JPS5935360A - Zinc electrode - Google Patents

Zinc electrode

Info

Publication number
JPS5935360A
JPS5935360A JP57145203A JP14520382A JPS5935360A JP S5935360 A JPS5935360 A JP S5935360A JP 57145203 A JP57145203 A JP 57145203A JP 14520382 A JP14520382 A JP 14520382A JP S5935360 A JPS5935360 A JP S5935360A
Authority
JP
Japan
Prior art keywords
zinc
electrode
particle size
powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57145203A
Other languages
Japanese (ja)
Other versions
JPH0423383B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57145203A priority Critical patent/JPS5935360A/en
Publication of JPS5935360A publication Critical patent/JPS5935360A/en
Publication of JPH0423383B2 publication Critical patent/JPH0423383B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase cycle life by forming a zinc electrode of an alkaline electrode with an active material prepared by adding hydrophilic short fiber, an additive, and a binder to zinc oxide powder and metal zinc powder both having a specified particle size. CONSTITUTION:Zinc oxide powder having a particle size of 0.1-0.5mu, and metal zinc powder having a particle size of 1-6mu and rayon short fiber are mixed. Polytetrafluoroethylene dispersion and water are added to above mixture and they are kneaded. A paste sheet made of the kneaded material is kept in contact with an anode current collector to form a zinc electrode 1. The zinc electrode 1 is combined with a sintered nickel electrode 2 with an electrolyte absorbing layer 4 and a separator 3 interposed, and they are accommodated in a container 5 to form a nickel-zinc storage battery. Crystal growth of an active material and deformation of an electrode plate are prevented, and electrolyte is supplied smoothly and cycle life is increased.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は正極活物質として酸化銀、酸化ニッケルなどを
用い、電解液としてアルカリ溶液を用いるアルカリ蓄電
池に適用することができる亜鉛極に関し、亜鉛負極の活
物質である金属亜鉛と酸化亜鉛の粒径を規制すると共に
親水性の短繊維を添加することにより、充放電サイクル
による負極活物質の結晶径の粗大化を防止し、亜鉛極板
の変形を抑制すると共に亜鉛極内への電解液の供給を円
滑にし、電池容量の減少を僅少にして、電池のサイクル
寿命を向上することを目的とする。
Detailed Description of the Invention [Technical Field] The present invention relates to a zinc electrode that can be applied to alkaline storage batteries that use silver oxide, nickel oxide, etc. as a positive electrode active material and an alkaline solution as an electrolyte. By controlling the particle size of the substances metal zinc and zinc oxide and adding hydrophilic short fibers, we prevent the crystal size of the negative electrode active material from becoming coarser due to charge and discharge cycles, and suppress the deformation of the zinc electrode plate. At the same time, the purpose is to smoothly supply the electrolyte into the zinc electrode, to minimize the decrease in battery capacity, and to improve the cycle life of the battery.

〔背景技術〕[Background technology]

従来より負極に金属亜鉛を活物質として用いた亜鉛蓄電
池は、亜鉛が安価であり、アルカリ電解液中でカドミウ
ム極に比へて卑な1位を有することから、エネルギー密
度が高く、且公害の心配が少ないことから、多くの実用
化検討がなきれてきた。
Conventionally, zinc storage batteries that use metallic zinc as an active material in the negative electrode have high energy density and are less polluting because zinc is cheap and has a lower rank in alkaline electrolytes than cadmium electrodes. Since there is little to worry about, many practical applications have been abandoned.

ところが、充放電サイクル途中における亜鉛テンドライ
トによる正負極間の短絡現象が起こるため信頼性に欠け
ること及び充放電サイクルによる亜鉛極の変形が著しい
ために長期のサイクル寿命が得られにくいこと等の欠点
がある。この原因は亜鉛がアルカリ電解液中に可溶する
電極であることに起因している。
However, there are drawbacks such as a lack of reliability due to a short circuit phenomenon between the positive and negative electrodes due to zinc tendrite during the charge/discharge cycle, and difficulty in obtaining a long cycle life due to significant deformation of the zinc electrode during the charge/discharge cycle. be. This is due to the fact that zinc is an electrode that is soluble in an alkaline electrolyte.

而して、亜鉛活物質として金属亜鉛と酸化亜鉛の混合物
を使用することが知られている。しかし従来から使用さ
れる金属亜鉛は、数十p乃至数百1の粒径であり、−実
際化亜鉛は十分の数μの粒径であり、金属亜鉛に比し2
乃至3桁小さい粒径である。このように従来の金属亜鉛
の粒径が酸化亜鉛の粒径に比し特に大きいことにより次
の欠点か夛)る。即ち第1に、粒径の大きさの差が2乃
至3桁と大きいため、金属亜鉛と酸化亜鉛が均一に混合
しない。第2に、粒径が大きいため同量の金属亜鉛を混
入しても、籾子数か少なく電析の核とrzる数か少ない
ので、放電生成物である亜鉛酸イオンか次の充電時に元
の位置に電着し難くなる。
Thus, it is known to use a mixture of metallic zinc and zinc oxide as a zinc active material. However, conventionally used metallic zinc has a particle size of several tens of micrometers to several hundred micrometers, and practical zinc has a particle size of several tenths of a micrometer, which is 2 times smaller than that of metallic zinc.
The particle size is three orders of magnitude smaller. As described above, the particle size of conventional metallic zinc is particularly large compared to the particle size of zinc oxide, resulting in the following drawbacks. First, since the difference in particle size is as large as two to three orders of magnitude, metallic zinc and zinc oxide are not mixed uniformly. Second, because the particle size is large, even if the same amount of metallic zinc is mixed, there are fewer rice grains than the number of grains that can form the nucleus of electrodeposition, so the zincate ions, which are discharge products, will be absorbed during the next charging. It becomes difficult to electrodeposit in the original position.

第3に、元々の金属亜鉛の粒子径が大きいので、デンド
ライト発生の核となる粗大粒子亜鉛に早く成長する。
Thirdly, since the particle size of the original metal zinc is large, it quickly grows into coarse zinc particles that become the core of dendrite generation.

そこでかかる問題に対処fへく、活物質である金属亜鉛
粉末と酸化亜鉛粉末の粒子を規制することを特願昭57
−41843号で提案した。即ち金属亜鉛粉末の粒径を
1〜6μ、酸化亜鉛粉末の粒径を0゜1〜0.5μとす
るものである。このように粒径を規制することにより、
充放電サイクルによる活物質の結晶径の粗大化を防止す
ると共に極板の変形を抑制し、容量減少を僅少にして電
池のサイクル寿命を向上させることができる。
In order to deal with this problem, a patent application was filed in 1983 to regulate the particles of metal zinc powder and zinc oxide powder, which are active materials.
It was proposed in No.-41843. That is, the particle size of the metal zinc powder is 1 to 6 μm, and the particle size of the zinc oxide powder is 0°1 to 0.5 μm. By regulating the particle size in this way,
It is possible to prevent the crystal size of the active material from becoming coarser due to charging and discharging cycles, suppress deformation of the electrode plate, minimize capacity decrease, and improve the cycle life of the battery.

ところが充放電サイクルを繰返し、より長期にわたると
、規制されて使用していた亜鉛粒子が徐4に粗大化して
高密度化するようになり、亜鉛電析の核となるへき亜鉛
粒子の数が減少する。その結果、不均一な電析か起こる
ようになり、亜鉛極の作用有効面積が減少して多孔度が
減少するため、亜鉛極内部への電解液の供給拡散が妨げ
られ、放電容量の低下が著しくなる。
However, when charge and discharge cycles are repeated over a longer period of time, the regulated zinc particles gradually become coarser and denser, and the number of cleaved zinc particles, which form the core of zinc electrodeposition, decreases. do. As a result, non-uniform electrodeposition occurs, reducing the active area of the zinc electrode and reducing its porosity, which impedes the supply and diffusion of the electrolyte inside the zinc electrode, resulting in a decrease in discharge capacity. It becomes noticeable.

〔発明の開示〕[Disclosure of the invention]

本発明はかかる点に鑑み発明されたものにして、上述の
諸問題を緩和して、蓄電池に適用するときの蓄電池のサ
イクル寿命を向上せんとするものである。即ち本発明は
01〜0.5μの粒径を有する酸化亜鉛粉末と1〜6μ
の粒径を有する金属亜鉛粉末の亜鉛活物質と、親水性の
短繊維と、添加剤及び結着剤とにより亜鉛極を構成する
ものである。この構成から明らかなように本発明は、活
物質である金属亜鉛粉末と酸化亜鉛粉末の粒子径を規制
することにより、亜鉛極の変形を抑制して電池のサイク
ル寿命を向上すると共に親水性の短繊維の存在により、
亜鉛極内への電解液の供給拡散を円滑にしてサイクル寿
命をより一層向上せんとするものである。
The present invention has been devised in view of these points, and is intended to alleviate the above-mentioned problems and improve the cycle life of a storage battery when applied to a storage battery. That is, the present invention uses zinc oxide powder having a particle size of 01 to 0.5μ and zinc oxide powder having a particle size of 1 to 6μ.
The zinc electrode is composed of a zinc active material of metallic zinc powder having a particle size of , hydrophilic short fibers, additives, and a binder. As is clear from this configuration, the present invention suppresses deformation of the zinc electrode and improves the cycle life of the battery by regulating the particle size of the active materials, metal zinc powder and zinc oxide powder. Due to the presence of short fibers,
The purpose is to further improve cycle life by smoothing the supply and diffusion of electrolyte into the zinc electrode.

〔実施例〕〔Example〕

以下本発明の詳細な説明しあわせて比較例を説明する。 A comparative example will be explained below along with a detailed explanation of the present invention.

実施例 討径0.1〜0.5μの酸化亜鉛粉末100重量%、粒
径l〜6μの金属亜鉛粉末10重量%、酸化水銀2重置
%及びレーヨンの短It維1質量%を混合した混合粉末
物にポリ子ドラフルオロエチレンのティスパージョンく
濃度60%)5重量%及び水50重量%を加え、町晰力
を与えつつ混練する。得られた混練物を圧延ローラによ
り1. Qmmの厚みに圧延してペーストシートを陰極
集電体の両面に当接し、圧延圧着して厚み1.5mの亜
鉛極を得る。
Example: 100% by weight of zinc oxide powder with a diameter of 0.1 to 0.5μ, 10% by weight of metallic zinc powder with a particle size of 1 to 6μ, 2% by weight of mercury oxide, and 1% by mass of short It fibers of rayon were mixed. Add 5% by weight of polyfluoroethylene at a concentration of 60% and 50% by weight of water to the mixed powder, and knead while applying strength. The obtained kneaded material is rolled using a rolling roller. The paste sheet was rolled to a thickness of Qmm, and the paste sheet was brought into contact with both sides of the cathode current collector, and the paste sheet was rolled and crimped to obtain a zinc electrode with a thickness of 1.5 m.

この亜鉛負極5枚と周知の焼結式ニッケル極4秩を用い
て容量2AHのニッケルー亜鉛蓄電池(A>を作成した
A nickel-zinc storage battery (A>) with a capacity of 2AH was created using five of these zinc negative electrodes and four well-known sintered nickel electrodes.

尚、従来の数十μ乃至数百μの金属亜鉛粉末は、還元雰
囲気中で金属亜鉛を一旦溶融してノズルから噴霧状に吹
き飛はして製造きれるものであるのに対し、本発明で使
用される1〜6μの金属亜鉛粉末は、還元雰囲気中で金
属亜鉛を溶融した後蒸発させ、それを凝縮したものであ
る。
In addition, conventional metallic zinc powder with a size of several tens of microns to several hundred microns can be produced by melting the metallic zinc once in a reducing atmosphere and blowing it off in the form of a spray from a nozzle, but with the present invention. The metal zinc powder used has a size of 1 to 6 microns and is obtained by melting metal zinc in a reducing atmosphere, evaporating it, and condensing it.

第1図はこのM電池(A>の断面図である。この図面に
おいて、(1)は亜鉛極、(2)はニッケル極、(3)
はセパレータ、(4〉は保液層、(5)は電槽、(6)
は電槽蓋、(7)(8)は正負極端子である。
Figure 1 is a cross-sectional view of this M battery (A>. In this drawing, (1) is a zinc electrode, (2) is a nickel electrode, and (3) is a nickel electrode.
is a separator, (4> is a liquid retaining layer, (5) is a battery case, (6)
is the battery case lid, and (7) and (8) are the positive and negative terminals.

比較例 比較のため、実施例濁において、短繊維を使用用しない
点を除いて、他は実施例の蓄電/It2(A>と同一の
蓄電池(B)を作成した。
Comparative Example For comparison, a storage battery (B) was prepared which was the same as the storage battery/It2 (A>) of the example except that short fibers were not used.

第2図は本発明による亜鉛極を用いた蓄電池(A)と比
較電7′II!(B )の充放電サイクル特性図である
。その充放電条件は、400mAで5時間充電した後、
500mAで電池電圧が1.OVに達するまで放電する
ものである。第2図は放電容量として初期容置を100
として示す。
Figure 2 shows a storage battery (A) using zinc electrodes according to the present invention and a comparative battery 7'II! (B) is a charge/discharge cycle characteristic diagram. The charging and discharging conditions are: After charging at 400mA for 5 hours,
At 500mA, the battery voltage is 1. Discharging is performed until it reaches OV. Figure 2 shows the initial capacity as 100 as the discharge capacity.
Shown as

第2図より本発明による亜鉛極を用いた蓄電池(A)の
サイクル特性が比較電池(B)のサイクル特性に比し改
善されることかわかる。
It can be seen from FIG. 2 that the cycle characteristics of the storage battery (A) using the zinc electrode according to the present invention are improved compared to the cycle characteristics of the comparative battery (B).

この改善理由は、レーヨンからなる短繊維は親水性であ
るため、電解液不足となった亜鉛極への電解液の供給拡
散を円滑にするためと考えられる。実施例ではし〜ヨ〉
′の短繊維の例を示したが、親水性で充放電反応に悪影
響を及はきないものであれは、他の親水性短繊維、たと
えはコツトンリンター、麻、コノトン等の天然繊維、ナ
イロ〉・、ポリプロビレ〉、ポリエチレン等の合成繊維
で親木処理を施したもの、あるいはそれらの混紡を用い
ることができる。また繊維の長さは均一な混合のため5
 mm以下が望ましい。短繊維の含有割合は、0.1重
量%以下ではほとんとその効果がなく、25重量%以上
では亜鉛活物質の充填量を減少させると共に亜鉛極の内
部抵抗の増大を引き起こすので、0.1〜25重景%位
がよく、好ましくは0.3〜10重量%である。
The reason for this improvement is thought to be that since the short fibers made of rayon are hydrophilic, they facilitate the supply and diffusion of the electrolyte to the zinc electrode where the electrolyte is insufficient. Examples
Although we have shown examples of short fibers, other hydrophilic short fibers, such as natural fibers such as cotton linters, hemp, and conotons, can be used as long as they are hydrophilic and do not adversely affect the charge/discharge reaction. Synthetic fibers such as nylon, polypropylene, and polyethylene treated with parent wood, or a blend thereof can be used. In addition, the fiber length is 5 for uniform mixing.
It is desirable that the thickness be less than mm. If the short fiber content is less than 0.1% by weight, it has almost no effect, and if it is more than 25% by weight, it reduces the filling amount of the zinc active material and causes an increase in the internal resistance of the zinc electrode. It is preferably about 25 to 25% by weight, preferably 0.3 to 10% by weight.

〔効果〕〔effect〕

以上の如く本発明は、亜鉛極の活物質である金属亜鉛粉
末と酸化亜鉛粉末の粒仔を規制すると共に親水性の短繊
維を系加ず乙−とにより、充放電サイクルによる負極活
物質の結晶径の粗大化を防止すると共に亜鉛極の変形を
抑制することかて゛き、また亜鉛極内−・の電解液の供
給を円滑にし、この亜鉛極を用いた蓄電池のり゛イクル
寿命を人き・くすることができる等T業的価値大なるも
のである。
As described above, the present invention regulates the particles of metal zinc powder and zinc oxide powder, which are the active materials of the zinc electrode, and also adds hydrophilic short fibers to the negative electrode active material during charge and discharge cycles. It not only prevents the crystal diameter from becoming coarser, but also suppresses the deformation of the zinc electrode, and also facilitates the supply of electrolyte inside the zinc electrode, thereby extending the cycle life of a storage battery using this zinc electrode. It is of great value to the T industry, such as being able to reduce

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による亜鉛極を用いたアルカリ亜鉛蓄電
池の断面図、第2図は本発明による亜鉛極を用いたアル
カリ亜鉛蓄電池と比較電池のサイクル特性図である。 \−止一・′
FIG. 1 is a sectional view of an alkaline zinc storage battery using the zinc electrode according to the present invention, and FIG. 2 is a cycle characteristic diagram of an alkaline zinc storage battery using the zinc electrode according to the invention and a comparative battery. \-Stopichi・′

Claims (1)

【特許請求の範囲】[Claims] (ljo、1〜0.5μの粒径を有する酸化亜鉛粉末と
1〜6μの粒径を有する金属亜鉛粉末の亜鉛活物質と、
親水性の短繊維と添加剤及び結着剤とからなる亜鉛極。
(ljo, zinc active material of zinc oxide powder with a particle size of 1 to 0.5 μ and metal zinc powder with a particle size of 1 to 6 μ;
A zinc electrode consisting of hydrophilic short fibers, additives, and a binder.
JP57145203A 1982-08-20 1982-08-20 Zinc electrode Granted JPS5935360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145203A JPS5935360A (en) 1982-08-20 1982-08-20 Zinc electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145203A JPS5935360A (en) 1982-08-20 1982-08-20 Zinc electrode

Publications (2)

Publication Number Publication Date
JPS5935360A true JPS5935360A (en) 1984-02-27
JPH0423383B2 JPH0423383B2 (en) 1992-04-22

Family

ID=15379785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145203A Granted JPS5935360A (en) 1982-08-20 1982-08-20 Zinc electrode

Country Status (1)

Country Link
JP (1) JPS5935360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838870A1 (en) * 1996-10-24 1998-04-29 Saft Hydrophylic electrode for alkaline accumulator and method of preparation
WO2008123911A1 (en) 2007-04-02 2008-10-16 Eveready Battery Company, Inc. Alkaline electrochemical cell
JP2014154260A (en) * 2013-02-05 2014-08-25 Nippon Shokubai Co Ltd Zinc negative electrode mixture, zinc negative electrode and battery
JP2021072267A (en) * 2019-11-01 2021-05-06 株式会社日本触媒 Electrode precursor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0838870A1 (en) * 1996-10-24 1998-04-29 Saft Hydrophylic electrode for alkaline accumulator and method of preparation
FR2755301A1 (en) * 1996-10-24 1998-04-30 Accumulateurs Fixes HYDROPHILIC ELECTRODE FOR ALKALINE ELECTROCHEMICAL GENERATOR AND ITS MANUFACTURING PROCESS
WO2008123911A1 (en) 2007-04-02 2008-10-16 Eveready Battery Company, Inc. Alkaline electrochemical cell
US8586244B2 (en) 2007-04-02 2013-11-19 Eveready Battery Co., Inc. Alkaline electrochemical cell having a negative electrode with solid zinc oxide and a surfactant
JP2014154260A (en) * 2013-02-05 2014-08-25 Nippon Shokubai Co Ltd Zinc negative electrode mixture, zinc negative electrode and battery
JP2021072267A (en) * 2019-11-01 2021-05-06 株式会社日本触媒 Electrode precursor

Also Published As

Publication number Publication date
JPH0423383B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US5827494A (en) Process for producing non-sintered nickel electrode for alkaline battery
US4407915A (en) Secondary zinc electrode
US20030180613A1 (en) Negative battery paste
JPS5935360A (en) Zinc electrode
JPS5935359A (en) Zinc electrode
JPH0423380B2 (en)
JPH07272722A (en) Paste type nickel positive electrode for alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS61281461A (en) Alkaline zinc storage battery
JPH06101326B2 (en) Zinc pole of alkaline zinc storage battery
JPH048897B2 (en)
JPS58158867A (en) Zinc pole
JPH07161376A (en) Sealed alkaline zinc storage battery
JP2538303B2 (en) Zinc electrode for alkaline storage battery
JPH04262367A (en) Hydrogen storage electrode
JPH0423382B2 (en)
JPS63170853A (en) Paste type nickel positive electrode
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery
JPH06295722A (en) Clad type plate
JPS5942773A (en) Manufacture of positive plate for lead storage battery
JPS6097551A (en) Zinc electrode for alkaline storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPH03171564A (en) Sealed nickel-cadmium battery
JPS61198561A (en) Nickel electrode for alkaline secondary battery
JPS5942771A (en) Manufacture of positive plate for lead storage battery