JPH04262367A - Hydrogen storage electrode - Google Patents

Hydrogen storage electrode

Info

Publication number
JPH04262367A
JPH04262367A JP3106966A JP10696691A JPH04262367A JP H04262367 A JPH04262367 A JP H04262367A JP 3106966 A JP3106966 A JP 3106966A JP 10696691 A JP10696691 A JP 10696691A JP H04262367 A JPH04262367 A JP H04262367A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
powder
storage electrode
nickel powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3106966A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP3106966A priority Critical patent/JPH04262367A/en
Publication of JPH04262367A publication Critical patent/JPH04262367A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve electroconductivity of a hydrogen storage electrode and enhance the rapid discharge characteristic. CONSTITUTION:A hydrogen storage electrode containing an electroconductive agent, which consists in flake-form Ni powder. This Ni powder shall have a mean dia. of 15-20mum and a thickness of 1.0-1.1mum, and be added in an amount 10-30wt.% to a hydrogen storage alloy or its hydride.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、水素吸蔵電極に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode.

【0002】0002

【従来の技術】従来の水素吸蔵電極は、水素吸蔵合金粉
又はその水素化物粉から成り、電気化学的に水素の吸蔵
と放出ができることから、アルカリ蓄電池の負極に用い
られているが、その粉体の粒子間の導電性を良好にし、
内部抵抗を小さくし、電極の急放電性能を向上するため
に、該粉体に無電解メッキを施し、該粒子の表面を無電
解メッキ被膜で被覆することにより、或いは粒状ニッケ
ル粉を該粉体に添加混合しその粒子の表面を被覆するこ
とにより、該粒子間の導電性を改善し、電極の放電特性
の向上が行われている。
[Prior Art] Conventional hydrogen storage electrodes are made of hydrogen storage alloy powder or its hydride powder, and are used as negative electrodes of alkaline storage batteries because they can electrochemically absorb and release hydrogen. Improves conductivity between body particles,
In order to reduce the internal resistance and improve the rapid discharge performance of the electrode, electroless plating is applied to the powder and the surface of the particles is coated with an electroless plating film, or granular nickel powder is applied to the powder. By adding and mixing the particles to coat the surfaces of the particles, the conductivity between the particles is improved, and the discharge characteristics of the electrode are improved.

【0003】0003

【発明が解決しようとする課題】然るに、上記のように
、メッキ工程は煩雑であり、製造コストの増大をもたら
す等の問題がある。一方、粒状ニッケル粉を該水素吸蔵
合金粉又はその水素化物粉に添加する方法は、メッキ工
程の製造方法に比し、電極の製造を簡単にし、製造コス
トの低下をもたらすが、該粉体に均一に混入せしめるこ
とが比較的困難であり、添加量を著しく増大すれば、電
極のエネルギー密度の低下をもたらす等の問題がある。 従って、上記従来の問題を解消することが望まれる。
However, as mentioned above, the plating process is complicated and has problems such as increased manufacturing costs. On the other hand, the method of adding granular nickel powder to the hydrogen-absorbing alloy powder or its hydride powder simplifies electrode manufacturing and lowers the manufacturing cost compared to the manufacturing method using a plating process; It is relatively difficult to mix uniformly, and if the amount added is significantly increased, there are problems such as a decrease in the energy density of the electrode. Therefore, it is desired to solve the above-mentioned conventional problems.

【0004】0004

【課題を解決するための手段】本発明は、上記従来の問
題を解決し、簡単な製造方法で得られ、而も従来に比し
優れた急放電特性を有する水素吸蔵電極を提供するもの
で、その構成は、導電剤を含有する水素吸蔵電極におい
て、該導電剤はフレーク状ニッケルパウダーであること
を特徴とする。
[Means for Solving the Problems] The present invention solves the above-mentioned conventional problems and provides a hydrogen storage electrode that can be obtained by a simple manufacturing method and has superior rapid discharge characteristics compared to the conventional ones. , its structure is characterized in that, in a hydrogen storage electrode containing a conductive agent, the conductive agent is flaky nickel powder.

【0005】[0005]

【作用】本発明の作用は、明らかでないが、導電剤とし
て使用したフレーク状ニッケル粉は、その形態により水
素吸蔵合金粉又はその水素化物粉との混合が均一に行わ
れると共に、その粒子の表面を容易に包み込むので、比
較的添加量が少なくても該粒子間の導電性を向上し、高
密度エネルギーを有し且つ放電性能の向上した電極をも
たらすものと考えられる。
[Function] Although the function of the present invention is not clear, the flaky nickel powder used as a conductive agent is uniformly mixed with the hydrogen storage alloy powder or its hydride powder due to its shape, and the surface of the particle is It is thought that because it easily envelops the particles, even if the amount added is relatively small, the conductivity between the particles is improved, resulting in an electrode with high density energy and improved discharge performance.

【0006】[0006]

【実施例】次に、本発明の実施例を詳述する。市販のL
a、Ni、Co、Alを一定の組成比になるように秤量
して混合しアーク溶解法により加熱溶解させた。一例と
して合金組成がLaNi4.0Co0.5Al0.5に
なるように撰択し、負極用の水素吸蔵合金とした。この
合金を粉砕して400メッシュ以下の微粉末とし、この
微粉末に適量の四フッ化エチレン樹脂粉末と導電剤とし
てフレーク状ニッケルパウダーを添加し、四フッ化エチ
レン樹脂が充分に繊維化するまで混合した。次に、この
混合物を集電体であるニッケル金網に乗せ、加圧して本
発明の電極とした。本実施例で導電剤として用いた該フ
レーク状ニッケルパウダーは、インコ社(INCO社)
のノバメットHCA−1(NOVAMET  HCA−
1)フレーク状ニッケルパウダーを用いた。このフレー
ク状ニッケルパウダーの平均直径は15〜20μm、厚
みは1.0〜1.1μmであり、嵩密度はおよそ0.9
g/ccである。尚、該フレーク状ニッケルパウダーの
添加量と本発明の電極の急放電特性との関係を検べるた
め、水素吸蔵合金1g(250mAhに相当)に対して
該フレーク状ニッケルパウダーの添加量を種々変えて、
上記と同様にして製造した本発明の水素吸蔵電極を製造
した。
EXAMPLES Next, examples of the present invention will be described in detail. Commercially available L
A, Ni, Co, and Al were weighed and mixed at a constant composition ratio, and heated and melted using an arc melting method. As an example, the alloy composition was selected to be LaNi4.0Co0.5Al0.5, and this was used as a hydrogen storage alloy for a negative electrode. This alloy is crushed into a fine powder of 400 mesh or less, and an appropriate amount of tetrafluoroethylene resin powder and flaky nickel powder as a conductive agent are added to this fine powder until the tetrafluoroethylene resin is sufficiently fiberized. Mixed. Next, this mixture was placed on a nickel wire gauze serving as a current collector and pressurized to form an electrode of the present invention. The flaky nickel powder used as a conductive agent in this example was manufactured by INCO Co., Ltd.
NOVAMET HCA-1 (NOVAMET HCA-
1) Flaky nickel powder was used. The average diameter of this flaky nickel powder is 15 to 20 μm, the thickness is 1.0 to 1.1 μm, and the bulk density is approximately 0.9
g/cc. In addition, in order to examine the relationship between the amount of the flaky nickel powder added and the rapid discharge characteristics of the electrode of the present invention, various amounts of the flaky nickel powder were added to 1 g (equivalent to 250 mAh) of the hydrogen storage alloy. change,
A hydrogen storage electrode of the present invention was manufactured in the same manner as above.

【0007】このようにして得た夫々の本発明の水素吸
蔵電極を負極とし、公知の焼結式ニッケル極と組み合わ
せ、電解液として苛性カリ水溶液を用いて試験用セルを
作製した。ここでは該負極の急放電容量が分かるように
するため、負極容量を正極容量より小さくし、負極規制
とした。
[0007] Each of the hydrogen storage electrodes of the present invention thus obtained was used as a negative electrode, combined with a known sintered nickel electrode, and a test cell was prepared using a caustic potassium aqueous solution as an electrolyte. Here, in order to understand the rapid discharge capacity of the negative electrode, the negative electrode capacity was made smaller than the positive electrode capacity, and the negative electrode was regulated.

【0008】比較のため、上記の水素吸蔵合金粉に、導
電剤として、10wt.%〜30wt.5の範囲でメッ
キ量を変えて無電解ニッケルメッキを施して夫々の従来
の水素吸蔵電極を製造し、その夫々につき、上記と同様
にして試験用セルを作製した。又、上記の水素吸蔵合金
粉に、導電剤として、三次元鎖状のINCO#255ニ
ッケルパウダーを用い、その添加量を変えて添加混合し
、上記と同様にして、夫々の従来の水素吸蔵電極を製造
し、その夫々につき、上記と同様にして試験用セルを作
製した。尚、上記のINCO#255ニッケルパウダー
の鎖状部分の平均直径は1.5〜3μm、嵩密度は0.
5g/ccである。
For comparison, 10 wt. %~30wt. Conventional hydrogen storage electrodes were manufactured by performing electroless nickel plating with varying amounts of plating within a range of 5, and test cells were manufactured for each of them in the same manner as above. In addition, three-dimensional chain-shaped INCO #255 nickel powder is used as a conductive agent in the above hydrogen storage alloy powder, and the addition amount is varied and mixed, and in the same manner as above, each conventional hydrogen storage electrode is prepared. were manufactured, and test cells were prepared for each of them in the same manner as above. Incidentally, the average diameter of the chain portion of the above INCO #255 nickel powder is 1.5 to 3 μm, and the bulk density is 0.
It is 5g/cc.

【0009】上記のように製造した本発明の電極を用い
たセル及び2種類の従来の電極を用いたセルにつき、夫
々、急放電試験を行った。各セルの充・放電条件として
は、0.2Cで7.5時間(150%)充電した後、2
Cで放電した。
A rapid discharge test was conducted on a cell using the electrode of the present invention manufactured as described above and a cell using two types of conventional electrodes. The charging/discharging conditions for each cell are as follows: After charging at 0.2C for 7.5 hours (150%),
It was discharged at C.

【0010】この結果を図1に示す。図1は、導電剤の
添加量と、2Cでの放電容量の関係を示し、Aは、本発
明の電極の上記の特性曲線、Bは、導電剤としてニッケ
ルパウダーを使用した従来の電極の特性曲線、Cは、導
電剤としてニッケルメッキを使用した従来の電極の特性
曲線を示す。
The results are shown in FIG. Figure 1 shows the relationship between the amount of conductive agent added and the discharge capacity at 2C, where A is the above characteristic curve of the electrode of the present invention, and B is the characteristic of the conventional electrode using nickel powder as the conductive agent. Curve C shows the characteristic curve of a conventional electrode using nickel plating as the conductive agent.

【0011】上記から明らかなように、本発明の電極は
、従来の電極と比較し、導電剤の同じ添加量において、
常にその放電容量が大きい。
As is clear from the above, the electrode of the present invention has the same amount of conductive agent as the conventional electrode.
Its discharge capacity is always large.

【0012】更に詳細には、本発明の電極は、フレーク
状ニッケルパウダーの添加量が10wt.%以上で、大
きい放電容量をもたらし、而も30重量%以下の比較的
少ない添加量で大きい放電容量をもつ電極をもたらし、
従って、高密度エネルキーの電極を得られる。これに対
し、上記従来のニッケルパウダーの場合は、その添加量
30重量%以下では、大きい放電容量が得られない。3
0重量%を越える大量の添加量とすると製造コストの増
加、電極のエネルギー密度の低下をもたらし好ましくな
い。ニッケルメッキの場合は、その添加量10%添加で
最大の放電容量を示し、これ以上メッキ量を増大しても
放電容量は増大せず、そのメッキ処理時間の増大をもた
らし、而も、その放電容量は本発明の電極に比し劣り、
而も電極のエネルギー密度の低下をもたらす。
More specifically, the electrode of the present invention has a flaky nickel powder added in an amount of 10 wt. % or more, resulting in a large discharge capacity, and a relatively small addition amount of 30% by weight or less, resulting in an electrode having a large discharge capacity,
Therefore, an electrode with high density energy can be obtained. On the other hand, in the case of the above-mentioned conventional nickel powder, if the amount added is 30% by weight or less, a large discharge capacity cannot be obtained. 3
Adding a large amount exceeding 0% by weight is undesirable as it increases manufacturing costs and lowers the energy density of the electrode. In the case of nickel plating, the maximum discharge capacity is achieved when the addition amount is 10%, and even if the amount of plating is increased beyond this, the discharge capacity does not increase, but the plating processing time increases, and the discharge The capacity is inferior to that of the electrode of the present invention,
This also results in a decrease in the energy density of the electrode.

【0013】このように、本発明では、フレーク状ニッ
ケルパウダーの添加量は一般に、添加量の比較的少ない
約10〜30wt.%の範囲とすることが好ましく、こ
れにより、経済的つ急放電特性の優れた水素吸蔵電極が
得られる。
As described above, in the present invention, the amount of flaky nickel powder added is generally a relatively small amount of about 10 to 30 wt. It is preferable to set the hydrogen storage electrode to a range of %, whereby a hydrogen storage electrode that is economical and has excellent rapid discharge characteristics can be obtained.

【0014】尚、上記の実施例の電極において、結着剤
として四フッ化エチレン樹脂を用いたが、ポリエチレン
樹脂粉、フッ化ビニリデン樹脂粉を用いても上記と同様
の優れた性能の電極が得られた。又、これらの任意の結
着剤にCMCなどの増粘剤水溶液を加えてスラリー式水
素吸蔵電極としても上記と同様の効果が得られた。
Although tetrafluoroethylene resin was used as the binder in the electrodes of the above examples, electrodes with the same excellent performance as those described above can be obtained even if polyethylene resin powder or vinylidene fluoride resin powder is used. Obtained. Furthermore, the same effect as above was obtained when a slurry type hydrogen storage electrode was obtained by adding an aqueous solution of a thickener such as CMC to any of these binders.

【0015】上記の実施例は、該水素吸蔵合金粉を使用
した場合を示したが、これに代え、その水素化物を使用
しても同様の効果をもたらす。
[0015] The above embodiment shows the case where the hydrogen storage alloy powder is used, but the same effect can be obtained by using its hydride instead.

【0016】[0016]

【発明の効果】このように本発明によるときは、導電剤
を含有する水素吸蔵電極において、その導電剤としてフ
レーク状ニッケルパウダーを含有せしめたものは、従来
の電極に比し高放電容量の急放電特性に著しく優れたも
のが得られ、又、製造容易であるなどの効果を有する。 この場合、そのフレーク状ニッケルパウダーの平均直径
15〜20μm、厚み1.0〜1.1μmのもので、上
記の効果をもたらし、その含有量を約10〜30wt.
%の範囲とすることにより、経済的且つ高密度エネルギ
ーを有する電極が得られる効果を有する。
As described above, according to the present invention, a hydrogen storage electrode containing a conductive agent, which contains flaky nickel powder as the conductive agent, has a rapid high discharge capacity compared to conventional electrodes. It has the advantage that it is possible to obtain a product with extremely excellent discharge characteristics and is easy to manufacture. In this case, the flaky nickel powder has an average diameter of 15 to 20 μm and a thickness of 1.0 to 1.1 μm, which provides the above effects, and has a content of about 10 to 30 wt.
% range, it is possible to obtain an electrode that is economical and has high density energy.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の電極と従来の電極の導電剤の含有量と
放電容量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the content of a conductive agent and the discharge capacity of an electrode of the present invention and a conventional electrode.

【符号の説明】[Explanation of symbols]

A  本発明の電極の導電剤の添加量と放電容量との関
係を示す特性曲線
A Characteristic curve showing the relationship between the amount of conductive agent added and discharge capacity of the electrode of the present invention

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  導電剤を含有する水素吸蔵電極におい
て、該導電剤はフレーク状ニッケルパウダーであること
を特徴とする水素吸蔵電極。
1. A hydrogen storage electrode containing a conductive agent, wherein the conductive agent is flaky nickel powder.
【請求項2】  該フレーク状ニッケルパウダーは、平
均直径15〜20μm、厚み1.0〜1.1μmである
請求項1の水素吸蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein the flaky nickel powder has an average diameter of 15 to 20 μm and a thickness of 1.0 to 1.1 μm.
【請求項3】  該フレーク状ニッケルパウダーの添加
量は、水素吸蔵合金又はその水素化物に対し約10〜3
0wt.%の範囲である請求項1又は2の水素吸蔵電極
3. The amount of the flaky nickel powder added is about 10 to 3
0wt. 3. The hydrogen storage electrode according to claim 1, wherein the hydrogen storage electrode is in the range of
JP3106966A 1991-02-15 1991-02-15 Hydrogen storage electrode Pending JPH04262367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3106966A JPH04262367A (en) 1991-02-15 1991-02-15 Hydrogen storage electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3106966A JPH04262367A (en) 1991-02-15 1991-02-15 Hydrogen storage electrode

Publications (1)

Publication Number Publication Date
JPH04262367A true JPH04262367A (en) 1992-09-17

Family

ID=14447061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3106966A Pending JPH04262367A (en) 1991-02-15 1991-02-15 Hydrogen storage electrode

Country Status (1)

Country Link
JP (1) JPH04262367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
JPH11354124A (en) * 1998-06-08 1999-12-24 Toshiba Battery Co Ltd Alkaline secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999065095A1 (en) * 1998-06-08 1999-12-16 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell
JPH11354124A (en) * 1998-06-08 1999-12-24 Toshiba Battery Co Ltd Alkaline secondary battery
US6440607B1 (en) 1998-06-08 2002-08-27 Toshiba Battery Co., Ltd. Nickel-hydrogen secondary cell

Similar Documents

Publication Publication Date Title
US5827494A (en) Process for producing non-sintered nickel electrode for alkaline battery
JPH07272715A (en) Alkaline manganese battery
US4130696A (en) Conductive diluent for pressed nickel electrodes
JP3541090B2 (en) Positive active material for alkaline storage battery and method for producing the same
JPH04262367A (en) Hydrogen storage electrode
Mrha et al. Plastic bonded electrodes for nickel-cadmium accumulators II. Basic electrochemical parameters of the nickel oxide electrode
JPH03179664A (en) Hydrogen storage electrode for alkaline storage battery
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JP2623409B2 (en) Hydrogen storage electrode and method for producing the same
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPH113703A (en) Manufacture of alkaline storage battery positive electrode
JPS5935360A (en) Zinc electrode
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same
CA1263437A (en) Cadmium negative electrode
JP2561200B2 (en) Hydrogen storage electrode
JP2623413B2 (en) Paste nickel electrode for alkaline storage batteries
JPH04368777A (en) Nickel electrode for alkaline storage battery
JP2538303B2 (en) Zinc electrode for alkaline storage battery
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JP2734149B2 (en) Manufacturing method of paste-type cadmium negative electrode
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS63170853A (en) Paste type nickel positive electrode
JPH04133263A (en) Paste type nickel positive electrode for alkaline storage battery
JPS63110552A (en) Hydrogen absorbing alloy electrode