JPS5935359A - Zinc electrode - Google Patents

Zinc electrode

Info

Publication number
JPS5935359A
JPS5935359A JP57145201A JP14520182A JPS5935359A JP S5935359 A JPS5935359 A JP S5935359A JP 57145201 A JP57145201 A JP 57145201A JP 14520182 A JP14520182 A JP 14520182A JP S5935359 A JPS5935359 A JP S5935359A
Authority
JP
Japan
Prior art keywords
zinc
electrode
particle size
powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57145201A
Other languages
Japanese (ja)
Other versions
JPH0423381B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57145201A priority Critical patent/JPS5935359A/en
Publication of JPS5935359A publication Critical patent/JPS5935359A/en
Publication of JPH0423381B2 publication Critical patent/JPH0423381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase cycle life by forming a zinc electrode of an alkaline storage battery with an active material prepared by adding a wetting material, an additive, and a binder to zinc oxide powder and metal zinc powder both having a specified particle size. CONSTITUTION:Zinc oxide powder having a particle size of 0.1-0.5mu, metal zinc powder having a particle size of 1-6mu, mercuric oxide, polyvinyl alcohol are mixed. Polytetrafluoroethylene dispersion and water are added to above mixture and they are kneaded. A paste sheet made of the kneaded material is kept in contact with an anode current collector to form a zinc electrode 1. The zinc electrode 1 is combined with a sintered nickel electrode 2 with an electrolyte absorbing layer 4 and a separator 3 interposed, and they are accommodated in a container 5 to form a nickel-zinc alkaline storage battery. Crystal growth of an active material and deformation of an electrode plate are prevented. Diffusion of an electrolyte is supplemented and cycle life is increased.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は正極活物質として酸化銀、酸化二/ケルなどを
用い、電解液とじてアルカリ溶液を用いるアルカリ蓄電
池に適用することができる亜鉛極に関し、亜鉛負極の活
物質である金属亜鉛と酸化亜鉛の粒径を規制すると共に
湿潤剤を添加することにより、充放電サイクルによる負
極活物質の結晶径の粗大化を防止し、亜鉛極板の変形を
抑制すると共に亜鉛極内の電解液の拡散不足を補い、電
池容量の減少を僅少にして、電池のサイクル寿命を向上
することを目的とする。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a zinc electrode that can be applied to an alkaline storage battery that uses silver oxide, di/Kel oxide, etc. as a positive electrode active material and uses an alkaline solution as an electrolyte. By controlling the particle size of metallic zinc and zinc oxide, which are the active materials of the negative electrode, and adding a wetting agent, we prevent the crystal size of the negative electrode active material from becoming coarser due to charge/discharge cycles, and suppress the deformation of the zinc electrode plate. At the same time, the purpose is to compensate for insufficient diffusion of the electrolyte within the zinc electrode, minimize the decrease in battery capacity, and improve the cycle life of the battery.

〔背景技術〕[Background technology]

従来より負極に金属亜鉛を活物質として用いた亜鉛蓄電
池は、亜鉛が安価であり、アルカリ電解液中でカドミウ
ム極に比べて卑な電位を有することから、エネルギー密
度が高く、且公害の心配が少ないことから、多くの実用
化検討がなされてきた。
Conventionally, zinc storage batteries that use metal zinc as an active material in the negative electrode have a high energy density and are free from pollution because zinc is cheap and has a lower potential in alkaline electrolyte than a cadmium electrode. Because of its small size, many studies have been made to put it into practical use.

ところが、充放電サイクル途中における亜鉛テンドライ
トによる正負極間の短絡現象が起こるため信頼性に欠(
′Jること及び充放電サイクルによる亜鉛極の変形が著
しいために珠期のサイクル寿命が得られにくいこと等の
欠点がある。この原因は亜鉛がアルカリ電解液中に可溶
する電極であることに起因している。
However, it lacks reliability due to a short circuit between the positive and negative electrodes due to zinc tendrite during the charge/discharge cycle.
There are disadvantages such as difficulty in obtaining a long cycle life due to the large deformation of the zinc electrode due to the charging and discharging cycles. This is due to the fact that zinc is an electrode that is soluble in an alkaline electrolyte.

而して、亜鉛活物質として金属亜鉛と酸化亜鉛の混合物
を使用することが知られている。しかし従来から使用さ
れる金属亜鉛は、数十μ乃至数百μの粒子径であり、一
方酸化亜鉛は十分の数μの粒子径であり、金属亜鉛に比
し2乃至3桁)」1きい粒子径である。このように従来
の金属亜鉛の粒子径か酸化亜鉛の粒子径に比し特に大き
いことにより次の欠点かある。即ち第1に、粒子径の大
ききの差か2乃至3桁と大きいため、金属亜鉛と酸化亜
鉛が均一に混合しない。第2に、粒子径が大きいため同
量の金属亜鉛を混入しても、粒子数が少なく電析の核と
なる数か少ないので、放電生成物である亜鉛酸イオンか
次の充電時に元の位置に電着し難くなる。第3に、元々
の金属亜鉛の粒子径か大きいので、デンドライト発生の
核となる粗大粒子亜鉛に早く成長する。
Thus, it is known to use a mixture of metallic zinc and zinc oxide as a zinc active material. However, conventionally used metallic zinc has a particle size of several tens of microns to several hundred microns, while zinc oxide has a particle diameter of several tenths of a micron, which is 2 to 3 orders of magnitude larger than that of metallic zinc. It is the particle size. As described above, since the particle size of conventional metal zinc is particularly large compared to that of zinc oxide, there are the following drawbacks. First, because the difference in particle size is two to three orders of magnitude large, metallic zinc and zinc oxide are not mixed uniformly. Second, because the particle size is large, even if the same amount of metallic zinc is mixed, the number of particles is small and the number that becomes the nucleus of electrodeposition is small. It becomes difficult to electrodeposit on the position. Thirdly, since the particle size of the original metal zinc is large, it quickly grows into coarse zinc particles that become the core of dendrite generation.

そこでかかる問題に対処すべく、活物質である金属亜鉛
粉末と酸化亜鉛粉末の粒子径を規制することを特願昭5
7−41843号で提案した。即ち金属亜鉛粉末の粒子
径を1〜6μ、酸化亜鉛粉末の粒子径を0.1〜0.5
pとするものである。このように粒子径を規制すること
により、充放電サイクルによる活物質の結晶径の粗大化
を防止すると共に極板の変形を抑制し、容量減少を僅少
にして電池のサイクル寿命を向上させることができる。
In order to deal with this problem, a patent application was filed in 1973 to regulate the particle size of the active materials, metal zinc powder and zinc oxide powder.
It was proposed in No. 7-41843. That is, the particle size of metal zinc powder is 1 to 6μ, and the particle size of zinc oxide powder is 0.1 to 0.5μ.
p. By regulating the particle size in this way, it is possible to prevent the crystal size of the active material from becoming coarser due to charging and discharging cycles, suppress deformation of the electrode plate, minimize capacity loss, and improve the cycle life of the battery. can.

ところが充放電サイクルを繰返し、より長期にわたると
、規制されて使用していた亜鉛粒子が徐々に粗大化して
高密度化するようになり、亜鉛電析の核となるへき亜鉛
粒子の数が減少する。その結果、不均一な電析が起こる
ようになり、亜鉛極の作用有効面積がン成少して多孔度
が減少するため、電解液の内部拡散が妨げられ、電導性
が低丁するようになる。即ち不動態化現象が生し、充放
電を繰り返すにつれて加速的に活物質の利用率の悪化を
招いていた。
However, as charge-discharge cycles are repeated over a longer period of time, the regulated zinc particles gradually become coarser and denser, and the number of cleaved zinc particles, which form the core of zinc electrodeposition, decreases. . As a result, non-uniform electrodeposition occurs, the effective area of the zinc electrode increases, and the porosity decreases, which impedes internal diffusion of the electrolyte and reduces conductivity. . That is, a passivation phenomenon occurs, leading to an accelerated deterioration in the utilization rate of the active material as charging and discharging are repeated.

〔発明の開示〕[Disclosure of the invention]

本発明はかかる点に鑑み発明されたものにして、上述の
諸問題を緩和して、蓄電池に適用するときの蓄電池のサ
イクル寿命を向上せんとするものである。即ち本発明は
0.1〜05μの粒径を有する酸化亜鉛粉末と1〜6μ
の粒径を有する金属亜鉛粉末の亜鉛活物質と、有機ある
いは無機質の湿潤材と、添加剤及び結着剤とにより亜鉛
極を構成するものである。この構成から明らかなように
本発明は、活物質である金属亜鉛粉末と酸化亜鉛粉末の
粒子枠を規制することにより、亜鉛極の変形を抑制して
電池のサイクル寿命を向上すると共に湿潤材の存在によ
り、亜鉛極内の電解液の拡散不足を補い、サイクル寿命
をより一層向−トせんとするものである。
The present invention has been devised in view of these points, and is intended to alleviate the above-mentioned problems and improve the cycle life of a storage battery when applied to a storage battery. That is, the present invention uses zinc oxide powder having a particle size of 0.1 to 05μ and a particle size of 1 to 6μ.
A zinc electrode is constituted by a zinc active material of metallic zinc powder having a particle size of , an organic or inorganic wetting agent, an additive, and a binder. As is clear from this configuration, the present invention suppresses the deformation of the zinc electrode and improves the cycle life of the battery by regulating the particle frame of the active materials, metal zinc powder and zinc oxide powder. Its presence compensates for insufficient diffusion of the electrolyte within the zinc electrode and further improves the cycle life.

〔実施例〕〔Example〕

以下本発明の詳細な説明しあわせて比較例を説明する。 A comparative example will be explained below along with a detailed explanation of the present invention.

実施例1 粒径01〜0.5μの酸化亜鉛粉末100重1%、粒径
1〜6.11の金属亜鉛粉末10重量%、酸化水銀2重
版%及びポリビニールアルコール2重量%を混合した混
合粉末物にポリテトラフルオロエチレンのディスパージ
ョン(濃度60%)5重量%及び水50重量%を加え、
剪断力を与えつつ混線する。得られた混線物を圧延ロー
ラによりl、Qmmの厚みに圧延したベーストンートを
陰極集電体の両面に当接し、圧延圧着して厚み1.5m
の亜鉛極を得る。
Example 1 A mixture of 100% by weight of zinc oxide powder with a particle size of 01 to 0.5μ, 10% by weight of metal zinc powder with a particle size of 1 to 6.11%, 2% by weight of mercury oxide, and 2% by weight of polyvinyl alcohol. Add 5% by weight of polytetrafluoroethylene dispersion (concentration 60%) and 50% by weight of water to the powder,
Crosstalk while applying shearing force. The obtained mixed wire was rolled with a rolling roller to a thickness of 1, Q mm, and the base sheet was brought into contact with both sides of the cathode current collector, and the mixture was rolled and crimped to a thickness of 1.5 m.
obtain a zinc electrode.

この亜鉛負極5枚と周知の焼結式ニッケル極4枚を用い
て容量2AHのニッケルー亜鉛蓄電池(A>を作成した
A nickel-zinc storage battery (A>) with a capacity of 2 AH was created using five of these zinc negative electrodes and four known sintered nickel electrodes.

尚、従来の数十〃乃至数百μの金属亜鉛粉末は、還元雰
囲気中で金属亜鉛を一旦溶融してノスルかも噴霧状に吹
き飛ばして製造されるものであるのに対し、本発明で使
用される1〜6μの金属亜鉛粉末は、還元雰囲気中で金
属亜鉛を溶融した後蒸発させ、それを凝縮したものであ
る。
In addition, conventional metallic zinc powder of tens to hundreds of microns is produced by melting metallic zinc once in a reducing atmosphere and blowing it into a spray form, whereas the powder used in the present invention The metal zinc powder having a size of 1 to 6 microns is obtained by melting metal zinc in a reducing atmosphere, evaporating it, and condensing it.

第1図はこの蓄電池(A)の断面図である。この図面に
おいて、(1)は亜鉛極、(2)はニッケル極、(3)
はセパレータ、(4)は保液層、(5)は電槽、(6)
は電槽蓋、(7)(8)は正負極端子である。
FIG. 1 is a sectional view of this storage battery (A). In this drawing, (1) is a zinc electrode, (2) is a nickel electrode, and (3) is a nickel electrode.
is a separator, (4) is a liquid retaining layer, (5) is a battery case, (6)
is the battery case lid, and (7) and (8) are the positive and negative terminals.

実施例2 実施例1においてポリビニールアルコールに代えて酸化
チタン粉末を使用した点を除いて、他は実施例1におけ
る蓄電池(A)と同一の蓄電池(B)を作成した。
Example 2 A storage battery (B) was produced which was the same as the storage battery (A) in Example 1 except that titanium oxide powder was used instead of polyvinyl alcohol in Example 1.

比較例 比較のため、実施例1において、ポリビニールアルコー
ルを使用しない点を除いて、他は実施例1の蓄電池(A
)と同一の蓄電池(C)を作成した。
Comparative Example For comparison, the storage battery of Example 1 (A
) was created.

第2図は本発明による亜鉛極を用いた蓄電池(A)及び
(B)と比較電池(C)の充放電サイクル特性図である
。その充放電条件は、400mAで5時間充電した後、
500m Aで電/1I2N圧か1.OVに達するまで
放電り−るものである。第2図は放電容量として初期容
量を100として示す。
FIG. 2 is a diagram showing charge/discharge cycle characteristics of storage batteries (A) and (B) using zinc electrodes according to the present invention and a comparative battery (C). The charging and discharging conditions are: After charging at 400mA for 5 hours,
Electricity/1I2N pressure at 500mA or 1. The discharge continues until it reaches OV. FIG. 2 shows the initial capacity as 100 as the discharge capacity.

第2図より本発明による亜鉛極を用いた蓄電池(A)及
び(B)のサイクル特性が比較電池(C)のサイクル特
性に比し改善されることがわかる。
It can be seen from FIG. 2 that the cycle characteristics of the storage batteries (A) and (B) using the zinc electrode according to the present invention are improved compared to the cycle characteristics of the comparative battery (C).

この改善理由は、ポリビニールアルコールや酸化チタン
は湿潤材であるため、亜鉛極の多孔度減少による電解液
拡散不足を有効に補っているためと考えられる。実施例
ではポリビニールアルコールと酸化チタンの例を示した
か、湿潤性があり電池性能に悪影響を及ぼさないもので
あれは、他の湿潤材たとえはカルホキ/メチルセルロー
ス、メチルセルロース、ヒドロキンプロピルセルロース
、アルキン酸ソーダ、グルコン酸等の有機物や、〉ルコ
ニウムマグネンウム、カルシウムアルミニウム 酸塩(たとえばケ・イ酸ナトリウム)等の無機物を用い
ることかできる。湿潤材の含有割合は、0。
The reason for this improvement is thought to be that polyvinyl alcohol and titanium oxide are wetting agents and therefore effectively compensate for the lack of electrolyte diffusion caused by the reduced porosity of the zinc electrode. Examples of polyvinyl alcohol and titanium oxide are shown in the examples, but other wetting materials such as carphoki/methylcellulose, methylcellulose, hydroquinpropylcellulose, and alkynoic acid may be used as long as they have wettability and do not adversely affect battery performance. Organic substances such as soda and gluconic acid, and inorganic substances such as ruconium magnenium and calcium aluminate (eg, sodium silica) can be used. The content ratio of the wetting agent is 0.

1重量%以下ではほとんとその効果かなく、25重量%
以上では亜鉛活物質の先頃量を減少きせると共に亜鉛極
の内部抵抗の増大を引き起4−ので、0、1〜25重量
%位かよく、好ましくは0.3〜10重量%である。
Less than 1% by weight has almost no effect, and 25% by weight
In the above, the amount of zinc active material has recently been reduced and the internal resistance of the zinc electrode has increased, so the amount may be about 0.1 to 25% by weight, preferably 0.3 to 10% by weight.

〔効果〕〔effect〕

以上の如・:本発明は、亜鉛極の活物質である金属亜鉛
粉末と酸化亜鉛粉末の粒径を規制すると共に湿潤材を添
加することにより、充放電サイクルによる負極活物質の
結晶径の粗大化をM止すると共に亜鉛極の変形を抑制す
る弘とかてき、また亜鉛極内の電解液の拡散不足を補い
、この亜鉛極を用いた蓄電池のサイクル寿命を大きくす
ることができる等工業的価値大なるものである。
As described above: The present invention is capable of controlling the particle size of metal zinc powder and zinc oxide powder, which are the active materials of the zinc electrode, and adding a wetting agent to increase the coarseness of the crystal size of the negative electrode active material during charge/discharge cycles. It has industrial value, such as being able to prevent deformation of the zinc electrode and suppress deformation of the zinc electrode, and compensate for insufficient diffusion of the electrolyte in the zinc electrode, increasing the cycle life of storage batteries using this zinc electrode. It is a big thing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による亜鉛極を用いたアルカリ亜鉛蓄電
池の断面図、第2図は本発明による亜鉛極を用いたアル
カリ亜鉛蓄電池と比較電池のサイクル特性図である。
FIG. 1 is a sectional view of an alkaline zinc storage battery using the zinc electrode according to the present invention, and FIG. 2 is a cycle characteristic diagram of an alkaline zinc storage battery using the zinc electrode according to the invention and a comparative battery.

Claims (1)

【特許請求の範囲】[Claims] (1)0.1〜05μの粒径を有する酸化亜鉛粉末と1
〜6〃の粒径を有する金属亜鉛粉末の亜鉛活物質と、有
機あるいは無機質の湿潤材と、添加剤及び結着剤とから
なる亜鉛極。
(1) Zinc oxide powder with a particle size of 0.1~05μ and 1
A zinc electrode comprising a zinc active material of metallic zinc powder having a particle size of ~6〃, an organic or inorganic wetting agent, an additive and a binder.
JP57145201A 1982-08-20 1982-08-20 Zinc electrode Granted JPS5935359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145201A JPS5935359A (en) 1982-08-20 1982-08-20 Zinc electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145201A JPS5935359A (en) 1982-08-20 1982-08-20 Zinc electrode

Publications (2)

Publication Number Publication Date
JPS5935359A true JPS5935359A (en) 1984-02-27
JPH0423381B2 JPH0423381B2 (en) 1992-04-22

Family

ID=15379742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145201A Granted JPS5935359A (en) 1982-08-20 1982-08-20 Zinc electrode

Country Status (1)

Country Link
JP (1) JPS5935359A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825922A1 (en) * 1987-07-29 1989-02-09 Minolta Camera Kk IMAGE RECORDING MATERIAL FOR RECORDING THREE-DIMENSIONAL IMAGES AND METHOD FOR DEVELOPING THREE-DIMENSIONAL IMAGES WITH THE USE OF THE MATERIAL
DE3825923A1 (en) * 1987-07-29 1989-02-09 Minolta Camera Kk IMAGE RECORDING MATERIAL FOR TRAINING THREE-DIMENSIONAL IMAGES
US5122430A (en) * 1988-12-29 1992-06-16 Minolta Camera Kabushiki Kaisha Three-dimensional image forming method
US5846622A (en) * 1995-08-11 1998-12-08 Brother Kogyo Kabushiki Kaisha Heat-expandable solid pattern forming sheet
US6165667A (en) * 1998-10-26 2000-12-26 Fuji Xerox Co., Ltd. Image-forming toner, preparation method thereof, three-dimensional image-forming method and image-forming apparatus
JP2019021518A (en) * 2017-07-18 2019-02-07 日本碍子株式会社 Negative electrode for zinc secondary battery and zinc secondary battery
EP3670133A1 (en) 2018-12-21 2020-06-24 Casio Computer Co., Ltd. Molding sheet, manufacturing method of molding sheet, and manufacturing method of shaped object
US11040550B2 (en) 2018-09-19 2021-06-22 Fujifilm Business Innovation Corp. Concave and convex pattern forming apparatus and method for producing structural body having concave and convex pattern

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825922A1 (en) * 1987-07-29 1989-02-09 Minolta Camera Kk IMAGE RECORDING MATERIAL FOR RECORDING THREE-DIMENSIONAL IMAGES AND METHOD FOR DEVELOPING THREE-DIMENSIONAL IMAGES WITH THE USE OF THE MATERIAL
DE3825923A1 (en) * 1987-07-29 1989-02-09 Minolta Camera Kk IMAGE RECORDING MATERIAL FOR TRAINING THREE-DIMENSIONAL IMAGES
US4871408A (en) * 1987-07-29 1989-10-03 Minolta Camera Kabushiki Kaisha Image recording material for recording images in three dimensions and three-dimensional image processing method using same
US4871407A (en) * 1987-07-29 1989-10-03 Minolta Camera Kabushiki Kaisha Image recording material capable of forming three-dimensional images
US5122430A (en) * 1988-12-29 1992-06-16 Minolta Camera Kabushiki Kaisha Three-dimensional image forming method
US5846622A (en) * 1995-08-11 1998-12-08 Brother Kogyo Kabushiki Kaisha Heat-expandable solid pattern forming sheet
US6165667A (en) * 1998-10-26 2000-12-26 Fuji Xerox Co., Ltd. Image-forming toner, preparation method thereof, three-dimensional image-forming method and image-forming apparatus
JP2019021518A (en) * 2017-07-18 2019-02-07 日本碍子株式会社 Negative electrode for zinc secondary battery and zinc secondary battery
US11040550B2 (en) 2018-09-19 2021-06-22 Fujifilm Business Innovation Corp. Concave and convex pattern forming apparatus and method for producing structural body having concave and convex pattern
EP3670133A1 (en) 2018-12-21 2020-06-24 Casio Computer Co., Ltd. Molding sheet, manufacturing method of molding sheet, and manufacturing method of shaped object

Also Published As

Publication number Publication date
JPH0423381B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
US4407915A (en) Secondary zinc electrode
JPS5935359A (en) Zinc electrode
JPS5933756A (en) Zinc electrode
JPH0423383B2 (en)
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPH0450707B2 (en)
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
JPS5942775A (en) Zinc electrode
JPH07161376A (en) Sealed alkaline zinc storage battery
JPH06101326B2 (en) Zinc pole of alkaline zinc storage battery
JP2797554B2 (en) Nickel cadmium storage battery
JPH0423382B2 (en)
JPH0366779B2 (en)
JPH06124706A (en) Sealed nickel-zinc storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH10199562A (en) Sealed lead-acid battery
JP2754800B2 (en) Nickel cadmium storage battery
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH09245827A (en) Manufacture of alkaline storage battery
JP2518090B2 (en) Lead acid battery
JPH01267960A (en) Hydrogen absorption alloy electrode and its manufacture
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPS6097551A (en) Zinc electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery