JP4222761B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4222761B2
JP4222761B2 JP2002024142A JP2002024142A JP4222761B2 JP 4222761 B2 JP4222761 B2 JP 4222761B2 JP 2002024142 A JP2002024142 A JP 2002024142A JP 2002024142 A JP2002024142 A JP 2002024142A JP 4222761 B2 JP4222761 B2 JP 4222761B2
Authority
JP
Japan
Prior art keywords
electrode plate
negative electrode
battery
active material
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002024142A
Other languages
Japanese (ja)
Other versions
JP2003229133A (en
JP2003229133A5 (en
Inventor
哲哉 山下
章仁 田中
正 寺西
達行 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002024142A priority Critical patent/JP4222761B2/en
Publication of JP2003229133A publication Critical patent/JP2003229133A/en
Publication of JP2003229133A5 publication Critical patent/JP2003229133A5/ja
Application granted granted Critical
Publication of JP4222761B2 publication Critical patent/JP4222761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質電池にかかり、特にその極板が積層体で構成されたものにおいて極板同士の電気的接続に関するものである。
【0002】
【従来の技術】
近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられる電池として、リチウムイオンを吸蔵・放出できる炭素材料などを負極活物質とし、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)等のリチウム含有遷移金属酸化物を正極材料とするリチウムイオン電池で代表される非水電解質電池が、小型軽量でかつ高容量で充放電可能な電池として実用化されるようになってきている。
【0003】
現在、電子通信機器の多くのメイン電源としては、円筒あるいは角型のリチウム二次電池が用いられるようになっているが、更なる電池の小型化に対応するためにはコイン型非水電解質二次電池が求められている。
【0004】
従来のコイン型電池では、各1枚の負極板および正極板が使用されている。しかしながら、正負極板面の対向面積が小さく、十分に大きな電流量を取り出すことが出来ないと言う問題があった。そこでこの不具合を解消するために、特公昭34−5516では、正負極板を複数枚配置し、取り出し電流量を増大するという方法が提案されている。
【0005】
しかし、従来のリチウムイオン電池の極板製造方法である、金属箔に活物質を含むスラリーを塗布、乾燥後、厚みを圧縮し、極板の形状に切断する方法では、円形の極板が幅の狭い連結部で連なった形状に切断すると、連結部が薄いため切断したり、活物質層が脱落したりして、取り扱いが困難であった。また、活物質の集電効率が悪いために活物質利用率が低下したり、電池の高温保存では、活物質層と集電体との密着性低下に起因する異常な内部抵抗上昇がみられた。
【0006】
また、正負極板を複数枚配置し、リチウムイオンの吸蔵放出を利用した非水電解質二次電池を製造する方法も提案されている(特開平9−213307号)。この方法では、ニッケルを主成分とする発泡状金属または繊維状金属焼結体に、炭素材料とバインダとを、充填しプレスするようにして形成したものである。このようにして形成された電池では、集電体が三次元的に広がった状態で負極材料と一体化されているので、負極材料と集電体の間の平均距離が小さく負極の内部抵抗が小さいという利点がある。そこでこの発泡状金属を用いた極板を上述の円形の極板が連なった形状に切断すれば活物質の脱落がなく、活物質利用率のよい電池ができると考えられる。しかし、連なった複数枚の極板の連結部を折り曲げて積層し、電極体を形成する場合、発泡状金属の連結部を折り曲げたときに、連結部が脆く、非常に切断され易いという問題がある。
【0007】
【発明が解決しようとする課題】
本発明は前記実情に鑑みてなされたもので、極板を積層して電極体を形成するにあたり、極板の接続方法を改善し、負荷特性が高く耐高温特性に優れた非水電解質電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
そこで、本発明者らは、発泡状金属芯体に炭素材料を保持した極板に金属製接続片を接続するに際し、極板表面に抵抗溶接にて接続片を直接溶接することが可能であることを発見し、本発明はこの点に着目してなされたものである。
すなわち、本発明の非水電解質電池は、炭素材料を主体として含む活物質を、三次元的に空孔を有する金属芯体に保持してなる同極の極板を複数枚備えた非水電解質電池において、前記複数の同極の極板は、直接溶接された接続片によって互いに電気的に接続されており、前記接続片は網状体であり、かつ前記接続片は、前記極板と略同形の極板溶接部が接続部を介して一体的に形成された集電体であり、前記極板溶接部は前記極板に複数箇所で抵抗溶接せしめられていることを特徴とする。
また本発明の非水電解質電池は、炭素材料を主体として含む活物質を、三次元的に空孔を有する金属芯体に保持してなる同極の極板を複数枚備えた非水電解質電池において、前記複数の同極の極板は、直接溶接された接続片によって互いに電気的に接続されており、前記接続片は網状体であり、かつ前記接続片は、前記極板と略同形の極板溶接部が接続部を介して一体的に形成された集電体であり、前記極板溶接部は前記極板に全面で抵抗溶接せしめられていることを特徴とする
【0009】
なお、ニッケルカドミウム電池でも発泡状金属芯体を用いているが、集電タブの溶接において、活物質が絶縁性であるため、溶接部には活物質を塗布しないか、剥離する必要があった。本発明においては、炭素材料が導電性であるために、活物質を保持している極板表面を何ら処理することなく接続片を溶接することができる。
【0010】
本発明の非水電解質電池は、炭素材料を主体として含む活物質を、三次元的に空孔を有する金属芯体に保持してなる同極の極板を複数枚備えた非水電解質電池において、前記複数の同極の極板は、直接溶接された接続片によって互いに電気的に接続されていることを特徴とする。
【0011】
望ましくは、前記接続片は、網状体であることを特徴とする。
網状体を用いることにより、極板面を覆うように溶接しても、網目を通してリチウムイオンが移動できるためエネルギー密度の向上を図ることが可能となる。また負極板との抵抗溶接が容易であり、機械的自由度も高くより強度な接続が可能となる。
【0012】
また望ましくは、前記三次元的に空孔を有する金属芯体は、発泡状金属からなることを特徴とする。
【0013】
ここで、三次元的に空孔を有する金属芯体とは、発泡状金属芯体や繊維状金属を成型した芯体など、芯体表面から芯体中にかけて三次元的に連なった空孔を多数持つもの言う。
かかる構成によれば、活物質の充填率が高く信頼性の高いものとなる。
【0014】
望ましくは、炭素粒子を含み、リチウムを吸蔵放出可能な負極活物質を保持してなる発泡状金属からなる複数層の負極板と、リチウムを吸蔵放出可能な正極活物質を含む正極板とが交互にセパレータを介して積層された積層電極体を備え、前記負極板が、直接抵抗溶接された接続片によって互いに電気的に接続されたことを特徴とする。
かかる構成によれば、複数枚の電極板で電極体を構成すると共に、負極活物質を発泡状金属に保持させ、この発泡状金属を直接接続片に抵抗溶接することによって負極板同士の接続を行なっているため、高負荷特性を維持しつつ、活物質の利用性を高め、活物質の利用率を高めると共に、高温特性に優れた電池を提供する事が可能となる。
【0015】
望ましくは、前記接続片は、帯状箔からなる金属集電体で構成されていることを特徴とする。
かかる構成によれば、負極板との抵抗溶接が容易であかつ帯状箔で接続されることになり、機械的自由度も高く、より強固な接続が可能となる。
【0016】
望ましくは、前記接続片は、発泡状金属に炭素を含む負極活物質粒子を含浸してなる前記負極板とほぼ同一の外径を有する集電体であり、前記負極板に複数箇所で直接溶接せしめられていることを特徴とする。
かかる構成によれば、集電体が負極板の全面に形成されており、強固な電気的接合をとることができ、活物質の利用効率の向上を図ることが可能となる。
【0017】
望ましくは、前記集電体は前記負極板の全面に直接溶接せしめられていることを特徴とする。
かかる構成によれば、集電体が負極板の全面に直接溶接されており、強固な電気的接合をとることができ、接触抵抗の低減をはかることができ、活物質の利用効率のさらなる向上を図ることが可能となる。
【0018】
望ましくは、非水電解質電池はコイン型電池であることを特徴とする。
かかる構成によれば、われや反りの発生なしに、複数層の電極を積層したコイン型電池を提供することができ、小型で高効率のコイン型電池を提供することが可能となる。
【0019】
望ましくは、三次元的に空孔を有する金属芯体に保持される活物質は、結着剤を含まないことを特徴とする。
かかる構成によれば、接続片がより強固に溶接することができ、電池容量が大きく、内部抵抗が小さい非水電解質電池を提供することが可能となる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
(第1の実施の形態)
このコイン型非水電解質二次電池は、図1に断面概要図を示すように、負極活物質を保持してなる発泡状金属からなる2層の負極板2と、正極活物質を含む2層の正極板1とが交互にセパレータ3を介して積層され、コイン状の正極缶6と、この正極缶6に符合する負極缶7とがガスケット8を介して嵌合せしめられ、外装容器を構成してなるもので、負極板2が、直接抵抗溶接された負極集電体4によって互いに電気的に接続されたことを特徴とする。この正極板1と負極板2との間には電解液が注入されている。
【0021】
ここで負極板2としては、炭素粒子を含み、リチウムを吸蔵放出可能な負極活物質を保持してなる発泡状金属からなる2層の円盤状の負極板2を用い、直接抵抗溶接されたSUS網製集電体4を接続部材として互いに電気的に接続したことを特徴とする。
【0022】
また、正極は、2枚の円盤状体を接続部5sを介して一体形成されたエキスパンドメタル製正極集電体5に、正極活物質を含むスラリーを塗布し、乾燥後、所定の厚みに形成してなるものである。
【0023】
1.正極の作製
Li2CO3で表される炭酸リチウムと、Co34で表される四三酸化コバルトとを所定の質量比となるように混合し、空気中で900℃で焼成したLiCoO2で表されるコバルト酸リチウムを正極活物質とし、これに導電剤としてアセチレンブラックを3重量%混合した後、結着剤としてポリフッ化ビニリデン樹脂のN−メチルピロリドン10重量%溶液をスラリー固形成分の3重量%添加しスラリー状態とする。
【0024】
その後、直径15.5mm、厚さ0.8mmのペレット枠内に図3に示すアルミニウムエキスパンドメタル製正極集電体5を挿入し、その上からスラリーを注ぎ、60℃条件下で2時間乾燥させた。乾燥の後、ペレット型枠を取り外し、直径16mmの金型内で加圧調厚し、直径16mm、厚さ0.50mm、正極活物質密度1.0g/cm3としたものを、第2図に示す正極板とした。
【0025】
2.負極の作製
人造黒鉛に増粘剤としてカルボキシメチルセルロースの水性ディスパージョンを2重量%混練し、結着剤としてスチレンブタジエンラテックス水溶液を1重量%混練し、スラリー状とし、これを発泡状ニッケルに充填し、乾燥圧延し打ち抜き、図4に示すように、2枚の負極板を形成する。
【0026】
さらに、図5に示すように、2つの円盤状体が接続部4Sを介して一体的に形成されたSUS網製集電体4を用意する。
そしてこの図4に示した負極板2を、図5に示したSUS網製集電体4に、直接抵抗溶接するとともに、このSUS網製集電体4の接続部4Sを覆うように短絡防止用の絶縁テープ9を形成して電気的に接続された負極板2を形成する。ここで直径19.5mm、厚さ0.50mm、負極活物質密度1.0g/cm3とした。ここで用いる抵抗溶接の条件は6.5V,荷重9.8N、ショット時間0.1秒であった。
【0027】
なお、負極活物質としては、リチウムイオンを挿入・脱離し得る炭素系材料、例えば、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等が好適である。また、炭素系材料に、酸化錫、ケイ素、ケイ素化合物等のリチウムイオンを挿入・脱離し得る物質を混合したものを用いてもよい。ここで炭素系材料とは主として炭素を含む材料をいう。
【0028】
3.電解液の調整
(1)本発明のエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを添加した電解液
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを重量比で3:7に混合した混合溶媒に電解質塩として1モル/リットルの六フッ化リン酸リチウム(LiPF6)を溶解させた。
【0029】
なお、混合溶媒としては、上述したエチレンカーボネート(EC)、プロピレンカーボネート(PC)にジエチルカーボネート(DEC)を混合したもの以外に、水素イオンを供給する能力のない非プロトン性溶媒を使用し、例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を混合したものを用いることができる。また、電解質としては、上述したLiPF6以外に、LiPF6-X(C25X、LiBF4、LiClO4、LiN(SO2252に代表されるイミド塩等を使用することができる。
【0030】
4.リチウムイオン試験電池の作製
次にセパレータ3としてポリプロピレンからなる多孔性フィルムを図7に示すように直径20の円盤を3個一体的に打ち抜いたものを用意する。
上述のようにして作製した正極板1および負極板2を80℃で8時間真空乾燥させるとともに、セパレータ負極板2を常温乾燥させ、図1に示したように負極缶7内に、負極板、セパレータ、正極板、セパレータ、負極板、セパレータ、正極板が順次重ね合わされるように積層し、非水電解液を400μg注入した。
この後正極缶6をかぶせ、ガスケット8を介して嵌め封口した。このようにして形成された電池寸法は直径24mm、全高さ30mmである。
【0031】
5.比較例の電池の作成
同一条件で作成した負極スラリーを銅箔製集電体の両面に塗付し、厚さの調整のために圧延を行った。その後本発明の実施の形態の負極板と同寸法に打ち抜き、組み立て時に折り返す部分は剥離した。その後前記実施の形態の負極板2と同じ位置に短絡防止用に絶縁テープを貼りつけたものを負極板とした。
このようにして形成した、負極板は、直径19.5mm、厚さ0.50mm、負極活物質密度1.0g/cm3であった。
そして正極板、セパレータ、電解液は同じものを用い同様にして電池を作成した。
6.評価試験
(1)充放電試験
上述のようにして作製した本発明の実施の形態の電池および比較例の電池を、23℃条件下で、3mAの低電流で4.2Vまで充電し、その後4.2Vで10時間定電圧充電を行った。この後3mAの充電電流で3.0Vまで放電を行った。この充放電を1サイクルとして、10サイクル充放電を行った。
その結果を表1に示す。表1には実施の形態および比較電池の1サイクル目の充電容量と放電容量と、10サイクル目の充電容量と放電容量とを示す。
【表1】

Figure 0004222761
【0032】
表1から本発明の実施の形態では正極活物質の利用率が高く、結果として実放電容量も大きくなっていることがわかる。これは電池の充電過程で、正極板から移動するLiイオンの受け入れ側となる負極板において、負極活物質が発泡状金属保持体に保持されていることで、負極板強度が向上するだけでなく、三次元網目状に負極活物質を保持しているため、集電効率および含液性が向上しているためと考えられる。
【0033】
また充電状態で本発明の実施の形態の電池を乾燥条件下で分解し、負極板状態を観察すると、実施の形態での2枚の負極板は均一に金色に変色していた。このことから2枚の負極板と網状金属集電体を抵抗溶接することで、強固に電気的接合がなされているためと考えられる。
【0034】
また劣化率を比較すると、本発明の実施の形態では7%程度の劣化率に対して、比較例の電池では50%も劣化している。このことは充放電を繰り返すことで比較電池内の負極集電体と負極活物質との密着度が低下し、結果として集電効率が低下すると共に充放電容量が低下したためと考えられる。
【0035】
(2)高温保存試験
上記電池の高温保存特性を以下の方法で評価した。すなわち実施の形態および比較例の電池を充電状態にし、60℃条件下で20日間保存した。表2に、実施の形態および比較例の電池の保存前の内部抵抗値と保存後の内部抵抗値を示す。ここで内部抵抗は23℃、交流法1KHzで測定した。
【0036】
【表2】
Figure 0004222761
【0037】
表2から、本発明の実施の形態の電池に比べ比較例の電池では内部抵抗の上昇が大きかった。このことは、高温で長期に保存されることにより、比較例の電池での負極活物質が電解液の侵食を受けて膨潤し、負極集電体との密着度が低下し、結果として内部抵抗が上昇したためと考えられる。本発明の実施の形態においても電解液からの侵食を受けているものの、負極活物質は発泡状金属に強固に保持され、また負極板と網状金属集電体も抵抗溶接で強固に電気的接合がなされているため、影響はほとんど受けていないものと考えられる。
【0038】
また負極活物質を発泡金属で3次元的に保持するため、本発明の実施の形態の電池において負極結着剤をなくすことを検討した。ここでは、前述の「負極の作製」の方法において、結着剤としてのスチレンブタジエンラテックス水溶液を用いずスラリーを混練した以外は同様にして負極板を作製した。その結果を表3に示す。
【表3】
Figure 0004222761
【0039】
表3から、負極結着剤をなくした場合、電池特性は前記実施の形態と同様の結果を得たが、負極板と負極集電体との接合力は向上していることがわかる。
これは結着剤をなくすことで負極板の表面抵抗が低下し、接合が容易となったものと考えられる。
【0040】
さらに、前述の(1)、(2)と同様の評価試験を行った結果を表4、表5に示す。前述の実施例に比べて、結着剤が含有されてないので、電池容量、内部抵抗は良好となる。
【0041】
【表4】
Figure 0004222761
【0042】
【表5】
Figure 0004222761
【0043】
(第2の実施の形態)
第1の実施の形態ではコイン型非水電解質二次電池について説明したが、コイン型電池に限定されることなく薄型電池にも適用可能である。この薄型電池は、図8(a)に斜視図、図8(b)に断面概要図示すように、負極活物質を保持してなる発泡状金属からなる2層の負極板12と、正極活物質を含む2層の正極板11とが交互にセパレータ13を介して積層され、ヒートシール性樹脂製の枠体18で固着された外装体16、17内に収納され、その封口部から正極端子10と負極端子20とが導出されてなるものである。2層の負極板12が、直接抵抗溶接された負極集電体14によって互いに電気的に接続されたことを特徴とする。この正極板11と負極板12との間には電解液が注入されている。
【0044】
ここで負極板12としては、炭素粒子を含み、リチウムを吸蔵放出可能な負極活物質を保持してなる発泡状金属からなる2層の負極板12を用い、直接抵抗溶接されたSUS網製集電体14を接続部材として互いに電気的に接続したことを特徴とする。
【0045】
また、正極板は、2枚の長方形のエキスパンドメタル製集電体15が接続部15sを介して一体化しており、長方形部分に正極活物質を含むスラリーを塗布、乾燥後、活物質層を圧縮して形成する。
【0046】
そして正極端子および負極端子はそれぞれ集電体を突出させ、外装容器の外部となる部分では所定幅のリードを構成するように形状加工してなるものである。すなわち、集電体の形状を変化させるのみで極めて良好に形成されるものである。
【0047】
なお、前記実施の形態では、本発明をリチウムイオン電池に適用した例について説明したが、本発明をポリマー電池(高分子固体電解質電池)に適用することも可能である。
【0048】
また、前記実施の形態では、炭素材料を発泡状金属に含浸させた極板を負極として用いたが、これを正極として用い、リチウム金属を負極として、リチウム電池を作製することもできる。
【0049】
前記実施の形態では、極板を接続する接続片では、極板溶接部は極板と略同形のものを用いたが、これに限らず、長方形をしたタブを用いて極板間を接続してもよい。
【0050】
なお、ここでいうポリマーとは、ポリエーテル系固体高分子、ポリカーボネート系固体高分子、ポリアクリロニトリル系固体高分子、およびこれらの二種以上からなる共重合体もしくは架橋した高分子、ポリフッ化ビニリデン(PVdF)のようなフッ素系固体高分子から選択される高分子とリチウム塩と電解液を組み合わせてゲル状にした固体電解質である。
【0051】
【発明の効果】
以上説明してきたように、本発明によれば、複数毎の電極板を積層して電池を形成するに際し、負極板を発泡状金属からなる複数層の負極板を、直接抵抗溶接された接続片によって互いに電気的に接続して用いるようにしているため、活物質の利用効率が向上し、耐高温特性に優れた電池を形成することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の非水電解質二次電池を示す図である。
【図2】本発明の第1の実施の形態の非水電解質二次電池で用いられる正極板を示す図である。
【図3】本発明の第1の実施の形態の非水電解質二次電池で用いられる正極集電体を示す図である。
【図4】本発明の第1の実施の形態の非水電解質二次電池で用いられる負極板を示す図である。
【図5】本発明の第1の実施の形態の非水電解質二次電池で用いられる負極集電体を示す図である。
【図6】本発明の第1の実施の形態の非水電解質二次電池で用いられる負極を示す図である。
【図7】本発明の第1の実施の形態の非水電解質二次電池で用いられるセパレータを示す図である。
【図8】本発明の第2の実施の形態の非水電解質二次電池を示す図である。
【符号の説明】
1 正極板
2 負極板
3 セパレータ
4 負極集電体
5 正極集電体
6 正極缶
7 負極缶
8 ガスケット
9 絶縁テープ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte battery, and more particularly to electrical connection between electrode plates in the case where the electrode plates are formed of a laminate.
[0002]
[Prior art]
In recent years, as a battery used in portable electronic / communication equipment such as a small video camera, a mobile phone, and a laptop computer, a carbon material that can occlude / release lithium ions is used as a negative electrode active material, lithium cobalt oxide (LiCoO 2 ), Non-aqueous electrolyte batteries represented by lithium ion batteries using lithium-containing transition metal oxides such as lithium nickelate (LiNiO 2 ) and lithium manganate (LiMn 2 O 4 ) as a positive electrode material are small, light and high capacity. It has come into practical use as a chargeable / dischargeable battery.
[0003]
Currently, cylindrical or rectangular lithium secondary batteries are used as the main power source of many electronic communication devices. To cope with further battery miniaturization, coin-type nonaqueous electrolyte batteries are used. Secondary batteries are in demand.
[0004]
In a conventional coin-type battery, one negative electrode plate and one positive electrode plate are used. However, there is a problem that the facing area of the positive and negative electrode plate surfaces is small and a sufficiently large amount of current cannot be extracted. In order to solve this problem, Japanese Patent Publication No. 34-5516 proposes a method in which a plurality of positive and negative electrode plates are arranged to increase the amount of extracted current.
[0005]
However, in the conventional method for manufacturing an electrode plate of a lithium ion battery, a method in which a slurry containing an active material is applied to a metal foil, dried, then compressed in thickness and cut into a plate shape, the circular electrode plate has a width When it is cut into a shape that is connected by a narrow connecting portion, the connecting portion is thin, so that it is cut or the active material layer falls off, and handling is difficult. In addition, the active material utilization rate is reduced due to the poor current collection efficiency of the active material, and abnormal internal resistance rise due to reduced adhesion between the active material layer and the current collector is observed when the battery is stored at high temperature. It was.
[0006]
A method of manufacturing a nonaqueous electrolyte secondary battery using a plurality of positive and negative electrode plates and utilizing lithium ion storage and release has also been proposed (Japanese Patent Laid-Open No. 9-213307). In this method, a foamed metal or fibrous metal sintered body containing nickel as a main component is filled with a carbon material and a binder and pressed. In the battery formed in this way, since the current collector is integrated with the negative electrode material in a three-dimensionally spread state, the average distance between the negative electrode material and the current collector is small, and the internal resistance of the negative electrode is low. There is an advantage of being small. Therefore, it is considered that if the electrode plate using the foam metal is cut into a shape in which the circular electrode plates described above are connected, the active material does not fall off and a battery having a high active material utilization rate can be obtained. However, when the electrode plate is formed by bending and connecting the connecting portions of a plurality of connected electrode plates, there is a problem that when the connecting portion of the foam metal is bent, the connecting portions are fragile and very easy to cut. is there.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and in forming an electrode body by laminating electrode plates, a method for connecting the electrode plates is improved, and a non-aqueous electrolyte battery having high load characteristics and excellent high-temperature resistance characteristics is provided. The purpose is to provide.
[0008]
[Means for Solving the Problems]
Therefore, when connecting the metal connection piece to the electrode plate holding the carbon material on the foamed metal core, the present inventors can directly weld the connection piece to the electrode plate surface by resistance welding. The present invention has been made paying attention to this point.
That is, the non-aqueous electrolyte battery of the present invention is a non-aqueous electrolyte comprising a plurality of homopolar plates each having an active material mainly composed of a carbon material held in a three-dimensional metal core having pores. In the battery, the plurality of homopolar plates are electrically connected to each other by a directly welded connection piece, the connection piece is a net-like body, and the connection piece is substantially the same shape as the electrode plate. The electrode plate welded portion is a current collector integrally formed through a connecting portion, and the electrode plate welded portion is resistance-welded to the electrode plate at a plurality of locations.
Further, the nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery comprising a plurality of homopolar plates each having an active material mainly composed of a carbon material held in a metal core having three-dimensional pores. The plurality of homopolar plates are electrically connected to each other by a directly welded connection piece, the connection piece is a net-like body, and the connection piece is substantially the same shape as the electrode plate. The electrode plate welded portion is a current collector integrally formed through a connection portion, and the electrode plate welded portion is resistance-welded to the electrode plate over the entire surface .
[0009]
The nickel cadmium battery also uses a foam metal core, but the active material is insulative in welding the current collector tab, so the active material should not be applied to the welded part or peeled off. . In the present invention, since the carbon material is conductive, the connecting piece can be welded without any treatment on the surface of the electrode plate holding the active material.
[0010]
The nonaqueous electrolyte battery of the present invention is a nonaqueous electrolyte battery comprising a plurality of homopolar plates each having an active material mainly comprising a carbon material held in a three-dimensional metal core having pores. The plurality of homopolar plates are electrically connected to each other by a directly welded connection piece.
[0011]
Preferably, the connection piece is a net-like body.
By using a net-like body, even if welding is performed so as to cover the electrode plate surface, lithium ions can move through the net, so that the energy density can be improved. Also, resistance welding with the negative electrode plate is easy, and the mechanical freedom is high and a stronger connection is possible.
[0012]
Preferably, the three-dimensional metal core having pores is made of a foam metal.
[0013]
Here, a metal core having three-dimensional pores means a three-dimensionally linked hole from the surface of the core body to the core body, such as a foam metal core or a core formed from a fibrous metal. Say what you have.
According to such a configuration, the filling rate of the active material is high and the reliability is high.
[0014]
Desirably, a plurality of layers of negative electrode plates made of a foam metal containing carbon particles and holding a negative electrode active material capable of occluding and releasing lithium, and positive electrode plates containing a positive electrode active material capable of occluding and releasing lithium are alternated. The negative electrode plates are electrically connected to each other by connection pieces directly resistance-welded.
According to such a configuration, the electrode body is constituted by a plurality of electrode plates, the negative electrode active material is held on the foam metal, and the foam metal is directly resistance-welded to the connecting piece to connect the negative electrode plates to each other. Therefore, while maintaining high load characteristics, it is possible to increase the usability of the active material, increase the utilization rate of the active material, and provide a battery with excellent high temperature characteristics.
[0015]
Preferably, the connection piece is made of a metal current collector made of a strip-like foil.
According to such a configuration, it would be connected easily der Ri and strip foil resistance welding of the negative electrode plate, the mechanical degrees of freedom is high, thereby enabling more rigid connection.
[0016]
Preferably, the connecting piece is a current collector having substantially the same outer diameter as the negative electrode plate formed by impregnating a foamed metal with negative electrode active material particles containing carbon, and is directly welded to the negative electrode plate at a plurality of locations. It is characterized by being damped.
According to this configuration, the current collector is formed on the entire surface of the negative electrode plate, so that a strong electrical connection can be obtained, and the utilization efficiency of the active material can be improved.
[0017]
Preferably, the current collector is directly welded to the entire surface of the negative electrode plate.
According to this configuration, the current collector is directly welded to the entire surface of the negative electrode plate, so that a strong electrical connection can be achieved, the contact resistance can be reduced, and the utilization efficiency of the active material can be further improved. Can be achieved.
[0018]
Preferably, the nonaqueous electrolyte battery is a coin-type battery.
According to such a configuration, it is possible to provide a coin-type battery in which a plurality of layers of electrodes are laminated without generating cracks or warpage, and it is possible to provide a small and highly efficient coin-type battery.
[0019]
Desirably, the active material held by the metal core having pores three-dimensionally does not contain a binder.
According to such a configuration, it is possible to provide a nonaqueous electrolyte battery in which the connection pieces can be more firmly welded, the battery capacity is large, and the internal resistance is small.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
As shown in the schematic cross-sectional view of FIG. 1, the coin-type non-aqueous electrolyte secondary battery includes a two-layer negative electrode plate 2 made of a foam metal holding a negative electrode active material, and two layers containing a positive electrode active material. The positive electrode plates 1 are alternately stacked via the separators 3, and the coin-shaped positive electrode can 6 and the negative electrode can 7 corresponding to the positive electrode can 6 are fitted via the gasket 8 to constitute an outer container. Thus, the negative electrode plates 2 are electrically connected to each other by a negative electrode current collector 4 directly resistance welded. An electrolyte is injected between the positive electrode plate 1 and the negative electrode plate 2.
[0021]
Here, as the negative electrode plate 2, a two-layer disc-shaped negative electrode plate 2 made of a foamed metal containing carbon particles and holding a negative electrode active material capable of occluding and releasing lithium is used, and SUS is directly resistance-welded. The mesh current collector 4 is electrically connected to each other as a connecting member.
[0022]
In addition, the positive electrode is formed to have a predetermined thickness after applying a slurry containing a positive electrode active material to an expanded metal positive electrode current collector 5 in which two disk-shaped bodies are integrally formed via a connecting portion 5s, and drying. It is made.
[0023]
1. Production of positive electrode LiCoO 2 obtained by mixing lithium carbonate represented by Li 2 CO 3 and cobalt trioxide represented by Co 3 O 4 at a predetermined mass ratio and firing in air at 900 ° C. As a positive electrode active material, 3% by weight of acetylene black as a conductive agent is mixed with this, and then a 10% by weight N-methylpyrrolidone solution of polyvinylidene fluoride resin as a binder is used as a slurry solid component. Add 3 wt% to form a slurry.
[0024]
Thereafter, the positive electrode current collector 5 made of aluminum expanded metal shown in FIG. 3 is inserted into a pellet frame having a diameter of 15.5 mm and a thickness of 0.8 mm, and the slurry is poured thereon and dried at 60 ° C. for 2 hours. It was. After drying, the pellet mold was removed, and pressure-controlled thickness adjustment was performed in a 16 mm diameter mold to obtain a diameter of 16 mm, a thickness of 0.50 mm, and a positive electrode active material density of 1.0 g / cm 3 . The positive electrode plate shown in FIG.
[0025]
2. Preparation of negative electrode 2% by weight of an aqueous dispersion of carboxymethyl cellulose as a thickener is kneaded with artificial graphite, and 1% by weight of a styrene butadiene latex aqueous solution is kneaded as a binder to form a slurry, which is filled in foamed nickel. Then, it is dry-rolled and punched to form two negative plates as shown in FIG.
[0026]
Furthermore, as shown in FIG. 5, a SUS network current collector 4 in which two disk-like bodies are integrally formed via a connection portion 4S is prepared.
Then, the negative electrode plate 2 shown in FIG. 4 is directly resistance-welded to the SUS mesh current collector 4 shown in FIG. 5 and at the same time, the short-circuit prevention is performed so as to cover the connection portion 4S of the SUS mesh current collector 4. Insulating tape 9 is formed to form electrically connected negative electrode plate 2. Here, the diameter was 19.5 mm, the thickness was 0.50 mm, and the negative electrode active material density was 1.0 g / cm 3 . The resistance welding conditions used here were 6.5 V, load 9.8 N, and shot time 0.1 seconds.
[0027]
As the negative electrode active material, a carbon-based material capable of inserting / extracting lithium ions, such as graphite, carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof, is preferable. Further, a carbon-based material mixed with a substance capable of inserting / extracting lithium ions such as tin oxide, silicon, and silicon compound may be used. Here, the carbon-based material means a material mainly containing carbon.
[0028]
3. 7 were mixed: 3 adjustment (1) ethylene carbonate (EC) and diethyl carbonate (DEC) and an electrolyte of ethylene carbonate was added (EC) and diethyl carbonate (DEC) at a weight ratio of the present invention the electrolyte 1 mol / liter lithium hexafluorophosphate (LiPF 6 ) was dissolved as an electrolyte salt in the mixed solvent.
[0029]
In addition, as the mixed solvent, in addition to the above-described ethylene carbonate (EC), propylene carbonate (PC) mixed with diethyl carbonate (DEC), an aprotic solvent having no ability to supply hydrogen ions is used. A mixture of dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) can be used. In addition to LiPF 6 described above, an imide salt typified by LiPF 6-X (C 2 F 5 ) X , LiBF 4 , LiClO 4 , LiN (SO 2 C 2 F 5 ) 2 is used as the electrolyte. can do.
[0030]
4). Preparation of Lithium Ion Test Battery Next, a porous film made of polypropylene is prepared as the separator 3 by integrally punching three disks with a diameter of 20 as shown in FIG.
The positive electrode plate 1 and the negative electrode plate 2 produced as described above were vacuum-dried at 80 ° C. for 8 hours, and the separator negative electrode plate 2 was dried at room temperature, and as shown in FIG. A separator, a positive electrode plate, a separator, a negative electrode plate, a separator, and a positive electrode plate were laminated so as to be sequentially stacked, and 400 μg of a nonaqueous electrolyte solution was injected.
Thereafter, the positive electrode can 6 was put on and fitted and sealed through the gasket 8. The dimensions of the battery thus formed are 24 mm in diameter and 30 mm in total height.
[0031]
5. Preparation of Battery of Comparative Example A negative electrode slurry prepared under the same conditions was applied to both surfaces of a copper foil current collector, and rolled to adjust the thickness. Thereafter, the same size as that of the negative electrode plate according to the embodiment of the present invention was punched out, and the portion turned back during assembly was peeled off. Thereafter, the negative electrode plate was prepared by attaching an insulating tape to the same position as the negative electrode plate 2 of the above embodiment to prevent a short circuit.
The negative electrode plate thus formed had a diameter of 19.5 mm, a thickness of 0.50 mm, and a negative electrode active material density of 1.0 g / cm 3 .
The same positive electrode plate, separator, and electrolytic solution were used, and a battery was prepared in the same manner.
6). Evaluation Test (1) Charge / Discharge Test The battery of the embodiment of the present invention and the battery of the comparative example manufactured as described above were charged to 4.2 V with a low current of 3 mA under 23 ° C., and then 4 . Constant voltage charging was performed at 2 V for 10 hours. Thereafter, the battery was discharged to 3.0 V with a charging current of 3 mA. This charging / discharging was made into 1 cycle, and 10 cycles charging / discharging was performed.
The results are shown in Table 1. Table 1 shows the charge capacity and discharge capacity of the first cycle and the charge capacity and discharge capacity of the 10th cycle of the embodiment and the comparative battery.
[Table 1]
Figure 0004222761
[0032]
From Table 1, it can be seen that in the embodiment of the present invention, the utilization rate of the positive electrode active material is high and as a result, the actual discharge capacity is also increased. This is because the negative electrode active material is held by the foam metal holder in the negative electrode plate on the side of accepting Li ions moving from the positive electrode plate during the battery charging process, not only improving the strength of the negative electrode plate. This is probably because the negative electrode active material is held in a three-dimensional network shape, so that the current collection efficiency and the liquid content are improved.
[0033]
Further, when the battery according to the embodiment of the present invention was disassembled in a charged state under dry conditions and the state of the negative electrode plate was observed, the two negative electrode plates in the embodiment were uniformly changed to gold. From this, it is considered that the two negative plates and the mesh metal current collector are resistance-welded so that strong electrical connection is achieved.
[0034]
Further, when the deterioration rates are compared, the battery of the comparative example is deteriorated by 50% as compared with the deterioration rate of about 7% in the embodiment of the present invention. This is considered to be because the degree of adhesion between the negative electrode current collector and the negative electrode active material in the comparative battery was reduced by repeating charge and discharge, resulting in a decrease in current collection efficiency and a decrease in charge / discharge capacity.
[0035]
(2) High-temperature storage test The high-temperature storage characteristics of the battery were evaluated by the following methods. That is, the batteries of the embodiment and the comparative example were charged and stored at 60 ° C. for 20 days. Table 2 shows the internal resistance value before storage and the internal resistance value after storage of the batteries of the embodiment and the comparative example. Here, the internal resistance was measured at 23 ° C. and AC method 1 KHz.
[0036]
[Table 2]
Figure 0004222761
[0037]
From Table 2, the increase in internal resistance was larger in the battery of the comparative example than in the battery of the embodiment of the present invention. This is because, when stored at a high temperature for a long time, the negative electrode active material in the battery of the comparative example swells due to the erosion of the electrolytic solution, and the degree of adhesion with the negative electrode current collector decreases, resulting in internal resistance. This is thought to be due to the rise. In the embodiment of the present invention, the negative electrode active material is firmly held by the foamed metal, and the negative electrode plate and the reticulated metal current collector are also electrically joined by resistance welding, although they are eroded from the electrolyte. Therefore, it is considered that there is almost no influence.
[0038]
Moreover, in order to hold | maintain a negative electrode active material with a foam metal three-dimensionally, it examined that the negative electrode binder was eliminated in the battery of embodiment of this invention. Here, a negative electrode plate was prepared in the same manner as in the above-described “preparation of negative electrode” except that the slurry was kneaded without using an aqueous styrene-butadiene latex solution as a binder. The results are shown in Table 3.
[Table 3]
Figure 0004222761
[0039]
From Table 3, it can be seen that when the negative electrode binder was removed, the battery characteristics were the same as in the above embodiment, but the bonding strength between the negative electrode plate and the negative electrode current collector was improved.
This is considered to be because the surface resistance of the negative electrode plate was lowered and the joining was facilitated by eliminating the binder.
[0040]
Further, Tables 4 and 5 show the results of evaluation tests similar to those described in (1) and (2) above. Compared with the above-mentioned embodiment, since the binder is not contained, the battery capacity and the internal resistance are good.
[0041]
[Table 4]
Figure 0004222761
[0042]
[Table 5]
Figure 0004222761
[0043]
(Second Embodiment)
In the first embodiment, the coin-type non-aqueous electrolyte secondary battery has been described. However, the present invention is not limited to the coin-type battery and can be applied to a thin battery. The thin battery is a perspective view in FIG. 8 (a), as shown a cross-sectional schematic diagram in FIG. 8 (b), a negative electrode plate 12 of the two layers of foamed metal of holding the negative electrode active material, the positive electrode Two layers of positive electrode plates 11 containing an active material are alternately laminated via separators 13 and housed in exterior bodies 16 and 17 fixed by a frame 18 made of heat-sealable resin. The terminal 10 and the negative electrode terminal 20 are derived. Two layers of negative electrode plates 12 are electrically connected to each other by a negative electrode current collector 14 that is directly resistance welded. An electrolyte solution is injected between the positive electrode plate 11 and the negative electrode plate 12.
[0044]
Here, as the negative electrode plate 12, a two-layer negative electrode plate 12 made of a foamed metal containing carbon particles and holding a negative electrode active material capable of occluding and releasing lithium is used, and the SUS net collection is directly resistance welded. The electric body 14 is electrically connected to each other as a connecting member.
[0045]
In addition, the positive electrode plate has two rectangular expanded metal current collectors 15 integrated through a connection portion 15s, and a slurry containing a positive electrode active material is applied to the rectangular portion, dried, and then the active material layer is compressed. To form.
[0046]
Each of the positive electrode terminal and the negative electrode terminal is formed by projecting a current collector and processing the shape so as to form a lead having a predetermined width at a portion outside the outer container. That is, it can be formed extremely well only by changing the shape of the current collector.
[0047]
In the above embodiment, an example in which the present invention is applied to a lithium ion battery has been described. However, the present invention can also be applied to a polymer battery (polymer solid electrolyte battery).
[0048]
Moreover, in the said embodiment, although the electrode plate which impregnated the carbon material in the foam metal was used as a negative electrode, a lithium battery can also be produced using this as a positive electrode and using lithium metal as a negative electrode.
[0049]
In the above-described embodiment, in the connection piece for connecting the electrode plates, the electrode plate welded portion has substantially the same shape as the electrode plates. However, the present invention is not limited to this, and the electrodes are connected using rectangular tabs. May be.
[0050]
The polymer referred to here is a polyether solid polymer, a polycarbonate solid polymer, a polyacrylonitrile solid polymer, a copolymer of these two or more or a crosslinked polymer, polyvinylidene fluoride ( It is a solid electrolyte in which a polymer selected from fluorine-based solid polymers such as PVdF), a lithium salt, and an electrolytic solution are combined to form a gel.
[0051]
【The invention's effect】
As described above, according to the present invention, when a battery is formed by laminating a plurality of electrode plates, the negative electrode plate is formed by connecting a plurality of negative electrode plates made of a foam metal and directly resistance-welded. Therefore, the utilization efficiency of the active material is improved and a battery having excellent high temperature resistance can be formed.
[Brief description of the drawings]
FIG. 1 is a diagram showing a nonaqueous electrolyte secondary battery according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a positive electrode plate used in the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a positive electrode current collector used in the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention.
FIG. 4 is a diagram showing a negative electrode plate used in the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention.
FIG. 5 is a diagram showing a negative electrode current collector used in the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention.
FIG. 6 is a diagram showing a negative electrode used in the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention.
FIG. 7 is a view showing a separator used in the nonaqueous electrolyte secondary battery according to the first embodiment of the present invention.
FIG. 8 is a diagram showing a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Negative electrode collector 5 Positive electrode collector 6 Positive electrode can 7 Negative electrode can 8 Gasket 9 Insulation tape

Claims (3)

炭素材料を主体として含む活物質を、三次元的に空孔を有する金属芯体に保持してなる同極の極板を複数枚備えた非水電解質電池において、前記複数の同極の極板は、直接溶接された接続片によって互いに電気的に接続されており、
前記接続片は網状体であり、かつ前記接続片は、前記極板と略同形の極板溶接部が接続部を介して一体的に形成された集電体であり、前記極板溶接部は前記極板に複数箇所で抵抗溶接せしめられていることを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery comprising a plurality of homopolar plates each having an active material mainly comprising a carbon material held in a metal core having three-dimensional pores, the plurality of homopolar plates Are electrically connected to each other by directly welded connection pieces ,
The connecting piece is a net-like body, and the connecting piece is a current collector in which an electrode plate welded portion having substantially the same shape as the electrode plate is integrally formed via a connecting portion, and the electrode plate welded portion is A non-aqueous electrolyte battery, wherein the electrode plate is resistance welded at a plurality of locations .
炭素材料を主体として含む活物質を、三次元的に空孔を有する金属芯体に保持してなる同極の極板を複数枚備えた非水電解質電池において、前記複数の同極の極板は、直接溶接された接続片によって互いに電気的に接続されており、
前記接続片は網状体であり、かつ前記接続片は、前記極板と略同形の極板溶接部が接続部を介して一体的に形成された集電体であり、前記極板溶接部は前記極板に全面で抵抗溶接せしめられていることを特徴とする非水電解質電池。
In a non-aqueous electrolyte battery comprising a plurality of homopolar plates each having an active material mainly comprising a carbon material held in a metal core having three-dimensional pores, the plurality of homopolar plates Are electrically connected to each other by directly welded connection pieces,
The connecting piece is a net-like body, and the connecting piece is a current collector in which an electrode plate welded portion having substantially the same shape as the electrode plate is integrally formed via a connecting portion, and the electrode plate welded portion is A non-aqueous electrolyte battery, wherein the electrode plate is resistance-welded on the entire surface .
前記三次元的に空孔を有する金属芯体は、発泡状金属からなることを特徴とする請求項1または2に記載の非水電解質電池。 3. The nonaqueous electrolyte battery according to claim 1, wherein the metal core having pores three-dimensionally is made of a foam metal. 4.
JP2002024142A 2002-01-31 2002-01-31 Non-aqueous electrolyte battery Expired - Fee Related JP4222761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024142A JP4222761B2 (en) 2002-01-31 2002-01-31 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024142A JP4222761B2 (en) 2002-01-31 2002-01-31 Non-aqueous electrolyte battery

Publications (3)

Publication Number Publication Date
JP2003229133A JP2003229133A (en) 2003-08-15
JP2003229133A5 JP2003229133A5 (en) 2005-05-26
JP4222761B2 true JP4222761B2 (en) 2009-02-12

Family

ID=27746666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024142A Expired - Fee Related JP4222761B2 (en) 2002-01-31 2002-01-31 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4222761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003803A (en) * 2008-06-19 2010-01-07 Taiyo Yuden Co Ltd Electrochemical device and method for manufacturing therefor
CA2750166A1 (en) * 2009-01-27 2010-08-05 G4 Synergetics, Inc. Electrode folds for energy storage devices
JP6953897B2 (en) * 2017-08-24 2021-10-27 株式会社村田製作所 Stacked battery
JP7462476B2 (en) * 2020-06-01 2024-04-05 本田技研工業株式会社 Secondary battery
CN111564576A (en) * 2020-06-23 2020-08-21 瑞声科技(南京)有限公司 Button cell

Also Published As

Publication number Publication date
JP2003229133A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
CN107768716B (en) Gel electrolyte and precursor thereof
JP4752574B2 (en) Negative electrode and secondary battery
JP5541957B2 (en) Multilayer secondary battery
JP2004259636A (en) Nonaqueous electrolyte secondary battery
JP2006318892A (en) Square lithium secondary battery
JP2003242964A (en) Non-aqueous electrolyte secondary battery
JP6163613B2 (en) Lithium secondary battery
JP5043076B2 (en) Non-aqueous lithium secondary battery
JP4746272B2 (en) Nonaqueous electrolyte secondary battery
JP2002237292A (en) Nonaqueous electrolyte secondary battery
WO2013002055A1 (en) Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
JP4162510B2 (en) Nonaqueous electrolyte secondary battery
JP2019091571A (en) Lithium secondary battery
JP2011222128A (en) Secondary battery
JP4222761B2 (en) Non-aqueous electrolyte battery
JP2004087325A (en) Nonaqueous electrolytic solution battery
JP4015827B2 (en) Non-aqueous electrolyte battery
JP2017016905A (en) Charging/discharging method for lithium secondary battery
JP2007172878A (en) Battery and its manufacturing method
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP7074203B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
WO2020059874A1 (en) Secondary battery
JP6818300B2 (en) Lithium secondary battery charging / discharging method
JP2004273132A (en) Electrode and battery using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R151 Written notification of patent or utility model registration

Ref document number: 4222761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees