JPH0466636A - Hydrogen storage alloy electrode and its manufacture - Google Patents

Hydrogen storage alloy electrode and its manufacture

Info

Publication number
JPH0466636A
JPH0466636A JP2180005A JP18000590A JPH0466636A JP H0466636 A JPH0466636 A JP H0466636A JP 2180005 A JP2180005 A JP 2180005A JP 18000590 A JP18000590 A JP 18000590A JP H0466636 A JPH0466636 A JP H0466636A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen storage
hydrogen
storage alloy
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2180005A
Other languages
Japanese (ja)
Inventor
Hajime Seri
世利 肇
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2180005A priority Critical patent/JPH0466636A/en
Publication of JPH0466636A publication Critical patent/JPH0466636A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the hydrogen occluding capacity of an electrode and, at the time of forming a battery, to attain its high capacity by manufacturing an alloy having a specified compsn. obtd. by adding V or the like to an Mm-Ni series alloy, and thereafter subjecting it to homogenizing heat treatment under prescribed conditions. CONSTITUTION:An alloy having a compsn. shown by MmNialphaVbetaAlgammaCodeltaMepsilon is manufactured; where M denotes one or more kinds of elements among Cr, Mn and Fe, and 3.5<=alpha<=4.0, 0.05<=beta<=0.2, 0.1<=gamma<=0.5, 0.3<=delta<=0.8 and 4.8<=alpha+beta+gamma+delta+epsilon<=5.2 are satisfied. The above alloy is subjected to homogenizing heat treatment in vacuum or in the atmosphere of an inert gas at 900 to 1300 deg.C. Furthermore, as the starting raw material, an Fe-V alloy is used, and as for the above M, it is preferably the element independently constituted of Fe or is the one partially consisting of Fe and the balance one or more kinds of Cr and Mn. In this way, the hydrogen storage alloy electrode improved in hydrogen occluding capacity and can attain the high capacity of a battery is obtainable.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 電気化学的な水素の吸蔵・放出を可逆的に行
える水素吸蔵合金電極に関すも従来の技術 各種の電源として広く使われている蓄電池として鉛電池
とアルカリ電池があム このうちアルカリ蓄電池は高信
頼性が期待でき、小形軽量化も可能などの理由で小型電
池は各種ポータプル機器用い、 大型は産業用として使
われてき九このアルカリ蓄電池において、正極としては
一部空気極や酸化銀極なども取り上げられているカミは
とんどの場合ニッケル極であム ポケット式から焼結式
に代わって特性が向上し さらに密閉化が可能になると
ともに用途も広がった 一人 負極としてはカドミウムの他に亜舷 鉄、水素な
どが対象となっている力丈 現在のところカドミウム極
が主体であム ところ力(−層の高エネルギー密度を達
成するために金属水素化物つまり水素吸蔵合金極を使っ
たニッケルー水素蓄電池が注目され 製法などに多くの
提案がされていも水素を可逆的に吸収・放出しつる水素
吸蔵合金を負極に使用するアルカリ蓄電池の水素吸蔵合
金電極は 理論容量密度がカドミウム極より大きく、亜
鉛極のような変形やデンドライトの形成などもないこと
か技 長寿命・無公害であり、しかも高エネルギー密度
を有するアルカリ蓄電池用負極として期待されていも このような水素吸蔵合金電極に用いられる合金として、
一般的にはTi−Ni系およびLa(またはMm)−N
i系(Mm:  ミツシュメタル)の多元系合金がよく
知られてい4Ti−Ni系の多元系合金?!ABタイプ
として分類できる力(この特徴として充放電サイクルの
初期には比較的大きな放電容量を示す力(充放電を繰り
返すと、その容量を長く維持することが困難であるとい
う問題があム それに対して、ABsタイプのLa(ま
たはMm)−Ni系の多元系合金41  近年電極材料
として多くの開発が進められており、比較的有力な合金
材料とされていも すでにこのような合金系についてζ
よ 例えばLnN ix (CoaMnbAl−)−(
特開昭62−20245号公報)やLn (N is−
x−v−zMnxAl、coz)Mu (特開昭63−
304570号公報)などが提案されていも発明が解決
しようとする課題 しかしなが収 この合金系も比較的放電容量が小さいた
敢 電池の高エネルギー密度化が叫ばれている昨今、水
素吸蔵合金電極の高容量化は必要不可欠であも 本発明(表 水素吸蔵合金を改善することによりさらに
放電容量が大きく、かつ長寿命である水素吸蔵合金電極
を提供することを目的とする。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a hydrogen storage alloy electrode that can reversibly absorb and release hydrogen electrochemically. Among these, alkaline storage batteries are expected to have high reliability and can be made smaller and lighter, so small batteries are used in various portable devices, and large ones are used for industrial purposes. Although some air electrodes and silver oxide electrodes are used as positive electrodes, in most cases nickel electrodes are used as positive electrodes.The change from the pocket type to the sintered type improves the characteristics and allows for further sealing. In addition to cadmium, other materials such as iron and hydrogen are also used as negative electrodes.Cadmium electrodes are currently the main electrodes. Nickel-metal hydride storage batteries that use metal hydrides, that is, hydrogen storage alloy electrodes, have attracted attention, and although many proposals have been made for manufacturing methods, alkaline storage batteries that use hydrogen storage alloys as negative electrodes, which reversibly absorb and release hydrogen, have attracted attention. Alloy electrodes have a higher theoretical capacity density than cadmium electrodes, and do not deform or form dendrites like zinc electrodes do. They have long lifespans, are non-polluting, and have high energy density, making them promising as negative electrodes for alkaline storage batteries. Also, as an alloy used for such hydrogen storage alloy electrodes,
Generally Ti-Ni and La (or Mm)-N
The i-series (Mm: Mitsushi Metal) multi-component alloy is well known, and the 4Ti-Ni multi-component alloy? ! A force that can be classified as an AB type (this characteristic is a force that exhibits a relatively large discharge capacity at the beginning of the charge/discharge cycle (there is a problem that it is difficult to maintain that capacity for a long time when charging and discharging are repeated). ABs type La (or Mm)-Ni multi-component alloy 41 In recent years, many developments have been made as electrode materials, and although it is considered to be a relatively powerful alloy material, there are already studies on such alloys.
For example, LnN ix (CoaMnbAl-)-(
JP-A No. 62-20245) and Ln (N is-
x-v-zMnxAl, coz) Mu (JP-A-63-
304570), however, the problems that the invention attempts to solve still remain.This alloy system also has a relatively small discharge capacity. Although it is essential to increase the capacity of the hydrogen storage alloy, the object of the present invention is to provide a hydrogen storage alloy electrode that has a larger discharge capacity and a longer life by improving the hydrogen storage alloy.

課題を解決するための手段 本発明は 一般式がMmNiαVβAITC。Means to solve problems The general formula of the present invention is MmNiαVβAITC.

δMe(、ただり、MはCr、Mn、  Feの中から
選んだ1種以上の元素であり、その組成比を規定したも
の)で示され、CaCu5型構造を有する水素吸蔵合金
またはその水素化物を用いることを特徴とする水素吸蔵
合金電極であム また 合金作製機 特に900〜1300℃の真空中も
しくは不活性ガス雰囲気中で均質化熱処理を行うことを
特徴とするものであム 作用 本発明の水素吸蔵合金電極ζよ 従来のMm−Ni系合
金の最適化を図ったものであhvは原子半径が大きいた
数 これを最適量置換あるいは添加することにより、従
来合金に比べて原子半径が大きくなり水素吸蔵−放出量
が大きくなム このため電気化学的な充放電特性におい
ても多量の水素を吸蔵−放出させることができも また
 充放電の繰り返しに対しても非常に安定な性能を長期
間持続できる。
Hydrogen storage alloy or its hydride, which is represented by δMe (M is one or more elements selected from Cr, Mn, and Fe, and whose composition ratio is specified) and has a CaCu5 type structure. A hydrogen-absorbing alloy electrode characterized in that it is characterized by the use of a hydrogen-absorbing alloy electrode, and an alloy manufacturing machine, which is characterized in that a homogenization heat treatment is performed in a vacuum or an inert gas atmosphere at a temperature of 900 to 1300°C. The hydrogen storage alloy electrode ζ is an optimization of the conventional Mm-Ni alloy, where hv is a number with a large atomic radius.By replacing or adding an optimal amount of this, the atomic radius is increased compared to the conventional alloy. As the size increases, the amount of hydrogen storage and release becomes large. Therefore, it is possible to store and release a large amount of hydrogen in terms of electrochemical charging and discharging characteristics. Can last for a period of time.

したがって、本発明の水素吸蔵合金電極を用いて構成し
たアルカリ蓄電池 例えばニッケルー水素蓄電池(よ 
従来のこの電池に比べて、高エネルギー密度および長寿
命特性を有することが可能になも また 合金作製後、特に900〜1300t:の真空中
もしくは不活性ガス雰囲気中で熱処理しているのス フ
ラットな平衡圧曲線が得られ 水素吸蔵能力が向上し 
電池の高容量化をはかれも実施例 以下に本発明の具体的な実施例について説明する。
Therefore, an alkaline storage battery constructed using the hydrogen storage alloy electrode of the present invention, for example, a nickel-hydrogen storage battery (such as a nickel-hydrogen storage battery)
Compared to conventional batteries, it is possible to have higher energy density and longer life characteristics.After the alloy is prepared, it is heat-treated in a vacuum or inert gas atmosphere at a temperature of 900 to 1300 tons. The equilibrium pressure curve was obtained, and the hydrogen storage capacity was improved.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples of the present invention will be described below.

市販のLa、  Mm、  Ni、  V、  AI、
  Cr、  Mn、  Fe、  Coなどの金属を
原料として、アルゴン雰囲気東 アーク溶解炉で加熱溶
解することにより、表に示したような組成の合金を作製
し九次いで、真空11. 1100℃で6時間熱処理し
合金試料とし九 な耘 ここで言うMmとは希土類金属の混合物であり、
組成としてi!La:25〜35重量%Ce: 40〜
50重量%、Nd:5〜15重量%Pr:2〜lO重量
%、その他席土類金属とその他金属: 1〜5重量%で
ある。
Commercially available La, Mm, Ni, V, AI,
Using metals such as Cr, Mn, Fe, and Co as raw materials, alloys having the compositions shown in the table were prepared by heating and melting them in an argon atmosphere east arc melting furnace. The alloy sample was heat treated at 1100℃ for 6 hours. Mm here is a mixture of rare earth metals.
As a composition i! La: 25-35% by weight Ce: 40-
50% by weight, Nd: 5-15% by weight, Pr: 2-10% by weight, and other soil metals and other metals: 1-5% by weight.

この合金試料の一部はX線回折などの合金分析および水
素ガス雰囲気における水素吸蔵−放出量測定(通常のP
(水素圧力)−〇(組成)−丁(温度)測定)に使用し
 残りは電極特性評価に用い九 表 試料No、1〜3は本発明と構成元素あるいは組成比が
異なる例であり、試料No、4〜15は本発明の水素吸
蔵合金のいくつかの例であム 本発明の水素吸蔵合金に
ついて、真空熱処理後X線回折測定を行った結果 合金
がCaCu5型六万晶構造であることを確認した また
 熱処理前と比べると、六方晶のピークがより大きく鋭
くなったので、熱処理することにより合金の均質性およ
び結晶性が向上した 以上のような試料NO51〜15の合金について、ま負
 水素ガス雰囲気中における水素吸蔵−放出特性を調べ
るため?、、P−C−T測定を行った その結果 本発
明の水素吸蔵合金(試料N o。
A part of this alloy sample was analyzed by alloy analysis such as X-ray diffraction and measurement of hydrogen absorption-release amount in a hydrogen gas atmosphere (normal P
(Hydrogen pressure) - (Composition) - Temperature (Temperature) measurement) The remaining samples are used for electrode characteristic evaluation. Sample Nos. 1 to 3 in Table 9 are examples in which the constituent elements or composition ratios are different from those of the present invention. Nos. 4 to 15 are some examples of the hydrogen storage alloy of the present invention.Results of X-ray diffraction measurements performed on the hydrogen storage alloy of the present invention after vacuum heat treatment.The alloy has a CaCu5 type 60,000 crystal structure. Also, compared to before heat treatment, the hexagonal peak became larger and sharper, so the homogeneity and crystallinity of the alloys were improved by heat treatment. To investigate hydrogen absorption-release characteristics in a hydrogen gas atmosphere? ,, P-C-T measurements were carried out.The results were as follows: Hydrogen storage alloy of the present invention (sample No.

4〜15)は いずれも水素吸蔵−放出量(合金成分1
原子あたりの水素濃度)がVを含有していない試料No
、1に比べて約15%増大した しかし 試料NO12
および3のようにV量(β)が0.3以上のものでζよ
 逆に試料No、1に比べて水素吸蔵−放出量が少なく
なった 次く 実際に電気化学的な充放電反応によるアルカリ蓄
電池用負極としての電極特性を評価するために単電池試
験を行っな 試料No、1〜15の合金を400メツシユ以下の粒径
になるように粉砕し この合金粉末1gと導電剤として
のカーボニルニッケル粉末3gおよび結着剤としてのポ
リエチレン微粉末0.12gを十分混合撹拌した そし
て中心にエキスバンドメタルよりなる金属多孔体を配し
 プレス加工により平板状に成形し島 これを真空東 
130℃で1時間加熱し 結着剤を溶融させて水素吸蔵
合金電極とした この水素吸蔵合金電極にニッケル線のリードを取り付け
て負極とし 正極として過剰の容量を有する焼結式ニッ
ケル極を、セパレータとしてボリアミド不織布を用t、
X、比重1.30の水酸化カリウム水溶液を電解液とし
て、 25℃において、一定電流で充電と放電を繰り返
し 各サイクルでの放電容量を測定しtラ  な耘 充
電電気量は水素吸蔵合金1gあたり100mAX5時間
であり、放電は同様にIgあたり50mAで行(\ 放
電電位0.8Vでカットした その結果を第1図に示机
 第1図は横軸に充放電サイクル数を、縦軸に合金1g
あたりの放電容量を示したものであり、図中の番号は表
の試料N o、  と一致している。第1図から本発明
の水素吸蔵合金を用いると、いずれも放電容量が太きく
 0.30〜0.32Ah/gであり、しかも充放電サ
イクルを繰り返してもその高容量を安定して持続できる
ことがわかった ざらへ これらの合金を用いて構成した密閉形ニッケル
ー水素蓄電池について説明すも表に示した本発明の合金
の中からNo、  5. 8および9の3種合金を選び
、400メツシユ以下の粉末にした各水素吸蔵合金をそ
れぞれカルボキシメチルセルローズ(CMC)の冷水溶
液と混合撹拌してペースト状にし 電極支持体として平
均ポアサイズ1.50ミクロン、多孔度95に 厚さ1
.0mmの発泡状ニッケルシートに充填し九 これを1
20℃で乾燥してローラープレスで加圧しさらにその表
面にフッ素樹脂粉末をコーティングして水素吸蔵合金電
極とじへ この電極をそれぞれ幅3.3cm、  長さ21c爪厚
さ0.45mmに調整し リード板を所定の2カ所に取
り付けた そして、正極およびセパレータと組み合わせ
て円筒状に3層を渦巻き状にしてSCサイズの電槽に収
納した このときの正極は公知の発泡式ニッケル極を選
び、幅3.3crrl  長さ18 cmとして用いた
 この場合もリード板を2カ所に取り付けた また セ
パレータは親水性を付与したポリプロピレン不織布を使
用し 電解液としてζよ 比重1.20の水酸化カリウ
ム水溶液に水酸化リチウムを30g/l溶解したものを
用いた これを封口して密閉形電池とした この電池は
正極容量規制であり理論容量は3.OAhにしへこれら
の電池をそれぞれ10個づつ作製し 通常の充放電サイ
クル試験によって評価した すなわ板 充電は0.5C
(2時間率)で150%まで、放電は0.2C(5時間
率)で終止電圧1.OvとL  20℃において充放電
サイクルを繰り返したその結果 いずれの電池もサイク
ルの初期は理論容量より実際の放電容量が低かった力(
数サイクルの充放電で理論容量の3゜OAhに到達L 
 500サイクルまでの充放電試験において安定した電
池性能を持続した また 市販のフェロバナジウム(Fe−V合金V: 5
0〜90重量%)を用いて、試料No、9゜14および
15と同じ組成の合金を作製し 同様の評価を行ったと
こへ 上記と同じ結果が得られた ここで、本発明の合金組成の作用について説明すム N
iは電気化学的な水素の吸蔵−放出に対する活性に寄与
するので、N1jlを多くしてその活性を高くすれば放
電容量が大きくなる力<、  Niは原子半径が小さい
た&Ni量を多くすれば格子体積が減少し水素吸蔵量自
体が少なくなム そこで原子半径の大きいVをMm−N
 i −A I −Co−M合金(MはCr、Mn、 
 Feの中の1種以上)のBサイトに置換あるいは添加
すると、格子体積が増大し水素吸蔵量が増加すム この
ようにVは水素吸蔵量の増大に大きく寄与すム しかし
Vは水素との親和性が非常に大きいのて Vが多すぎる
と吸収された水素がVと強く結びつき放出されずに合金
内に残ってしまう。ここで、−例としてMm N i 
*、aVxA I s、tc o i、tM nl、6
−xにおけるV量と放電容量との関係を第2図に示す。
4 to 15) are hydrogen absorption-release amount (alloy component 1
Sample No. whose hydrogen concentration per atom does not contain V
, increased by about 15% compared to sample No. 1. However, sample No. 12
In contrast, when the amount of V (β) is 0.3 or more, as in sample No. 3, the amount of hydrogen absorption and release is smaller than that of sample No. 1. In order to evaluate the electrode characteristics as a negative electrode for alkaline storage batteries, a single cell test was conducted.Alloys of samples No. 1 to 15 were ground to a particle size of 400 mesh or less, and 1g of this alloy powder and carbonyl as a conductive agent were used. 3 g of nickel powder and 0.12 g of fine polyethylene powder as a binder were thoroughly mixed and stirred, and a porous metal body made of expanded metal was placed in the center, and the plate was formed into a flat plate by pressing.
Heated at 130°C for 1 hour to melt the binder and create a hydrogen storage alloy electrode.A nickel wire lead was attached to this hydrogen storage alloy electrode to serve as a negative electrode.A sintered nickel electrode with excess capacity was used as a positive electrode, and a separator was used. using a boryamide nonwoven fabric as
X, using an aqueous potassium hydroxide solution with a specific gravity of 1.30 as the electrolyte, repeat charging and discharging at a constant current at 25°C, measure the discharge capacity in each cycle, and calculate the amount of electricity charged per gram of hydrogen storage alloy. 100mAX for 5 hours, and the discharge was carried out at 50mA per Ig (cut at a discharge potential of 0.8V).The results are shown in Figure 1. In Figure 1, the horizontal axis shows the number of charge/discharge cycles, and the vertical axis shows the 1g
The number in the figure corresponds to the sample No. in the table. Figure 1 shows that when the hydrogen storage alloy of the present invention is used, the discharge capacity is large, 0.30 to 0.32 Ah/g, and that high capacity can be maintained stably even after repeated charge/discharge cycles. Now that I know about the sealed nickel-metal hydride storage batteries constructed using these alloys, No.5 from the alloys of the present invention shown in the table. Three types of alloys No. 8 and No. 9 were selected, and each hydrogen storage alloy made into a powder of 400 mesh or less was mixed and stirred with a cold aqueous solution of carboxymethyl cellulose (CMC) to form a paste, and used as an electrode support with an average pore size of 1.50 microns. , porosity 95, thickness 1
.. Fill a 0mm foamed nickel sheet with 1
Dry at 20°C, pressurize with a roller press, coat the surface with fluororesin powder, and adjust the electrodes to 3.3 cm in width, 21 cm in length, and 0.45 mm in nail thickness. The plates were attached to two predetermined locations, and combined with the positive electrode and separator, the three layers were spirally shaped into a cylindrical shape and stored in an SC size battery case.The positive electrode at this time was a well-known foamed nickel electrode. 3.3 crrl, length 18 cm. In this case, lead plates were also attached at two places. Also, the separator was made of polypropylene non-woven fabric with hydrophilic properties. A solution of 30 g/l of lithium oxide was used. This was sealed to make a sealed battery. This battery has a positive electrode capacity limit, and the theoretical capacity is 3. 10 of each of these batteries were fabricated for OAh and evaluated using a normal charge/discharge cycle test.
(2 hour rate) to 150%, discharge is 0.2C (5 hour rate) and the final voltage is 1. Ov and L As a result of repeated charging and discharging cycles at 20°C, the actual discharge capacity of all batteries was lower than the theoretical capacity at the beginning of the cycle (
Achieves the theoretical capacity of 3゜OAh after several charging and discharging cycles.
Commercially available ferrovanadium (Fe-V alloy V: 5
0 to 90% by weight) was used to prepare alloys with the same composition as Samples No. 9, 14, and 15, and the same evaluation was performed. The same results as above were obtained. Here, the alloy composition of the present invention Explain the action of N
Since i contributes to the activity for electrochemical absorption and desorption of hydrogen, increasing the activity by increasing N1jl will increase the discharge capacity.Since Ni has a small atomic radius & increasing the amount of Ni The lattice volume decreases and the hydrogen storage capacity itself decreases. Therefore, V with a large atomic radius is
i-A I-Co-M alloy (M is Cr, Mn,
When substituted or added to the B site of one or more types of Fe (Fe), the lattice volume increases and the amount of hydrogen storage increases.In this way, V greatly contributes to increasing the amount of hydrogen storage.However, V does not interact with hydrogen. Since the affinity is very high, if there is too much V, the absorbed hydrogen will be strongly bonded to V and will not be released and will remain in the alloy. where - as an example Mm N i
*, aVxA I s, tco i, tM nl, 6
FIG. 2 shows the relationship between the amount of V and the discharge capacity at -x.

第2図は横軸がV量(x)、縦軸が合金1gあたりの放
電容量を示したものであム この第2図かぺ 試料No
、2および3のようにV量が0.3以上のものでは放電
容量が小さくなることがわかa実際 1サイクル目は水
素吸蔵量が多いが2サイクル目以降は吸蔵量が大きく減
少し九 まりv量が0.05より小さくなると、■置換
あるいはV添加の効果が現われず放電容量は増加しなシ
ーシたがって、V量は0.05≦β≦0.2という範囲
が最適であも また Ni量はV量とのバランスが重要
であるので、 3.5≦α≦4.0にしなければならな
(℃ −4,P −C−T特性において、AIが存在すること
によりプラトー性が向上LAM(Cr、Mn、Feの中
の1種以上)が存在することによりヒステリシスが減少
し これらのことが放電容量の増大にっながム まf=
coが存在することにより、充放電の繰り返しによる放
電容量の低下が抑制されも これらの元素はいずれも少
なすぎると効果は現われず、多すぎるとV量およびNi
量との関係から合金の均質性が悪くなり水素吸蔵量の低
下を招く。よって、 0.1≦T≦0.5  0゜3≦
δ≦0.8 、 4.8≦α十β十T+δ十ε≦5.2
という範囲が最適であも 以上のことか収 高容量かつ長寿命の水素吸蔵合金電極
を得るために(よ 合金が最適量のVを含へ 本発明の
合金組成の条件を満たすことが重要であム 発明の効果 本発明の水素吸蔵合金電極はVを成分としているので従
来のものに比べて放電容量が大きいた数これを電極とす
るアルカリ蓄電池のさらなる高容量化を図ることができ
、充放電サイクルを繰り返しても高容量を長く維持する
ことができもまた 合金作製後所定温度で熱処理してい
るので水素吸蔵能力を向上させ、電池を構成した場合、
その高容量化をはかれる。
In Figure 2, the horizontal axis shows the amount of V (x) and the vertical axis shows the discharge capacity per gram of alloy.
, 2 and 3, where the V amount is 0.3 or more, the discharge capacity becomes small.In fact, the amount of hydrogen absorbed is large in the first cycle, but from the second cycle onwards, the amount of hydrogen absorbed decreases significantly. If the amount of V is smaller than 0.05, the effect of substitution or addition of V will not appear and the discharge capacity will not increase.Therefore, the optimal amount of V is 0.05≦β≦0.2. Since the balance between the amount of Ni and the amount of V is important, it must be 3.5≦α≦4.0 (℃ -4, In the P-C-T characteristic, the presence of AI causes a plateau. The presence of enhanced LAM (one or more of Cr, Mn, and Fe) reduces hysteresis, which contributes to an increase in discharge capacity.
Although the presence of co suppresses the decrease in discharge capacity due to repeated charging and discharging, too little of any of these elements will not produce any effect, and too much will reduce the amount of V and Ni.
Due to the relationship with the amount, the homogeneity of the alloy deteriorates, leading to a decrease in the amount of hydrogen storage. Therefore, 0.1≦T≦0.5 0゜3≦
δ≦0.8, 4.8≦α1β10T+δ1ε≦5.2
In order to obtain a hydrogen storage alloy electrode with high capacity and long life, it is important that the alloy contains an optimum amount of V. Effects of the Invention Since the hydrogen storage alloy electrode of the present invention contains V as a component, it has a higher discharge capacity than conventional ones. It can maintain high capacity for a long time even after repeated discharge cycles, and since the alloy is heat treated at a predetermined temperature after making the alloy, its hydrogen storage capacity is improved and when used to form a battery,
The capacity can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種合金についての単電池試験結果を示す充放
電サイクル特性諷 第2図はMmNi5゜5VxA l
@、2com、yMns、s−xにおけるV量と放電容
量との相関図であム 代理人の氏名 弁理士 粟野重孝 はか1名兜放電サイ
クル数
Figure 1 shows the charge/discharge cycle characteristics of various alloys, and Figure 2 shows the results of single cell tests for various alloys.
Correlation diagram between V amount and discharge capacity in @, 2com, yMns, s-x Name of agent: Patent attorney Shigetaka Awano Number of discharge cycles

Claims (3)

【特許請求の範囲】[Claims] (1)一般式がMmNiαVβAlγCoδMε(ただ
し、MはCr、Mn、Feの中から選んだ1種以上の元
素であり、3.5≦α≦4.0、0.05≦β≦0.2
、0.1≦γ≦0.5、0.3≦δ≦0.8、4.8≦
α+β+γ+δ+ε≦5.2)で示され、CaCu_5
型構造を有する水素吸蔵合金またはその水素化物を用い
ることを特徴とする水素吸蔵合金電極。
(1) The general formula is MmNiαVβAlγCoδMε (where M is one or more elements selected from Cr, Mn, and Fe, and 3.5≦α≦4.0, 0.05≦β≦0.2
, 0.1≦γ≦0.5, 0.3≦δ≦0.8, 4.8≦
α+β+γ+δ+ε≦5.2), CaCu_5
A hydrogen storage alloy electrode characterized by using a hydrogen storage alloy having a mold structure or a hydride thereof.
(2)合金作製後、特に900〜1300℃の真空中も
しくは不活性ガス雰囲気中で均質化熱処理を行うことを
特徴とする請求項1記載の水素吸蔵合金電極の製造法。
(2) The method for manufacturing a hydrogen storage alloy electrode according to claim 1, characterized in that after the alloy is prepared, a homogenization heat treatment is performed in a vacuum or an inert gas atmosphere at a temperature of 900 to 1300°C.
(3)出発原料としてフェロバナジウム(Fe−V合金
)を用い、前記一般式のMがFe単独または一部Feで
あり残部がCr、Mnの中から選んだ1種以上の元素で
あることを特徴とする請求項1または2記載の水素吸蔵
合金電極の製造法。
(3) Using ferrovanadium (Fe-V alloy) as a starting material, make sure that M in the above general formula is Fe alone or partially Fe, and the remainder is one or more elements selected from Cr and Mn. A method for producing a hydrogen storage alloy electrode according to claim 1 or 2.
JP2180005A 1990-07-06 1990-07-06 Hydrogen storage alloy electrode and its manufacture Pending JPH0466636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180005A JPH0466636A (en) 1990-07-06 1990-07-06 Hydrogen storage alloy electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180005A JPH0466636A (en) 1990-07-06 1990-07-06 Hydrogen storage alloy electrode and its manufacture

Publications (1)

Publication Number Publication Date
JPH0466636A true JPH0466636A (en) 1992-03-03

Family

ID=16075791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180005A Pending JPH0466636A (en) 1990-07-06 1990-07-06 Hydrogen storage alloy electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPH0466636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014442A1 (en) * 1994-11-07 1996-05-17 Santoku Metal Industry Co., Ltd. Age-precipitating rare earth metal-nickel alloy, its manufacture, and negative electrode for nickel-hydrogen secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014442A1 (en) * 1994-11-07 1996-05-17 Santoku Metal Industry Co., Ltd. Age-precipitating rare earth metal-nickel alloy, its manufacture, and negative electrode for nickel-hydrogen secondary cell
US6053995A (en) * 1994-11-07 2000-04-25 Santoku Metal Industry Co., Ltd. Method of producing an age precipitation-containing rare earth metal-nickel alloy
CN1071798C (en) * 1994-11-07 2001-09-26 三德金属工业株式会社 Age-precipitating rare earth metal-nickel alloy, its manufacture and negative electrode for nickel-hydrogen secondary cell

Similar Documents

Publication Publication Date Title
US5149383A (en) Hydrogen storage alloy electrode
US5205985A (en) Hydrogen storage alloy and hydride electrodes having c15 crystal structure
US5532076A (en) Hydrogen storage alloy and electrode therefrom
US5753054A (en) Hydrogen storage alloy and electrode therefrom
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH0466636A (en) Hydrogen storage alloy electrode and its manufacture
US5468309A (en) Hydrogen storage alloy electrodes
JPH05287422A (en) Hydrogen occluding alloy electrode
JP2563638B2 (en) Hydrogen storage alloy electrode
JPH04301045A (en) Hydrogen storage alloy electrode
JPH073365A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP3248762B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH0463240A (en) Hydrogen storage alloy electrode and battery using it
EP0612856B1 (en) Hydrogen storage alloy and electrode therefrom
US5541018A (en) Hydrogen storing alloy electrode
JP3352479B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH06150918A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0582125A (en) Hydrogen occluding alloy electrode
JPH08236111A (en) Nickel-hydrogen storage battery
JPH06251768A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH06251769A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH05101819A (en) Electrode of hydrogen storage alloy and manufacture thereof
JPS61168871A (en) Hydrogen occlusion electrode
JPH0696763A (en) Hydrogen storage alloy electrode and its manufacture