JPH03171564A - Sealed nickel-cadmium battery - Google Patents

Sealed nickel-cadmium battery

Info

Publication number
JPH03171564A
JPH03171564A JP1311083A JP31108389A JPH03171564A JP H03171564 A JPH03171564 A JP H03171564A JP 1311083 A JP1311083 A JP 1311083A JP 31108389 A JP31108389 A JP 31108389A JP H03171564 A JPH03171564 A JP H03171564A
Authority
JP
Japan
Prior art keywords
charging
active material
positive electrode
electrode plate
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1311083A
Other languages
Japanese (ja)
Inventor
Koichi Nishiyama
浩一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1311083A priority Critical patent/JPH03171564A/en
Publication of JPH03171564A publication Critical patent/JPH03171564A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To be able to adopt a nickel hydroxide positive plate to which graphite or carbon is added as a conductive material in a sealed battery by limiting the amount of cadmium hydroxide in a negative active material to less than the capacity of a positive active material which is in the discharged state. CONSTITUTION:The content of cadmium hydroxide in a negative active material is limited to 0.95 or less in the weight ratio based on the weight of nickel hydroxide in a positive active material. Polarization at which hydrogen evolution occurs of a negative plate in charging takes place at the same time as or before the completion of charging of a positive plate. The amount of cadmium hydroxide is limited to 0.95 or less in such a way that a battery is assembled when the negative plate is in the charged state, or cadmium hydroxide does not exist in the negative plate, then the positive plate is also made in the charged state. By detecting potential change in the negative plate in the final stage of charging, charging is finished. Oxygen gas evolution in the final stage of charging from the positive plate is thereby practically avoided.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、密閉形のニッケル−カドミウム電池に関する
もので、導電剤としてのグラファイトもしくは炭素を含
む水酸化ニッケル正極板を備える奇閉形ニッケル−カド
ミウム電池に関するもので1ちる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a sealed nickel-cadmium battery, and relates to an oddly closed nickel-cadmium battery having a nickel hydroxide positive electrode plate containing graphite or carbon as a conductive agent. One item.

従来の技術 従来、密閉形ニッケル−カドミウム電池の正極板として
は焼結式正極板が用いられてきた。焼結式正極板はニッ
ケルの粉末を焼結して細孔径約10μmの多孔体を製作
し、この多孔体内に化学的に活物質を充填して製造され
ているものであるが、活物質の充填を化学的方法で行っ
ているため工程が複雑で、製造コストが高いという欠点
があった。
2. Description of the Related Art Conventionally, a sintered positive electrode plate has been used as the positive electrode plate of a sealed nickel-cadmium battery. Sintered positive electrode plates are manufactured by sintering nickel powder to create a porous body with a pore diameter of approximately 10 μm, and chemically filling the active material into this porous body. Since filling is done by a chemical method, the process is complicated and manufacturing costs are high.

そこで、近年、新しい水酸化ニッケル正極板として、発
泡状の金属ニッケルやニッケルのフェルト等の基板に活
物質粉末を直接充填したり、あるいはニッケルメッキし
た穿孔鋼板やニヅケル網などに活物質を塗布して製作す
るいわゆるペースト式正極板が開発され、一部実用化さ
れている。この極板は、活物質を基板に直接充填または
塗布して極板を製作ずるので、製造コストが焼結式正桶
板に比べて低いという特徴がある。
Therefore, in recent years, new nickel hydroxide positive electrode plates have been developed by directly filling active material powder into substrates such as foamed metal nickel or nickel felt, or by applying active material to nickel-plated perforated steel plates or nickel mesh. A so-called paste-type positive electrode plate has been developed, and some of it has been put into practical use. This electrode plate is manufactured by directly filling or coating the active material on the substrate, so the manufacturing cost is lower than that of the sintered Shooke plate.

しかし、このペースト式正極板は、焼結式極板と同等の
性能を得るために導電剤の添加が必要であることが知ら
れている。導電剤としては金属二ッケル粉末が一般に代
用されているが、金属ニッケル粉末は比重が大きいため
、極板の重量が大きくなり好ましくない。そこで、ボゲ
ット式正極板の導電剤として従来から使用されており、
金属ニッケルよりも比重の小さいグラファイトや炭素が
ペースト式正極板の導電剤として検討されている(特開
昭60−143569号)。
However, it is known that this paste-type positive electrode plate requires the addition of a conductive agent in order to obtain performance equivalent to that of a sintered-type electrode plate. Metal nickel powder is generally substituted as the conductive agent, but since metal nickel powder has a high specific gravity, it increases the weight of the electrode plate, which is not preferable. Therefore, it has been traditionally used as a conductive agent for boget type positive electrode plates.
Graphite and carbon, which have a smaller specific gravity than metal nickel, are being considered as conductive agents for paste-type positive electrode plates (Japanese Patent Laid-Open No. 143569/1983).

なお、ポケット式正極板とは、水酸化ニッケルを主成分
とする活1勿質粉末をニッケル網等で包み極板としたも
のであり、開放形ニッケル−カドミウム電池の正極板と
して使用されているものである。
Pocket positive electrode plates are made by wrapping active silica powder, whose main component is nickel hydroxide, in a nickel mesh, etc., and are used as positive electrode plates in open-type nickel-cadmium batteries. It is something.

発明か解決しようとする課題 グラファイトや炭素は有効な導電剤と考えられるが、密
閉電池系での使用を考えると以下のような問題点があっ
た。従来の密閉形ニッケル−カドミウム電池はいわゆる
ノイマン方弐と呼ばれる方法で密閉化されている。この
密閉方式は、電池の充電末期に負極板より先に正極板が
満充電状態になるように設計し、充電終了時に正極板か
ら発生する酸素ガスを負極板で吸収して密閉系を保つ方
式である。この方式では正極板がら必ずFA索カスが発
生し、しかもカス吸収反応によって電池温度が上昇する
ので、グラファイトや炭素が正極板に添加されていると
それが容易に酸化され、炭素根として電解液中にとけ込
み容量低下や電圧低下を引き起こすという悪影響を与え
ることになった。
Problems to be Solved by the Invention Graphite and carbon are considered to be effective conductive agents, but they have the following problems when used in sealed battery systems. Conventional sealed nickel-cadmium batteries are sealed using a method called the Neumann method. This sealed system is designed so that the positive plate becomes fully charged before the negative plate at the end of battery charging, and the negative plate absorbs oxygen gas generated from the positive plate at the end of charging to maintain a sealed system. It is. In this method, FA scum is always generated on the positive electrode plate, and the battery temperature rises due to the scum absorption reaction. Therefore, if graphite or carbon is added to the positive electrode plate, it is easily oxidized and forms carbon roots in the electrolyte. This caused negative effects such as a drop in capacity and a drop in voltage.

このため、グラファイトや炭素を導電剤として添加した
水酸化ニッケル正極板は密閉形電池に適用しにくく主に
開放形の電池で使用されてきた。
For this reason, nickel hydroxide positive electrode plates to which graphite or carbon is added as conductive agents are difficult to apply to sealed batteries, and have been mainly used in open batteries.

課題を解決するための手段 導電剤としてのグラファイトもしくは炭素を含む水酸化
ニッケル正極板を備える密閉形ニッケルカドミウム電池
において、正極板中のグラファイトもしくは炭素の酸化
を防ぐため、本発明は少なくとも負極活物質中の水酸化
カドミウムの量を放電状態にある正極活物質の容量以下
にすること、すなわち充電時に負極板の水素発生に至る
分極が正極板の充電が完了すると同時が、あるいはそれ
以前に起こるようにすることを特徴とするものである。
Means for Solving the Problems In a sealed nickel cadmium battery equipped with a nickel hydroxide positive electrode plate containing graphite or carbon as a conductive agent, the present invention provides at least a negative electrode active material to prevent oxidation of graphite or carbon in the positive electrode plate. The amount of cadmium hydroxide contained in the cadmium hydroxide is made to be less than the capacity of the positive electrode active material in the discharged state, that is, the polarization leading to hydrogen generation in the negative electrode plate during charging occurs at the same time as or before the completion of charging of the positive electrode plate. It is characterized by:

このような機能を持つ電池は正極活物質と負極活物質と
の比で規定することができる。以下、この点についてさ
らに詳述する。
A battery having such a function can be defined by the ratio of the positive electrode active material to the negative electrode active material. This point will be explained in more detail below.

正極の活物質の放電状態および充電状態の原子価はその
組成や充放電条件によって異なるか、放電状態で最低で
も2.0価、充電状態では3.2価程度であると考えて
良い。一方、負極の活物質は放電状態で2.0価、充電
状態では、0.0価であると考えて良い。従って、正極
の活物質は1,2電子反応で充電され、負極の活物質は
2電子反応で充電されることになる。正極の活物質が1
.2電子反応で充電されるとすると2価の活物質(水酸
化ニッケル)Igが充電されるのに必要な電気量は0.
3417^11である。そして、負極の活物質が2電子
反応で充電されるので2価の活物質(水酸化カドミウム
)Igが充電されるのに必要な電気量は0. 3662
静である6従って、負極活物質中の水酸化カドミウムの
含有量が重量比で正極活物質中の水酸化ニッケルに対し
て0.95倍以下であれば充電時に負極板の水素允生に
至る分極が正極板の充電が完了すると同時か、あるいは
それ以前に起こることになる。
The valence of the active material of the positive electrode in the discharged state and the charged state may vary depending on its composition and charge/discharge conditions, or it may be considered that the valence is at least 2.0 in the discharged state and about 3.2 in the charged state. On the other hand, the active material of the negative electrode can be considered to have a valence of 2.0 in a discharged state and a valence of 0.0 in a charged state. Therefore, the active material of the positive electrode is charged by a 1- and 2-electron reaction, and the active material of the negative electrode is charged by a 2-electron reaction. The active material of the positive electrode is 1
.. If it is charged by a two-electron reaction, the amount of electricity required to charge the divalent active material (nickel hydroxide) Ig is 0.
It is 3417^11. Since the negative electrode active material is charged by a two-electron reaction, the amount of electricity required to charge the divalent active material (cadmium hydroxide) Ig is 0. 3662
6 Therefore, if the content of cadmium hydroxide in the negative electrode active material is 0.95 times or less by weight relative to the nickel hydroxide in the positive electrode active material, hydrogen buildup will occur in the negative electrode plate during charging. Polarization will occur at the same time or before the positive plate is fully charged.

以上のように、本発明では負極板中の水酸化カドミウム
の量を正極活物質の0.95倍以下にする必要がある。
As described above, in the present invention, the amount of cadmium hydroxide in the negative electrode plate needs to be 0.95 times or less the amount of the positive electrode active material.

この具体的方法として、水酸化カドミウムの量をOg、
即ち負極板を充電状態で電池に組み立てる方法をとれば
よい。この場合、正極板も充電状態にずる必要がある。
As a specific method, the amount of cadmium hydroxide is Og,
That is, a method may be adopted in which the negative electrode plate is assembled into the battery in a charged state. In this case, the positive electrode plate also needs to be brought into a charged state.

また別の方法として、放電状態の正極板及び負極板を電
池に組み立て、過充電をおこなった後に密閉化してもよ
い。
Alternatively, a positive electrode plate and a negative electrode plate in a discharged state may be assembled into a battery, and the battery may be sealed after overcharging.

これらの方法の場合に用いる正極板と負極板の活物質の
量の比率は、いかなる値でもよいが、密閉化した後の状
態においては前述した関係、即ち負極板の水酸化カドミ
ウムの含有率は重量比で正極活物質中の水酸化ニッケル
量の0.95倍以下となっている.ここで、0.95倍
という数値は、正極活物質及び負極活物質の充電に関与
する水酸化ニッケルおよび水酸化カドミウムの量に基づ
くものであり、電気化学的に活性度が低い活物質例えば
粒子の大きな水酸化ニッケルあるいは水酸化力ドミウム
が存在する場合にはこの数値は当然異なってくることは
言うまでもない。
The ratio of the amounts of active materials in the positive electrode plate and the negative electrode plate used in these methods may be any value, but in the state after sealing, the above-mentioned relationship is satisfied, that is, the content of cadmium hydroxide in the negative electrode plate is The weight ratio is less than 0.95 times the amount of nickel hydroxide in the positive electrode active material. Here, the value of 0.95 times is based on the amount of nickel hydroxide and cadmium hydroxide involved in charging the positive electrode active material and the negative electrode active material, and the value of 0.95 times is based on the amount of nickel hydroxide and cadmium hydroxide that are involved in charging the positive electrode active material and the negative electrode active material. It goes without saying that this value will naturally differ if nickel hydroxide or domium hydroxide with a large amount of hydroxide is present.

作用 本発明電池は充電時に正極板の充電完了より先に負極板
に水素発生に至る分極が現れる電極構成とし、充電末期
の負極板の電位変化を検出して充電を終了することによ
り、正極板の充電末期にともなう酸素カスの発生をほと
んどなくすものである.酸素カスが発生しにくいために
正極板に添加したグラファイトや炭素は安定であり、密
閉形の電池でもこれらの導電剤を使用した水酸化ニッケ
ル正極板の使用が可能となる.また、添加するグラファ
イトや炭素の形状としては、従来の鱗片状のものよりも
短繊維状のものの方が同一重量の添加でより大きい放電
容量が得られる。
Function The battery of the present invention has an electrode configuration in which polarization that leads to hydrogen generation occurs on the negative electrode plate before the completion of charging of the positive electrode plate during charging, and by detecting the potential change of the negative electrode plate at the end of charging and terminating charging, the positive electrode plate This virtually eliminates the generation of oxygen scum that accompanies the final stages of charging. Graphite and carbon added to the positive electrode plate are stable because they do not easily generate oxygen scum, and nickel hydroxide positive electrode plates made with these conductive agents can be used even in sealed batteries. Further, regarding the shape of graphite or carbon to be added, a short fiber shape can provide a larger discharge capacity with the same weight addition than the conventional scale shape.

実施例 以下、本発明を好適な実施例を用いて説明する。Example The present invention will be explained below using preferred embodiments.

[実施例1] 水酸化ニッケル粉末95重量部(田中化学研究所製)、
金属コバルト4重量部(MHO社製)および人造グラフ
ァイト1重量部(LONZA社製、LN600)を混合
し、CMCを主体とする練液を加えてペースト化した。
[Example 1] 95 parts by weight of nickel hydroxide powder (manufactured by Tanaka Chemical Research Institute),
4 parts by weight of metallic cobalt (manufactured by MHO) and 1 part by weight of artificial graphite (manufactured by LONZA, LN600) were mixed, and a paste containing CMC was added to form a paste.

このペーストを目付け600g/I2のニッケルフェル
ト(ソラペック社製)に充填、乾燥し、厚さ0. 8I
nまでプレスした。そして、化成充放電した後、切断し
、理論容量300I^h、寸法54llX 14■X 
O.81111のペースト式正極板を製作した。次に、
寸法55mnx 15lIx 0.7n+mで水酸化カ
ドミウムを200lAh、金属カドミウムを100lA
h含む理論容量300nAhのカドミウム負極板を製作
した。この正極板1枚と負極板2枚と厚さ0.2111
1のポリプロピレン製不織布のセバレータ−(日本バイ
リーン社製FT3 1 0 )とを組み合わせて極板群
とし、金属製の角形電槽に入れ、電解液(5.8MのK
OH水溶液)を注入した。この電池を30m八の電流で
16時間充電した後密閉化し、本発明による密閉形ニッ
ケル−カドミウム電池Aを製作した。この状態で負極板
には水酸化カドミウムがほとんどなく、放電状態におけ
る負極板の水酸化カドミウムの含有量は正極板の水酸化
ニッケルの含有量の約095倍となっている。
This paste was filled into nickel felt (manufactured by Sorapec) with a basis weight of 600 g/I2, and dried to a thickness of 0. 8I
Pressed to n. Then, after chemical charging and discharging, it was cut, and the theoretical capacity was 300 I^h, and the dimensions were 54 ll x 14 x.
O. A paste-type positive electrode plate of 81111 was manufactured. next,
Dimensions: 55mnx 15lIx 0.7n+m, 200lA of cadmium hydroxide, 100lA of metal cadmium
A cadmium negative electrode plate with a theoretical capacity of 300 nAh containing 300 nAh was fabricated. This one positive electrode plate, two negative electrode plates and a thickness of 0.2111
A separator made of polypropylene non-woven fabric (FT310 manufactured by Nippon Vilene Co., Ltd.) was combined to form an electrode plate group, placed in a rectangular metal container, and electrolyte solution (5.8M K
OH aqueous solution) was injected. This battery was charged with a current of 30m8 for 16 hours and then sealed to produce a sealed nickel-cadmium battery A according to the present invention. In this state, there is almost no cadmium hydroxide in the negative electrode plate, and the content of cadmium hydroxide in the negative electrode plate in the discharge state is approximately 095 times the content of nickel hydroxide in the positive electrode plate.

[実施例2] 水酸化ニッゲル粉末95重量部、金属コバルト4重量部
および繊維径約10μm、繊維長約100μmのグラフ
ァイト繊維1重量部(大日本インキ製SG−241)を
混合し、CMCを主体とする練液を加えてペースト化し
た。このペーストを用いて実施例1と同じ方法で理論容
量300nAh、寸法54lnx 14nmx 0.8
+nnのペースト式正極板を製作した。この正極板1枚
と実施例1と同じ負極板2およびセパレーターとを組合
せ、実施例1と同じ方法で充電した後密閉化し、本発明
による密閉形ニッケル−カドミウム電池Bを製作した。
[Example 2] 95 parts by weight of Nigel hydroxide powder, 4 parts by weight of metallic cobalt, and 1 part by weight of graphite fibers (SG-241 manufactured by Dainippon Ink) having a fiber diameter of about 10 μm and a fiber length of about 100 μm were mixed to form a mixture containing mainly CMC. A paste was added to the paste. Using this paste, the same method as in Example 1 was used to obtain a theoretical capacity of 300 nAh and dimensions of 54 ln x 14 nm x 0.8.
A +nn paste type positive electrode plate was manufactured. This single positive electrode plate was combined with the same negative electrode plate 2 and separator as in Example 1, charged in the same manner as in Example 1, and then sealed to produce a sealed nickel-cadmium battery B according to the present invention.

この状態で負極板には水酸化カドミウムかほとんどなく
、放電状態における負極板の水酸化カドミウムの含有量
は正極板の水酸化ニッケルの含有量の約0.95倍とな
っている。
In this state, there is almost no cadmium hydroxide in the negative electrode plate, and the content of cadmium hydroxide in the negative electrode plate in the discharge state is about 0.95 times the content of nickel hydroxide in the positive electrode plate.

[実施例3] 水酸化二ンケル粉末89重量部、金属コバルト8重量部
および繊維径約13μm、繊維長約130μmのグラフ
ァイト繊維3重量部(大日本インキ製SG241)を混
合し、CMCを主体とする練液を加えてペースト化した
。このペーストを厚さ0. 0811Inの穿孔鋼板に
塗布し、乾燥の後、厚さQ. 8+111までプレスし
た。そして、化或充放電した後、切断し、理論容量26
01′lAh、寸法54v++x 14nlx 0.8
n+nのぺ一スト式正極板を製作した。その正極板1枚
と実施例1と同じ負極板2枚およびセパレーターとを絹
合せ、実施例1と同じ方法で充電した後密閉化し、本発
明による密閉形ニッケル−カドミウム電池Cを製作した
。この状態で負極板には水酸化カドミウムがほとんどな
く、放電状態における負極板の水酸化カドミウムの含有
量は正極板の水酸化ニッケルの含有量の約0.95倍と
なっている。
[Example 3] 89 parts by weight of nickel hydroxide powder, 8 parts by weight of metallic cobalt, and 3 parts by weight of graphite fibers (SG241 manufactured by Dainippon Ink) having a fiber diameter of about 13 μm and a fiber length of about 130 μm were mixed, and a mixture containing mainly CMC was mixed. Add a paste to make a paste. Apply this paste to a thickness of 0. 0811In perforated steel plate, and after drying, the thickness is Q. I pressed it to 8+111. Then, after charging and discharging, it is disconnected and the theoretical capacity is 26
01'lAh, dimensions 54v++x 14nlx 0.8
An n+n paste type positive electrode plate was manufactured. One positive electrode plate, the same two negative electrode plates as in Example 1, and a separator were combined with silk, charged in the same manner as in Example 1, and then sealed to produce a sealed nickel-cadmium battery C according to the present invention. In this state, there is almost no cadmium hydroxide in the negative electrode plate, and the content of cadmium hydroxide in the negative electrode plate in the discharge state is about 0.95 times the content of nickel hydroxide in the positive electrode plate.

[比較例1] 実施例1に示した正極板1枚と実施例1に示したカドミ
ウム負極板2枚およびセパレーターとを組合せ、電解液
の注入の後すぐに密閉し、比較のための密閉形ニッゲル
〜カドミウム電池Dを製作した。
[Comparative Example 1] One positive electrode plate shown in Example 1, two cadmium negative electrode plates shown in Example 1, and a separator were combined and sealed immediately after injection of electrolyte to create a sealed type for comparison. Niggel~Cadmium battery D was manufactured.

[比較例2] 実施例2に示した正極板1枚と実Jli例1に示1たカ
ドミウム負極板2枚およびセパレーターとづ紐合せ、電
解液の注入の後すぐにgfI閉し、比較σための密閉形
ニッヶルーカドミウム電池Eを製ヂした。
[Comparative Example 2] One positive electrode plate shown in Example 2, two cadmium negative electrode plates shown in Example 1, and a separator were strung together, gfI was closed immediately after injection of electrolyte, and comparison σ A sealed nickel-cadmium battery E was manufactured for this purpose.

[比較例3] 実施例3に示した正極板1枚と実施例1に示したカドミ
ウム負極板2枚およびセバレーターとを組合せ、電解液
の注入の後すぐに密閉し、比較グための密閉形ニッゲル
ーカドミウム電池Fを製竹した。
[Comparative Example 3] One positive electrode plate shown in Example 3, two cadmium negative electrode plates shown in Example 1, and a separator were combined and sealed immediately after injection of electrolyte to create a sealed type for comparison. Bamboo was made of Niggeroo cadmium battery F.

電池A,BおよびCは充電末期にカドミウム負極板の水
素発生に至る分極に起囚ずる端子電圧C上昇がみられる
電池であり、D,EおよびFは負極板の水素発生に至る
分極が現れない従来形の電池である。
Batteries A, B, and C are batteries in which terminal voltage C increases at the end of charging due to polarization that leads to hydrogen generation in the cadmium negative electrode plate, and batteries D, E, and F exhibit polarization that leads to hydrogen generation in the negative electrode plate. It is not a conventional type battery.

これらの電池を以下の条件で充放電サイクル試験した。These batteries were subjected to a charge/discharge cycle test under the following conditions.

[充電] 電池A,B 3 0 0 +n Aの電流で端子電圧が1.70Vに
なるまで定電流充電し、続いて1.70Vの定電圧充電
を10分間行なう。
[Charging] Batteries A and B were charged at a constant current with a current of 300 +nA until the terminal voltage reached 1.70V, and then charged at a constant voltage of 1.70V for 10 minutes.

電池C 260nAの電流で端子電圧が1. 70Vになるまで
定電流充電し、続いて1.70Vの定電圧充電を10分
間行なう。
Battery C: With a current of 260 nA, the terminal voltage is 1. Constant current charging is performed until the voltage reaches 70V, and then constant voltage charging is performed for 10 minutes at 1.70V.

電池D,E 300111八の電流で定電流充電し、ガス吸収反応に
よって電池の端子電圧がピーク時から10nV低下した
ら充電を終了する。
Batteries D and E are charged at a constant current with a current of 3001118, and charging is terminated when the terminal voltage of the batteries drops by 10 nV from the peak due to the gas absorption reaction.

電池F 260n^の電流で定電流充電し、ガス吸収反応によっ
て電池の端子電圧がピーク時から10lV低下したら充
電を終了する。
The battery F is charged at a constant current of 260 n^, and when the terminal voltage of the battery drops by 10 lV from the peak due to the gas absorption reaction, charging is terminated.

[放電] 電池A.B.D.E 300nAの電流で端子電圧がQ.8Vになるまで放電
する。
[Discharge] Battery A. B. D. E With a current of 300 nA, the terminal voltage is Q. Discharge until it reaches 8V.

電池C,F 260mへの電流で端子電圧か0.8Vになるまで放電
する。
Discharge batteries C and F with a current of 260m until the terminal voltage reaches 0.8V.

[温度]20±2゜C 電池A,BおよびCの充電は、本発明の電池の充電方法
として適当な、定電流で一定電圧まで充電し続いて定電
圧で充電する方法で行った。電池D.EおよびFの充電
は、密閉形電池の急速充電方法として一般的な、定電流
で充電し満充電時の電圧の低下を検出して充電を終了す
る方法で行なった。
[Temperature] 20±2°C Batteries A, B, and C were charged by a method suitable for charging the batteries of the present invention, in which the batteries were charged to a constant voltage with a constant current, and then charged with a constant voltage. battery d. Charging of E and F was carried out using a method commonly used as a rapid charging method for sealed batteries, in which charging was performed at a constant current and the charging was terminated by detecting a drop in voltage at the time of full charge.

第1図に電池A.B,DおよびEのサイクル試験の結果
を示す。これらは正極板の基板にニッケルフェルトを用
いたものである。本発明による電池AおよびBは従来形
の電池DおよびEに比べ充放電サイクル初期の放電容量
は少ないが容量の保持性が良いことがわかる。従来形の
電池は充電時に正極板内の炭素が酸化されて、電解液中
の炭酸根の濃度が高まり徐々に放電容量が低下した。ま
た、鱗ノ1状のグラファイトを正極板に添加した電池A
およびCよりも短繊維状のものを添加した電池Bおよび
D方が放電容量が大きく、容量の保持性も良いことがわ
かる。放電容量が大きいことは、鱗片状のものよりも短
繊維状のものの方が活物質中での分散性が良いことに起
因しているものと考えられ、容量の保持性が良いことは
、鱗片状のものよりも短繊維状のもののほうが表面積が
小さいことに起因しているものと考えられる。
Figure 1 shows battery A. The results of cycle tests B, D and E are shown. These use nickel felt for the substrate of the positive electrode plate. It can be seen that batteries A and B according to the present invention have a lower discharge capacity at the beginning of the charge/discharge cycle than conventional batteries D and E, but have good capacity retention. In conventional batteries, the carbon in the positive electrode plate was oxidized during charging, increasing the concentration of carbonate radicals in the electrolyte and gradually decreasing the discharge capacity. In addition, battery A in which scale-like graphite was added to the positive electrode plate
It can be seen that batteries B and D to which short fibers were added had a larger discharge capacity and better capacity retention than B and C. The large discharge capacity is thought to be due to the fact that short fibers have better dispersibility in the active material than scales. This is thought to be due to the fact that the surface area of short fibers is smaller than that of short fibers.

第2図に電池CおよびFのサイクル試験の結果を示す9
正極板の基板に穿孔鋼板を用いた場合でも本発明の電池
は容量の保持性が良いことがわかる。
Figure 2 shows the cycle test results for batteries C and F9.
It can be seen that the battery of the present invention has good capacity retention even when a perforated steel plate is used as the substrate of the positive electrode plate.

発明の効果 以上述べたように、本発明によるニッケル−カドミウム
電池は、正極板にグラファイトや炭素を用いているにも
かがわらず、正極板での酸素ガスの発生がないために充
放電サイクルを繰り返しても容量の低下が少なく、長寿
命の密閉形ニッケル−カドミウム電池が可能である。ま
た、グラファイトや炭素として短繊維状のものを用いれ
ばより高い性能の電池が可能である。
Effects of the Invention As described above, although the nickel-cadmium battery according to the present invention uses graphite or carbon for the positive electrode plate, there is no generation of oxygen gas in the positive electrode plate, so the charging/discharging cycle is difficult. A sealed nickel-cadmium battery with a long life and little loss of capacity even after repeated use is possible. Further, if graphite or carbon is used in the form of short fibers, a battery with higher performance is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、本発明による電池と比較のため
の電池の充放電サイクル試験の結果を示した図である。 昇 1 呂 ナブ7ル 歇 ナイ 7 }レ 敏
FIG. 1 and FIG. 2 are diagrams showing the results of a charge/discharge cycle test of a battery according to the present invention and a comparative battery. Noboru 1 Ryo Nabu 7 Le Internai 7 }Re Satoshi

Claims (1)

【特許請求の範囲】 1、導電剤としてのグラファイトもしくは炭素を含む水
酸化ニッケル正極板を備える密閉形ニッケル−カドミウ
ム電池において、負極活物質中の水酸化カドミウムの含
有量が重量比で正極活物質中の水酸化ニッケルに対して
0.95倍以下であることを特徴とする密閉形ニッケル
−カドミウム電池。 2、グラファイトもしくは炭素の形状が短繊維状である
ことを特徴とする請求項1記載の密閉形ニッケル−カド
ミウム電池。
[Claims] 1. In a sealed nickel-cadmium battery equipped with a nickel hydroxide positive electrode plate containing graphite or carbon as a conductive agent, the content of cadmium hydroxide in the negative electrode active material is greater than that of the positive electrode active material in terms of weight ratio. A sealed nickel-cadmium battery, characterized in that it is 0.95 times or less of the nickel hydroxide contained therein. 2. The sealed nickel-cadmium battery according to claim 1, wherein the graphite or carbon has a short fiber shape.
JP1311083A 1989-11-29 1989-11-29 Sealed nickel-cadmium battery Pending JPH03171564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311083A JPH03171564A (en) 1989-11-29 1989-11-29 Sealed nickel-cadmium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311083A JPH03171564A (en) 1989-11-29 1989-11-29 Sealed nickel-cadmium battery

Publications (1)

Publication Number Publication Date
JPH03171564A true JPH03171564A (en) 1991-07-25

Family

ID=18012919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311083A Pending JPH03171564A (en) 1989-11-29 1989-11-29 Sealed nickel-cadmium battery

Country Status (1)

Country Link
JP (1) JPH03171564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163082A (en) * 1992-11-17 1994-06-10 Japan Storage Battery Co Ltd Charge control method of sealed nickel-cadmium battery for electric vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163082A (en) * 1992-11-17 1994-06-10 Japan Storage Battery Co Ltd Charge control method of sealed nickel-cadmium battery for electric vehicle

Similar Documents

Publication Publication Date Title
US5827494A (en) Process for producing non-sintered nickel electrode for alkaline battery
JP2003523043A (en) Nickel positive electrode with high temperature capacity
JPH03171564A (en) Sealed nickel-cadmium battery
JPH07272722A (en) Paste type nickel positive electrode for alkaline storage battery
JPS61138458A (en) Alkaline battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPS6149374A (en) Nickel positive electrode for alkali cell
JPH03171565A (en) Sealed nickel-zinc battery
JPS5935360A (en) Zinc electrode
JP3614567B2 (en) Sealed nickel metal hydride battery
JPH1064531A (en) Cadmium negative electrode for alkaline storage battery and manufacture thereof
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JPH05314983A (en) Manufacture of alkaline storage battery
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery
JPS61124068A (en) Nickel cadmium alkaline battery
JP2855677B2 (en) Sealed lead-acid battery
JPS63170853A (en) Paste type nickel positive electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2952272B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JPH09129227A (en) Nickel-hydrogen storage battery
JPH0466636A (en) Hydrogen storage alloy electrode and its manufacture
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPH04237951A (en) Manufacture of nickel electrode for alkaline storage battery