JPH10270017A - Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith - Google Patents

Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith

Info

Publication number
JPH10270017A
JPH10270017A JP9093006A JP9300697A JPH10270017A JP H10270017 A JPH10270017 A JP H10270017A JP 9093006 A JP9093006 A JP 9093006A JP 9300697 A JP9300697 A JP 9300697A JP H10270017 A JPH10270017 A JP H10270017A
Authority
JP
Japan
Prior art keywords
energy density
electrode plate
nickel
pole plate
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9093006A
Other languages
Japanese (ja)
Inventor
Junichi Maruta
順一 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9093006A priority Critical patent/JPH10270017A/en
Publication of JPH10270017A publication Critical patent/JPH10270017A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic battery pole plate without any drop in energy density and capable of improving high rate discharging characteristics by providing nickel oxy-hydroxide including particles composed with the surface mainly consisting of curved surfaces in such a configuration of a spherical shape and/or approximating a spherical shape. SOLUTION: A pole plate and a battery excellent in high energy density and changing/discharging cycle characteristics are obtained by providing nickel oxy- hydroxide mainly including particles in configuration of spherical and/or approximating the spherical shape and its surface is mainly composed of curved surfaces. Furthermore, by setting the average particle diameter of the nickel oxy-hydroxide in a range from 1 to 100 μ, a pole plate excellent in balance between high rate discharging characteristics and an energy density is obtained. In addition, when the nickel oxy- hydroxide is made a positive pole plate, which forces being held by a conductive porous body in the ternary structure, the energy density of the pole plate is enhanced furthermore. When the nickel hydroxide is formed in a spherical shape or in a shape approximating the spherical shape, increase in specific area corresponding to a decrease in the particle diameter is suppressed so as to increase the energy density.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質電池およ
びその正極板に関する。
The present invention relates to a non-aqueous electrolyte battery and a positive electrode plate thereof.

【0002】[0002]

【従来の技術】ニッケル網や三次元的に連続した構造を
有するスポンジ状ニッケル多孔体等の活物質支持体に正
極活物質である水酸化ニッケルの粒子を結着剤と共に直
接塗布して得られるアルカリ電池用正極板は、高容量化
を図ることができると共に製造方法が極めて簡便にな
り、連続工程が可能で経済的にも有利である。その場合
に、用いる水酸化ニッケル粉末の粒子の形状や大きさに
よっては正極板のエネルギー密度が大きく異なる。
2. Description of the Related Art Particles of a positive electrode active material, nickel hydroxide, are directly applied together with a binder to an active material support such as a nickel mesh or a sponge-like porous nickel having a three-dimensionally continuous structure. The positive electrode plate for an alkaline battery can achieve a high capacity and has a very simple manufacturing method, is capable of a continuous process, and is economically advantageous. In this case, the energy density of the positive electrode plate varies greatly depending on the shape and size of the particles of the nickel hydroxide powder used.

【0003】特開昭60−131765によると、スポ
ンジ状ニッケル多孔体等の活物質支持体に、粒子形状が
球状あるいは球に近似した形状の水酸化ニッケル粉末を
充填することにより、エネルギー密度が向上したアルカ
リ電池用正極板を得ることができるとしている。スポン
ジ状ニッケル多孔体にペースト状活物質を容易に充填す
るためには、用いる活物質粒子はある程度小さいほうが
望ましく、活物質の粒子径が多孔体の孔径と比較して小
さいほど多孔体の骨格によって受ける抵抗力が小さくな
るために、ペーストが容易に充填されるものと考えられ
る。
According to JP-A-60-131765, the energy density is improved by filling a nickel hydroxide powder having a spherical or nearly spherical particle shape into an active material support such as a sponge-like nickel porous body. It is stated that a positive electrode plate for an alkaline battery can be obtained. In order to easily fill the sponge-like nickel porous body with the paste-like active material, it is desirable that the active material particles used are somewhat smaller.The smaller the particle size of the active material is compared to the pore size of the porous body, the more the porous material skeleton It is considered that the paste is easily filled because the resisting force is small.

【0004】しかしながら、活物質の粒子径が小さくな
るとその比表面積が増大し、粒子表面に吸着される液体
の量が多くなるため、同一の粘度を有するペーストを得
るためには粒子径が小さいほど多くの練液を必要とし、
ペースト中の活物質粒子の含有率が低下することにな
る。
However, as the particle size of the active material decreases, the specific surface area increases, and the amount of liquid adsorbed on the particle surface increases. Therefore, in order to obtain a paste having the same viscosity, the smaller the particle size, the smaller the particle size. Requires a lot of liquid,
The content of the active material particles in the paste will decrease.

【0005】したがって、多孔体中にペーストが充填さ
れやすくなっても、実際のエネルギー密度は向上しない
ことになる。ここで、水酸化ニッケル粒子を、球状また
は球形に近似した形状にすることにより、粒子径の低下
にともなう比表面積の増大を抑制することができ、エネ
ルギー密度の向上したアルカリ電池用正極板を提供する
ことができるとしている。
[0005] Therefore, even if the paste is easily filled in the porous body, the actual energy density is not improved. Here, by forming the nickel hydroxide particles into a spherical or spherical shape, it is possible to suppress an increase in the specific surface area due to a decrease in the particle diameter, and to provide a positive electrode plate for an alkaline battery with improved energy density. I can do that.

【0006】一方、リチウム電池などの非水電解質電池
では、アルミニウムや銅などの金属箔を集電体とし、活
物質をアセチレンブラックなどの導電性添加剤、および
含フッ素系ポリマーなどのバインダーとともに適当な溶
媒をもちいてペースト化し、その合剤を集電体上に塗布
することによって電極を作製するのが一般的である。
On the other hand, in a non-aqueous electrolyte battery such as a lithium battery, a metal foil such as aluminum or copper is used as a current collector, and an active material is suitably used together with a conductive additive such as acetylene black and a binder such as a fluorine-containing polymer. Generally, an electrode is produced by forming a paste using a suitable solvent and applying the mixture on a current collector.

【0007】非水電解質中のイオン伝導度は、水系電解
質のそれにくらべて劣るので高率放電特性を向上させる
ためには、通常、極板の活物質合剤層の厚さを数10〜
100μmと非常に薄くする方法がとられている。しか
し、活物質合剤層が薄くなると、一定量の電池活物質に
対する集電体の量が増加し、結果として電池全体に占め
る活物質の相対量が減少するため、電池のエネルギー密
度の低下を余儀なくされてしまう。
Since the ionic conductivity of the non-aqueous electrolyte is inferior to that of the aqueous electrolyte, the thickness of the active material mixture layer of the electrode plate is usually several tens to improve the high rate discharge characteristics.
A method of making it as thin as 100 μm is used. However, as the active material mixture layer becomes thinner, the amount of the current collector with respect to a certain amount of the battery active material increases, and as a result, the relative amount of the active material in the entire battery decreases, so that the energy density of the battery decreases. I will be forced.

【0008】[0008]

【発明が解決しようとする課題】前述したように、リチ
ウム電池などの非水電解質電池においては、高率放電特
性を向上させるため、極板の活物質合剤層の厚さを数1
0〜100μmと非常に薄くする方法を用いることが多
い。しかし、活物質合剤層が薄くなると、一定量の電池
活物質に対する集電体の量が増加し、結果として電池全
体に占める活物質の相対量が減少するため、電池のエネ
ルギー密度の低下を招く。したがって、エネルギー密度
を低下させることなく、高率放電特性を向上させる、非
水電解質電池用極板が求められている。
As described above, in a non-aqueous electrolyte battery such as a lithium battery, the thickness of the active material mixture layer of the electrode plate is set to several tens in order to improve high rate discharge characteristics.
In many cases, a very thin method of 0 to 100 μm is used. However, as the active material mixture layer becomes thinner, the amount of the current collector with respect to a certain amount of the battery active material increases, and as a result, the relative amount of the active material in the entire battery decreases, so that the energy density of the battery decreases. Invite. Accordingly, there is a need for a non-aqueous electrolyte battery electrode plate that improves high-rate discharge characteristics without lowering the energy density.

【0009】[0009]

【課題を解決するための手段】本発明はこのような欠点
を除去して非水電解質電池用正極板のエネルギー密度を
向上させるためになされたものであり、本発明になる極
板は、球状又は/及び球状に近似した形状であって、そ
の表面が曲面を主体として構成された粒子を含有するオ
キシ水酸化ニッケルを備えたことを特徴とするものであ
り、さらに好ましくは、オキシ水酸化ニッケルの平均粒
子径が1〜100μmであることを特徴とするものであ
る。加えて、オキシ水酸化ニッケルが三次元的構造を有
する導電性多孔体に保持されたことを特徴とするもので
ある。また、これらの極板を備えた非水電解質電池を提
供する。
The present invention has been made to improve the energy density of a positive electrode plate for a non-aqueous electrolyte battery by eliminating such disadvantages. And / or and a nickel oxyhydroxide having a shape similar to a sphere and having a surface mainly composed of a curved surface, and more preferably nickel oxyhydroxide. Has an average particle diameter of 1 to 100 μm. In addition, the present invention is characterized in that nickel oxyhydroxide is held in a conductive porous body having a three-dimensional structure. Further, a non-aqueous electrolyte battery provided with these electrode plates is provided.

【0010】[0010]

【発明の実施の形態】本発明はエネルギー密度の極めて
高い正極板及びそれを備えた非水電解質電池を提供する
ことを目的とし、球状又は/及び球状に近似した形状で
あって、その表面が曲面を主体として構成された粒子を
主として含有するオキシ水酸化ニッケルを備えたことを
特徴とするものである。ここでいう球状に近似した形状
とは、球に近い形状、鶏卵状、略鶏卵状、ラグビーボー
ル状、略ラグビーボール状を意味する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention aims at providing a positive electrode plate having an extremely high energy density and a nonaqueous electrolyte battery provided with the same, and has a spherical shape and / or a shape approximate to a spherical shape, the surface of which is spherical. A nickel oxyhydroxide mainly containing particles mainly composed of a curved surface is provided. The shape approximate to a sphere here means a shape close to a sphere, a chicken egg, a substantially chicken egg, a rugby ball, and a substantially rugby ball.

【0011】これによって、高エネルギー密度かつ高率
放電特性および充放電サイクル特性に優れた極板および
電池を提供することができる。このとき、コバルトを含
むオキシ水酸化ニッケルを用いることによって、サイク
ル特性が良好で放電特性も非常に均一なものとすること
ができる。
Thus, it is possible to provide an electrode plate and a battery having high energy density, high rate discharge characteristics, and excellent charge / discharge cycle characteristics. At this time, by using nickel oxyhydroxide containing cobalt, the cycle characteristics can be made good and the discharge characteristics can be made very uniform.

【0012】さらに、オキシ水酸化ニッケルの平均粒子
径を1〜100μの範囲で選択すると、より高率放電特
性とエネルギー密度とのバランスに優れた極板を得るこ
とができる。
Further, when the average particle size of the nickel oxyhydroxide is selected in the range of 1 to 100 μm, it is possible to obtain an electrode plate having a more excellent balance between high-rate discharge characteristics and energy density.

【0013】加えて、オキシ水酸化ニッケルを三次元的
構造を有する導電性多孔体に保持させた正極板とするこ
とにより、極板のエネルギー密度をさらに高めることも
できる。
[0013] In addition, the energy density of the electrode plate can be further increased by forming the positive electrode plate in which nickel oxyhydroxide is held in a conductive porous body having a three-dimensional structure.

【0014】なお、本発明において、活物質とはリチウ
ムイオンを吸蔵放出可能なホスト物質を包含するものを
意味する。
In the present invention, the active material includes a host material capable of inserting and extracting lithium ions.

【0015】[0015]

【実施例】以下、本発明になる一実施例を好適な図面を
もとに詳述する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention;

【0016】本発明による正極板は次のようにして製作
した。
The positive electrode plate according to the present invention was manufactured as follows.

【0017】まず、球状及びそれに近似した粒子形状を
有するオキシ水酸化ニッケル粉末80部とカーボニルニ
ッケル粉末10部とシユウ酸コバルトを水素還元して得
たコバルト粉末10部との混合粉末をカルボキシメチル
セルロース水溶液でペースト化し、このペーストを平均
孔径0.3mm、多孔度96%、厚さ1.7mmのスポ
ンジ状ニッケル多孔体に充填したのち、80℃で1時間
乾燥した。次に、フッ素樹脂の分散液に浸積し、再び8
0℃で1時間乾燥した後、500kg/cm2の圧力で
プレスして本発明になる正極板Aを得た。
First, a mixed powder of 80 parts of a nickel oxyhydroxide powder having a spherical shape and a particle shape similar thereto, 10 parts of a carbonyl nickel powder, and 10 parts of a cobalt powder obtained by hydrogenating cobalt oxalate was mixed with an aqueous solution of carboxymethyl cellulose. The paste was filled into a sponge-like nickel porous body having an average pore diameter of 0.3 mm, a porosity of 96%, and a thickness of 1.7 mm, and dried at 80 ° C. for 1 hour. Next, it is immersed in a fluororesin dispersion liquid,
After drying at 0 ° C. for 1 hour, it was pressed at a pressure of 500 kg / cm 2 to obtain a positive electrode plate A according to the present invention.

【0018】ここで、球状又は及びそれに近似した粒子
形状を有するオキシ水酸化ニッケル粉末は、一例とし
て、アルカリ水溶液中における水酸化ニッケル粉末の化
学的な酸化によって作製した。たとえば、原料として用
いる水酸化ニッケルを、中和反応によって水酸化ニッケ
ルを生成させる際、核となる微細な水酸化ニッケル粒子
を分散させて徐々に反応を進行させる。すると、核の周
囲に均一な結晶が成長し、粒子形状が球状又は/および
それに近似した形状の水酸化ニッケルとなり、得られる
オキシ水酸化ニッケルの粒子形状も球状又は/およびそ
れに近似した形状とすることができる。
Here, the nickel oxyhydroxide powder having a spherical shape or a particle shape similar thereto was prepared by, for example, chemical oxidation of the nickel hydroxide powder in an aqueous alkaline solution. For example, when nickel hydroxide used as a raw material is produced by a neutralization reaction, fine nickel hydroxide particles serving as nuclei are dispersed and the reaction is allowed to proceed gradually. Then, a uniform crystal grows around the nucleus, and the particle shape becomes nickel hydroxide having a spherical shape and / or a shape similar thereto, and the particle shape of the obtained nickel oxyhydroxide also has a spherical shape and / or a shape similar thereto. be able to.

【0019】図5(a)は、500倍にてSEM観察し
たときの本発明にかかるオキシ水酸化ニッケルの粒子形
状を示す説明図である。また、図5(b)は、粒子表面
が曲面を主体として構成されていない、通常の水酸化ニ
ッケル粉末を化学的酸化して作製したオキシ水酸化ニッ
ケルの500倍にてSEM観察したときの粒子形状を示
す説明図である。
FIG. 5 (a) is an explanatory view showing the particle shape of the nickel oxyhydroxide according to the present invention when observed by SEM at a magnification of 500. FIG. 5 (b) shows particles observed by SEM at 500 times magnification of nickel oxyhydroxide produced by chemically oxidizing a normal nickel hydroxide powder whose particle surface is not mainly composed of a curved surface. It is explanatory drawing which shows a shape.

【0020】次に、球状およびそれに近似した粒子形状
を有する水酸化ニッケル粉末、導電材としてアセチレン
ブラック5wt%、結着剤として二フッ化ポリビニリデ
ン5wt%とn−メチル−2−ピロリドール3wt%と
の混合液とをドライルームで混合して、ペースト状にし
たのち、集電体のステンレス箔に塗布・乾燥をして本発
明になる正極板A’を得た。
Next, nickel hydroxide powder having a spherical shape and a particle shape similar thereto, 5 wt% of acetylene black as a conductive material, 5 wt% of polyvinylidene difluoride and 3 wt% of n-methyl-2-pyrrolidole as a binder Was mixed in a dry room to form a paste, and then applied and dried on a stainless steel foil of a current collector to obtain a positive electrode plate A ′ according to the present invention.

【0021】また、粒子表面が曲面を主体として構成さ
れていない、通常の水酸化ニッケル粉末、導電材として
アセチレンブラック5wt%、結着剤として二フッ化ポ
リビニリデン5wt%とn−メチル−2−ピロリドール
3wt%との混合液とをドライルームで混合して、ペー
スト状にしたのち、集電体のステンレス箔に塗布・乾燥
をして従来の正極板B’を得た。
Further, the surface of the particles is not mainly composed of a curved surface, a normal nickel hydroxide powder, 5 wt% of acetylene black as a conductive material, 5 wt% of polyvinylidene difluoride as a binder and n-methyl-2-vinyl A mixed solution with 3 wt% of pyrrolidol was mixed in a dry room to form a paste, which was then applied to a stainless steel foil of a current collector and dried to obtain a conventional positive electrode plate B ′.

【0022】さらに、粒子表面が曲面を主体として構成
されていない、通常の水酸化ニッケル粉末を用いた以外
は正極板Aと同様に従来の正極板Bを得た。
Further, a conventional positive electrode plate B was obtained in the same manner as the positive electrode plate A, except that a normal nickel hydroxide powder whose particle surface was not mainly composed of a curved surface was used.

【0023】これら正極板A、 A’、BおよびB’そ
れぞれ1枚において、それぞれ対極に同じ大きさのリチ
ウム金属板2枚と、電解液に1Mの過塩素酸リチウムを
含むエチレンカーボネートとジエチルカーボネートとの
混合溶媒100mlを用いて試験電池を製作した。
In each of the positive plates A, A ', B and B', two lithium metal plates having the same size as the counter electrode, ethylene carbonate and diethyl carbonate containing 1 M lithium perchlorate in the electrolyte were used. A test battery was manufactured using a mixed solvent of 100 ml with the above.

【0024】正極の電位測定には、金属リチウムの基準
電極を用いた。これらの電池を25℃において、種々の
電流密度で1.5Vまで定電流放電をおこなった。
For the measurement of the potential of the positive electrode, a metallic lithium reference electrode was used. These batteries were subjected to constant current discharge at 25 ° C. at various current densities to 1.5 V.

【0025】正極板AおよびBを製作する際に用いるオ
キシ水酸化ニッケル粉末の平均粒子径を1μmから12
0μmに変えた場合の、充填に適した粘度のペーストを
得るために必要な練液量の変化を図1に示す。
The average particle size of the nickel oxyhydroxide powder used for producing the positive plates A and B is 1 μm to 12 μm.
FIG. 1 shows a change in the amount of kneading liquid necessary to obtain a paste having a viscosity suitable for filling when the thickness is changed to 0 μm.

【0026】図1から本発明になる正極板の場合は、従
来法のものと比較して必要とする練液の量が少いことか
わかる。これは粒子形状が球状及びそれに近似した形状
であるため、その比表面積が著しく小さいことによるも
のと考えられる。
FIG. 1 shows that the positive electrode plate according to the present invention requires a smaller amount of kneading liquid than the conventional method. This is considered to be due to the fact that the specific surface area is extremely small because the particle shape is spherical or similar.

【0027】正極板A、 A’、BおよびB’を製作す
る際に用いるオキシ水酸化ニッケル粉末の平均粒子径を
1μmから120μmに変えた場合の、充填量から求め
たエネルギー密度の変化を図2に示す。
The change in the energy density obtained from the filling amount when the average particle size of the nickel oxyhydroxide powder used for producing the positive plates A, A ′, B and B ′ was changed from 1 μm to 120 μm. It is shown in FIG.

【0028】図2からはエネルギー密度が従来法のもの
よりも著しく向上することかわかる。特に粒子径が小さ
い場合に従来法との差が大きくなっている。この理由は
つぎのように考えられる。
FIG. 2 shows that the energy density is significantly improved over that of the conventional method. Especially when the particle size is small, the difference from the conventional method is large. The reason is considered as follows.

【0029】すなわち、平均粒子径が100μm程度の
オキシ水酸化ニッケル粉末を用いた場合は粒子が大きい
ために多孔体中にペーストが充分に充填できない。従来
のオキシ水酸化ニッケル粉末を用いた場合には、粒子径
が70μm程度に小さくなるとペーストか充填しやすく
なるためにエネルギー密度が若干向上するが、粒子径が
さらに小さくなると粒子の比表面積の増大によって練液
の量が増加するためエネルギー密度が著しく低下する。
That is, when nickel oxyhydroxide powder having an average particle diameter of about 100 μm is used, the paste cannot be sufficiently filled in the porous body because the particles are large. When the conventional nickel oxyhydroxide powder is used, when the particle diameter is reduced to about 70 μm, the paste or filling becomes easy, so that the energy density is slightly improved, but when the particle diameter is further reduced, the specific surface area of the particles increases. As a result, the amount of the kneading liquid increases, so that the energy density significantly decreases.

【0030】一方、本発明のように球状及びそれに近似
した粒子形状を有するオキシ水酸化ニッケル粉末を用い
た場合には、粒子径が1〜70μm程度に小さくなって
もその比表面積が極めて小さいので、粒子径が小さくな
ることによって練液の量が増加するため、活物質粒子の
含有率が低下することよりも、ペーストの充填しやすに
よるペースト充填増の効果の方が大きくなり、エネルギ
ー密度が向上するものと考えられる。このとき、Aで用
いたスポンジ状ニッケル多孔体のような三次元的構造を
有する導電性多孔体に水酸化ニッケル粉末を保持させる
と、ペーストを集電体上に塗布してなるA’にくらべて
さらにエネルギー密度が向上していることがわかる。
On the other hand, when a nickel oxyhydroxide powder having a spherical shape and a particle shape similar thereto is used as in the present invention, the specific surface area is extremely small even if the particle size is reduced to about 1 to 70 μm. Since the amount of the kneading liquid increases due to the decrease in the particle diameter, the effect of increasing the paste filling due to the ease of filling the paste is larger than the decrease in the content of the active material particles, and the energy density is reduced. It is thought to improve. At this time, when the nickel hydroxide powder is held on the conductive porous body having a three-dimensional structure such as the sponge-like nickel porous body used in A, the paste is compared with A ′ obtained by applying the paste on the current collector. It can be seen that the energy density is further improved.

【0031】次に、平均粒子径70μmのオキシ水酸化
ニッケル粒子を用いた正極板A、A’およびB’につい
て、放電電流密度を変えた場合の極板のエネルギー密度
の変化を図3に示す。
Next, for the positive electrodes A, A 'and B' using nickel oxyhydroxide particles having an average particle diameter of 70 μm, the change in the energy density of the electrodes when the discharge current density is changed is shown in FIG. .

【0032】図3から、本発明になる正極板は、極板中
に占める活物質の体積比が従来法によるものとくらべて
高いため、高いエネルギー密度を示すことがわかる。
FIG. 3 shows that the positive electrode plate according to the present invention has a higher energy density because the volume ratio of the active material in the electrode plate is higher than that of the conventional method.

【0033】また、放電電流密度に対する極板のエネル
ギー密度の依存性、すなわち高率放電特性は、従来法の
ものと同水準であることも確認できた。
It was also confirmed that the dependency of the energy density of the electrode plate on the discharge current density, that is, the high-rate discharge characteristics was at the same level as that of the conventional method.

【0034】なお、図2に関して述べたように、 この
場合も、スポンジ状ニッケル多孔体のような、三次元的
構造を有する導電性多孔体に水酸化ニッケル粉末を保持
させてなる正極板Aの方が、ペーストを集電体上に塗布
してなるA’にくらべてさらにエネルギー密度および高
率放電特性が向上していることが確認される。
As described with reference to FIG. 2, also in this case, the positive electrode plate A in which nickel hydroxide powder is held on a conductive porous body having a three-dimensional structure, such as a sponge-like nickel porous body. It is confirmed that the energy density and the high-rate discharge characteristics are further improved as compared with A ′ obtained by applying the paste on the current collector.

【0035】さらに、本発明による正極板A、 A’お
よび従来法による正極板B’について、充放電サイクル
の進行にともなう放電容量保持率の変化を図4に示す。
FIG. 4 shows the change in the discharge capacity retention rate of the positive plates A and A 'according to the present invention and the positive plate B' according to the conventional method as the charge / discharge cycle progresses.

【0036】図4より、本発明による正極板Aおよび
A’の方が従来法による正極板B’に比べて、充放電サ
イクル特性にすぐれていることがわかる。これは、本発
明による正極板に用いている水酸化ニッケルの粒子形状
が球状及び球状に近似した形状であり、結晶成長の方向
が多様であることから、充放電にともなう活物質の体積
膨張収縮の作用を全方向に分散させることができるため
であると考えられる。これによって、サイクル劣化の原
因の一つである、活物質の微粉化を抑制することが可能
となり、充放電サイクル特性の向上に寄与したものと考
えられる。
FIG. 4 shows that the positive electrode plates A and A 'according to the present invention have better charge / discharge cycle characteristics than the positive electrode plate B' according to the conventional method. This is because the particle shape of the nickel hydroxide used for the positive electrode plate according to the present invention has a spherical shape and a shape close to a spherical shape, and since the crystal growth direction is diverse, the volume expansion and contraction of the active material due to charging and discharging is caused. It is considered that this is because the action of (1) can be dispersed in all directions. This makes it possible to suppress the pulverization of the active material, which is one of the causes of cycle deterioration, and is considered to have contributed to the improvement of charge / discharge cycle characteristics.

【0037】一方、従来法による正極板B’に用いられ
る水酸化ニッケル粉末は、特定方向に結晶成長した形状
をしており、充放電にともなう活物質の体積膨張収縮の
作用を、特定方向のみに集中して受けることになる。そ
の結果、活物質の微粉化が起こりやすくなるため、充放
電サイクルの進行にともなう放電容量の低下がより大き
くなるものと考えられる。
On the other hand, the nickel hydroxide powder used for the positive electrode plate B 'according to the conventional method has a shape in which crystals grow in a specific direction, and the effect of volume expansion and contraction of the active material due to charge and discharge is reduced only in the specific direction. I will receive it in a concentrated manner. As a result, the active material is liable to be pulverized, and it is considered that the discharge capacity is more greatly reduced as the charge / discharge cycle proceeds.

【0038】実際、500サイクル経過後の試験電極を
解体すると、正極板B’の方は活物質の微粉化が確認さ
れたが、正極板AおよびA’の活物質はサイクル試験開
始時の粒子形状を維持していた。なお、この場合も、ス
ポンジ状ニッケル多孔体のような三次元的構造を有する
導電性多孔体に水酸化ニッケル粉末を保持させてなる正
極板Aの方が、ペーストを集電体上に塗布してなるA’
にくらべてさらに充放電サイクル特性が向上している。
In fact, when the test electrode was disassembled after 500 cycles, pulverization of the active material was confirmed in the positive electrode plate B ', but the active materials in the positive electrode plates A and A' were particles at the start of the cycle test. The shape was maintained. In this case, also in this case, the positive electrode plate A in which the nickel hydroxide powder is held in a conductive porous body having a three-dimensional structure such as a sponge-like nickel porous body applies the paste on the current collector. A '
The charge / discharge cycle characteristics are further improved as compared with the above.

【0039】[0039]

【発明の効果】本発明になる非水電解質電池用正極板
は、球状又は/及び球状に近似した形状であって、その
表面が曲面を主体として構成された粒子を主として含有
するオキシ水酸化ニッケルを備えたことを特徴とする。
これによって、高エネルギー密度かつ高率放電特性およ
び充放電サイクル特性に優れた極板を提供することがで
きる。
The positive electrode plate for a non-aqueous electrolyte battery according to the present invention is a nickel oxyhydroxide having a spherical shape and / or a shape close to a spherical shape, the surface of which mainly contains particles mainly composed of curved surfaces. It is characterized by having.
This makes it possible to provide an electrode plate having a high energy density and excellent high-rate discharge characteristics and charge-discharge cycle characteristics.

【0040】このとき、コバルトを含むオキシ水酸化ニ
ッケルを用いることによって、サイクル特性が良好で、
しかも放電特性も非常に均一なものとすることができ
る。
At this time, by using nickel oxyhydroxide containing cobalt, good cycle characteristics can be obtained.
In addition, the discharge characteristics can be made very uniform.

【0041】さらに、オキシ水酸化ニッケルの平均粒子
径を1〜100μmの範囲で選択すると、より高率放電
特性とエネルギー密度とのバランスに優れた極板を得る
ことができる。
Further, when the average particle size of the nickel oxyhydroxide is selected in the range of 1 to 100 μm, it is possible to obtain an electrode plate having a more excellent balance between high-rate discharge characteristics and energy density.

【0042】加えて、オキシ水酸化ニッケルを三次元的
構造を有する導電性多孔体に保持させた正極板とするこ
とにより、極板のエネルギー密度をさらに高めることが
できる。
In addition, by forming a positive electrode plate in which nickel oxyhydroxide is held in a conductive porous body having a three-dimensional structure, the energy density of the electrode plate can be further increased.

【0043】以上のように本発明によると、オキシ水酸
化ニッケルを活物質とする非水電解質電池用正極板のエ
ネルギー密度を著しく向上させることができ、しかも高
率放電特性の低下も抑制することができる。よって、本
発明になる正極板を用いることにより、優れた非水電解
質電池を提供することができる。なお、本発明の実施例
では活物質支持体としてスポンジ状ニッケル多孔体を用
いたが、活物質支持体としてニッケル網や多孔状ニッケ
ル板を用いて活物質粉末を塗布した場合にも同様の効果
が得られる。
As described above, according to the present invention, the energy density of the positive electrode plate for a non-aqueous electrolyte battery using nickel oxyhydroxide as an active material can be remarkably improved, and the deterioration of the high-rate discharge characteristics can be suppressed. Can be. Therefore, an excellent nonaqueous electrolyte battery can be provided by using the positive electrode plate according to the present invention. Although the sponge-like nickel porous body was used as the active material support in the examples of the present invention, the same effect can be obtained when the active material powder is applied using a nickel mesh or a porous nickel plate as the active material support. Is obtained.

【0044】それゆえ本発明の工業的価値は極めて大で
ある。
Therefore, the industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極板AおよびBにおけるオキシ水酸化ニッケ
ルの平均粒子径と、ペースト化に必要な練液量との関係
を示す図である。
FIG. 1 is a graph showing the relationship between the average particle size of nickel oxyhydroxide in positive plates A and B and the amount of kneading liquid necessary for pasting.

【図2】正極板A、A’、BおよびB’におけるオキシ
水酸化ニッケルの平均粒子径と、エネルギー密度との関
係を示す図である。
FIG. 2 is a diagram showing the relationship between the average particle size of nickel oxyhydroxide and the energy density in positive electrode plates A, A ′, B and B ′.

【図3】正極板A、A’およびB’における放電電流密
度と、極板のエネルギー密度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the discharge current density in positive electrodes A, A ′ and B ′ and the energy density of the electrodes.

【図4】正極板A、A’およびB’における充放電サイ
クル数と、活物質の放電容量保持率との関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between the number of charge / discharge cycles in the positive plates A, A ′ and B ′ and the discharge capacity retention of the active material.

【手続補正書】[Procedure amendment]

【提出日】平成9年5月28日[Submission date] May 28, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極板AおよびBにおけるオキシ水酸化ニッケ
ルの平均粒子径と、ペースト化に必要な練液量との関係
を示す図である。
FIG. 1 is a graph showing the relationship between the average particle size of nickel oxyhydroxide in positive plates A and B and the amount of kneading liquid necessary for pasting.

【図2】正極板A、A’、BおよびB’におけるオキシ
水酸化ニッケルの平均粒子径と、エネルギー密度との関
係を示す図である。
FIG. 2 is a diagram showing the relationship between the average particle size of nickel oxyhydroxide and the energy density in positive electrode plates A, A ′, B and B ′.

【図3】正極板A、A’およびB’における放電電流密
度と、極板のエネルギー密度との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the discharge current density in positive electrodes A, A ′ and B ′ and the energy density of the electrodes.

【図4】正極板A、A’およびB’における充放電サイ
クル数と、活物質の放電容量保持率との関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between the number of charge / discharge cycles in the positive plates A, A ′ and B ′ and the discharge capacity retention of the active material.

【図5】本発明にかかるオキシ水酸化ニッケルの粒子形
状と従来例にかかるオキシ水酸化ニッケルの粒子形状と
を示す説明図である。
FIG. 5 is an explanatory view showing a particle shape of nickel oxyhydroxide according to the present invention and a particle shape of nickel oxyhydroxide according to a conventional example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 球状又は/及び球状に近似した形状であ
って、その表面が曲面を主体として構成された粒子を主
として含有するオキシ水酸化ニッケルを備えたことを特
徴とする非水電解質電池用正極板。
1. A non-aqueous electrolyte battery characterized by comprising nickel oxyhydroxide having a spherical shape and / or a shape approximate to a spherical shape, the surface of which is mainly composed of particles mainly composed of a curved surface. Positive electrode plate.
【請求項2】 コバルトを含むオキシ水酸化ニッケルを
用いることを特徴とする請求項1記載の非水電解質電池
用正極板。
2. The positive electrode plate for a non-aqueous electrolyte battery according to claim 1, wherein nickel oxyhydroxide containing cobalt is used.
【請求項3】 オキシ水酸化ニッケルの平均粒子径が1
〜100μmであることを特徴とする請求項1又は2記
載の非水電解質電池用正極板。
3. The nickel oxyhydroxide having an average particle size of 1
The positive electrode plate for a non-aqueous electrolyte battery according to claim 1, wherein the thickness is from 100 μm to 100 μm.
【請求項4】 オキシ水酸化ニッケルが三次元的構造を
有する導電性多孔体に保持されたことを特徴とする請求
項1、2又は3記載の非水電解質電池用正極板。
4. The positive electrode plate for a non-aqueous electrolyte battery according to claim 1, wherein the nickel oxyhydroxide is held in a conductive porous body having a three-dimensional structure.
【請求項5】 前記請求項1、2、3又は4記載の正極
板を備えたことを特徴とする非水電解質電池。
5. A non-aqueous electrolyte battery comprising the positive electrode plate according to claim 1, 2, 3, or 4.
JP9093006A 1997-03-26 1997-03-26 Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith Withdrawn JPH10270017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9093006A JPH10270017A (en) 1997-03-26 1997-03-26 Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9093006A JPH10270017A (en) 1997-03-26 1997-03-26 Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith

Publications (1)

Publication Number Publication Date
JPH10270017A true JPH10270017A (en) 1998-10-09

Family

ID=14070314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9093006A Withdrawn JPH10270017A (en) 1997-03-26 1997-03-26 Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith

Country Status (1)

Country Link
JP (1) JPH10270017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155726A (en) * 1999-11-24 2001-06-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte battery
JP2001351630A (en) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd Manufacturing method of non-aqueous electrolyte battery and non-aqueous electrolyte battery positive electrode material
JP2002179427A (en) * 2000-10-04 2002-06-26 Tanaka Chemical Corp Nickel oxyhydroxide and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155726A (en) * 1999-11-24 2001-06-08 Japan Storage Battery Co Ltd Non-aqueous electrolyte battery
JP2001351630A (en) * 2000-06-07 2001-12-21 Japan Storage Battery Co Ltd Manufacturing method of non-aqueous electrolyte battery and non-aqueous electrolyte battery positive electrode material
JP2002179427A (en) * 2000-10-04 2002-06-26 Tanaka Chemical Corp Nickel oxyhydroxide and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
WO2015087948A1 (en) Carbon material-coated metal porous body, collector, electrode, and power storage device
JP2017091673A (en) Lithium ion battery
JP3620401B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
CN110078134B (en) Preparation method of cobaltosic oxide for preparing lithium ion battery cathode material
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH10270024A (en) Manufacture of positive electrode plate for nonaqueous electrolyte battery
JPH0750607B2 (en) Hydrogen storage electrode for alkaline storage battery
JPS64787B2 (en)
JP3052670B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode
KR100666168B1 (en) Method for Producing the Positive Electrode of Lithium Primary Cell
JPH0443387B2 (en)
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH03190060A (en) Polyaniline battery
JP2000149938A (en) Nickel positive electrode active material
JP2918560B2 (en) Manufacturing method of hydrogen storage electrode
JP2022112996A (en) Electrode and power storage device
JP2002246026A (en) Non-aqueous electrolyte secondary battery
JP2000223118A (en) Positive electrode material for lithium secondary battery and its manufacture
CA1263437A (en) Cadmium negative electrode
JPH04262367A (en) Hydrogen storage electrode
JPH01272050A (en) Nickel electrode for alkaline battery
JP2010108875A (en) Positive electrode for alkaline storage battery, and method of manufacturing positive electrode for alkaline storage battery
JPH04229953A (en) Manufacture of non-sintered positive pole for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050314

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050422