JPH03190060A - Polyaniline battery - Google Patents

Polyaniline battery

Info

Publication number
JPH03190060A
JPH03190060A JP1329846A JP32984689A JPH03190060A JP H03190060 A JPH03190060 A JP H03190060A JP 1329846 A JP1329846 A JP 1329846A JP 32984689 A JP32984689 A JP 32984689A JP H03190060 A JPH03190060 A JP H03190060A
Authority
JP
Japan
Prior art keywords
positive electrode
polyaniline
powder
titanium powder
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1329846A
Other languages
Japanese (ja)
Inventor
Hiroshi Hattori
浩 服部
Tatsu Nagai
龍 長井
Tadashi Kono
正 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP1329846A priority Critical patent/JPH03190060A/en
Publication of JPH03190060A publication Critical patent/JPH03190060A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To ensure high utilization in a positive electrode even in high rate charge-discharge and to prevent decrease in charge-discharge capacity by forming the positive electrode out of a compressed molding of a mixture of polyaniline powder and titanium powder. CONSTITUTION:A positive electrode 7 is formed out of a compressed molding of a mixture of polyaniline powder and titanium powder, and a negative electrode 6 is made of lithium or a lithium alloy. As the positive electrode 7 is formed out of a compressed molding of a mixture of polyaniline powder and titanium powder, even if the surface of polyaniline particle gets undoped and high resistive, high electron-conductivity is ensured in the positive electrode 7 by the conductivity of the titanium powder, an insulated region which is not utilized for power generating reaction is rarely produced and decrease in charge-discharge capacity is restrained. Internal resistance is kept almost constant by electron conductivity even if discharge depth is varied. The preferable content of titanium powder in the positive electrode 7 is 5-20wt.% of the weight of the whole positive electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は正極活物質としてポリアニリン、負極活物質
としてリチウムまたはリチウム合金を使用したポリアニ
リン電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a polyaniline battery using polyaniline as a positive electrode active material and lithium or a lithium alloy as a negative electrode active material.

〔従来の技術〕[Conventional technology]

一般に、ポリアニリン電池は、ポリアニリンがイオンの
ドーピングによって導電性を発現する性質を有すること
から、このポリアニリンを正極活物質として用いてその
導体領域におけるイオンのドーピング量の変化に伴う電
極電位の変化を利用するようにしたものであり、二次電
池として機能させることができる。
In general, polyaniline batteries use polyaniline as a positive electrode active material because polyaniline has the property of developing conductivity through ion doping, and utilizes changes in electrode potential caused by changes in the amount of ion doping in the conductor region. This allows it to function as a secondary battery.

従来のポリアニリン電池にあっては、その正極として、
ネット状の金属集電体の表面に電解酸化重合法によって
ポリアニリン層を被着形成させたシートを所要の大きさ
に切り抜いたもの、もしくは電解酸化重合法にて得られ
るポリアニリン粉末を圧縮成形して所要の大きさの成形
体としたものが使用されている。
In conventional polyaniline batteries, the positive electrode is
A polyaniline layer is formed on the surface of a net-like metal current collector by electrolytic oxidation polymerization, and then cut out to the required size, or a polyaniline powder obtained by electrolytic oxidation polymerization is compression molded. A molded body of the required size is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来のポリアニリン電池では、負荷
特性に劣り、軽負荷での充放電では問題はないが、重負
荷の充放電を行った場合に活物質利用率が著しく低下し
て充放電容量の減少を招き、また放電深度つまり一回の
放電中の放電度合によって内部抵抗が変化するという欠
点があった。
However, the conventional polyaniline batteries mentioned above have poor load characteristics, and although there is no problem when charging and discharging under light loads, when charging and discharging under heavy loads, the active material utilization rate decreases significantly and the charge/discharge capacity decreases. Furthermore, there was a drawback that the internal resistance changed depending on the depth of discharge, that is, the degree of discharge during one discharge.

この発明は、上述の事情に鑑みて、負荷特性を改善して
重負荷での充放電によっても充放電容量の減少が小さく
、かつ放電深度に関係なくほぼ一定の内部抵抗を示し、
したがって実用性が高く用途的制約の少ないポリアニリ
ン電池を提供することを目的としている。
In view of the above-mentioned circumstances, this invention improves the load characteristics so that even when charging and discharging under heavy loads, the decrease in charge and discharge capacity is small, and the internal resistance is almost constant regardless of the depth of discharge.
Therefore, it is an object of the present invention to provide a polyaniline battery that is highly practical and has fewer restrictions on usage.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために、まず従
来のポリアニリン電池における負荷特性に関して前記難
点が生じる原因につき検討したところ、従来の電池を重
負荷で充放電させた場合に、正極活物質であるポリアニ
リンの表面部が脱ドブ状態となって高抵抗体化し、これ
によって正極内部にミクロ的な絶縁部が多数形成されて
電池反応に利用されない領域を生じ、正極利用率の低下
に伴う放電容量の減少を招くことが判明した。
In order to achieve the above object, the inventors first investigated the causes of the above-mentioned difficulties in load characteristics in conventional polyaniline batteries, and found that when conventional batteries were charged and discharged under heavy loads, the positive electrode was activated. The surface of polyaniline, which is a material, becomes de-greyed and becomes a high-resistance material, resulting in the formation of many microscopic insulating parts inside the positive electrode, creating areas that are not used for battery reactions, and resulting in a decrease in the positive electrode utilization rate. It was found that this resulted in a decrease in discharge capacity.

そこで、この発明者らは上記の知見に基づいてさらに検
討を重ねた結果、ポリアニリン粉末を用いた成形正極中
に特定の導電助剤を含有させることにより、重負荷の充
放電で上記の絶縁部が形成されても正極内部に充分な導
電性が確保され、正極利用率が大きく向上するとともに
、放電深度による内部抵抗の変化も生じにくくなり、実
用性の高いポリアニリン電池となることを見い出し、こ
の発明をなすに至った。
As a result of further studies based on the above findings, the inventors found that by incorporating a specific conductive additive into the molded positive electrode using polyaniline powder, the above-mentioned insulating area could be improved even under heavy load charging and discharging. We have discovered that sufficient conductivity is ensured inside the positive electrode even if a He came up with an invention.

すなわち、この発明は、ポリアニリン粉末とチタン粉末
との混合物の圧縮成形体からなる正極と、リチウムまた
はリチウム合金からなる負極と、これら両極間に介在す
るセパレータと、非水有機電解液とを有してなるポリア
ニリン電池に係るものである。
That is, the present invention includes a positive electrode made of a compression molded mixture of polyaniline powder and titanium powder, a negative electrode made of lithium or a lithium alloy, a separator interposed between these two electrodes, and a nonaqueous organic electrolyte. This relates to polyaniline batteries.

また、この発明では、上記正極中のチタン粉末が正極全
体の5〜20重量%を占める構成を好適態様としている
Further, in the present invention, a preferred embodiment is such that the titanium powder in the positive electrode accounts for 5 to 20% by weight of the entire positive electrode.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明のポリアニリン電池は、上記の如く、正極がポ
リアニリン粉末とチタン粉末との混合物の圧縮成形体に
て形成されていることにより、重負荷での充放電を行っ
てポリアニリンの粒子表面部が脱ドープ状態となって高
抵抗化しても上記チタン粉末の導電作用にて正極内部に
高い電子伝導性が確保されるため、電池反応に利用され
ない絶縁領域を生じに<<、充放電容量の減少が極めて
少なくなり、また上記の電子伝導性によって放電深度が
変化しても内部抵抗はほぼ一定した値をとるようになる
As described above, in the polyaniline battery of the present invention, the positive electrode is formed of a compression molded mixture of polyaniline powder and titanium powder, so that the surface portion of the polyaniline particles is removed by charging and discharging under heavy loads. Even if the titanium powder becomes doped and has a high resistance, the conductive action of the titanium powder ensures high electronic conductivity inside the positive electrode. The internal resistance becomes extremely small, and even if the depth of discharge changes due to the above-mentioned electron conductivity, the internal resistance takes a substantially constant value.

したがって、このポリアニリン電池は、負荷の軽重によ
る用途的な制約がほとんどないうえ、安定した内部抵抗
を示すことから、従来の電池に比較して格段に高い実用
性を備える。
Therefore, this polyaniline battery has almost no restrictions in terms of use due to light or heavy loads, and also exhibits stable internal resistance, so it has much higher practicality than conventional batteries.

上記のチタン粉末は、耐電圧特性にすぐれているうえに
、比重が大きくて良好な分散性を有しており、しかも成
形正極の機械的強度に対しなんらの悪影響を及ぼさず、
一方電池のエネルギー密度に好結果を与えるという、導
電助剤として極めて好都合な性質を備えている。
The above titanium powder has excellent withstand voltage characteristics, has a large specific gravity and good dispersibility, and has no adverse effect on the mechanical strength of the molded positive electrode.
On the other hand, it has extremely advantageous properties as a conductive additive, giving good results to the energy density of the battery.

このようなチタン粉末の粒子径としては、平均粒子径が
20μm以下(50μmパス)であるのが好ましい、ま
た、その使用量は、正極全体つまりポリアニリン粉末と
の合計量中5〜20重量%を占める範囲が好ましく、少
なすぎては充分な電子導電性を確保できず、逆に多すぎ
ては正極の単位体積当りの活物質量が過少となって電池
特性の低下を招く。
As for the particle size of such titanium powder, it is preferable that the average particle size is 20 μm or less (50 μm pass), and the amount used is 5 to 20% by weight of the entire positive electrode, that is, the total amount of the polyaniline powder. The range occupied by the active material is preferable; if it is too small, sufficient electronic conductivity cannot be ensured, and if it is too large, the amount of active material per unit volume of the positive electrode becomes too small, leading to deterioration of battery characteristics.

一方、正極活物質であるポリアニリン粉末は、従来の圧
縮成形体からなる正極として利用されていたものと同様
であり、化学酸化重合法、電解酸化重合法などの既知重
合法にて合成されたポリマー粉末、特に平均粒子径0.
1〜2μm程度の粉末が好適に使用される。
On the other hand, polyaniline powder, which is the positive electrode active material, is the same as that used in conventional positive electrodes made of compression molded bodies, and is a polymer synthesized by known polymerization methods such as chemical oxidation polymerization method and electrolytic oxidation polymerization method. Powders, especially those with an average particle size of 0.
Powder of about 1 to 2 μm is preferably used.

正極を形成するには、上記のポリアニリン粉末とチタン
粉末との混合物を、常法に準じてプレス型内に充填して
加圧圧縮して所要の大きさの圧縮成形体とすればよい。
In order to form a positive electrode, the mixture of the polyaniline powder and titanium powder may be filled into a press mold according to a conventional method and compressed under pressure to form a compression molded body of a desired size.

この発明のポリアニリン電池はリチウム系二次電池に属
し、負極としてリチウムもしくはリチウム合金が使用さ
れる。なお、ここでいうリチウム合金は、冶金学上の合
金のほか、リチウム箔とアルミニウムなどの他の金属箔
とを圧着−電化したものも包含する。
The polyaniline battery of this invention belongs to lithium-based secondary batteries, and uses lithium or a lithium alloy as the negative electrode. Note that the lithium alloy herein includes not only metallurgical alloys but also those obtained by crimping and electrifying lithium foil and other metal foils such as aluminum.

非水有機電解液としては、LiBF、、LiC’ Oa
 、L i Bφ4 (φはフェニル基)、LiPF6
、LiAsFbなどのリチウム塩をプロピオンカーボネ
ート、T−ブチロラクトン、ジメトキシエタン、ジオキ
ソランなどの非水系有機溶媒に溶解してなるリチウムイ
オン伝導性電解液が好適である。
As the non-aqueous organic electrolyte, LiBF, LiC' Oa
, L i Bφ4 (φ is a phenyl group), LiPF6
A lithium ion conductive electrolytic solution prepared by dissolving a lithium salt such as , LiAsFb, etc. in a non-aqueous organic solvent such as propion carbonate, T-butyrolactone, dimethoxyethane or dioxolane is suitable.

第1図は、ボタン型電池に適用したこの発明のポリアニ
リン電池の構造例を示したものである。
FIG. 1 shows an example of the structure of a polyaniline battery of the present invention applied to a button type battery.

この図において、■は電池ケースであり、ともに皿型を
なす負極端子板2と正極端子板3とを向かい合わせ、両
者の周縁部を合成ゴムや合成樹脂などの弾性絶縁材料か
らなる環状ガスケット4を介在して嵌合圧着することに
より、偏平な密閉容器を構成している。
In this figure, ■ is a battery case, in which a negative terminal plate 2 and a positive terminal plate 3, both plate-shaped, face each other, and their peripheral edges are covered with an annular gasket 4 made of an elastic insulating material such as synthetic rubber or synthetic resin. A flat airtight container is constructed by fitting and crimping with the two interposed.

このケースlの内部には、負極端子板2にステンレスネ
ットなどの集電体5を介して接合したリチウムまたはリ
チウム合金からなる負極6と、正極端子板3に接合した
前記の圧縮成形体からなる正極7と、両極6.7間に介
在するポリプロピレン不織布などの多孔性絶縁材料から
なるセパレタ8とが、非水有機電解液に浸漬された状態
で装填されている。
Inside this case l, there is a negative electrode 6 made of lithium or lithium alloy bonded to the negative electrode terminal plate 2 via a current collector 5 such as stainless steel net, and the above-mentioned compression molded body bonded to the positive electrode terminal plate 3. A positive electrode 7 and a separator 8 made of a porous insulating material such as a polypropylene nonwoven fabric interposed between both electrodes 6 and 7 are loaded in a state of being immersed in a non-aqueous organic electrolyte.

なお、この発明は図示したボタン型電池に限らず、種々
の形態および構造のポリアニリン/リチウム系二次電池
に適用できる。
Note that the present invention is applicable not only to the illustrated button-type battery but also to polyaniline/lithium-based secondary batteries of various forms and structures.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、正極としてポリアニリン粉末とチタ
ン粉末との混合物の圧縮成形体を用いることにより、重
負荷の充放電によっても高い正極利用率が確保されて充
放電容量の減少が非常に少ないというすぐれた負荷特性
を具備し、かつ放電深度に関係なくほぼ一定した内部抵
抗を示し、したがって用途的な制約が少な(実用性の高
いポリアニリン電池を提供できる。
According to this invention, by using a compression molded mixture of polyaniline powder and titanium powder as the positive electrode, a high positive electrode utilization rate is ensured even under heavy load charging and discharging, and there is very little decrease in charge/discharge capacity. It has excellent load characteristics, exhibits a nearly constant internal resistance regardless of the depth of discharge, and therefore has fewer restrictions in terms of use (a highly practical polyaniline battery can be provided).

また、上記の圧縮成形体からなる正極は、導電助剤とし
て特にチタン粉末を用いているため、その機械的強度が
良好で電池の組み立て時に割れなどの支障をきたすこと
がない、すなわち、他の導電助剤としてたとえば炭素粉
末などを用いたときには、正極の機械的強度が不足し、
組み立て時の割れなどに起因して電池特性を損なうおそ
れがあるが、この発明ではこのような心配が全くないと
いう利点を有している。
In addition, since the positive electrode made of the above-mentioned compression molded body uses titanium powder as a conductive additive, its mechanical strength is good and there is no problem such as cracking when assembling the battery. For example, when carbon powder is used as a conductive additive, the mechanical strength of the positive electrode is insufficient.
Although there is a risk of damage to battery characteristics due to cracks during assembly, the present invention has the advantage of not having such concerns at all.

さらに、この発明において、上記チタン粉末の使用量を
正極全体の5〜20重量%を占める割合に設定すること
により、上記正極利用率、内部抵抗および機械的強度な
どの作用効果を他の電池特性の低下をきたすことなく充
分に発揮させることができる。
Furthermore, in the present invention, by setting the amount of the titanium powder used to account for 5 to 20% by weight of the entire positive electrode, the effects of the positive electrode utilization rate, internal resistance, mechanical strength, etc. can be improved by controlling other battery characteristics. It can be fully utilized without causing any decrease in performance.

〔実施例〕〔Example〕

以下、この発明の実施例を記載してより具体的に説明す
る。
Hereinafter, the present invention will be explained in more detail by describing examples.

実施例 アニリン14.0 gおよび42重量%HBF、水溶液
31.4gを水190gに溶解してA液とした。
Example 14.0 g of aniline and 31.4 g of a 42% by weight HBF aqueous solution were dissolved in 190 g of water to prepare a solution A.

別に、(N H4)z Cr t 0.12.6 gお
よび42重量%HB F 、水溶液78.4 gを水2
00gに溶解してB液とし、このB液を上記のA液に系
内を2℃に冷却しつつ撹拌しながら2時間かけて滴下し
、滴下終了後の混合液をさらに2℃で3時間撹拌した。
Separately, 0.12.6 g of (NH4)zCr t and 78.4 g of a 42 wt% HB F aqueous solution were added to 2 g of water.
00 g to obtain liquid B. This liquid B was added dropwise to the above liquid A over 2 hours while stirring while cooling the system to 2°C. After the dropping was completed, the mixed liquid was further heated at 2°C for 3 hours. Stirred.

つぎに、液中に生成した黒縁色の析出物をガラスフィル
ターにてろ別し、これを水およびアセトンでそれぞれ充
分に洗浄し、得られた粉末を80℃で3時間真空乾燥し
、さらに100℃で5時間真空乾燥してポリアニリン粉
末を得た。このポリアニリン粉末を電子顕微鏡で観察し
たところ、その−成粒子は平均粒子径0.5μmの粒状
粒子であった。
Next, the black-rimmed precipitate formed in the liquid was filtered out using a glass filter, thoroughly washed with water and acetone, and the resulting powder was vacuum-dried at 80°C for 3 hours, and further at 100°C. The mixture was vacuum dried for 5 hours to obtain polyaniline powder. When this polyaniline powder was observed under an electron microscope, the particles were found to be granular particles with an average particle size of 0.5 μm.

このポリアニリン粉末50■と平均粒子径20μm(5
0μmバス)のチタン粉末5■とを充分に混合し、この
混合物を常法によって圧縮成形して、直径15m、厚さ
0.37mのペレット状の成形体を作製した。 つぎに
、正極として上記の成形体、負極として厚さ0.15m
のリチウム箔と厚さ0.2m簡のアルミニウム箔とを圧
着してなる直径15鶴のLi−A1合金、セパレータと
してポリプロピレン不織布からなる厚さ0.13mのシ
ート、電解液としてプロピレンカーボネートと1・2−
ジメトキシエタンとの容量比l:1の混合溶媒に乾燥処
理したLiBF4を1モル1IWA度で溶解してなる非
水有機電解液、をそれぞれ使用して、第1図に示す構造
で直径20m、総厚1.6 nのボタン型のポリアニリ
ン電池を作製した。
This polyaniline powder 50μm and average particle size 20μm (5μm)
The mixture was thoroughly mixed with 5 cm of titanium powder (0 μm bath), and this mixture was compression molded by a conventional method to produce a pellet-shaped molded body with a diameter of 15 m and a thickness of 0.37 m. Next, the above molded body was used as a positive electrode, and a thickness of 0.15 m was used as a negative electrode.
A Li-A1 alloy with a diameter of 15 mm made by crimping a lithium foil of 2-
A non-aqueous organic electrolyte prepared by dissolving 1 mol of LiBF4 dried in a mixed solvent with dimethoxyethane in a volume ratio of 1:1 was used to create a 20 m diameter, total A button-shaped polyaniline battery with a thickness of 1.6 nm was produced.

比較例 正極としてポリアニリン粉末単独の圧縮成形体を用いた
以外は、実施例と同様にしてボタン型のポリアニリン電
池を作製した。
Comparative Example A button-shaped polyaniline battery was produced in the same manner as in the example except that a compression molded body of polyaniline powder alone was used as the positive electrode.

上記の実施例および比較例の電池につき、充放電試験と
して、正極が負極に対して3.4vになるまで500μ
Aで定電流充電し、2.0■になるまで各種電流値で定
電流放電を行い、各放電電流値での放電容量を測定した
。結果は、つぎの第1表に示されるとおりであった。
For the batteries of the above examples and comparative examples, as a charge/discharge test, 50μ
Constant current charging was carried out at A, constant current discharging was carried out at various current values until the current reached 2.0 ■, and the discharge capacity at each discharge current value was measured. The results were as shown in Table 1 below.

第   1   表 の圧縮成形体からなる従来構成の電池(比較例)では充
放電の負荷が大きくなるほど放電容量の減少が著しいの
に対し、この発明の電池(実施例)では上記負荷の増大
に伴う放電容量の減少が非常に少なく高い正極利用率を
保持するものであることが判る。
In the conventional battery (comparative example) made of the compression-molded body shown in Table 1, the discharge capacity decreased significantly as the charge/discharge load increased, whereas in the battery of the present invention (example), the discharge capacity decreased significantly as the load increased. It can be seen that the decrease in discharge capacity is very small and a high positive electrode utilization rate is maintained.

つぎに、上記の実施例および比較例の電池につき、正極
が負極に対して3.4vになるまで5oOμAで定電流
充電し、0.1mAの定電流放電を行い、所定放電時間
ごとの電池の内部抵抗(IKH2の交流抵抗)を測定し
たところ、下記第2表で示す結果が得られた。
Next, the batteries of the above Examples and Comparative Examples were charged at a constant current of 5oOμA until the positive electrode became 3.4V with respect to the negative electrode, and then discharged at a constant current of 0.1mA. When the internal resistance (AC resistance of IKH2) was measured, the results shown in Table 2 below were obtained.

第   2   表 上表の結果から、正極がポリアニリン粉末単独上表の結
果から、従来構成の電池(比較例)では放電深度による
内部抵抗の変化が大きいのに対し、この発明の電池(実
施例)では放電深度にかかわらずほぼ一定した内部抵抗
値を示すものであることが判る。
Table 2 From the results in the upper table, it can be seen that the battery with the conventional configuration (comparative example) has a large change in internal resistance depending on the depth of discharge, whereas the battery of the present invention (example) has a large change in internal resistance depending on the depth of discharge. It can be seen that the internal resistance value is almost constant regardless of the depth of discharge.

つぎに、上記の実施例および比較例の電池に用いた圧縮
成形体から正極につき、第2図に示す割れ強度測定装置
を用いて、荷重をかけていったときにいくらで割れが生
じるかを調べたところ、つぎの第3表に示す結果が得ら
れた。
Next, we used the cracking strength measuring device shown in Figure 2 to measure how quickly cracks occur when a load is applied to the positive electrodes from the compression molded bodies used in the batteries of the above Examples and Comparative Examples. Upon investigation, the results shown in Table 3 below were obtained.

なお、第2図中、11はおもり、12はおもり皿、13
はダイヤルゲージ(荷重計)、14は荷重棒、15は圧
縮成形体からなる正極、16は試料支持台であり、荷重
棒14の先端や正極15および支持台16の大きさは図
示のとおりである。
In addition, in Figure 2, 11 is a weight, 12 is a weight plate, and 13
14 is a dial gauge (load meter), 14 is a load rod, 15 is a positive electrode made of a compression molded product, and 16 is a sample support stand, and the sizes of the tip of the load rod 14, the positive electrode 15, and the support stand 16 are as shown in the figure. be.

第   3   表 かわらず、その機械的強度がなんら損なわれておらず、
ポリアニリン粉末単独の圧縮成形体と変わらない良好な
機械的強度を保持しているものであることが明らかであ
る。
Despite Table 3, its mechanical strength is not impaired in any way;
It is clear that the product maintains good mechanical strength comparable to that of a compression molded product made of polyaniline powder alone.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係るポリアニリン電池の構造例を示
す縦断面図、第2図は圧縮成形体からなる正極の割れ強
度測定装置を示す説明図である。
FIG. 1 is a longitudinal sectional view showing an example of the structure of a polyaniline battery according to the present invention, and FIG. 2 is an explanatory view showing a cracking strength measuring device for a positive electrode made of a compression molded body.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリアニリン粉末とチタン粉末との混合物の圧縮
成形体からなる正極と、リチウムまたはリチウム合金か
らなる負極と、これら両極間に介在するセパレータと、
非水有機電解液とを有してなるポリアニリン電池。
(1) A positive electrode made of a compression molded mixture of polyaniline powder and titanium powder, a negative electrode made of lithium or a lithium alloy, and a separator interposed between these two electrodes;
A polyaniline battery comprising a non-aqueous organic electrolyte.
(2)正極中のチタン粉末が正極全体の5〜20重量%
を占める請求項(1)に記載のポリアニリン電池。
(2) Titanium powder in the positive electrode is 5 to 20% by weight of the entire positive electrode
The polyaniline battery according to claim 1, wherein the polyaniline battery comprises:
JP1329846A 1989-12-20 1989-12-20 Polyaniline battery Pending JPH03190060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1329846A JPH03190060A (en) 1989-12-20 1989-12-20 Polyaniline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1329846A JPH03190060A (en) 1989-12-20 1989-12-20 Polyaniline battery

Publications (1)

Publication Number Publication Date
JPH03190060A true JPH03190060A (en) 1991-08-20

Family

ID=18225888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1329846A Pending JPH03190060A (en) 1989-12-20 1989-12-20 Polyaniline battery

Country Status (1)

Country Link
JP (1) JPH03190060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080110A1 (en) * 2005-01-26 2006-08-03 Shirouma Science Co., Ltd. Positive electrode material for lithium secondary cell
WO2008059413A1 (en) 2006-11-14 2008-05-22 Koninklijke Philips Electronics N.V. Electrochemical energy source with a cathodic electrode comprising at least one non-oxidic active species and electric device comprising such an electrochemical energy source
WO2010073050A1 (en) * 2008-12-23 2010-07-01 Iti Scotland Limited Titanium composite electrodes and methods therefore

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080110A1 (en) * 2005-01-26 2006-08-03 Shirouma Science Co., Ltd. Positive electrode material for lithium secondary cell
KR100896556B1 (en) * 2005-01-26 2009-05-07 시로우마 사이언스 카부시키가이샤 Positive electrode material for lithium secondary cell
WO2008059413A1 (en) 2006-11-14 2008-05-22 Koninklijke Philips Electronics N.V. Electrochemical energy source with a cathodic electrode comprising at least one non-oxidic active species and electric device comprising such an electrochemical energy source
WO2010073050A1 (en) * 2008-12-23 2010-07-01 Iti Scotland Limited Titanium composite electrodes and methods therefore

Similar Documents

Publication Publication Date Title
CN106340651B (en) A kind of secondary cell and preparation method thereof
KR100446828B1 (en) Graphite particles and lithium secondary battery using them as negative electrode
US5958623A (en) Electrochemical cell employing a fine carbon additive
JP2013101770A (en) Compact nonaqueous electrolyte secondary battery and manufacturing method therefor
KR100450463B1 (en) Electrode material for electrochemical element and method for production thereof, and electrochemical element
CN114497698A (en) Lithium ion battery and power utilization device
JPH03129679A (en) Polyaniline battery and manufacture of polyaniline powder using in this battery
JPH10241683A (en) Negative electrode active material for lithium secondary battery
EP0810681A1 (en) Nonaqueous electrolyte secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JPH03190060A (en) Polyaniline battery
JPH0660880A (en) Lithium secondary battery
JP2003317695A (en) Nonaqueous electrolyte lithium ion cell and separator there for
CN114342118A (en) Negative electrode for all-solid-state battery and all-solid-state battery
JPH02239572A (en) Polyaniline battery
JPS6017871A (en) Chargable battery
CN112768751B (en) Sodium ion conductor and sodium ion solid battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH065288A (en) Carbon electrode and lithium secondary battery using same electrode
JP2001351634A (en) Lithium secondary battery
JPS62283571A (en) Nonaqueous solvent secondary cell
JP2022112996A (en) Electrode and power storage device
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JP2020136113A (en) Non-aqueous electrolyte secondary battery
JPH02162648A (en) Paste type electrode for storage battery