JPS612272A - Positive plate for sealed cylindrical nickel-cadmium battery - Google Patents

Positive plate for sealed cylindrical nickel-cadmium battery

Info

Publication number
JPS612272A
JPS612272A JP59122381A JP12238184A JPS612272A JP S612272 A JPS612272 A JP S612272A JP 59122381 A JP59122381 A JP 59122381A JP 12238184 A JP12238184 A JP 12238184A JP S612272 A JPS612272 A JP S612272A
Authority
JP
Japan
Prior art keywords
nickel
active material
positive electrode
electrode plate
positive plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59122381A
Other languages
Japanese (ja)
Inventor
Motohide Masui
増井 基秀
Hideo Kaiya
英男 海谷
Ryoji Tsuboi
良二 坪井
Minoru Yamaga
山賀 実
Shingo Tsuda
津田 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59122381A priority Critical patent/JPS612272A/en
Publication of JPS612272A publication Critical patent/JPS612272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase active material utilization of a nonsintered nickel positive plate by containing nickel flakes in an active material mainly comprising nickel hydroxide. CONSTITUTION:5-25wt% of nickel flakes to the total active material are contained in an active material mainly comprising nickel hydroxide powder. Thereby, active material utilization of a paste type positive plate is increased to a similar level to that of a sintered positive plate. Therefore, the capacity of nickel positive plate is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、円筒密閉型ニッケル−カドミウム蓄電池用正
極板に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a positive electrode plate for a cylindrical sealed nickel-cadmium storage battery.

従来例の構成とその問題点 従来、円筒密閉型ニッケル−カドミウム蓄電池用正極板
には、その製造過程から大別して次の2つの方式がある
。その一つは、いわゆる焼結式と呼ばれるものであり、
ニッケル粉末のスラリー全導電性芯材の上に@着し、こ
nk焼結して多孔性の基板とし、その微孔中に水酸化ニ
ッケルを化学的、電気化学的、或いは双方を用いて充填
し、活物質化して正極とする方法である。この方式の正
極の場合、最終的に正極板全体に導電体としての基板の
占める容積が大きいことから、基板の微孔内に入った活
物質の利用率が高いという長所をもつ反面、絶対的に充
填される活物質の量が制限されるという欠点をもつ。t
i、電池設計上要求される正極板の均一性全保持するた
め、製造上煩雑な品質管理が要求される。
Conventional Structures and Problems Conventionally, there are two types of positive electrode plates for sealed cylindrical nickel-cadmium storage batteries, which are roughly classified based on the manufacturing process. One of them is the so-called sintering method,
A slurry of nickel powder is deposited on a fully conductive core material, sintered to form a porous substrate, and the micropores are filled with nickel hydroxide chemically, electrochemically, or using both. This is a method of converting it into an active material and using it as a positive electrode. In the case of this type of positive electrode, since the substrate as a conductor ultimately occupies a large volume in the entire positive electrode plate, it has the advantage of high utilization of the active material that has entered the micropores of the substrate. It has the disadvantage that the amount of active material that can be filled in is limited. t
i. In order to maintain the uniformity of the positive electrode plate required in battery design, complicated quality control is required in manufacturing.

もう一つは非焼結式あるいはペースト式と呼ばnる製造
法である。こnは、焼結式の場合の活物質充填方法とし
て、例えば硝酸ニッケル等二ノケル塩の水溶液を用いる
のとはちがって、最終活物質である水酸化ニッケルを直
接、物理的な手段で導電性基体に保持させる方法である
The other method is a manufacturing method called a non-sintering method or a paste method. Unlike the method of filling the active material in the case of the sintering method, which uses an aqueous solution of nickel salt such as nickel nitrate, this method uses nickel hydroxide, which is the final active material, directly and conductively by physical means. This is a method of holding it on a solid substrate.

つまり、水酸化ニッケルを主とする活物質全直接水ある
いけその他の溶媒で練合してペースト状となし、電導性
の芯材に塗着するか、三次元構造を有する発泡金属多孔
体中に充填して正極板とする方法である。この製造法に
よnば、焼結式に見られたような大きな容積を占める基
板がないので活物質の量を同じ極板容積で、増加するこ
とができ、絶対的な極板容量を増大させることができる
In other words, an active material mainly composed of nickel hydroxide is directly kneaded with water or other solvent to form a paste, and then applied to a conductive core material or placed in a porous metal foam having a three-dimensional structure. In this method, the positive electrode plate is prepared by filling the molten metal into the molten metal. According to this manufacturing method, there is no substrate that occupies a large volume as seen in the sintering method, so the amount of active material can be increased with the same plate volume, increasing the absolute plate capacity. can be done.

また、製造工程上精度を要する導電性基板金省ける上、
充填方式も簡易なことからコスト的にも大きな長所をも
つ。しかし焼結式に見らfLりように、活物質の周囲に
導電性基板がないことから活物質の利用率は焼結式に比
べて著しく劣る欠点がある。
In addition, it saves money on conductive substrates that require precision in the manufacturing process, and
Since the filling method is simple, it also has a great advantage in terms of cost. However, as seen in the sintered type, there is a drawback that the utilization rate of the active material is significantly lower than that of the sintered type because there is no conductive substrate around the active material.

そこで利用率向上を目的として水酸化ニッケル主体の活
物質ペースト中にニッケル粉末及びコバルト粉末等の導
電材及び電気化学的な触媒と考えられる物質が加えら扛
てきたが、焼結式のような導電性ネットワークが不十分
であり、焼結式に比べるとやはり利用率としては劣る面
があり、ペースト式の特長としての高容量化に関しての
長所が十分に生かされないという問題点を生じている。
Therefore, in order to improve the utilization rate, conductive materials such as nickel powder and cobalt powder and substances considered to be electrochemical catalysts have been added to the active material paste mainly consisting of nickel hydroxide. The conductive network is insufficient, and the utilization rate is still inferior to the sintered type, resulting in the problem that the paste type's advantage of high capacity cannot be fully utilized.

発明の目的 本発明は、上記従来例の問題点を解消したペースト式正
極板であり、高い利用率を備えることを目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to provide a paste-type positive electrode plate that solves the problems of the conventional example described above and has a high utilization rate.

発明の構成 本発明は、上記目的を達成するため、水酸化ニッケル粉
末を主体とする活物質中に、@片影状のニッケルフレー
クを含むニッケル正極板であり、好ましくは全話物質に
対して5〜25重量%のニッケルフレークを含むことを
特徴とする非焼結式のニッケル正極板である。
Structure of the Invention In order to achieve the above-mentioned object, the present invention is a nickel positive electrode plate containing nickel flakes in a half-shaded shape in an active material mainly composed of nickel hydroxide powder, preferably with respect to the whole material. This is a non-sintered nickel positive electrode plate characterized by containing 5 to 25% by weight of nickel flakes.

この正極板は、ペースト式正極板としての活物質利用率
を焼結方式と同等レベルにまで向上させ結果としてニッ
ケル正極の高容量化を図ることができる。
This positive electrode plate improves the active material utilization rate as a paste type positive electrode plate to the same level as that of a sintered type positive electrode plate, and as a result, it is possible to increase the capacity of the nickel positive electrode.

以下、本発明の計則な実症例を掲げて説明する。Hereinafter, practical examples of the present invention will be explained.

実姉例の説明 平均粒径約70μmの水酸化ニッケル粉末80M−N一
部と、平均粒径3μmのカーボニルニッケル粉末5重量
部と、平均粒径6μmのカーボニルコバルト粉末6重量
部と、平面的な平均径25μm。
Description of actual sister example A part of 80M-N nickel hydroxide powder with an average particle size of about 70 μm, 5 parts by weight of carbonyl nickel powder with an average particle size of 3 μm, 6 parts by weight of carbonyl cobalt powder with an average particle size of 6 μm, and a planar Average diameter 25 μm.

厚さ0.8μmの鱗片形状のニッケルフレーク10重量
部との粉末混合物に水を加えて含水率25重#チのペー
スト伏線金物を調整する。こn’を三次元構造を有する
発泡ニッケル多孔体に充填し、乾燥後0.7個の厚みに
加圧成形する。こnll固形分濃度約2量量係7ノ素樹
脂の水性懸濁液中に田秒間浸漬した後乾燥し、幅39 
aM 、長さ68端に切断して正極板を得た。なお、同
時に前記実施例における混合粉末の組成として鱗片形状
のニッケルフレーク10重量部をすべてカーボニルニッ
ケル粉末に置き換えて、カーボニルニッケル総量として
16重量部とした従来方式のニッケル正極板を得た。
Water is added to a powder mixture with 10 parts by weight of scale-shaped nickel flakes having a thickness of 0.8 μm to prepare a paste foreshadowing hardware having a water content of 25 parts by weight. This n' is filled into a foamed nickel porous body having a three-dimensional structure, and after drying, it is pressure-molded to a thickness of 0.7 mm. This product was immersed in an aqueous suspension of 7 base resins with a solid content concentration of about 2 seconds and then dried to give a width of 39 mm.
aM, the positive electrode plate was obtained by cutting into length 68 ends. At the same time, a conventional nickel positive electrode plate was obtained by replacing all 10 parts by weight of the scale-shaped nickel flakes with carbonyl nickel powder as the composition of the mixed powder in the above example, so that the total amount of carbonyl nickel was 16 parts by weight.

実姉例および従来方式の正極板を、公知のペースト式カ
ドミウム負極板とともにナイロン不織布をはさんで力j
向さぜた状態で捲回し、電解液として比M1.5oKO
H水溶液を注入してKR−AAサイズの電池としてそれ
ぞれ12個ずつ組立て、その正極利用率を測定した。な
お、電池容量皿]定条件として、20C雰囲気中60 
m Aの電流で15時間充電後同じく20C雰囲気中1
20mAで電池電圧1.OV4で放電したときの放電時
間で放電容量を算出した。
The actual sister example and the conventional positive electrode plate were combined with a known paste-type cadmium negative electrode plate with a nylon nonwoven fabric sandwiched between them.
Wind it up in the opposite direction, and use it as an electrolyte with a ratio of M1.5oKO.
Aqueous H solution was injected to assemble 12 KR-AA size batteries, and their positive electrode utilization rates were measured. In addition, battery capacity plate] As a constant condition, 60℃ in a 20C atmosphere
After charging for 15 hours with a current of mA, 1 in the same 20C atmosphere.
Battery voltage 1. at 20mA. The discharge capacity was calculated based on the discharge time when discharging at OV4.

この結果を第1図に示す。第1図中aは活物質ペースト
中に細片形状のニッケルフレークを含む実姉例の正惨の
放電曲線であり、ニッケルフレークを含まない従来方式
の放電曲線を示している。
The results are shown in FIG. In FIG. 1, a shows a discharge curve of a real-life example in which strip-shaped nickel flakes are included in the active material paste, and a discharge curve of a conventional method that does not contain nickel flakes.

ニッケルフレークを含む方が高い利用率をもつことがわ
かる。このことは芯材上にペーストを塗着して得た極板
でも同様に見らnた。この原因として考えらノするのは
、フレーク状のニッケル片が活物質中で方向性ケもたず
に無族序に分散して、面あるいは線として発泡メタルの
基板と接触したり、フレーク同士が互いに接触して電気
伝導性を充分に保つことができるためであり、カーボニ
ルニソケル粉末だけの場合のようにその電気伝導性を点
の接触でしか俣つことかできず、また水酸化ニッケル粉
末にとり込まれてしまって他のニッケル粉末との接触が
保つことができない場合に比べると利用率は大きく改善
さnる。またニッケルフレークとカーボニルニッケル粉
末を同時に混入した場合には、ニッケルフレークが導電
の主骨格となり粒子径の小さなカーボニルニッケル粉末
が細部の橋渡しとなって双方の導電材がネットワーク化
することになり、より一層利用率は向上する。ニッケル
フレークの量は活物質全体の5〜25重量%が適当であ
り、第2図に示すようにニッケルフレークが6重量係以
下の場合、著しい利用率の向上はみらnない。逆に25
重量係以上では利用率は高まるが、その体積の増加が原
因でかえって極板としての実質容N’fr下げるという
問題を生じる。
It can be seen that the utilization rate is higher when nickel flakes are included. This was also observed in electrode plates obtained by applying paste on the core material. Possible causes of this are that the flaky nickel pieces are dispersed in the active material in an amorphous order without any directionality, and come into contact with the foam metal substrate as a surface or wire, or the flakes may come into contact with the foam metal substrate. This is because the electrical conductivity can be maintained sufficiently by contacting each other, and as in the case of carbonyl nitride powder alone, the electrical conductivity can only be increased by point contact, and nickel hydroxide Compared to the case where nickel is incorporated into the powder and cannot maintain contact with other nickel powder, the utilization rate is greatly improved. Furthermore, when nickel flakes and carbonyl nickel powder are mixed at the same time, the nickel flakes become the main conductive skeleton, and the carbonyl nickel powder, which has a small particle size, acts as a bridge between the details, creating a network between the two conductive materials. The utilization rate will further improve. The appropriate amount of nickel flakes is 5 to 25% by weight of the total active material, and as shown in FIG. 2, when the amount of nickel flakes is less than 6% by weight, no significant improvement in utilization rate is observed. On the contrary, 25
If the weight ratio is exceeded, the utilization rate increases, but the increase in volume causes the problem of lowering the actual volume N'fr of the electrode plate.

また、ニッケルフレークの大きさはカーボニルニッケル
粉末よりも大きなものでなけfLばその効果は望めない
。すなわち平面的平均径として10μm以上で効果が現
われるが、5oμm以上では太き過ぎるため極板中での
分散が悪く、また短絡の原因にもなる。厚みに関して言
えば、0.5μm以下のとき電導性が悪くなって効果が
なく、5.0μm以上ではその体積的なロスの方が問題
となる。
Further, unless the size of the nickel flakes is larger than the carbonyl nickel powder, the effect cannot be expected at fL. That is, the effect appears when the planar average diameter is 10 μm or more, but when it is 5 μm or more, it is too thick, resulting in poor dispersion in the electrode plate and also causing short circuits. Regarding the thickness, when the thickness is 0.5 μm or less, the conductivity deteriorates and there is no effect, and when the thickness is 5.0 μm or more, the volumetric loss becomes more of a problem.

発明の効果 以上のように、水酸化ニッケルを主体とする活物質中に
、鱗片形状のニッケルフレークを含む非焼結式ニッケル
正極板に1、活物質利用率が著しく向上し、焼結式と同
等の利用率を得ることができるものであり、電池の高容
量化を併進するものである。
Effects of the invention As described above, the non-sintered nickel positive electrode plate containing scale-shaped nickel flakes in the active material mainly composed of nickel hydroxide has a significantly improved active material utilization rate, and is superior to the sintered type. It is possible to obtain the same utilization rate, and it is also possible to increase the capacity of batteries.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実捲例によって得た正極板の放電容量
を示す図、第2図は活物質中のニッケルフレークの含有
量と活物質利用率との関係を示す図でちる。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 方’   t   g   ’t   mAh)第2図
FIG. 1 is a diagram showing the discharge capacity of a positive electrode plate obtained by an actual winding example of the present invention, and FIG. 2 is a diagram showing the relationship between the content of nickel flakes in the active material and the active material utilization rate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)水酸化ニッケルを主体とする活物質中に、鱗片形
状を有するニッケルフレークを含むことを特徴とする円
筒密閉型ニッケル−カドミウム蓄電池用正極板。
(1) A positive electrode plate for a sealed cylindrical nickel-cadmium storage battery, characterized in that an active material mainly composed of nickel hydroxide contains nickel flakes having a scale shape.
(2)鱗片形状のニッケルフレークが、全活物質量に対
して、5〜30重量%添加されている特許請求の範囲第
1項記載の円筒密閉型ニッケル−カドミウム蓄電池用正
極板。
(2) The positive electrode plate for a sealed cylindrical nickel-cadmium storage battery according to claim 1, wherein the scale-shaped nickel flakes are added in an amount of 5 to 30% by weight based on the total amount of active material.
(3)ニッケルフレークの大きさが、平面的な平均径1
0〜50μm、厚さが0.5〜5.0μmである特許請
求の範囲第1項又は第2項記載の円筒密閉型ニッケル−
カドミウム蓄電池用正極板。
(3) The size of the nickel flakes is a planar average diameter of 1
The cylindrical sealed nickel according to claim 1 or 2, which has a thickness of 0 to 50 μm and a thickness of 0.5 to 5.0 μm.
Positive electrode plate for cadmium storage batteries.
JP59122381A 1984-06-14 1984-06-14 Positive plate for sealed cylindrical nickel-cadmium battery Pending JPS612272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122381A JPS612272A (en) 1984-06-14 1984-06-14 Positive plate for sealed cylindrical nickel-cadmium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122381A JPS612272A (en) 1984-06-14 1984-06-14 Positive plate for sealed cylindrical nickel-cadmium battery

Publications (1)

Publication Number Publication Date
JPS612272A true JPS612272A (en) 1986-01-08

Family

ID=14834412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122381A Pending JPS612272A (en) 1984-06-14 1984-06-14 Positive plate for sealed cylindrical nickel-cadmium battery

Country Status (1)

Country Link
JP (1) JPS612272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723737B2 (en) * 2001-02-28 2011-07-13 株式会社東芝 Positive electrode for nickel / hydrogen secondary battery, nickel / hydrogen secondary battery using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4723737B2 (en) * 2001-02-28 2011-07-13 株式会社東芝 Positive electrode for nickel / hydrogen secondary battery, nickel / hydrogen secondary battery using the same

Similar Documents

Publication Publication Date Title
US4407915A (en) Secondary zinc electrode
US4143216A (en) Lead crystal storage cells and storage devices made therefrom
JPS612272A (en) Positive plate for sealed cylindrical nickel-cadmium battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH03179664A (en) Hydrogen storage electrode for alkaline storage battery
JPH0243308B2 (en)
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPS5935360A (en) Zinc electrode
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS63170853A (en) Paste type nickel positive electrode
JPH05205732A (en) Manufacture of anode plate for lead-acid battery
JP2530281B2 (en) Alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS612271A (en) Negative plate for sealed cylindrical nickel-cadmium battery
JPS60140661A (en) Negative electrode plate for nickel cadmium storage battery
JPS62229763A (en) Nonsintered nickel positive electrode
JPH05144438A (en) Electrode for alkaline storage battery
JPH04262367A (en) Hydrogen storage electrode
JPS60253156A (en) Nickel positive electrode for alkaline battery and its manufacturing method
JPS58158867A (en) Zinc pole
JPH05299081A (en) Positive electrode plate for alkaline storage battery
JPS61114471A (en) Positive plate of clad type lead storage battery
JPS5897265A (en) Manufacture of nickel electrode for battery
JPH04344B2 (en)