JPH0423381B2 - - Google Patents

Info

Publication number
JPH0423381B2
JPH0423381B2 JP57145201A JP14520182A JPH0423381B2 JP H0423381 B2 JPH0423381 B2 JP H0423381B2 JP 57145201 A JP57145201 A JP 57145201A JP 14520182 A JP14520182 A JP 14520182A JP H0423381 B2 JPH0423381 B2 JP H0423381B2
Authority
JP
Japan
Prior art keywords
zinc
electrode
particle size
powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57145201A
Other languages
Japanese (ja)
Other versions
JPS5935359A (en
Inventor
Sanehiro Furukawa
Shuzo Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57145201A priority Critical patent/JPS5935359A/en
Publication of JPS5935359A publication Critical patent/JPS5935359A/en
Publication of JPH0423381B2 publication Critical patent/JPH0423381B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 〔技術分野〕 本発明は正極活物質として酸化銀、酸化ニツケ
ルなどを用い、電解液としてアルカリ溶液を用い
るアルカリ蓄電池に適用することができる亜鉛極
に関し、亜鉛負極の活物質である金属亜鉛と酸化
亜鉛の粒径を規制すると共に湿潤剤を添加するこ
とにより、充放電サイクルによる負極活物質の結
晶径の粗大化を防止し、亜鉛極板の変形を抑制す
ると共に亜鉛極内の電解液の拡散不足を補い、電
池容量の減少を僅少にして、電池のサイクル寿命
を向上することを目的とする。
Detailed Description of the Invention [Technical Field] The present invention relates to a zinc electrode that can be applied to alkaline storage batteries that use silver oxide, nickel oxide, etc. as a positive electrode active material and an alkaline solution as an electrolyte. By controlling the particle size of the substances metal zinc and zinc oxide and adding a wetting agent, it is possible to prevent the crystal size of the negative electrode active material from becoming coarser due to charge/discharge cycles, suppress deformation of the zinc electrode plate, and reduce the zinc The purpose is to compensate for insufficient diffusion of the electrolyte within the electrode, minimize the decrease in battery capacity, and improve the cycle life of the battery.

〔背景技術〕[Background technology]

従来より負極に金属亜鉛を活物質として用いた
亜鉛蓄電池は、亜鉛が安価であり、アルカリ電解
液中でカドミウム極に比べて卑な電位を有するこ
とから、エネルギー密度が高く、且公害の心配が
少ないことから、多くの実用化検討がなされてき
た。
Conventionally, zinc storage batteries that use metal zinc as an active material in the negative electrode have a high energy density and are free from pollution because zinc is cheap and has a lower potential in alkaline electrolyte than a cadmium electrode. Because of its small size, many studies have been made to put it into practical use.

ところが、充放電サイクル途中における亜鉛デ
ンドライトによる正負極間の短絡現象が起こるた
め信頼性に欠けること及び充放電サイクルによる
亜鉛極の変形が著しいために長期のサイクル寿命
が得られにくいこと等の欠点がある。この原因は
亜鉛がアルカリ電解液中に可溶する電極であるこ
とに起因している。
However, there are drawbacks such as a lack of reliability due to a short circuit phenomenon between the positive and negative electrodes caused by zinc dendrites during the charge/discharge cycle, and difficulty in obtaining a long cycle life due to significant deformation of the zinc electrode during the charge/discharge cycle. be. This is due to the fact that zinc is an electrode that is soluble in an alkaline electrolyte.

而して、亜鉛活物質として金属亜鉛と酸化亜鉛
の混合物を使用することが知られている。しかし
従来から使用される金属亜鉛は、数十μ乃至数百
μの粒子径であり、一方酸化亜鉛は十分の数μの
粒子径であり、金属亜鉛に比し2乃至3桁小さい
粒子径である。このように従来の金属亜鉛の粒子
径が酸化亜鉛の粒子径に比し特に大きいことによ
り次の欠点がある。即ち第1に、粒子径の大きさ
の差が2乃至3桁と大きいため、金属亜鉛と酸化
亜鉛が均一に混合しない。第2に、粒子径が大き
いため同量の金属亜鉛を混入しても、粒子数が少
なく電析の核となる数が少ないので、放電生成物
である亜鉛酸イオンが次の充電時に元の位置に電
着し難くなる。第3に、元々の金属亜鉛の粒子径
が大きいので、デンドライト発生の核となる粗大
粒子亜鉛に早く成長する。
Thus, it is known to use a mixture of metallic zinc and zinc oxide as a zinc active material. However, conventionally used metallic zinc has a particle size of several tens of microns to several hundred microns, while zinc oxide has a particle diameter of several tenths of a micron, which is two to three orders of magnitude smaller than that of metallic zinc. be. As described above, the particle size of conventional metal zinc is particularly large compared to the particle size of zinc oxide, resulting in the following drawbacks. First, since the difference in particle size is as large as two or three orders of magnitude, metallic zinc and zinc oxide are not mixed uniformly. Second, because the particle size is large, even if the same amount of metallic zinc is mixed, the number of particles is small and the number that becomes the nucleus for electrodeposition is small, so the zincate ions that are discharge products are returned to their original state during the next charge. It becomes difficult to electrodeposit on the position. Thirdly, since the particle size of the original metal zinc is large, it quickly grows into coarse zinc particles that become the core of dendrite generation.

そこでかかる問題に対処すべく、活物質である
金属亜鉛粉末と酸化亜鉛粉末の粒子径を規制する
ことを特願昭57−41843号で提案した。即ち金属
亜鉛粉末の粒子径を1〜6μ、酸化亜鉛粉末の粒
子径を0.1〜0.5μとするものである。このように
粒子径を規制することにより、充放電サイクルに
よる活物質の結晶径の粗大化を防止すると共に極
板の変形を抑制し、容量減少を僅少にして電池の
サイクル寿命を向上させることができる。
In order to deal with this problem, we proposed in Japanese Patent Application No. 41843/1983 that the particle diameters of the active materials, metal zinc powder and zinc oxide powder, should be regulated. That is, the particle size of the metal zinc powder is 1 to 6μ, and the particle size of the zinc oxide powder is 0.1 to 0.5μ. By regulating the particle size in this way, it is possible to prevent the crystal size of the active material from becoming coarser due to charging and discharging cycles, suppress deformation of the electrode plate, minimize capacity loss, and improve the cycle life of the battery. can.

ところが充放電サイクルを繰返し、より長期に
わたると、規制されて使用していた亜鉛粒子が
徐々に粗大化して高密度化するようになり、亜鉛
電析の核となるべき亜鉛粒子の数が減少する。そ
の結果、不均一な電析が起こるようになり、亜鉛
極の作用有効面積が減少して多孔度が減少するた
め、電解液の内部拡散が妨げられ、電導性が低下
するようになる。即ち不動態化現象が生じ、充放
電を繰り返すにつれて加速的に活物質の利用率の
悪化を招いていた。
However, as charge-discharge cycles are repeated over a longer period of time, the regulated zinc particles gradually become coarser and denser, reducing the number of zinc particles that should form the nucleus of zinc electrodeposition. . As a result, non-uniform electrodeposition occurs, the effective area of the zinc electrode is reduced, and the porosity is reduced, which impedes internal diffusion of the electrolyte and reduces electrical conductivity. That is, a passivation phenomenon occurs, leading to an accelerated deterioration in the utilization rate of the active material as charging and discharging are repeated.

〔発明の開示〕[Disclosure of the invention]

本発明はかかる点に鑑み発明されたものにし
て、上述の諸問題を緩和して、蓄電池に適用する
ときの蓄電池のサイクル寿命を向上せんとするも
のである。即ち、本発明は、0.1〜0.5μの粒径を
有する酸化亜鉛粉末及び1〜6μの粒径を有する
金属亜鉛粉末とからなる亜鉛活物質と、有機ある
いは無機物の湿潤材と、水素ガスの発生を抑制す
る添加剤と、結着剤とにより亜鉛極を構成するも
のである。この構成から明らかなように本発明
は、活物質である金属亜鉛粉末と酸化亜鉛粉末の
粒子径を規制することにより、亜鉛極の変形を抑
制して電池のサイクル寿命を向上すると共に湿潤
材の存在により、亜鉛極内の電解液の拡散不足を
補い、サイクル寿命をより一層向上せんとするも
のである。
The present invention has been devised in view of these points, and is intended to alleviate the above-mentioned problems and improve the cycle life of a storage battery when applied to a storage battery. That is, the present invention provides a zinc active material consisting of a zinc oxide powder having a particle size of 0.1 to 0.5μ and a metal zinc powder having a particle size of 1 to 6μ, an organic or inorganic wetting agent, and a hydrogen gas generating material. The zinc electrode is made up of an additive that suppresses oxidation and a binder. As is clear from this configuration, the present invention suppresses the deformation of the zinc electrode and improves the cycle life of the battery by regulating the particle size of the active materials, metal zinc powder and zinc oxide powder. Its presence compensates for insufficient diffusion of the electrolyte within the zinc electrode, thereby further improving cycle life.

〔実施例〕〔Example〕

以下本発明の実施例を説明しあわせて比較例を
説明する。
Examples of the present invention will be described below, as well as comparative examples.

実施例 1 粒径0.1〜0.5μの酸化亜鉛粉末100重量部、粒径
1〜6μの金属亜鉛粉末10重量部、亜鉛極の水素
過電圧を上昇させて水素発生を抑制する作用を有
する添加剤としての酸化水銀2重量部及び湿潤材
としてのポリビニールアルコール2重量部を混合
した混合粉末に、結着剤としてのポリテトラフル
オロエチレンのデイスパージヨン(濃度60%)5
重量部及び水50重量部を加え、剪断力を与えつつ
混練する。得られた混練物を圧延ローラにより
1.0mmの厚みに圧延したペーストシートを陰極集
電体の両面に当接し、圧延圧着して厚み1.5mmの
亜鉛極を得る。
Example 1 100 parts by weight of zinc oxide powder with a particle size of 0.1 to 0.5μ, 10 parts by weight of metal zinc powder with a particle size of 1 to 6μ, as an additive that increases the hydrogen overvoltage of the zinc electrode and suppresses hydrogen generation. A mixed powder of 2 parts by weight of mercury oxide and 2 parts by weight of polyvinyl alcohol as a wetting agent was mixed with a dispersion of polytetrafluoroethylene (concentration 60%) as a binder.
Add parts by weight and 50 parts by weight of water, and knead while applying shearing force. The obtained kneaded material is rolled using a rolling roller.
Paste sheets rolled to a thickness of 1.0 mm are brought into contact with both sides of the cathode current collector and rolled and crimped to obtain a zinc electrode with a thickness of 1.5 mm.

この亜鉛負極5枚と周知の焼結式ニツケル極4
枚を用いて容量2AHのニツケル−亜鉛蓄電池A
を作成した。
These 5 zinc negative electrodes and 4 well-known sintered nickel electrodes
Nickel-zinc storage battery A with a capacity of 2AH using
It was created.

尚、従来の数十μ乃至数百μの金属亜鉛粉末
は、還元雰囲気中で金属亜鉛を一旦溶融してノズ
ルから噴霧状に吹き飛ばして製造されるものであ
るのに対し、本発明で使用される1〜6μの金属
亜鉛粉末は、還元雰囲気中で金属亜鉛を溶融した
後蒸発させ、それを凝縮したものである。
Note that conventional metallic zinc powder with a size of several tens of microns to several hundred microns is produced by melting metallic zinc once in a reducing atmosphere and blowing it out in a spray form from a nozzle, whereas the powder used in the present invention The metal zinc powder with a size of 1 to 6μ is obtained by melting metal zinc in a reducing atmosphere, evaporating it, and condensing it.

第1図はこの蓄電池Aの断面図である。この図
面において、1は亜鉛極、2はニツケル極、3は
セパレータ、4は保液層、5は電槽、6は電槽
蓋、7,8は正負極端子である。
FIG. 1 is a sectional view of this storage battery A. In this drawing, 1 is a zinc electrode, 2 is a nickel electrode, 3 is a separator, 4 is a liquid retaining layer, 5 is a battery case, 6 is a battery cover, and 7 and 8 are positive and negative electrode terminals.

実施例 2 実施例1において、有機物の湿潤材として用い
たポリビニールアルコールに代えて、無機物の湿
潤材である酸化チタン粉末を使用した点を除い
て、他は前記実施例1における蓄電池Aと同一の
蓄電池Bを作成した。
Example 2 The battery A was the same as the storage battery A in Example 1, except that titanium oxide powder, which was an inorganic wetting agent, was used instead of polyvinyl alcohol, which was used as an organic wetting agent in Example 1. Storage battery B was created.

比較例 比較のため、前記実施例1において、湿潤材で
あるポリビニールアルコールを使用しない点を除
いて、他は前記実施例1における蓄電池Aと同一
の蓄電池Cを作成した。
Comparative Example For comparison, a storage battery C was prepared which was the same as the storage battery A in Example 1 except that polyvinyl alcohol as a wetting agent was not used.

第2図は本発明による亜鉛極を用いた蓄電池A
及びBと比較電池Cの充放電サイクル特性図であ
る。その充放電条件は、400mAで5時間充電し
た後、500mAで電池電圧が1.0Vに達するまで放
電するものである。第2図は放電容量として初期
容量を100として示す。
Figure 2 shows a storage battery A using zinc electrodes according to the present invention.
2 is a charge/discharge cycle characteristic chart of B and comparative battery C. FIG. The charging and discharging conditions were to charge at 400 mA for 5 hours and then discharge at 500 mA until the battery voltage reached 1.0V. FIG. 2 shows the initial capacity as 100 as discharge capacity.

第2図より本発明による亜鉛極を用いた蓄電池
A及びBのサイクル特性が比較電池Cのサイクル
特性に比し改善されることがわかる。
It can be seen from FIG. 2 that the cycle characteristics of storage batteries A and B using the zinc electrode according to the present invention are improved compared to the cycle characteristics of comparative battery C.

この改善理由は、ポリビニールアルコールや酸
化チタンは湿潤材であるため、亜鉛極の多孔度減
少による電解液拡散不足を有効に補つているため
と考えられる。実施例ではポリビニールアルコー
ルと酸化チタンの例を示したが、湿潤性があり電
池性能に悪影響を及ぼさないものであれば、他の
湿潤材たとえばカルボキシメチルセルロース、メ
チルセルロース、ヒドロキシプロピルセルロー
ス、アルギン酸ソーダ、グルコン酸等の有機物
や、ジルコニウムマグネシウム、カルシウムアル
ミニウム、ケイ素等の酸化物、水酸化物あるいは
酸塩(たとえばケイ酸ナトリウム)等の無機物を
用いることができる。湿潤材の含有割合は、0.1
重量部以下ではほとんどその効果がなく、25重量
部以上では亜鉛活物質の充頃量を減少させると共
に亜鉛極の内部抵抗の増大を引き起すので、0.1
〜25重量部位がよく、好ましくは0.3〜10重量部
である。
The reason for this improvement is thought to be that polyvinyl alcohol and titanium oxide are wetting agents and therefore effectively compensate for the lack of electrolyte diffusion caused by the reduced porosity of the zinc electrode. Although polyvinyl alcohol and titanium oxide are used as examples in the examples, other wetting materials such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose, sodium alginate, and glucon may be used as long as they have wettability and do not adversely affect battery performance. Organic substances such as acids, and inorganic substances such as oxides, hydroxides, or acid salts (for example, sodium silicate) of zirconium magnesium, calcium aluminum, silicon, etc. can be used. The content ratio of wetting material is 0.1
If it is less than 0.1 parts by weight, it has almost no effect, and if it exceeds 25 parts by weight, it reduces the amount of zinc active material and increases the internal resistance of the zinc electrode.
~25 parts by weight is good, preferably 0.3 to 10 parts by weight.

〔効果〕〔effect〕

以上の如く本発明は、亜鉛極の活物質である金
属亜鉛粉末と酸化亜鉛粉末の粒径を規制すると共
に湿潤材を添加することにより、充放電サイクル
による負極活物質の結晶径の粗大化を防止すると
共に亜鉛極の変形を抑制することができ、また亜
鉛極内の電解液の拡散不足を補い、この亜鉛極を
用いた蓄電池のサイクル寿命を大きくすることが
できる等工業的価値大なるものである。
As described above, the present invention prevents coarsening of the crystal size of the negative electrode active material due to charge/discharge cycles by controlling the particle size of the metal zinc powder and zinc oxide powder that are the active materials of the zinc electrode and adding a wetting agent. It has great industrial value, as it can prevent deformation of the zinc electrode, compensate for insufficient diffusion of the electrolyte in the zinc electrode, and extend the cycle life of storage batteries using this zinc electrode. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による亜鉛極を用いたアルカリ
亜鉛蓄電池の断面図、第2図は本発明による亜鉛
極を用いたアルカリ亜鉛蓄電池と比較電池のサイ
クル特性図である。
FIG. 1 is a sectional view of an alkaline zinc storage battery using the zinc electrode according to the present invention, and FIG. 2 is a cycle characteristic diagram of an alkaline zinc storage battery using the zinc electrode according to the invention and a comparative battery.

Claims (1)

【特許請求の範囲】[Claims] 1 0.1〜0.5μの粒径を有する酸化亜鉛粉末及び
1〜6μの粒径を有する金属亜鉛粉末とからなる
亜鉛活物質と、有機あるいは無機物の湿潤材と、
水素ガスの発生を抑制する添加剤と、結着剤とか
らなる亜鉛極。
1. A zinc active material consisting of zinc oxide powder having a particle size of 0.1 to 0.5μ and metal zinc powder having a particle size of 1 to 6μ, an organic or inorganic wetting agent,
A zinc electrode consisting of an additive that suppresses the generation of hydrogen gas and a binder.
JP57145201A 1982-08-20 1982-08-20 Zinc electrode Granted JPS5935359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57145201A JPS5935359A (en) 1982-08-20 1982-08-20 Zinc electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57145201A JPS5935359A (en) 1982-08-20 1982-08-20 Zinc electrode

Publications (2)

Publication Number Publication Date
JPS5935359A JPS5935359A (en) 1984-02-27
JPH0423381B2 true JPH0423381B2 (en) 1992-04-22

Family

ID=15379742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57145201A Granted JPS5935359A (en) 1982-08-20 1982-08-20 Zinc electrode

Country Status (1)

Country Link
JP (1) JPS5935359A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621730Y2 (en) * 1987-07-29 1994-06-08 ミノルタカメラ株式会社 3D image sheet
JPH0440947Y2 (en) * 1987-07-29 1992-09-25
US5122430A (en) * 1988-12-29 1992-06-16 Minolta Camera Kabushiki Kaisha Three-dimensional image forming method
JPH0952443A (en) * 1995-08-11 1997-02-25 Brother Ind Ltd Sheet for forming three-dimensional image
JP3591334B2 (en) * 1998-10-26 2004-11-17 富士ゼロックス株式会社 Toner for image formation, method for producing the same, method for forming stereoscopic image using the same, and image forming apparatus
JP7007123B2 (en) * 2017-07-18 2022-02-10 日本碍子株式会社 Negative electrode for zinc secondary battery and zinc secondary battery
JP2020044735A (en) 2018-09-19 2020-03-26 富士ゼロックス株式会社 Concave-convex pattern forming apparatus and method for manufacturing structure having concave-convex pattern
JP7014146B2 (en) 2018-12-21 2022-02-15 カシオ計算機株式会社 Molded sheet, manufacturing method of molded sheet, manufacturing method of molded product

Also Published As

Publication number Publication date
JPS5935359A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
JPH0423381B2 (en)
JPH0423380B2 (en)
JPH0423383B2 (en)
JPH048897B2 (en)
JPH0423382B2 (en)
JPS5832362A (en) Alkaline zinc secondary battery
JPH0366779B2 (en)
JP2931316B2 (en) Manufacturing method of alkaline zinc storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06101326B2 (en) Zinc pole of alkaline zinc storage battery
JPH01130467A (en) Hydrogen occlusive alloy electrode
JPH10199562A (en) Sealed lead-acid battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH05190175A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery
JP2999542B2 (en) Metal-hydrogen alkaline storage battery
JPH01134862A (en) Alkaline zinc storage battery
JPH06124706A (en) Sealed nickel-zinc storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2754800B2 (en) Nickel cadmium storage battery
JP3118357B2 (en) Non-sintered positive electrode plate for alkaline storage batteries
JPS58163160A (en) Alkaline zinc storage battery
JP2770360B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS6097551A (en) Zinc electrode for alkaline storage battery
JPS58137966A (en) Zinc electrode