率のニッケル−コバルト−マンガン酸リチウムを用いることができる。 For example, as nickel-cobalt-lithium manganate, the ratio of the number of nickel atoms, the number of cobalt atoms, and the number of manganese atoms is nickel: cobalt: manganese = 1:1:1, nickel: cobalt: manganese = 5:2 :3, nickel: cobalt: manganese = 6:2:2, nickel: cobalt: manganese = 8:1:1, and nickel: cobalt: manganese = 9:0.5:0.5, and the ratios in their vicinity nickel-cobalt-lithium manganate can be used.
 バリア膜を有するLiMOの特徴として、粉体における体積抵抗率は、64MPaの圧力において1.0×10Ω・cm以上であることが好ましく、1.0×10Ω・cm以上であることがより好ましく、1.0×10Ω・cm以上であることがより好ましい。また、64MPaの圧力において1.0×10Ω・cm以下であることが好ましく、1.0×10Ω・cm以下であることがより好ましく、1.0×10Ω・cm以下であることがより好ましい。 As a feature of Li x MO 2 having a barrier film, the volume resistivity of the powder is preferably 1.0×10 4 Ω・cm or more, and 1.0×10 5 Ω・cm or more at a pressure of 64 MPa. It is more preferable that it is, and it is more preferable that it is 1.0×10 6 Ω·cm or more. Moreover, at a pressure of 64 MPa, it is preferably 1.0×10 9 Ω・cm or less, more preferably 1.0×10 8 Ω・cm or less, and 1.0×10 7 Ω・cm or less It is more preferable that there be.
 上記の体積抵抗率を有する正極活物質は、高い電圧においても安定な結晶構造を有し、充電状態において正極活物質の結晶構造が安定であるために重要である表層部を、良好に形成できたことを示す指標とすることができる。つまり、表層部は、高抵抗であることが好ましい。 The positive electrode active material having the above volume resistivity has a stable crystal structure even at high voltages, and can form a good surface layer, which is important for the crystal structure of the positive electrode active material to be stable in the charged state. It can be used as an indicator to show that In other words, the surface layer portion preferably has high resistance.
 ただし、高抵抗な領域が、正極活物質の表面から内部に向かって厚く存在する場合は、電池反応が阻害される恐れがある。そのため、表層部の表面付近の薄い領域のみが、高抵抗であることがより好ましい。つまり、表層部において、高抵抗な領域が、表面から内部に向かって薄く存在することが好ましい。 However, if a high-resistance region exists thickly from the surface of the positive electrode active material toward the inside, the battery reaction may be inhibited. Therefore, it is more preferable that only a thin region near the surface of the surface layer portion has high resistance. That is, in the surface layer portion, it is preferable that a high resistance region exist thinly from the surface toward the inside.
 本実施の形態は、他の実施の形態と組み合わせて用いることができる。 This embodiment can be used in combination with other embodiments.
(実施の形態5)
 本実施の形態では、本発明の一態様の二次電池を有する車両の例を示す。
(Embodiment 5)
In this embodiment, an example of a vehicle including a secondary battery according to one embodiment of the present invention will be described.
 車両として、代表的には自動車に二次電池を適用することができる。自動車としては、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEVまたはPHVともいう)等の次世代クリーンエネルギー自動車を挙げることができ、自動車に搭載する電源の一つとして二次電池を適用することができる。車両は自動車に限定されない。例えば、車両としては、電車、モノレール、船、潜水艇(深海探査艇、無人潜水艇)、飛行体(ヘリコプター、無人航空機(ドローン)、飛行機、ロケット、人工衛星)、電動自転車、電動バイクなども挙げることができ、これらの車両に本発明の一態様の二次電池を適用することができる。 As a vehicle, a secondary battery can typically be applied to an automobile. Examples of automobiles include next-generation clean energy vehicles such as hybrid vehicles (HV), electric vehicles (EV), and plug-in hybrid vehicles (PHEV or PHV). A secondary battery can be applied. Vehicles are not limited to automobiles. For example, vehicles include trains, monorails, ships, submersibles (deep sea exploration vehicles, unmanned submarines), flying vehicles (helicopters, unmanned aerial vehicles (drones), airplanes, rockets, artificial satellites), electric bicycles, electric motorcycles, etc. The secondary battery of one embodiment of the present invention can be applied to these vehicles.
 電気自動車には、図28Cに示すように、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリ(スターターバッテリとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。 As shown in FIG. 28C, the electric vehicle is equipped with first batteries 1301a and 1301b as main drive secondary batteries, and a second battery 1311 that supplies power to an inverter 1312 that starts a motor 1304. ing. The second battery 1311 is also called a cranking battery (also called a starter battery). The second battery 1311 only needs to have a high output, and a large capacity is not required, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
 第1のバッテリ1301aの内部構造は、図6Cまたは図7Aに示した捲回型であってもよいし、図8Aまたは図8Bに示した積層型であってもよい。 The internal structure of the first battery 1301a may be a wound type shown in FIG. 6C or FIG. 7A, or a stacked type shown in FIG. 8A or FIG. 8B.
 本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。 Although this embodiment shows an example in which two first batteries 1301a and 1301b are connected in parallel, three or more may be connected in parallel. Furthermore, if the first battery 1301a can store sufficient power, the first battery 1301b may not be necessary. By configuring a battery pack that includes a plurality of secondary batteries, a large amount of electric power can be extracted. A plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series. A plurality of secondary batteries is also called an assembled battery.
 また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。 In addition, in order to cut off power from multiple secondary batteries in a vehicle-mounted secondary battery, the first battery 1301a has a service plug or circuit breaker that can cut off high voltage without using tools. provided.
 また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワーステアリング1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。 The electric power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but it is also used to power 42V-based in-vehicle components (electric power steering 1307, heater 1308, defogger 1309, etc.) via a DCDC circuit 1306. ). Even when the rear motor 1317 is provided on the rear wheel, the first battery 1301a is used to rotate the rear motor 1317.
 また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。 Further, the second battery 1311 supplies power to 14V vehicle components (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
 次に、第1のバッテリ1301aについて、図28Aを用いて説明する。 Next, the first battery 1301a will be explained using FIG. 28A.
 図28Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414、及び電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。 FIG. 28A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine prismatic secondary batteries 1300 are connected in series, one electrode is fixed by a fixing part 1413 made of an insulator, and the other electrode is fixed by a fixing part 1414 made of an insulator. Although this embodiment shows an example in which the battery is fixed using the fixing parts 1413 and 1414, it may also be configured to be housed in a battery housing box (also referred to as a housing). Since it is assumed that vibrations or shaking are applied to the vehicle from the outside (road surface, etc.), it is preferable to fix the plurality of secondary batteries using fixing parts 1413, 1414, a battery housing box, and the like. Further, one electrode is electrically connected to the control circuit section 1320 by a wiring 1421. The other electrode is electrically connected to the control circuit section 1320 by a wiring 1422.
 次に、図28Aに示す電池パック1415のブロック図の一例を図28Bに示す。 Next, FIG. 28B shows an example of a block diagram of the battery pack 1415 shown in FIG. 28A.
 制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの電流上限、または外部への出力電流の上限などを制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電および/または過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。 The control circuit section 1320 includes a switch section 1324 including at least a switch for preventing overcharging and a switch for preventing overdischarge, a control circuit 1322 for controlling the switch section 1324, and a voltage measuring section for the first battery 1301a. has. The control circuit section 1320 has an upper limit voltage and a lower limit voltage set for the secondary battery to be used, and limits the upper limit of the current from the outside or the upper limit of the output current to the outside. The range of the secondary battery's lower limit voltage to upper limit voltage is within the recommended voltage range, and when the voltage is outside of that range, the switch section 1324 is activated and functions as a protection circuit. Furthermore, the control circuit section 1320 can also be called a protection circuit because it controls the switch section 1324 to prevent over-discharging and/or over-charging. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the switch section 1324 is turned off to cut off the current. Furthermore, a PTC element may be provided in the charging/discharging path to provide a function of cutting off the current in response to a rise in temperature. Further, the control circuit section 1320 has an external terminal 1325 (+IN) and an external terminal 1326 (-IN).
 スイッチ部1324は、nチャネル型のトランジスタまたはpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaOx(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。 The switch section 1324 can be configured by combining n-channel transistors or p-channel transistors. The switch section 1324 is not limited to a switch having an Si transistor using single crystal silicon, but includes, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), InP (phosphide). The switch portion 1324 may be formed using a power transistor including indium (indium), SiC (silicon carbide), ZnSe (zinc selenide), GaN (gallium nitride), GaOx (gallium oxide; x is a real number greater than 0), or the like.
 第1のバッテリ1301a、1301bは、主に42V系(高電圧系HV)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系LV)の車載機器に電力を供給する。第2のバッテリ1311は鉛蓄電池がコスト上有利のため採用されることが多い。 The first batteries 1301a and 1301b mainly supply power to 42V system (high voltage HV) in-vehicle equipment, and the second battery 1311 supplies power to 14V system (low voltage LV) in-vehicle equipment. . As the second battery 1311, a lead-acid battery is often used because it is advantageous in terms of cost.
 本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン電池を用いる一例を示す。第2のバッテリ1311は、鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。 In this embodiment, an example is shown in which lithium ion batteries are used as both the first battery 1301a and the second battery 1311. The second battery 1311 may be a lead-acid battery, an all-solid-state battery, or an electric double layer capacitor.
 また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303、またはバッテリコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。 Furthermore, regenerated energy due to the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305, and charged to the second battery 1311 from the motor controller 1303 or the battery controller 1302 via the control circuit section 1321. Alternatively, the first battery 1301a is charged from the battery controller 1302 via the control circuit unit 1320. Alternatively, the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerated energy, it is desirable that the first batteries 1301a and 1301b can be rapidly charged.
 バッテリコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。 The battery controller 1302 can set the charging voltage, charging current, etc. of the first batteries 1301a and 1301b. The battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and perform rapid charging.
 また、図示していないが、電気自動車を外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、充電器のコンセントまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。 Although not shown, when connecting the electric vehicle to an external charger, the outlet of the charger or the connection cable of the charger is electrically connected to the battery controller 1302. Power supplied from an external charger charges the first batteries 1301a and 1301b via the battery controller 1302. Also, depending on the charger, a control circuit is provided and the function of the battery controller 1302 is not used in some cases, but in order to prevent overcharging, the first batteries 1301a and 1301b are charged via the control circuit section 1320. It is preferable. In some cases, the charger outlet or the charger connection cable is provided with a control circuit. The control circuit section 1320 is sometimes called an ECU (Electronic Control Unit). The ECU is connected to a CAN (Controller Area Network) provided in the electric vehicle. CAN is one of the serial communication standards used as an in-vehicle LAN. Further, the ECU includes a microcomputer. Further, the ECU uses a CPU or a GPU.
 充電スタンドなどに設置されている外部の充電器は、100Vコンセント−200Vコンセント、または3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。 External chargers installed at charging stands etc. include 100V outlet-200V outlet, or 3-phase 200V and 50kW. It is also possible to charge the battery by receiving power from an external charging facility using a non-contact power supply method or the like.
 急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。 When performing rapid charging, a secondary battery that can withstand high voltage charging is desired in order to perform charging in a short time.
 また、導電材としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。 In addition, by using graphene as a conductive material, the capacity decrease is suppressed even when the electrode layer is made thicker and the loading amount is increased, and the synergistic effect of maintaining high capacity has resulted in a secondary battery with significantly improved electrical characteristics. can. It is particularly effective for secondary batteries used in vehicles, and provides a vehicle with a long cruising range, specifically a cruising range of 500 km or more on one charge, without increasing the weight ratio of the secondary battery to the total vehicle weight. be able to.
 特に上述した本実施の形態の二次電池は、実施の形態1で説明した電池10を用いることで安全性および信頼性に優れた車両用の二次電池を提供することができる。 In particular, the secondary battery of the present embodiment described above can provide a secondary battery for vehicles with excellent safety and reliability by using the battery 10 described in Embodiment 1.
 次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。 Next, an example in which a secondary battery, which is one embodiment of the present invention, is mounted in a vehicle, typically a transportation vehicle, will be described.
 図5D、図7C、図28Aのいずれか一に示した二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、船舶、潜水艦、航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、または宇宙船に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。 When the secondary battery shown in any one of FIG. 5D, FIG. 7C, and FIG. 28A is installed in a vehicle, next-generation clean energy such as a hybrid vehicle (HV), electric vehicle (EV), or plug-in hybrid vehicle (PHV) can be used. A car can be realized. We also install secondary batteries in agricultural machinery, motorized bicycles including electric assist bicycles, motorcycles, electric wheelchairs, electric carts, ships, submarines, aircraft, rockets, artificial satellites, space probes, planetary probes, or spacecraft. It can also be installed. The secondary battery of one embodiment of the present invention can be a high capacity secondary battery. Therefore, the secondary battery of one embodiment of the present invention is suitable for reduction in size and weight, and can be suitably used for transportation vehicles.
 図29A乃至図29Dにおいて、本発明の一態様を用いた輸送用車両を例示する。図29Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態6で示した二次電池の一例を一箇所または複数個所に設置する。図29Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。 29A to 29D illustrate a transportation vehicle using one embodiment of the present invention. A car 2001 shown in FIG. 29A is an electric car that uses an electric motor as a power source for driving. Alternatively, it is a hybrid vehicle that can appropriately select and use an electric motor and an engine as a power source for driving. When a secondary battery is mounted on a vehicle, the example of the secondary battery shown in Embodiment 6 is installed at one or more locations. An automobile 2001 shown in FIG. 29A includes a battery pack 2200, and the battery pack includes a secondary battery module to which a plurality of secondary batteries are connected. Furthermore, it is preferable to include a charging control device electrically connected to the secondary battery module.
 また、自動車2001は、自動車2001が有する二次電池にプラグイン方式または非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法またはコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。充電設備は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。 Further, the automobile 2001 can be charged by receiving power from an external charging facility using a plug-in method, a non-contact power supply method, or the like to a secondary battery of the automobile 2001. When charging, a predetermined charging method or connector standard such as CHAdeMO (registered trademark) or combo may be used as appropriate. The charging equipment may be a charging station provided at a commercial facility or may be a home power source. For example, using plug-in technology, it is possible to charge the power storage device mounted on the vehicle 2001 by supplying power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時または走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。 Although not shown, a power receiving device can be mounted on a vehicle, and power can be supplied from a ground power transmitting device in a non-contact manner for charging. In the case of this non-contact power supply method, by incorporating a power transmission device into the road or outside wall, charging can be performed not only while the vehicle is stopped but also while the vehicle is running. Further, electric power may be transmitted and received between two vehicles using this contactless power supply method. Furthermore, a solar cell may be provided on the exterior of the vehicle, and the secondary battery may be charged when the vehicle is stopped or traveling. For such non-contact power supply, an electromagnetic induction method or a magnetic resonance method can be used.
 図29Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図29Aと同様な機能を備えているので説明は省略する。 FIG. 29B shows a large transport vehicle 2002 having an electrically controlled motor as an example of a transport vehicle. The secondary battery module of the transport vehicle 2002 has a maximum voltage of 170V, for example, in which four secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less are connected in series, and 48 cells are connected in series. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2201, it has the same functions as those in FIG. 29A, so a description thereof will be omitted.
 図29Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。従って、特性バラツキの小さい二次電池が求められる。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図31Aと同様な機能を備えているので説明は省略する。 FIG. 29C shows, as an example, a large transport vehicle 2003 with an electrically controlled motor. The secondary battery module of the transportation vehicle 2003 has a maximum voltage of 600 V, for example, by connecting in series one hundred or more secondary batteries with a nominal voltage of 3.0 V or more and 5.0 V or less. Therefore, a secondary battery with small variations in characteristics is required. Further, except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2202, etc., it has the same functions as those in FIG. 31A, so a description thereof will be omitted.
 図29Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図29Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一種とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。 FIG. 29D shows an example aircraft 2004 with an engine that burns fuel. Since the aircraft 2004 shown in FIG. 29D has wheels for takeoff and landing, it can be said to be a type of transportation vehicle, and a plurality of secondary batteries are connected to form a secondary battery module, and the secondary battery module and charging control are performed. It has a battery pack 2203 that includes a device.
 航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vを最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが異なる以外は、図29Aと同様な機能を備えているので説明は省略する。 The maximum voltage of the secondary battery module of the aircraft 2004 is 32V, which is obtained by connecting eight 4V secondary batteries in series, for example. Except for the difference in the number of secondary batteries constituting the secondary battery module of the battery pack 2203, etc., it has the same functions as those in FIG. 29A, so a description thereof will be omitted.
 図29Eは、一例として二次電池2204を備えた人工衛星2005を示している。人工衛星2005は宇宙空間で使用されるため、発火による故障のないことが望まれ、安全性に優れた本発明の一態様である二次電池2204を備えることが好ましい。また、人工衛星2005の内部において、保温部材に覆われた状態で二次電池2204が搭載されることがさらに好ましい。 FIG. 29E shows an artificial satellite 2005 equipped with a secondary battery 2204 as an example. Since the artificial satellite 2005 is used in outer space, it is desired that there be no failure due to ignition, and it is preferable to include the secondary battery 2204, which is an aspect of the present invention and has excellent safety. Furthermore, it is more preferable that the secondary battery 2204 is mounted inside the artificial satellite 2005 while being covered with a heat insulating member.
 本実施の形態は他の実施の形態と自由に組み合わせることができる。 This embodiment can be freely combined with other embodiments.
(実施の形態6)
 本実施の形態では、二次電池を車両に搭載する一例として、二輪車、自転車に本発明の一態様であるリチウムイオン電池を搭載する例を示す。
(Embodiment 6)
In this embodiment, as an example of mounting a secondary battery on a vehicle, an example will be shown in which a lithium ion battery, which is an embodiment of the present invention, is mounted on a two-wheeled vehicle or a bicycle.
 図30Aは、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図30Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。 FIG. 30A is an example of an electric bicycle using the power storage device of one embodiment of the present invention. The power storage device of one embodiment of the present invention can be applied to an electric bicycle 8700 illustrated in FIG. 30A. A power storage device according to one embodiment of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
 電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図30Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態7に一例を示した二次電池の充電制御または異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。実施の形態1で説明した電池10と組み合わせることで、安全性についての相乗効果が得られる。実施の形態1で説明した電池10及び制御回路8704は、安全性が高く二次電池による火災等の事故撲滅に大きく寄与することができる。 The electric bicycle 8700 includes a power storage device 8702. The power storage device 8702 can supply electricity to a motor that assists the driver. Further, the power storage device 8702 is portable, and is shown in a state removed from the bicycle in FIG. 30B. Further, the power storage device 8702 has a plurality of built-in storage batteries 8701 included in the power storage device of one embodiment of the present invention, and can display the remaining battery level and the like on a display portion 8703. Power storage device 8702 also includes a control circuit 8704 that can control charging or detect abnormality of a secondary battery, an example of which is shown in Embodiment 7. The control circuit 8704 is electrically connected to the positive and negative electrodes of the storage battery 8701. By combining it with the battery 10 described in Embodiment 1, a synergistic effect regarding safety can be obtained. The battery 10 and control circuit 8704 described in Embodiment 1 are highly safe and can greatly contribute to eradicating accidents such as fires caused by secondary batteries.
 図30Cは、本発明の一態様の蓄電装置を用いた二輪車の一例である。図30Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、実施の形態1で得られる電池10を複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。 FIG. 30C is an example of a two-wheeled vehicle using the power storage device of one embodiment of the present invention. A scooter 8600 shown in FIG. 30C includes a power storage device 8602, a side mirror 8601, and a direction indicator light 8603. The power storage device 8602 can supply electricity to the direction indicator light 8603. Further, the power storage device 8602 that houses a plurality of batteries 10 obtained in Embodiment 1 can have a high capacity and can contribute to miniaturization.
 また、図30Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。 Further, the scooter 8600 shown in FIG. 30C can store a power storage device 8602 in an under-seat storage 8604. The power storage device 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
 本実施の形態は他の実施の形態と自由に組み合わせることができる。 This embodiment can be freely combined with other embodiments.
(実施の形態7)
 本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
(Embodiment 7)
In this embodiment, an example in which a secondary battery, which is one embodiment of the present invention, is mounted in an electronic device will be described. Examples of electronic devices equipped with secondary batteries include television devices (also referred to as televisions or television receivers), computer monitors, digital cameras, digital video cameras, digital photo frames, and mobile phones (mobile phones, etc.). Examples include mobile phone devices (also referred to as mobile phone devices), portable game machines, personal digital assistants, audio playback devices, and large game machines such as pachinko machines. Examples of portable information terminals include notebook personal computers, tablet terminals, electronic book terminals, and mobile phones.
 図31Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。実施の形態1で説明した電池10を二次電池2107として備えることで、高容量とすることができ、筐体の小型化に伴う省スペース化に対応でき、安全性及び信頼性に優れた構成を実現することができる。 FIG. 31A shows an example of a mobile phone. The mobile phone 2100 includes a display section 2102 built into a housing 2101, as well as operation buttons 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like. Note that the mobile phone 2100 includes a secondary battery 2107. By providing the battery 10 described in Embodiment 1 as the secondary battery 2107, the configuration can have a high capacity, can accommodate space savings due to the miniaturization of the housing, and has a configuration with excellent safety and reliability. can be realized.
 携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。 The mobile phone 2100 can execute various applications such as mobile phone calls, e-mail, text viewing and creation, music playback, Internet communication, computer games, etc.
 操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。 In addition to setting the time, the operation button 2103 can have various functions such as turning on and off the power, turning on and off wireless communication, executing and canceling silent mode, and executing and canceling power saving mode. . For example, the functions of the operation buttons 2103 can be freely set using the operating system built into the mobile phone 2100.
 また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。 Furthermore, the mobile phone 2100 is capable of performing short-range wireless communication according to communication standards. For example, by communicating with a headset capable of wireless communication, it is also possible to make hands-free calls.
 また、携帯電話機2100は、外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。 Furthermore, the mobile phone 2100 is equipped with an external connection port 2104, and can directly exchange data with other information terminals via a connector. Charging can also be performed via the external connection port 2104. Note that the charging operation may be performed by wireless power supply without using the external connection port 2104.
 また、携帯電話機2100は、センサを有することが好ましい。センサとしては、例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、または加速度センサ等が搭載されることが好ましい。 Furthermore, it is preferable that the mobile phone 2100 has a sensor. As the sensor, it is preferable to include, for example, a human body sensor such as a fingerprint sensor, a pulse sensor, a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like.
 図31Bは、複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。実施の形態1で得られる電池10は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。 FIG. 31B is an unmanned aircraft 2300 with multiple rotors 2302. Unmanned aerial vehicle 2300 is sometimes called a drone. Unmanned aircraft 2300 includes a secondary battery 2301, which is one embodiment of the present invention, a camera 2303, and an antenna (not shown). Unmanned aerial vehicle 2300 can be remotely controlled via an antenna. The battery 10 obtained in Embodiment 1 has a high energy density and is highly safe, so it can be used safely for a long time and is suitable as a secondary battery to be mounted on the unmanned aircraft 2300.
 図31Cは、ロボットの一例を示している。図31Cに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406及び障害物センサ6407、移動機構6408、演算装置等を備える。 FIG. 31C shows an example of a robot. The robot 6400 shown in FIG. 31C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display portion 6405, a lower camera 6406, an obstacle sensor 6407, a movement mechanism 6408, a calculation device, and the like.
 マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402及びスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。 The microphone 6402 has a function of detecting the user's speaking voice, environmental sounds, and the like. Furthermore, the speaker 6404 has a function of emitting sound. The robot 6400 can communicate with a user using a microphone 6402 and a speaker 6404.
 表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電及びデータの受け渡しを可能とする。 The display unit 6405 has a function of displaying various information. The robot 6400 can display information desired by the user on the display section 6405. The display unit 6405 may include a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing it at a fixed position on the robot 6400, charging and data exchange are possible.
 上部カメラ6403及び下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406及び障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。 The upper camera 6403 and the lower camera 6406 have a function of capturing images around the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the direction of movement of the robot 6400 when the robot 6400 moves forward using the moving mechanism 6408. The robot 6400 uses an upper camera 6403, a lower camera 6406, and an obstacle sensor 6407 to recognize the surrounding environment and can move safely.
 ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。実施の形態1で得られる電池10は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。 The robot 6400 includes a secondary battery 6409 according to one embodiment of the present invention and a semiconductor device or electronic component in its internal area. The battery 10 obtained in Embodiment 1 has a high energy density and is highly safe, so it can be used safely for a long time and is suitable as the secondary battery 6409 mounted on the robot 6400.
 図31Dは、携帯用扇風機の一例を示している。携帯用扇風機6200は、筐体6201に本発明の一態様に係る二次電池6209、操作ボタン6205、ファン6202、外部接続ポート6204などを有する。二次電池6209は、外部接続ポート6204を介して充電が行われる。なお、二次電池6209から供給された電力によりモータを動作させてファン6202を回転させている。二次電池6209は、円筒型の二次電池の例を示しているが特に形状は限定されない。実施の形態1で得られる電池10は高エネルギー密度であり、安定な結晶構造を有しており、信頼性が高く、携帯用扇風機6200に搭載する二次電池6209として好適である。 FIG. 31D shows an example of a portable electric fan. The portable electric fan 6200 includes a secondary battery 6209 according to one embodiment of the present invention, an operation button 6205, a fan 6202, an external connection port 6204, and the like in a housing 6201. The secondary battery 6209 is charged via the external connection port 6204. Note that the fan 6202 is rotated by operating a motor using electric power supplied from the secondary battery 6209. Although the secondary battery 6209 is an example of a cylindrical secondary battery, the shape is not particularly limited. The battery 10 obtained in Embodiment 1 has a high energy density and a stable crystal structure, is highly reliable, and is suitable as the secondary battery 6209 mounted in the portable electric fan 6200.
 図31Eは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。 FIG. 31E shows an example of a cleaning robot. The cleaning robot 6300 includes a display portion 6302 placed on the top surface of a housing 6301, a plurality of cameras 6303 placed on the side, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like. Although not shown, the cleaning robot 6300 is equipped with tires, a suction port, and the like. The cleaning robot 6300 is self-propelled, detects dirt 6310, and can suck the dirt from a suction port provided on the bottom surface.
 掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。実施の形態1で得られる電池10は高エネルギー密度であり、安定な結晶構造を有しており、信頼性が高く、掃除ロボット6300に搭載する二次電池6306として好適である。 The cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, or steps. Furthermore, if an object such as wiring that is likely to become entangled with the brush 6304 is detected through image analysis, the rotation of the brush 6304 can be stopped. The cleaning robot 6300 includes a secondary battery 6306 according to one embodiment of the present invention and a semiconductor device or an electronic component in its internal area. The battery 10 obtained in Embodiment 1 has a high energy density and a stable crystal structure, is highly reliable, and is suitable as the secondary battery 6306 mounted on the cleaning robot 6300.
 本実施の形態は他の実施の形態と自由に組み合わせることができる。 This embodiment can be freely combined with other embodiments.
10:電池、11:正極集電体、13:バインダ、14:導電材、15:カーボンブラック、16:グラフェン、17:炭素繊維、20:正極、21:正極リード、22a:金属箔、22b:被覆層、22:正極集電体、23:正極活物質層、24:封止部、30:負極、31:負極リード、32:負極集電体、33:負極活物質層、34:封止部、40:セパレータ、41:領域、50:外装体、51:封止部、60:電解質、70:平面、71:平面、76a:リード金属、76b:リード金属、100a:表層部、100b:内部、100:正極活物質、101:結晶粒界、102:埋め込み部、104:被覆部、110:第2の正極活物質、500:電池、501:正極集電体、502:正極活物質層、503:正極、504:負極集電体、505:負極活物質層、506:負極、508:セパレータ、530:電解液、531:外装体、553:導電材、903:混合物、1003:釘、1300:角型二次電池、1301a:第1のバッテリ、1301b:第1のバッテリ、1302:バッテリコントローラ、1303:モータコントローラ、1304:モータ、1305:ギア、1306:DCDC回路、1307:電動パワーステアリング、1308:ヒーター、1309:デフォッガ、1310:DCDC回路、1311:第2のバッテリ、1312:インバータ、1313:オーディオ、1314:パワーウィンドウ、1315:ランプ類、1316:タイヤ、1317:リアモータ、1320:制御回路部、1321:制御回路部、1322:制御回路、1324:スイッチ部、1413:固定部、1414:固定部、1415:電池パック、1421:配線、1422:配線、2001:自動車、2002:輸送車、2003:輸送車両、2004:航空機、2005:人工衛星、2100:携帯電話機、2101:筐体、2102:表示部、2103:操作ボタン、2104:外部接続ポート、2105:スピーカ、2106:マイク、2107:二次電池、2200:電池パック、2201:電池パック、2202:電池パック、2203:電池パック、2204:二次電池、2300:無人航空機、2301:二次電池、2302:ローター、2303:カメラ、6200:携帯用扇風機、6201:筐体、6202:ファン、6204:外部接続ポート、6205:操作ボタン、6209:二次電池、6300:掃除ロボット、6301:筐体、6302:表示部、6303:カメラ、6304:ブラシ、6305:操作ボタン、6306:二次電池、6310:ゴミ、6400:ロボット、6401:照度センサ、6402:マイクロフォン、6403:上部カメラ、6404:スピーカ、6405:表示部、6406:下部カメラ、6407:障害物センサ、6408:移動機構、6409:二次電池、8600:スクータ、8601:サイドミラー、8602:蓄電装置、8603:方向指示灯、8604:座席下収納、8700:電動自転車、8701:蓄電池、8702:蓄電装置、8703:表示部、8704:制御回路 10: Battery, 11: Positive electrode current collector, 13: Binder, 14: Conductive material, 15: Carbon black, 16: Graphene, 17: Carbon fiber, 20: Positive electrode, 21: Positive electrode lead, 22a: Metal foil, 22b: Covering layer, 22: positive electrode current collector, 23: positive electrode active material layer, 24: sealing part, 30: negative electrode, 31: negative electrode lead, 32: negative electrode current collector, 33: negative electrode active material layer, 34: sealing part, 40: separator, 41: region, 50: exterior body, 51: sealing part, 60: electrolyte, 70: plane, 71: plane, 76a: lead metal, 76b: lead metal, 100a: surface layer part, 100b: Inside, 100: positive electrode active material, 101: grain boundary, 102: embedded part, 104: covering part, 110: second positive electrode active material, 500: battery, 501: positive electrode current collector, 502: positive electrode active material layer , 503: positive electrode, 504: negative electrode current collector, 505: negative electrode active material layer, 506: negative electrode, 508: separator, 530: electrolyte, 531: exterior body, 553: conductive material, 903: mixture, 1003: nail, 1300: square secondary battery, 1301a: first battery, 1301b: first battery, 1302: battery controller, 1303: motor controller, 1304: motor, 1305: gear, 1306: DCDC circuit, 1307: electric power steering , 1308: Heater, 1309: Defogger, 1310: DCDC circuit, 1311: Second battery, 1312: Inverter, 1313: Audio, 1314: Power window, 1315: Lamps, 1316: Tire, 1317: Rear motor, 1320: Control Circuit section, 1321: Control circuit section, 1322: Control circuit, 1324: Switch section, 1413: Fixed section, 1414: Fixed section, 1415: Battery pack, 1421: Wiring, 1422: Wiring, 2001: Automobile, 2002: Transport vehicle , 2003: Transport vehicle, 2004: Aircraft, 2005: Satellite, 2100: Mobile phone, 2101: Housing, 2102: Display section, 2103: Operation button, 2104: External connection port, 2105: Speaker, 2106: Microphone, 2107 : Secondary battery, 2200: Battery pack, 2201: Battery pack, 2202: Battery pack, 2203: Battery pack, 2204: Secondary battery, 2300: Unmanned aircraft, 2301: Secondary battery, 2302: Rotor, 2303: Camera, 6200: Portable electric fan, 6201: Housing, 6202: Fan, 6204: External connection port, 6205: Operation button, 6209: Secondary battery, 6300: Cleaning robot, 6301: Housing, 6302: Display unit, 6303: Camera , 6304: Brush, 6305: Operation button, 6306: Secondary battery, 6310: Dust, 6400: Robot, 6401: Illuminance sensor, 6402: Microphone, 6403: Upper camera, 6404: Speaker, 6405: Display section, 6406: Lower part Camera, 6407: Obstacle sensor, 6408: Movement mechanism, 6409: Secondary battery, 8600: Scooter, 8601: Side mirror, 8602: Power storage device, 8603: Turn signal light, 8604: Under seat storage, 8700: Electric bicycle, 8701: Storage battery, 8702: Power storage device, 8703: Display unit, 8704: Control circuit

Claims (11)

  1.  正極を有し、
     前記正極は、正極集電体と、正極活物質層と、を有し、
     前記正極活物質層は、前記正極集電体上に設けられ、
     前記正極集電体は、金属箔と、前記金属箔の表面の少なくとも一部を覆う被覆層と、を有する、電池。
    has a positive electrode,
    The positive electrode includes a positive electrode current collector and a positive electrode active material layer,
    The positive electrode active material layer is provided on the positive electrode current collector,
    The battery, wherein the positive electrode current collector includes a metal foil and a coating layer that covers at least a part of the surface of the metal foil.
  2.  請求項1において、
     前記金属箔は、ステンレス箔であり、
     前記被覆層は、アルミニウムを有する、電池。
    In claim 1,
    The metal foil is stainless steel foil,
    The battery, wherein the coating layer includes aluminum.
  3.  請求項2において、
     前記金属箔の厚さは、1μm以上30μm以下であり、
     前記被覆層の厚さは、1nm以上1μm以下である、電池。
    In claim 2,
    The thickness of the metal foil is 1 μm or more and 30 μm or less,
    A battery, wherein the thickness of the coating layer is 1 nm or more and 1 μm or less.
  4.  請求項3において、
     前記電池は、前記正極を内包する外装体を有し、
     前記外装体は、ステンレスラミネートフィルムである、電池。
    In claim 3,
    The battery has an exterior body containing the positive electrode,
    The battery, wherein the exterior body is a stainless steel laminate film.
  5.  請求項1乃至請求項4の何れか一において、
     前記正極活物質層は、正極活物質を有し、
     前記正極活物質は、ニッケルと、マグネシウムと、を含むコバルト酸リチウムを有し、
     前記正極活物質の表層部のニッケル検出量が、前記正極活物質の内部のニッケル検出量よりも大きく、
     前記正極活物質の表層部のマグネシウム検出量が、前記正極活物質の内部のマグネシウム検出量よりも大きく、
     前記正極活物質の表層部において、ニッケルの分布とマグネシウムの分布は重畳する領域を有する、電池。
    In any one of claims 1 to 4,
    The positive electrode active material layer includes a positive electrode active material,
    The positive electrode active material has lithium cobalt oxide containing nickel and magnesium,
    The detected amount of nickel in the surface layer of the positive electrode active material is larger than the detected amount of nickel inside the positive electrode active material,
    The detected amount of magnesium in the surface layer of the positive electrode active material is larger than the detected amount of magnesium inside the positive electrode active material,
    A battery, wherein a surface layer portion of the positive electrode active material has a region where a nickel distribution and a magnesium distribution overlap.
  6.  請求項5において、
     ニッケルは、前記正極活物質の前記表層部のうちコバルト酸リチウムの(001)面以外の面に検出される、電池。
    In claim 5,
    In the battery, nickel is detected on a surface other than the (001) surface of lithium cobalt oxide in the surface layer portion of the positive electrode active material.
  7.  請求項6において、
     EDX線分析において、前記正極活物質の表層部における、
     ニッケルの検出量のピークの深さと、
     マグネシウムの検出量のピークの深さの差は3nm以内である、電池。
    In claim 6,
    In the EDX-ray analysis, in the surface layer of the positive electrode active material,
    The depth of the peak of the detected amount of nickel,
    A battery in which the difference in peak depth of the detected amount of magnesium is within 3 nm.
  8.  請求項7において、
     前記正極活物質はアルミニウムを含み、
     前記正極活物質が有するニッケル、マグネシウムおよびアルミニウムのEDX線分析において、
     アルミニウム検出量の最大値は、ニッケル検出量の最大値およびマグネシウム検出量の最大値よりも内部にあり、
     アルミニウム検出量の最大値の高さの1/5の高さにおけるピーク幅を、最大値から横軸へ下した垂線で2分したとき、
     表面側のピーク幅Wsよりも、
     内部側のピーク幅Wcが大きい、電池。
    In claim 7,
    The positive electrode active material contains aluminum,
    In the EDX-ray analysis of nickel, magnesium and aluminum contained in the positive electrode active material,
    The maximum value of the detected amount of aluminum is within the maximum value of the detected amount of nickel and the maximum value of the detected amount of magnesium.
    When the peak width at a height of 1/5 of the maximum value of the detected amount of aluminum is divided into two by a perpendicular line drawn from the maximum value to the horizontal axis,
    From the peak width Ws on the surface side,
    A battery with a large internal peak width Wc.
  9.  請求項5において、
     前記正極と対極にリチウムを用いる電池を、4.6Vまで充電した状態で、前記正極をCuKα1線による粉末X線回折で分析したとき、前記正極活物質の回折パターンは、少なくとも2θが
     19.13以上19.37未満となる第1のピークと、
     45.37°以上45.57°未満となる第2のピークを有する、
     電池。
    In claim 5,
    When the battery using lithium as the positive electrode and the counter electrode is charged to 4.6 V and the positive electrode is analyzed by powder X-ray diffraction using CuKα1 ray, the diffraction pattern of the positive electrode active material is at least 2θ of 19.13. a first peak that is greater than or equal to 19.37;
    having a second peak of 45.37° or more and less than 45.57°;
    battery.
  10.  請求項9において、
     前記正極活物質はフッ素を含み、
     前記正極活物質の表層部のフッ素検出量が、前記正極活物質の内部のフッ素検出量よりも大きい、電池。
    In claim 9,
    The positive electrode active material contains fluorine,
    A battery, wherein the detected amount of fluorine in the surface layer of the positive electrode active material is larger than the detected amount of fluorine inside the positive electrode active material.
  11.  請求項1において、
     前記金属箔は、ステンレス箔であり、
     前記被覆層は、アルミニウムと、チタンと、を有する、電池。
    In claim 1,
    The metal foil is stainless steel foil,
    The battery, wherein the coating layer includes aluminum and titanium.
PCT/IB2023/057210 2022-07-29 2023-07-14 Battery WO2024023625A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-121663 2022-07-29
JP2022121663 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024023625A1 true WO2024023625A1 (en) 2024-02-01

Family

ID=89705594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/057210 WO2024023625A1 (en) 2022-07-29 2023-07-14 Battery

Country Status (1)

Country Link
WO (1) WO2024023625A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162118A (en) * 1994-12-07 1996-06-21 Sumitomo Electric Ind Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2011091019A (en) * 2009-01-30 2011-05-06 Equos Research Co Ltd Collector for positive electrode of secondary battery, collector for negative electrode of secondary battery, positive electrode of secondary battery, negative electrode of secondary battery, and secondary battery
JP2012136736A (en) * 2010-12-27 2012-07-19 Hitachi Metals Ltd Composite metal foil superior in tensile strength
JP2016102231A (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Stainless foil
JP2017091673A (en) * 2015-11-05 2017-05-25 古河電池株式会社 Lithium ion battery
JP2018527718A (en) * 2015-09-16 2018-09-20 ユミコア Lithium battery containing cathode material and electrolyte additive for high voltage applications
JP2020017432A (en) * 2018-07-26 2020-01-30 株式会社豊田自動織機 Power storage cell and power storage device
WO2020026078A1 (en) * 2018-08-03 2020-02-06 株式会社半導体エネルギー研究所 Positive electrode active material and method for producing positive electrode active material
JP2020095849A (en) * 2018-12-12 2020-06-18 トヨタ自動車株式会社 battery
WO2022090844A1 (en) * 2020-10-26 2022-05-05 株式会社半導体エネルギー研究所 Positive electrode active material production method, positive electrode, secondary battery, electronic device, power storage system, and vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162118A (en) * 1994-12-07 1996-06-21 Sumitomo Electric Ind Ltd Nonaqueous electrolyte secondary battery and manufacture thereof
JP2011091019A (en) * 2009-01-30 2011-05-06 Equos Research Co Ltd Collector for positive electrode of secondary battery, collector for negative electrode of secondary battery, positive electrode of secondary battery, negative electrode of secondary battery, and secondary battery
JP2012136736A (en) * 2010-12-27 2012-07-19 Hitachi Metals Ltd Composite metal foil superior in tensile strength
JP2016102231A (en) * 2014-11-27 2016-06-02 Jfeスチール株式会社 Stainless foil
JP2018527718A (en) * 2015-09-16 2018-09-20 ユミコア Lithium battery containing cathode material and electrolyte additive for high voltage applications
JP2017091673A (en) * 2015-11-05 2017-05-25 古河電池株式会社 Lithium ion battery
JP2020017432A (en) * 2018-07-26 2020-01-30 株式会社豊田自動織機 Power storage cell and power storage device
WO2020026078A1 (en) * 2018-08-03 2020-02-06 株式会社半導体エネルギー研究所 Positive electrode active material and method for producing positive electrode active material
JP2020095849A (en) * 2018-12-12 2020-06-18 トヨタ自動車株式会社 battery
WO2022090844A1 (en) * 2020-10-26 2022-05-05 株式会社半導体エネルギー研究所 Positive electrode active material production method, positive electrode, secondary battery, electronic device, power storage system, and vehicle

Similar Documents

Publication Publication Date Title
KR20230027121A (en) Secondary battery and electronic device
US20230343952A1 (en) Secondary battery, manufacturing method of secondary battery, electronic device, and vehicle
WO2023180868A1 (en) Lithium ion battery
WO2022248968A1 (en) Battery, electronic device, power storage system, and mobile body
WO2023281346A1 (en) Positive electrode active material
WO2022254284A1 (en) Secondary battery, electronic device, and flying object
WO2022219456A1 (en) Secondary battery, electronic device, and vehicle
JP2022173119A (en) Positive electrode active material
WO2024023625A1 (en) Battery
WO2023209474A1 (en) Positive electrode active material, lithium-ion battery, electronic device, and vehicle
WO2024052785A1 (en) Battery, electronic device, and vehicle
WO2023242676A1 (en) Lithium ion secondary battery
WO2023242690A1 (en) Method for producing secondary battery
WO2024003663A1 (en) Secondary battery
WO2023209475A1 (en) Positive electrode active material, positive electrode, secondary battery, electronic device and vehicle
WO2023203424A1 (en) Positive electrode active material and secondary battery
WO2023237967A1 (en) Secondary battery
WO2023248044A1 (en) Positive electrode active material, secondary battery, electronic device, and vehicle
US20240038985A1 (en) Battery
WO2023242669A1 (en) Lithium ion secondary battery
WO2024003664A1 (en) Method for producing positive electrode active material
WO2023209477A1 (en) Lithium ion battery and electronic device
WO2023012579A1 (en) Lithium ion battery
WO2024074938A1 (en) Secondary battery
US20240063387A1 (en) Positive electrode active material and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23845782

Country of ref document: EP

Kind code of ref document: A1