JP2003317695A - Nonaqueous electrolyte lithium ion cell and separator there for - Google Patents

Nonaqueous electrolyte lithium ion cell and separator there for

Info

Publication number
JP2003317695A
JP2003317695A JP2002125694A JP2002125694A JP2003317695A JP 2003317695 A JP2003317695 A JP 2003317695A JP 2002125694 A JP2002125694 A JP 2002125694A JP 2002125694 A JP2002125694 A JP 2002125694A JP 2003317695 A JP2003317695 A JP 2003317695A
Authority
JP
Japan
Prior art keywords
separator
battery
fine powder
porous membrane
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002125694A
Other languages
Japanese (ja)
Other versions
JP4132945B2 (en
Inventor
Yutaka Kishii
豊 岸井
Keisuke Yoshii
敬介 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002125694A priority Critical patent/JP4132945B2/en
Publication of JP2003317695A publication Critical patent/JP2003317695A/en
Application granted granted Critical
Publication of JP4132945B2 publication Critical patent/JP4132945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separator realizing a nonaqueous electrolyte lithium ion cell having a good discharge property or cycle property, and the nonaqueous electrolyte lithium ion cell. <P>SOLUTION: The separator for a nonaqueous electrolyte lithium ion cell is structured with a porous film with a thickness of 1 to 50 μm, a porosity a from 30 to 90% and an average hole diameter from 0.01 to 1 μm supporting a nonaqueous electrolyte solution and a gel electrolyte including at least one kind of inorganic fine powders selected from silica and alumina of an average primary particle diameter from 1 to 100 nm. The separator of this kind can be obtained by dipping the porous film in a nonaqueous electrolyte solution after the inorganic fine powder is dispersed in and supported by the porous film. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質リチウ
ムイオン電池とそのためのセパレータに関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte lithium ion battery and a separator therefor.

【0002】[0002]

【従来の技術】従来、種々の形式の電池が実用に供され
ているが、電子機器のコードレス化等に対応するため
に、軽量で高起電力と高エネルギーを得ることができ、
しかも、自己放電の少ないリチウムイオン電池が注目を
集めており、特に、近年、一層の軽量化と薄膜化の要求
に伴い、従来の電解液に代えて、ポリマー電解質を用い
たリチウムイオン電池の実用化が急がれている。
2. Description of the Related Art Conventionally, various types of batteries have been put to practical use, but in order to cope with the cordless use of electronic devices, etc., they are lightweight and can obtain high electromotive force and high energy.
Moreover, lithium-ion batteries, which have low self-discharge, have been attracting attention. In particular, in recent years, with the demand for further weight reduction and thinning, practical use of lithium-ion batteries using polymer electrolytes instead of conventional electrolytes There is an urgent need for conversion.

【0003】このようなリチウムイオン電池によれば、
従来の電解液電池と比較して、電解液の漏れが少ないの
で、外装として、従来の金属缶に代えて、アルミニウム
薄膜を有するラミネート樹脂フィルム等を用いることが
でき、かくして、屈曲性を有する薄型電池とすることが
できる点からも、実用化が急がれている。
According to such a lithium ion battery,
Compared with the conventional electrolyte battery, the leakage of the electrolyte is less, so it is possible to use a laminated resin film or the like having an aluminum thin film as the exterior instead of the conventional metal can, thus providing a flexible thin type. Practical application is urgent also from the standpoint that it can be used as a battery.

【0004】ポリマー電解質は、直線状のポリマー分子
鎖の三次元の絡み合い、即ち、物理架橋したポリマーか
らなるマトリックス中に電解液を担持した所謂物理ゲル
と、化学架橋したポリマー分子鎖からなるマトリックス
中に電解液を担持した所謂化学ゲルに分けられる。物理
ゲルに適度な硬さを付与するためには、電解液中のポリ
マー濃度を増やす必要があり、また、ポリマー濃度を増
やさないのであれば、高分子量のポリマーを用いる必要
があるが、このような場合には、加熱下に電解液中にポ
リマーを溶解させることが必要となり、また、そのため
に多大の時間を要することとなる。更に、加熱による電
解質塩の劣化等の問題も生じる。
A polymer electrolyte is a three-dimensional entanglement of linear polymer molecular chains, that is, a so-called physical gel in which an electrolytic solution is supported in a matrix composed of a physically crosslinked polymer and a matrix composed of a chemically crosslinked polymer molecular chain. It is divided into so-called chemical gels that carry an electrolytic solution. In order to impart an appropriate hardness to the physical gel, it is necessary to increase the polymer concentration in the electrolytic solution, and if the polymer concentration is not increased, it is necessary to use a high molecular weight polymer. In such a case, it is necessary to dissolve the polymer in the electrolytic solution under heating, and therefore, it takes a lot of time. Furthermore, problems such as deterioration of the electrolyte salt due to heating also occur.

【0005】他方、化学ゲルは、例えば、架橋ポリマー
を形成し得るモノマーと重合開始剤を電解液中に溶解さ
せた後、加熱し、上記モノマーを重合させて、架橋ポリ
マーを形成させることによって得ることができる。従っ
て、このような化学ゲルを用いて、電池を製造する場合
には、例えば、電池容器内において、いわばその場でモ
ノマーの重合によって架橋ポリマーを形成させて、簡便
に化学ゲルを得ることができる利点があるが、反面、電
池の電極やセパレータ中に未反応モノマーや重合開始剤
が残存して、電池特性に好ましくない影響を与えるおそ
れがある。
On the other hand, the chemical gel is obtained, for example, by dissolving a monomer capable of forming a crosslinked polymer and a polymerization initiator in an electrolytic solution, and then heating the polymer to polymerize the monomer to form a crosslinked polymer. be able to. Therefore, when a battery is manufactured using such a chemical gel, for example, in a battery container, a so-called cross-linked polymer can be formed by in-situ polymerization of a monomer, so that a chemical gel can be easily obtained. Although there are advantages, unreacted monomers and polymerization initiators may remain in the electrodes and separators of the battery, which may adversely affect the battery characteristics.

【0006】そこで、物理架橋や化学架橋によらない非
水固体電解質として、例えば、特許第3098248号
明細書には、電解液と微粉シリカ等の無機微粉末を混合
して、これらをペ−スト化乃至固体化した電池用固体電
解質が提案されている。このような固体電解質は、高い
イオン伝導度を有するが、しかし、強度の面からみて、
圧縮に対する抵抗が小さいので、充放電の繰り返しに対
応して、正負極が膨張収縮を繰り返すリチウムイオン電
池においては、圧縮された箇所で正負極剤が部分的に短
絡し、サイクル特性が著しく劣化するという欠点があ
る。この欠点を克服するには、正負極間の電解質層の厚
みを大きくせざるを得ないが、しかし、限られたスペ−
スを有する電池内においては、正負極間の電解質層の厚
みを大きくすれば、正負極剤量を低減せざるを得ず、そ
の結果として、電池容量が小さくなるという問題が生じ
る。
Therefore, as a non-aqueous solid electrolyte which does not depend on physical or chemical crosslinking, for example, in Japanese Patent No. 3098248, an electrolytic solution and an inorganic fine powder such as finely divided silica are mixed to prepare a paste. A solid electrolyte for batteries that has been solidified or solidified has been proposed. Such a solid electrolyte has high ionic conductivity, but in terms of strength,
Since the resistance to compression is small, the positive and negative electrode agents are partially short-circuited at the compressed location in lithium ion batteries in which the positive and negative electrodes repeatedly expand and contract in response to repeated charging and discharging, and the cycle characteristics deteriorate significantly. There is a drawback that. In order to overcome this drawback, the thickness of the electrolyte layer between the positive and negative electrodes must be increased, but the limited space is required.
In a battery having a battery, if the thickness of the electrolyte layer between the positive and negative electrodes is increased, the amount of the positive and negative electrode agents must be reduced, resulting in a problem that the battery capacity is reduced.

【0007】[0007]

【発明が解決しようとする課題】本発明は、非水電解液
を無機微粉末でペ−スト化乃至固体化した電池用固体電
解質における上述した問題を解決するためになされたも
のであって、そのような固体電解質を多孔質膜に担持さ
せてなり、放電特性やサイクル特性にすぐれる非水電解
質リチウムイオン電池を与えるセパレータと、そのよう
な非水電解質リチウムイオ電池を提供することを目的と
する。更に、本発明は、そのような非水電解質リチウム
イオン電池用セパレータの製造方法に関する。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems in a solid electrolyte for a battery in which a nonaqueous electrolytic solution is pasted or solidified with an inorganic fine powder, A separator provided with such a solid electrolyte supported on a porous membrane, which provides a non-aqueous electrolyte lithium ion battery having excellent discharge characteristics and cycle characteristics, and an object of the invention is to provide such a non-aqueous electrolyte lithium-ion battery. To do. Furthermore, the present invention relates to a method for producing such a separator for a non-aqueous electrolyte lithium ion battery.

【0008】[0008]

【課題を解決するための手段】本発明によれば、非水電
解液と平均一次粒子径1〜100nmのシリカ及びアル
ミナから選ばれる少なくとも1種の無機微粉末を含むゲ
ル電解質を厚み1〜50μm、空孔率30〜90%及び
平均孔径0.01〜1μmの多孔質膜に担持させてなる
非水電解質リチウムイオン電池用セパレータが提供され
る。また、本発明によれば、上記セパレータを有する非
水電解質リチウムイオン電池が提供される。
According to the present invention, a gel electrolyte containing a non-aqueous electrolytic solution and at least one inorganic fine powder selected from silica and alumina having an average primary particle diameter of 1 to 100 nm has a thickness of 1 to 50 μm. Provided is a separator for a non-aqueous electrolyte lithium ion battery, which is supported on a porous membrane having a porosity of 30 to 90% and an average pore diameter of 0.01 to 1 μm. Moreover, according to this invention, the non-aqueous electrolyte lithium ion battery which has the said separator is provided.

【0009】更に、本発明によれば、平均一次粒子径1
〜100nmのシリカ及びアルミナから選ばれる少なく
とも1種の無機微粉末を多孔質膜に分散させて担持させ
た後、この多孔質膜に非水電解液を含浸させることから
なる上記非水電解質リチウムイオン電池用セパレータの
製造方法が提供される。
Furthermore, according to the present invention, the average primary particle size is 1
The above non-aqueous electrolyte lithium ion, which is obtained by dispersing at least one inorganic fine powder selected from silica and alumina having a particle size of ˜100 nm on a porous membrane and supporting it, and then impregnating the porous membrane with a non-aqueous electrolyte. A method for manufacturing a battery separator is provided.

【0010】[0010]

【発明の実施の形態】本発明による非水電解質リチウム
イオン電池用セパレータは、非水電解液と平均一次粒子
径1〜100nmのシリカ及びアルミナから選ばれる少
なくとも1種の無機微粉末を含むゲル電解質を厚み1〜
50μm、空孔率30〜90%及び平均孔径0.01〜
1μmの多孔質膜に担持させてなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION A separator for a non-aqueous electrolyte lithium ion battery according to the present invention is a gel electrolyte containing a non-aqueous electrolyte solution and at least one inorganic fine powder selected from silica and alumina having an average primary particle diameter of 1 to 100 nm. The thickness 1
50 μm, porosity 30 to 90% and average pore size 0.01 to
It is supported on a 1 μm porous film.

【0011】即ち、本発明によるセパレータは、予め、
基材多孔質膜中に上記無機微粉末を分散させて担持させ
た後、そのような多孔質膜に非水電解液を含浸させ、か
くして、上記多孔質膜中において、上記無機微粉末の粒
子間の結合力によって、上記無機微粉末と電解液とから
なる複合体をペースト化乃至固体化させたものである。
That is, the separator according to the present invention is previously
After dispersing and supporting the inorganic fine powder in the base material porous film, impregnating such a porous film with a non-aqueous electrolytic solution, and thus, particles of the inorganic fine powder in the porous film. The composite consisting of the inorganic fine powder and the electrolytic solution is made into a paste or a solid by the bonding force between them.

【0012】本発明において、セパレータを基材なす基
材多孔質膜には、電池の酸化還元に耐え得るすぐれた化
学的安定性が必要とされ、更に、電池の充放電サイクル
に伴う正負電極の膨潤収縮に伴うセパレータへの圧縮に
耐え得るすぐれた機械的強度と過充電時に負極炭素材料
上に成長するリチウム樹状物がセパレータを突き破らな
いように、孔径が小さいと共に、空孔率が高いことが必
要とされる。
In the present invention, the base material porous film that forms the base material of the separator is required to have excellent chemical stability capable of withstanding the redox of the battery, and further, the positive and negative electrodes associated with the charge and discharge cycle of the battery. Excellent mechanical strength that can withstand compression into the separator due to swelling and contraction, and a small pore size and high porosity so that the lithium dendritic that grows on the negative electrode carbon material during overcharge does not break through the separator. Is needed.

【0013】本発明によれば、このような要求特性を満
たす基材多孔質膜としては、平均孔径が0.01〜1μ
mの範囲にあり、空孔率が30〜90%の範囲にあるポ
リエチレン、ポリプロピレン等のポリオレフィン樹脂か
らなる多孔質膜が好ましく用いられる。多孔質膜の平均
孔径が0.01μmよりも小さいときは、ゲル電解質中
の無機微粉末粒子によって多孔質膜が目詰まりを起こす
ので、電池の内部抵抗が大きくなる。他方、多孔質膜の
平均孔径が1μmよりも大きいときは、多孔質膜の機械
的強度が低く、電池が内部短絡を起こしやすくなる。
According to the present invention, the substrate porous film satisfying such required characteristics has an average pore diameter of 0.01 to 1 μm.
A porous membrane made of a polyolefin resin such as polyethylene or polypropylene having a porosity in the range of m and a porosity of 30 to 90% is preferably used. When the average pore diameter of the porous membrane is smaller than 0.01 μm, the inorganic fine powder particles in the gel electrolyte cause the clogging of the porous membrane, which increases the internal resistance of the battery. On the other hand, when the average pore diameter of the porous membrane is larger than 1 μm, the mechanical strength of the porous membrane is low and the battery is apt to cause an internal short circuit.

【0014】多孔質膜の空孔率が30%よりも小さいと
きは、リチウムイオンの透過が十分でないので、得られ
たセパレータを用いて電池としたとき、電池の内部抵抗
が高くなり、十分な放電容量を得ることができない。他
方、多孔質膜の空孔率が90%よりも大きいときは、得
られるセパレータの機械的強度が小さく、電池が内部短
絡を起こしやすくなる。
When the porosity of the porous film is less than 30%, the permeation of lithium ions is not sufficient. Therefore, when the obtained separator is used as a battery, the internal resistance of the battery becomes high and the battery is sufficiently high. The discharge capacity cannot be obtained. On the other hand, when the porosity of the porous film is larger than 90%, the mechanical strength of the obtained separator is small and the battery is apt to cause an internal short circuit.

【0015】また、本発明によれば、基材多孔質膜は、
1〜50μmの範囲の厚みを有することが好ましい。厚
みが1μmよりも小さいときは、多孔質膜の機械的強度
が小さく、セパレータとして実用性に乏しい。しかし、
厚みが50μmよりも大きいときは、電池内でのセパレ
ータの体積が大きく、その分、正負極材の量を少なくせ
ざるを得ないので、電池容量が低下する。
Further, according to the present invention, the substrate porous membrane comprises
It preferably has a thickness in the range of 1 to 50 μm. When the thickness is less than 1 μm, the mechanical strength of the porous film is small and the separator is not practical. But,
When the thickness is larger than 50 μm, the volume of the separator in the battery is large, and the amount of the positive and negative electrode materials has to be reduced accordingly, so that the battery capacity decreases.

【0016】本発明においては、非水電解液と複合し
て、ゲルを形成するための無機微粉末として、シリカ及
びアルミナから選ばれる少なくとも1種が用いられる。
このような無機微粉末は、その平均一次粒子径は1〜1
00nmの範囲にあり、好ましくは、5〜50nmの範
囲にあることが好ましい。無機微粉末の平均一次粒子径
が1nmよりも小さいときは、無機微粉末が非水電解液
中に均一に分散し難く、安定したゲル電解質を形成し難
い。しかし、無機微粉末の平均一次粒子径が100nm
よりも小さいときは、無機微粉末の粒子の表面積が小さ
くなり、粒子間の結合力が小さくなり、ゲルを形成する
ことができない。
In the present invention, at least one selected from silica and alumina is used as an inorganic fine powder for forming a gel by combining with a non-aqueous electrolyte.
Such an inorganic fine powder has an average primary particle diameter of 1 to 1
It is preferably in the range of 00 nm, and more preferably in the range of 5 to 50 nm. When the average primary particle size of the inorganic fine powder is smaller than 1 nm, the inorganic fine powder is difficult to be uniformly dispersed in the non-aqueous electrolytic solution, and it is difficult to form a stable gel electrolyte. However, the average primary particle size of the inorganic fine powder is 100 nm.
When it is smaller than the above, the surface area of the particles of the inorganic fine powder becomes small, the binding force between the particles becomes small, and the gel cannot be formed.

【0017】また、本発明によれば、非水電解液の溶媒
としては、特に限定されるものではないが、例えば、炭
酸エチレン、炭酸プロピレン、炭酸ブチレン、γ−ブチ
ロラクトン、1,2−ジメトキシエタン、炭酸エチルメ
チル、炭酸ジエチル等が用いられる。このような溶媒と
共に電解液を形成する電解質としては、リチウムイオン
電池に用いられるものであれば、特に限定されるもので
はないが、例えば、LiClO4、LiPF6、LiBF
4 等が用いられる。
Further, according to the present invention, the solvent of the non-aqueous electrolyte is not particularly limited, but for example, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane. , Ethyl methyl carbonate, diethyl carbonate and the like are used. The electrolyte that forms an electrolytic solution together with such a solvent is not particularly limited as long as it can be used in a lithium ion battery. For example, LiClO 4 , LiPF 6 , LiBF 6 , and the like.
4 grade is used.

【0018】本発明によれば、上述したような非水電解
液に対する無機微粉末の割合は、3〜50重量%の範囲
である。非水電解液に対する無機微粉末の割合が3重量
%よりも少ないときは、ゲル電解質が形成されず、他
方、非水電解液に対する無機微粉末の割合が50重量%
よりも多いときは、無機微粉末が電解液中に均一に分散
しないので、安定なゲル電解質を得ることが困難であ
る。
According to the present invention, the ratio of the inorganic fine powder to the non-aqueous electrolyte as described above is in the range of 3 to 50% by weight. When the ratio of the inorganic fine powder to the non-aqueous electrolyte is less than 3% by weight, the gel electrolyte is not formed, while the ratio of the inorganic fine powder to the non-aqueous electrolyte is 50% by weight.
When it is more than the above range, the inorganic fine powder is not uniformly dispersed in the electrolytic solution, so that it is difficult to obtain a stable gel electrolyte.

【0019】本発明による非水電解質リチウムイオン電
池用セパレータは、例えば、次のようにして得ることが
できる。即ち、イソプロピルアルコールのような有機溶
媒に無機微粉末を混合し、分散させ、この分散液に多孔
質膜を浸漬した後、乾燥して、溶媒を除去することによ
って、上記無機微粉末を多孔質膜中に分散させて担持さ
せた多孔質膜を得る。次いで、このように、無機微粉末
を担持させた多孔質膜に電解液を含浸させることによっ
て、無機微粉末は、その粒子相互間の結合力によって、
電解液と共にゲル電解質を形成し、かくして、ゲル電解
質を担持させた多孔質膜、即ち、膜状ゲル電解質として
のセパレータを得ることができる。
The nonaqueous electrolyte lithium ion battery separator according to the present invention can be obtained, for example, as follows. That is, the inorganic fine powder is mixed with an organic solvent such as isopropyl alcohol, dispersed, and the porous membrane is immersed in the dispersion liquid and then dried to remove the solvent, thereby making the inorganic fine powder porous. A porous membrane supported by being dispersed in the membrane is obtained. Then, in this way, by impregnating the porous membrane supporting the inorganic fine powder with the electrolytic solution, the inorganic fine powder, by the binding force between the particles,
A gel electrolyte is formed together with the electrolytic solution, and thus, a porous membrane supporting the gel electrolyte, that is, a separator as a membranous gel electrolyte can be obtained.

【0020】このようなセパレータを備えた非水電解質
リチウムイオン電池は、例えば、次のようにして製造す
ることができる。即ち、上述したようにして、予め、無
機微粉末を多孔質膜に担持させた後、これと電極とを積
層し、又は捲回して、電気化学素子とし、これを電池の
電極板を兼ねる電池缶に装入する。次に、非水電解液を
上記電池缶中に注入し、上記無機微粉末を担持させた多
孔質膜に上記電解液を含浸させて、ゲル電解質を多孔質
膜中に担持させたセパレータを形成させ、かくして、本
発明によるセパレータを備えた非水電解質リチウムイオ
ン電池を得ることができる。しかし、本発明による非水
電解質リチウムイオン電池の製造方法は、上記例示した
ものに限定されるものではない。
The non-aqueous electrolyte lithium ion battery provided with such a separator can be manufactured, for example, as follows. That is, as described above, after the inorganic fine powder is supported on the porous film in advance, the electrode and the electrode are laminated or wound to form an electrochemical element, which serves also as an electrode plate of the battery. Place in a can. Next, a non-aqueous electrolytic solution is injected into the battery can, and the electrolytic solution is impregnated in the porous membrane supporting the inorganic fine powder to form a separator in which a gel electrolyte is supported in the porous membrane. Thus, a non-aqueous electrolyte lithium ion battery provided with the separator according to the present invention can be obtained. However, the method for producing the non-aqueous electrolyte lithium ion battery according to the present invention is not limited to the above-exemplified one.

【0021】図1は、本発明によるセパレータを備えた
コイン型リチウムイオン二次電池の縦断面図である。こ
のリチウムイオン二次電池においては、正極端子を兼ね
る正極缶1は、例えば、ニッケルめっきを施したステン
レス鋼板からなり、絶縁体2を介して、この正極缶と絶
縁された負極端子を兼ねる負極缶3と組合わされて、電
池缶(容器)を構成している。負極缶も、例えば、ニッ
ケルめっきを施したステンレス鋼板からなる。
FIG. 1 is a vertical cross-sectional view of a coin type lithium ion secondary battery provided with a separator according to the present invention. In this lithium ion secondary battery, the positive electrode can 1 also serving as a positive electrode terminal is made of, for example, a nickel-plated stainless steel plate, and a negative electrode can also serves as a negative electrode terminal insulated from the positive electrode can via an insulator 2. Combined with 3, it forms a battery can (container). The negative electrode can is also made of, for example, a nickel-plated stainless steel plate.

【0022】このようにして形成される電池缶の内部に
は、正極4が正極集電体5を介して正極缶に接触して配
設されている。正極4は、例えば、リチウムマンガン複
合酸化物のような正極活物質と黒鉛のような導電性物質
をポリエチレン、ポリプロピレン、ポリテトラフルオロ
エチレンのような結着樹脂と混合し、これを加圧成形し
て得ることができる。同様に、負極6が負極集電体7を
介して負極缶に接触して配設されている。負極は、例え
ば、リチウム板からなる。これら正極と負極との間に、
本発明によるセパレータ8が配設されて、電池を構成し
ている。かくして、このような電池によれば、その正極
缶と負極缶を端子として電気エネルギーを取り出すこと
ができる。
Inside the battery can thus formed, the positive electrode 4 is disposed in contact with the positive electrode can via the positive electrode current collector 5. For the positive electrode 4, for example, a positive electrode active material such as lithium manganese composite oxide and a conductive material such as graphite are mixed with a binder resin such as polyethylene, polypropylene or polytetrafluoroethylene, and the mixture is pressure-molded. Can be obtained. Similarly, the negative electrode 6 is disposed in contact with the negative electrode can via the negative electrode current collector 7. The negative electrode is made of, for example, a lithium plate. Between these positive and negative electrodes,
The separator 8 according to the present invention is arranged to form a battery. Thus, according to such a battery, electric energy can be taken out using the positive electrode can and the negative electrode can as terminals.

【0023】[0023]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。以下において、用いた基材多孔質膜と得られたセパ
レータの物性は次のようにして評価した。
The present invention will be described below with reference to examples.
The present invention is not limited to these examples. In the following, the physical properties of the used porous substrate membrane and the obtained separator were evaluated as follows.

【0024】(多孔質膜の厚み)1/10000mmシ
ックネスゲージにより測定した。
(Thickness of Porous Membrane) Measured with a 1/10000 mm thickness gauge.

【0025】(多孔質膜の空孔率)基材多孔質膜を直径
60mmのポンチで打抜き、1/1000mmのシック
ネスゲージで厚みを求め、電子天秤にて重量を秤量し
て、下記式から空孔率を求めた。尚、基材多孔質膜を構
成する樹脂成分の密度は0.940g/mLとした。 空孔率(%)=(空孔容積/基材多孔質膜の体積)×1
00
(Porosity of Porous Membrane) The substrate porous membrane was punched with a punch having a diameter of 60 mm, the thickness was obtained with a thickness gauge of 1/1000 mm, and the weight was weighed with an electronic balance. Porosity was determined. In addition, the density of the resin component constituting the base material porous film was 0.940 g / mL. Porosity (%) = (pore volume / volume of base material porous membrane) × 1
00

【0026】(セパレータの電解液保持率)エチレンカ
ーボネート/エチルメチルカーポネート(容量比1/
2)の混合溶媒に六フッ化リン酸リチウムを1.4モル
/L濃度で溶解させた電解液中に無機微粉末を担持させ
た多孔質膜を浸漬した。その後、この多孔質膜を濾紙で
挟み、遠心分離機にて1 500rpmで3分間処理し
て、遠心分離前後の重量変化から電解液保持率を算出し
た。
(Electrolytic solution retention rate of separator) Ethylene carbonate / ethyl methyl carbonate (volume ratio 1 /
A porous membrane carrying inorganic fine powder was immersed in an electrolytic solution in which lithium hexafluorophosphate was dissolved in the mixed solvent of 2) at a concentration of 1.4 mol / L. After that, the porous membrane was sandwiched between filter papers and treated with a centrifuge at 1500 rpm for 3 minutes, and the electrolytic solution retention rate was calculated from the weight change before and after centrifugation.

【0027】実施例1 (電極の作製)活物質としてのコバルト酸リチウムと導
電助剤としての黒鉛をポリフッ化ビニリデン樹脂からな
るバインダーを用いて集電体アルミニウム箔上に塗布し
て正極を調製し、活物質としての黒鉛をポリフッ化ビニ
リデン樹脂からなるバインダーを用いて集電体銅箔上に
塗布して負極を調製した。
Example 1 (Preparation of Electrode) Lithium cobalt oxide as an active material and graphite as a conductive auxiliary agent were coated on a current collector aluminum foil using a binder made of polyvinylidene fluoride resin to prepare a positive electrode. A negative electrode was prepared by coating graphite as an active material on a current collector copper foil using a binder made of polyvinylidene fluoride resin.

【0028】(電解液の調製)エチレンカーポネート/
エチルメチルカーポネート(容量比1/2)の混合溶媒
に六フッ化リン酸リチウムを1.4モル/L濃度で溶解
させて、これを電解液とした。
(Preparation of Electrolyte Solution) Ethylene carbonate /
Lithium hexafluorophosphate was dissolved at a concentration of 1.4 mol / L in a mixed solvent of ethyl methyl carbonate (volume ratio 1/2) to obtain an electrolytic solution.

【0029】(微粉シリカ担持多孔質膜と膜状ゲル電解
質の製造)イソプロピルアルコール中に微粉シリカ(日
本アエロジル(株)製、アエロジル200、平均一次粒
子径12nm)を3重量%濃度で混合し、これにポリエ
チレン樹脂からなる多孔質膜(厚み25μm、空孔率4
5%、平均孔径0.1μm)を浸漬した。このように処
理した多孔質膜を80℃で3時間乾燥し、イソプロピル
アルコールを除去して、微粉シリカ担持多孔質膜を得
た。この微粉シリカ担持多孔質膜を用いて、前述したよ
うにして、電解液保持率を測定した。結果を表1に示
す。
(Production of fine-powder silica-supporting porous membrane and membranous gel electrolyte) Fine-powder silica (manufactured by Nippon Aerosil Co., Ltd., Aerosil 200, average primary particle diameter 12 nm) was mixed in isopropyl alcohol at a concentration of 3% by weight, A porous film made of polyethylene resin (thickness 25 μm, porosity 4
5%, average pore size 0.1 μm) was immersed. The porous membrane treated in this way was dried at 80 ° C. for 3 hours to remove isopropyl alcohol and obtain a fine powder silica-supporting porous membrane. Using this fine-powdered silica-supporting porous membrane, the electrolytic solution retention rate was measured as described above. The results are shown in Table 1.

【0030】(電池の製作)上記微粉シリカ担持多孔質
膜と上記正極と負極にそれぞれ上記電解液を含浸させた
後、これら負極、微粉シリカ担持多孔質膜及び正極をこ
の順序で正負電極板を兼ねる電池缶(2016サイズの
コイン電池用電池缶)に仕込み、負極/セパレータ(膜
状ゲル電解質)/正極からなる積層体を缶内で形成し
て、コイン型リチウムイオン二次電池を製作した。
(Production of Battery) After the above-mentioned porous silica-supporting porous membrane, the above-mentioned positive electrode and the above-mentioned negative electrode are impregnated with the above-mentioned electrolytic solution, respectively, the negative electrode, the above-mentioned porous silica-supporting porous membrane and the positive electrode are placed in this order on the positive and negative electrode plates. A coin-type lithium-ion secondary battery was manufactured by charging a dual-purpose battery can (battery can for 2016 coin battery) and forming a laminate of negative electrode / separator (membrane gel electrolyte) / positive electrode in the can.

【0031】この電池について、最初、0.2CmAに
て充放電した後、1CmAにで200サイクルの充放電
を行った。電池の充放電はすべて25℃の恒温器内で行
った。初回の放電容量とこれに対する200サイクル後
の容量保持率を表1に示す。
This battery was first charged and discharged at 0.2 CmA and then charged and discharged at 1 CmA for 200 cycles. All charging and discharging of the battery was performed in a thermostat at 25 ° C. Table 1 shows the initial discharge capacity and the capacity retention rate after 200 cycles.

【0032】実施例2 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル380、平均一次粒子径7n
m)を2重量%濃度で混合し、これに実施例1と同じ多
孔質膜を浸漬した以外は、実施例1と同様にして、微粉
シリカ担持多孔質膜を作製し、その電解液保持率を測定
した。また、上記微粉シリカ担持多孔質膜を用いた以外
は、実施例1と同様にして、電池を作製し、充放電試験
を行って、初回の放電容量と200サイクル後の容量保
持率を求めた。結果を表1に示す。
Example 2 Finely divided silica in isopropyl alcohol (Aerosil 380, manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter 7n)
m) was mixed at a concentration of 2% by weight and the same porous membrane as in Example 1 was immersed therein to prepare a fine silica powder-supporting porous membrane in the same manner as in Example 1 and to retain the electrolytic solution. Was measured. Further, a battery was prepared and a charge / discharge test was performed in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used to determine the initial discharge capacity and the capacity retention rate after 200 cycles. . The results are shown in Table 1.

【0033】実施例3 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル50、平均一次粒子径30n
m)を3重量%濃度で混合し、これに実施例1と同じ多
孔質膜を浸漬した以外は、実施例1と同様にして、微粉
シリカ担持多孔質膜を作製し、その電解液保持率を測定
した。また、上記微粉シリカ担持多孔質膜を用いた以外
は、実施例1と同様にして、電池を作製し、充放電試験
を行って、初回の放電容量と200サイクル後の容量保
持率を求めた。結果を表1に示す。
Example 3 Finely powdered silica in isopropyl alcohol (Aerosil 50, manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter 30n)
m) was mixed at a concentration of 3% by weight and the same porous membrane as in Example 1 was immersed therein to prepare a fine powder silica-supporting porous membrane in the same manner as in Example 1 and to retain the electrolytic solution. Was measured. Further, a battery was prepared and a charge / discharge test was performed in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used to determine the initial discharge capacity and the capacity retention rate after 200 cycles. . The results are shown in Table 1.

【0034】実施例4 イソプロピルアルコール中に微粉シリカ−アルミナ混合
物(日本アエロジル(株)製、MOX80、平均一次粒
子径30nm)を3重量%濃度で混合し、これに実施例
1と同じ多孔質膜を浸漬した以外は、実施例1と同様に
して、微粉シリカ−アルミナ混合物担持多孔質膜を作製
し、その電解液保持率を測定した。また、上記微粉シリ
カ−アルミナ混合物担持多孔質膜を用いた以外は、実施
例1と同様にして、電池を作製し、充放電試験を行っ
て、初回の放電容量と200サイクル後の容量保持率を
求めた。結果を表1に示す。
Example 4 A fine powder silica-alumina mixture (manufactured by Nippon Aerosil Co., Ltd., MOX80, average primary particle size 30 nm) was mixed in isopropyl alcohol at a concentration of 3% by weight, and the same porous film as in Example 1 was mixed therein. A finely divided silica-alumina mixture-supporting porous membrane was prepared in the same manner as in Example 1 except that was immersed in the solution, and the electrolytic solution retention rate was measured. Further, a battery was prepared and a charge / discharge test was conducted in the same manner as in Example 1 except that the above fine powder silica-alumina mixture-supporting porous film was used, and the initial discharge capacity and the capacity retention rate after 200 cycles were obtained. I asked. The results are shown in Table 1.

【0035】実施例5 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル380、平均一次粒子径7n
m)を3重量%濃度で混合し、これにポリエチレン樹脂
からなる多孔質膜(厚み5μm、空孔率32%、平均孔
径0.03μm)を浸漬した以外は、実施例1と同様に
して、微粉シリカ担持多孔質を作製し、その電解液保持
率を測定した。また、上記微粉シリカ担持多孔質膜を用
いた以外は、実施例1と同様にして、電池を作製し、充
放電試験を行って、初回の放電容量と200サイクル後
の容量保持率を求めた。結果を表1に示す。
Example 5 Finely divided silica in isopropyl alcohol (Aerosil 380, manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter 7n)
m) was mixed at a concentration of 3% by weight, and a porous membrane made of polyethylene resin (thickness 5 μm, porosity 32%, average pore diameter 0.03 μm) was immersed in the same manner as in Example 1, A fine powder silica-supporting porous material was prepared, and the electrolyte retention rate was measured. Further, a battery was prepared and a charge / discharge test was performed in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used to determine the initial discharge capacity and the capacity retention rate after 200 cycles. . The results are shown in Table 1.

【0036】実施例6 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル380、平均一次粒子径7n
m)を3重量%濃度で混合し、これにポリエチレン樹脂
からなる多孔質膜(厚み25μm、空孔率70%、平均
孔径0.07μm)を浸漬した以外は、実施例1と同様
にして、微粉シリカ担持多孔質を作製し、その電解液保
持率を測定した。また、上記微粉シリカ担持多孔質膜を
用いた以外は、実施例1と同様にして、電池を作製し、
充放電試験を行って、初回の放電容量と200サイクル
後の容量保持率を求めた。結果を表1に示す。
Example 6 Finely divided silica in isopropyl alcohol (Aerosil 380, manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter 7n)
m) was mixed at a concentration of 3% by weight, and a porous membrane made of polyethylene resin (thickness 25 μm, porosity 70%, average pore diameter 0.07 μm) was immersed in the same manner as in Example 1, A fine powder silica-supporting porous material was prepared, and the electrolyte retention rate was measured. Further, a battery was prepared in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used.
A charge / discharge test was performed to determine the initial discharge capacity and the capacity retention rate after 200 cycles. The results are shown in Table 1.

【0037】実施例7 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル200、平均一次粒子径12n
m)を3重量%濃度で混合し、これにポリエチレン樹脂
からなる多孔質膜(厚み25μm、空孔率87%、平均
孔径0.87μm)を浸漬した以外は、実施例1と同様
にして、微粉シリカ担持多孔質膜を作製し、その電解液
保持率を測定した。また、上記微粉シリカ担持多孔質膜
を用いた以外は、実施例1と同様にして、電池を作製
し、充放電試験を行って、初回の放電容量と200サイ
クル後の容量保持率を求めた。結果を表1に示す。
Example 7 Finely divided silica in isopropyl alcohol (Aerosil 200, manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter 12n)
m) was mixed at a concentration of 3% by weight, and a porous membrane made of polyethylene resin (thickness 25 μm, porosity 87%, average pore diameter 0.87 μm) was immersed in the same manner as in Example 1, A fine-powder silica-supporting porous membrane was prepared, and the electrolytic solution retention rate was measured. Further, a battery was prepared and a charge / discharge test was performed in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used to determine the initial discharge capacity and the capacity retention rate after 200 cycles. . The results are shown in Table 1.

【0038】実施例8 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル200、平均一次粒子径12n
m)を3重量%濃度で混合し、これにポリエチレン樹脂
からなる多孔質膜(厚み45μm、空孔率89%、平均
孔径0.97μm)を浸漬した以外は、実施例1と同様
にして、微粉シリカ担持多孔質膜を作製し、その電解液
保持率を測定した。また、上記微粉シリカ担持多孔質膜
を用いた以外は、実施例1と同様にして、電池を作製
し、充放電試験を行って、初回の放電容量と200サイ
クル後の容量保持率を求めた。結果を表1に示す。
Example 8 Finely divided silica in isopropyl alcohol (manufactured by Nippon Aerosil Co., Ltd., Aerosil 200, average primary particle diameter 12n)
m) was mixed at a concentration of 3% by weight, and a porous film made of polyethylene resin (thickness 45 μm, porosity 89%, average pore size 0.97 μm) was immersed in the same manner as in Example 1, A fine-powder silica-supporting porous membrane was prepared, and the electrolytic solution retention rate was measured. Further, a battery was prepared and a charge / discharge test was performed in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used to determine the initial discharge capacity and the capacity retention rate after 200 cycles. . The results are shown in Table 1.

【0039】比較例1 イソプロピルアルコール中に微粉シリカ(信越化学工業
(株)製、I−FX、平均一次粒子径800nm)を3
重量%濃度で混合し、これに実施例1と同じ多孔質膜を
浸漬した以外は、実施例1と同様にして、シリカ担持多
孔質膜を作製し、その電解液保持率を測定した。また、
上記シリカ担持多孔質膜を用いた以外は、実施例1と同
様にして、電池を作製し、充放電試験を行って、初回の
放電容量と200サイクル後の容量保持率を求めた。結
果を表1に示す。
Comparative Example 1 3 parts of finely powdered silica (I-FX, manufactured by Shin-Etsu Chemical Co., Ltd., average primary particle size 800 nm) were mixed in isopropyl alcohol.
A silica-supporting porous membrane was prepared in the same manner as in Example 1 except that the same porous membrane as in Example 1 was immersed in the mixture at a concentration of wt% and the electrolytic solution retention rate was measured. Also,
A battery was prepared and a charge / discharge test was conducted in the same manner as in Example 1 except that the above silica-supporting porous membrane was used, and the initial discharge capacity and the capacity retention rate after 200 cycles were determined. The results are shown in Table 1.

【0040】比較例2 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル200、平均一次粒子径12n
m)を3重量%濃度で混合し、これにポリエチレン樹脂
からなる多孔質膜(厚み40μm、空孔率88%、平均
孔径1.3μm)を浸漬した以外は、実施例1と同様に
して、微粉シリカ担持多孔質膜を作製し、その電解液保
持率を測定した。また、上記微粉シリカ担持多孔質膜を
用いた以外は、実施例1と同様にして、電池を作製し、
充放電試験を行って、初回の放電容量と200サイクル
後の容量保持率を求めた。結果を表1に示す。
Comparative Example 2 Fine silica in isopropyl alcohol (Aerosil 200, manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter 12n)
m) was mixed at a concentration of 3% by weight, and a porous membrane made of polyethylene resin (thickness 40 μm, porosity 88%, average pore size 1.3 μm) was immersed in the same manner as in Example 1, A fine-powder silica-supporting porous membrane was prepared, and the electrolytic solution retention rate was measured. Further, a battery was prepared in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used.
A charge / discharge test was performed to determine the initial discharge capacity and the capacity retention rate after 200 cycles. The results are shown in Table 1.

【0041】比較例3 イソプロピルアルコール中に微粉シリカ(日本アエロジ
ル(株)製、アエロジル200、平均一次粒子径12n
m)を3重量%濃度で混合し、これにポリエチレン樹脂
からなる多孔質膜(厚み65μm、空孔率90%、平均
孔径0.8μm)を浸漬した以外は、実施例1と同様に
して、微粉シリカ担持多孔質膜を作製し、その電解液保
持率を測定した。また、上記微粉シリカ担持多孔質膜を
用いた以外は、実施例1と同様にして、電池を作製し、
充放電試験を行って、初回の放電容量と200サイクル
後の容量保持率を求めた。結果を表1に示す。
Comparative Example 3 Fine powder silica (Aerosil 200, manufactured by Nippon Aerosil Co., Ltd., average primary particle diameter 12n) in isopropyl alcohol.
m) was mixed at a concentration of 3% by weight, and a porous film made of polyethylene resin (thickness 65 μm, porosity 90%, average pore diameter 0.8 μm) was immersed in the same manner as in Example 1, A fine-powder silica-supporting porous membrane was prepared, and the electrolytic solution retention rate was measured. Further, a battery was prepared in the same manner as in Example 1 except that the above-mentioned fine powder silica-supporting porous film was used.
A charge / discharge test was performed to determine the initial discharge capacity and the capacity retention rate after 200 cycles. The results are shown in Table 1.

【0042】[0042]

【表1】 [Table 1]

【0043】表1に示すように、本発明によるセパレー
タは、電解液保持率が高く、しかも、リチウムイオン電
池にセパレータとして組み込んだ場合、高い容量保持率
を有し、サイクル特性にすぐれている。これに対して、
比較例1のセパレータによれば、用いた無機微粉末の平
均一次粒子径が大きく、比較例2のセパレータによれ
ば、用いた多孔質膜の空孔が大きく、また、比較例3の
セパレータによれば、用いた多孔質膜の厚みが大きいの
で、いずれも電解液の保持率が低く、また、電池に組み
込んだ場合、サイクル特性に劣るものである。
As shown in Table 1, the separator according to the present invention has a high electrolytic solution retention rate and, when incorporated in a lithium ion battery as a separator, has a high capacity retention rate and excellent cycle characteristics. On the contrary,
According to the separator of Comparative Example 1, the average primary particle diameter of the inorganic fine powder used was large, and according to the separator of Comparative Example 2, the pores of the porous film used were large, and the separator of Comparative Example 3 was used. According to this, since the thickness of the used porous membrane is large, the retention rate of the electrolytic solution is low in each case, and when incorporated in a battery, the cycle characteristics are inferior.

【0044】[0044]

【発明の効果】以上のように、本発明によるセパレータ
は、電解液保持率が高く、また、電池に組み込んだ場
合、サイクル特性にすぐれた電池を与える。
INDUSTRIAL APPLICABILITY As described above, the separator according to the present invention has a high electrolytic solution retention rate and, when incorporated into a battery, provides a battery having excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるセパレータを備えたコイン型リチ
ウムイオン二次電池の一例を示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an example of a coin-type lithium ion secondary battery including a separator according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極端子を兼ねる正極缶 2…絶縁体 3…負極端子を兼ねる正極缶 4…正極 5…正極集電体 6…負極 7…負極集電体 8…セパレータ 1. Positive electrode can that doubles as a positive electrode terminal 2 ... Insulator 3 ... Positive electrode can that doubles as a negative electrode terminal 4 ... Positive electrode 5 ... Positive electrode current collector 6 ... Negative electrode 7 ... Negative electrode current collector 8 ... Separator

フロントページの続き Fターム(参考) 5H021 AA06 BB12 BB13 CC02 CC03 EE02 EE22 EE27 HH02 HH03 5H029 AJ02 AJ05 AK03 AL12 AM03 AM04 AM07 AM16 BJ03 BJ12 CJ02 CJ13 DJ04 DJ13 DJ16 HJ04 HJ05 HJ06 HJ09 Continued front page    F term (reference) 5H021 AA06 BB12 BB13 CC02 CC03                       EE02 EE22 EE27 HH02 HH03                 5H029 AJ02 AJ05 AK03 AL12 AM03                       AM04 AM07 AM16 BJ03 BJ12                       CJ02 CJ13 DJ04 DJ13 DJ16                       HJ04 HJ05 HJ06 HJ09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非水電解液と平均一次粒子径1〜100n
mのシリカ及びアルミナから選ばれる少なくとも1種の
無機微粉末を含むゲル電解質を厚み1〜50μm、空孔
率30〜90%及び平均孔径0.01〜1μmの多孔質
膜に担持させてなることを特徴とする非水電解質リチウ
ムイオン電池用セパレータ。
1. A non-aqueous electrolyte and an average primary particle size of 1 to 100 n.
m, a gel electrolyte containing at least one kind of inorganic fine powder selected from silica and alumina is supported on a porous membrane having a thickness of 1 to 50 μm, a porosity of 30 to 90% and an average pore diameter of 0.01 to 1 μm. A separator for a non-aqueous electrolyte lithium-ion battery, which is characterized by:
【請求項2】請求項1に記載のセパレータを有する非水
電解質リチウムイオン電池。
2. A non-aqueous electrolyte lithium ion battery having the separator according to claim 1.
【請求項3】平均一次粒子径1〜100nmのシリカ及
びアルミナから選ばれる少なくとも1種の無機微粉末を
多孔質膜に分散させて担持させた後、この多孔質膜に非
水電解液を含浸させることを特徴とする請求項1に記載
の非水電解質リチウムイオン電池用セパレータの製造方
法。
3. An inorganic fine powder of at least one kind selected from silica and alumina having an average primary particle diameter of 1 to 100 nm is dispersed and supported on a porous membrane, and then this porous membrane is impregnated with a non-aqueous electrolyte solution. The method for producing a separator for a non-aqueous electrolyte lithium ion battery according to claim 1, wherein
JP2002125694A 2002-04-26 2002-04-26 Nonaqueous electrolyte lithium ion battery and separator therefor Expired - Fee Related JP4132945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125694A JP4132945B2 (en) 2002-04-26 2002-04-26 Nonaqueous electrolyte lithium ion battery and separator therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125694A JP4132945B2 (en) 2002-04-26 2002-04-26 Nonaqueous electrolyte lithium ion battery and separator therefor

Publications (2)

Publication Number Publication Date
JP2003317695A true JP2003317695A (en) 2003-11-07
JP4132945B2 JP4132945B2 (en) 2008-08-13

Family

ID=29540338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125694A Expired - Fee Related JP4132945B2 (en) 2002-04-26 2002-04-26 Nonaqueous electrolyte lithium ion battery and separator therefor

Country Status (1)

Country Link
JP (1) JP4132945B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505680A2 (en) * 2003-08-08 2005-02-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
JP2006164596A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Manufacturing method of secondary battery and its porous film
JP2007281039A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Organic-inorganic compound semiconductor material, liquefied material, organic light emitting element, its manufacturing method, light emitting device, and electronic appliance
US7700240B2 (en) 2003-08-08 2010-04-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Non-aqueous electrolyte for use in a battery
CN106099172A (en) * 2016-07-19 2016-11-09 浙江超威创元实业有限公司 A kind of aseptate lithium ion battery
US10147923B2 (en) 2011-11-18 2018-12-04 Sumitomo Chemical Company, Limited Laminated porous film, method for producing same, non-aqueous electrolyte secondary battery separator, laminated electrode sheet, and non-aqueous electrolyte secondary battery
US10312491B2 (en) 2009-12-04 2019-06-04 Murata Manufacturing Co., Ltd. Separator and battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220761A (en) * 1993-10-07 1995-08-18 Matsushita Electric Ind Co Ltd Organic electrolyte lithium secondary battery and manufacture of separator in this battery
JPH11260340A (en) * 1998-03-06 1999-09-24 Hitachi Maxell Ltd Polymer electrolyte battery
JP2000149906A (en) * 1998-11-04 2000-05-30 Mitsubishi Chemicals Corp Lithium secondary battery
JP2001229966A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte and lithium battery
JP2001229967A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte lithium battery
JP2001243988A (en) * 2000-02-28 2001-09-07 Nitto Denko Corp Film shape electrolyte
JP2003257480A (en) * 2002-02-27 2003-09-12 Fuji Photo Film Co Ltd Electrolyte composition and non-aqueous secondary battery
JP2003297332A (en) * 2002-04-03 2003-10-17 Yuasa Corp Non-aqueous electrolyte battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220761A (en) * 1993-10-07 1995-08-18 Matsushita Electric Ind Co Ltd Organic electrolyte lithium secondary battery and manufacture of separator in this battery
JPH11260340A (en) * 1998-03-06 1999-09-24 Hitachi Maxell Ltd Polymer electrolyte battery
JP2000149906A (en) * 1998-11-04 2000-05-30 Mitsubishi Chemicals Corp Lithium secondary battery
JP2001229966A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte and lithium battery
JP2001229967A (en) * 2000-02-10 2001-08-24 Mitsui Chemicals Inc Gel-type electrolyte lithium battery
JP2001243988A (en) * 2000-02-28 2001-09-07 Nitto Denko Corp Film shape electrolyte
JP2003257480A (en) * 2002-02-27 2003-09-12 Fuji Photo Film Co Ltd Electrolyte composition and non-aqueous secondary battery
JP2003297332A (en) * 2002-04-03 2003-10-17 Yuasa Corp Non-aqueous electrolyte battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1505680A2 (en) * 2003-08-08 2005-02-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
EP1505680A3 (en) * 2003-08-08 2005-04-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Non-aqueous electrolyte and a battery, a supercapacitor, an electrochromic device and a solar cell including such an electrolyte
US7700240B2 (en) 2003-08-08 2010-04-20 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Non-aqueous electrolyte for use in a battery
JP2006164596A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Manufacturing method of secondary battery and its porous film
JP2007281039A (en) * 2006-04-03 2007-10-25 Seiko Epson Corp Organic-inorganic compound semiconductor material, liquefied material, organic light emitting element, its manufacturing method, light emitting device, and electronic appliance
US10312491B2 (en) 2009-12-04 2019-06-04 Murata Manufacturing Co., Ltd. Separator and battery
US10147923B2 (en) 2011-11-18 2018-12-04 Sumitomo Chemical Company, Limited Laminated porous film, method for producing same, non-aqueous electrolyte secondary battery separator, laminated electrode sheet, and non-aqueous electrolyte secondary battery
CN106099172A (en) * 2016-07-19 2016-11-09 浙江超威创元实业有限公司 A kind of aseptate lithium ion battery
CN106099172B (en) * 2016-07-19 2018-09-11 浙江超威创元实业有限公司 A kind of aseptate lithium ion battery

Also Published As

Publication number Publication date
JP4132945B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP5394239B2 (en) Gel polymer electrolyte and electrochemical device provided with the same
JP4352475B2 (en) Solid electrolyte secondary battery
JP2002237293A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP3471238B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
WO2001063687A1 (en) Nonaqueous electrolyte secondary cell
JP3904935B2 (en) Method for producing lithium polymer secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
CN111933999B (en) Solid-state battery, battery module, battery pack and related device thereof
JP5043076B2 (en) Non-aqueous lithium secondary battery
CN110034301B (en) Rechargeable battery and method of manufacturing the same
JPWO2013047379A1 (en) Lithium secondary battery and manufacturing method thereof
JP3440963B2 (en) Anode plate for lithium secondary battery
JP2003331838A (en) Lithium secondary battery
JP4132945B2 (en) Nonaqueous electrolyte lithium ion battery and separator therefor
JPH1050345A (en) Polymer electrolyte and lithium polymer battery using the same
JP4672985B2 (en) Lithium ion secondary battery
JPH1167273A (en) Lithium secondary battery
JP4161437B2 (en) Lithium battery
JP2003068364A (en) Secondary battery
JPWO2017217319A1 (en) Lithium ion secondary battery
JP4222761B2 (en) Non-aqueous electrolyte battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
KR100431966B1 (en) Multi-layered Gelling Separators and Rechargeable Lithium Batteries Using Same
JPH08124597A (en) Solid electrolytic secondary cell
JP4088508B2 (en) Adhesive / gelator-supported porous film and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4132945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees