JP3515251B2 - Method for producing positive electrode active material for alkaline storage battery - Google Patents

Method for producing positive electrode active material for alkaline storage battery

Info

Publication number
JP3515251B2
JP3515251B2 JP30013795A JP30013795A JP3515251B2 JP 3515251 B2 JP3515251 B2 JP 3515251B2 JP 30013795 A JP30013795 A JP 30013795A JP 30013795 A JP30013795 A JP 30013795A JP 3515251 B2 JP3515251 B2 JP 3515251B2
Authority
JP
Japan
Prior art keywords
active material
compound
positive electrode
storage battery
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30013795A
Other languages
Japanese (ja)
Other versions
JPH09147857A (en
Inventor
功祐 里口
幹朗 田所
章史 山脇
良貴 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP30013795A priority Critical patent/JP3515251B2/en
Publication of JPH09147857A publication Critical patent/JPH09147857A/en
Application granted granted Critical
Publication of JP3515251B2 publication Critical patent/JP3515251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水酸化ニッケル活物質
を主成分とするアルカリ蓄電池用正極活物質の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for an alkaline storage battery containing a nickel hydroxide active material as a main component.

【0002】[0002]

【従来の技術】近年、ワープロ、携帯電話、パソコン、
ビデオカメラなどに代表されるポータブル電子機器は、
益々小型化、軽量化される傾向がある。そして、これら
電子機器に使用される電池についても、その利便性を更
に向上させるために、一層高性能なものが要請されてい
る。
2. Description of the Related Art In recent years, word processors, mobile phones, personal computers,
Portable electronic devices such as video cameras are
Increasingly smaller and lighter. Further, as for batteries used in these electronic devices, higher performance batteries are required in order to further improve convenience.

【0003】従来、アルカリ蓄電池に使用される正極と
しては、ニッケル粉末を主成分とするスラリーをパンチ
ングメタル等に塗着した後、焼結させて得た基板に、活
物質を含浸させて使用する所謂焼結式ニッケル正極が知
られている。しかし、この方式の電極は、基板を高多孔
度とした場合には強度が弱く、ニッケル粉末の脱落が生
じるために、実用上基板の多孔度を80%とするのが限
界であり、また、パンチングメタル等の芯体を必要とす
ることから活物質の充填密度が小さく、高エネルギー密
度を図る上では不利であるという欠点を有している。
Conventionally, as a positive electrode used in an alkaline storage battery, a substrate obtained by applying a slurry containing nickel powder as a main component to a punching metal or the like and then sintering the substrate is impregnated with an active material. So-called sintered nickel positive electrodes are known. However, the electrode of this system is weak in strength when the substrate has high porosity, and nickel powder comes off, so that the practical limit of the porosity of the substrate is 80%. Since a core body such as punching metal is required, the packing density of the active material is small, which is disadvantageous in achieving high energy density.

【0004】更に、焼結基板の細孔は10μm以下と小
さく、活物質の充填方法は、繁雑な工程を必要とする溶
液含浸法や電着含浸法に限定される欠点がある。
Further, the pores of the sintered substrate are as small as 10 μm or less, and the method of filling the active material has a drawback that it is limited to the solution impregnation method and the electrodeposition impregnation method which require complicated steps.

【0005】これらの欠点を改良する試みとして、例え
ば芯体を持たない多孔度約95%の発泡ニッケル等の金
属多孔体に水酸化ニッケル活物質粉末を結着剤とともに
直接充填する非焼結式ニッケル正極が提案されている。
As an attempt to improve these drawbacks, for example, a non-sintering type in which a nickel hydroxide active material powder is directly filled with a binder in a metallic porous body such as nickel foam having a porosity of about 95% and having no core body Nickel positive electrodes have been proposed.

【0006】このような非焼結式ニッケル正極の膨潤を
抑制する手段として、特開平3−62457号公報には
水酸化ニッケル活物質の表面に、水酸化ニッケルと水酸
化コバルトからなる固溶体層を被覆することが提案され
ている。
As a means for suppressing the swelling of such a non-sintered nickel positive electrode, Japanese Patent Laid-Open No. 3-62457 discloses a solid solution layer composed of nickel hydroxide and cobalt hydroxide on the surface of a nickel hydroxide active material. It is proposed to coat.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、水酸化
ニッケルの表面に水酸化コバルトを主成分とする多成分
化合物を被覆した後、空気中で乾燥させると、水酸化ニ
ッケル粒子の表面に形成されたコバルト化合物が酸化劣
化を受けて活物質粒子間の導電性が低下するために、活
物質の利用率の低下を招くという問題がある。
However, when the surface of nickel hydroxide was coated with a multi-component compound containing cobalt hydroxide as a main component and then dried in air, it was formed on the surface of nickel hydroxide particles. Since the cobalt compound undergoes oxidative deterioration to reduce the conductivity between the active material particles, there is a problem in that the utilization rate of the active material is reduced.

【0008】本発明は、このような問題点に鑑みてなさ
れたものであり、活物質粒子間の導電性の低下を防止
し、活物質の利用率を向上させようとすることを本発明
の課題とする。
The present invention has been made in view of such problems, and it is an object of the present invention to prevent a decrease in conductivity between active material particles and improve the utilization rate of the active material. It is an issue.

【0009】[0009]

【課題を解決するための手段】本発明のアルカリ蓄電池
用正極活物質の製造方法は、水酸化ニッケルを主成分と
する活物質粒子表面を、ニッケル、亜鉛、カドミウム、
マグネシウム、アルミニウム、インジウムからなる群よ
り選択された少なくとも一種以上の化合物とコバルト化
合物とからなる多成分化合物で被覆する活物質被覆工程
と、前記多成分化合物で被覆した活物質粒子を、アルカ
リ共存下で加熱処理し、前記多成分化合物中にオキシ水
酸化コバルトを形成する加熱処理工程と、前記加熱処理
を施した活物質粒子を窒素あるいは不活性雰囲気下、ま
たは真空下で乾燥する乾燥工程とを備えたことを特徴と
する。
A method for producing a positive electrode active material for an alkaline storage battery according to the present invention comprises a step of removing the surface of active material particles containing nickel hydroxide as a main component from nickel, zinc, cadmium,
An active material coating step of coating with a multi-component compound consisting of a cobalt compound and at least one compound selected from the group consisting of magnesium, aluminum and indium; and active material particles coated with the multi-component compound,
Heat treatment in the coexistence of oxywater in the multi-component compound
A heat treatment step for forming cobalt oxide, and the heat treatment
And a drying step of drying the active material particles subjected to the above step under a nitrogen or inert atmosphere or under vacuum.

【0010】[0010]

【作用】水酸化ニッケル活物質にコバルト化合物を添加
すると、活物質相互間の導電性を向上させることができ
る。特に水酸化ニッケルを主成分とする粒子表面にコバ
ルト化合物を被覆することによって、コバルト化合物を
単に添加する場合に比べて、コバルト化合物の導電性向
上効果をより発揮させることができる。しかし、過放電
や充放電サイクルの進行に伴って、水酸化ニッケル粒子
表面に被覆されたコバルト化合物が水酸化ニッケルの内
部に拡散し、表面に被覆されているコバルト量が少なく
なる現象が生じ、コバルト化合物の導電性改善効果が低
下する。
When the cobalt compound is added to the nickel hydroxide active material, the conductivity between the active materials can be improved. In particular, by coating the surface of the particles containing nickel hydroxide as the main component with the cobalt compound, the effect of improving the conductivity of the cobalt compound can be more exerted as compared with the case where the cobalt compound is simply added. However, with the progress of over-discharge and charge / discharge cycle, the cobalt compound coated on the surface of the nickel hydroxide particles diffuses inside the nickel hydroxide, and the phenomenon that the amount of cobalt coated on the surface becomes small occurs. The conductivity improving effect of the cobalt compound decreases.

【0011】そこで、コバルト化合物と同時に、ニッケ
ル、亜鉛、カドミウム、マグネシウム、アルミニウム、
インジウムからなる群より選択された少なくと一種以上
の化合物を添加して多成分化合物とし、この多成分化合
物を水酸化ニッケル表面に被覆することによって、コバ
ルト化合物の水酸化ニッケル粒子内部への拡散を抑制す
ることができるので、コバルト化合物の導電性改善効果
が長期にわたって発揮される。
Therefore, at the same time as the cobalt compound, nickel, zinc, cadmium, magnesium, aluminum,
At least one compound selected from the group consisting of indium is added to form a multi-component compound, and by coating this multi-component compound on the nickel hydroxide surface, the diffusion of the cobalt compound into the nickel hydroxide particles can be prevented. Since it can be suppressed, the effect of improving the conductivity of the cobalt compound is exhibited for a long period of time.

【0012】しかし、前記のような多成分化合物を水酸
化ニッケル粒子表面に被覆した後、空気中などの酸素が
多く存在する雰囲気下で乾燥させると、水酸化ニッケル
粒子表面に被覆されているコバルト化合物が酸化劣化を
受け、四酸化三コバルト(Co34)等の低導電性のコ
バルト化合物が形成され活物質粒子間の導電性が低下
し、前記のようなコバルト化合物の導電性改善効果を充
分に発揮することが困難となることを見いだした。
However, when the surface of the nickel hydroxide particles is coated with the multi-component compound as described above and then dried in an atmosphere containing a large amount of oxygen such as in the air, the cobalt particles coated on the surface of the nickel hydroxide particles are coated. The compound undergoes oxidative deterioration to form a low-conductivity cobalt compound such as tricobalt tetroxide (Co 3 O 4 ) and the conductivity between the active material particles is reduced, thus improving the conductivity of the cobalt compound. It was found that it would be difficult to take full advantage of.

【0013】そこで、窒素あるいは不活性気体雰囲気
下、または真空下で乾燥することによって四酸化三コバ
ルト(Co34)等の低導電性のコバルト化合物の生成
を抑制することができ、コバルト化合物の導電性改善効
果を充分に発揮することができるため、活物質利用率が
向上する。
Therefore, it is possible to suppress the production of a low-conductivity cobalt compound such as tricobalt tetroxide (Co 3 O 4 ) by drying in a nitrogen or inert gas atmosphere or under vacuum, and the cobalt compound Since the effect of improving conductivity can be sufficiently exhibited, the utilization factor of the active material is improved.

【0014】[0014]

【実施例】(参考例1) [水酸化ニッケル活物質の作製] モル比でニッケル1に対して、亜鉛0.005、コバル
ト0.02となるように硫酸ニッケル、硫酸亜鉛、硫酸
コバルトの混合水溶液を撹拌しながら、アンモニア水及
び水酸化ナトリウム水溶液を徐々に添加し、反応時のp
Hが10〜12になるようにアンモニア水及び水酸化ナ
トリウム水溶液の添加量を制御し、水酸化ニッケルを析
出させた。次に、この析出物を採取し、水洗、乾燥して
水酸化ニッケルを主成分とする活物質粒子を作製した。
Example ( Reference Example 1) [Preparation of nickel hydroxide active material] Mixing nickel sulfate, zinc sulfate, and cobalt sulfate in a molar ratio of 1 nickel to 0.005 zinc and 0.02 zinc. While stirring the aqueous solution, gradually add ammonia water and an aqueous sodium hydroxide solution, and p
Nickel hydroxide was deposited by controlling the addition amounts of the ammonia water and the sodium hydroxide aqueous solution so that H was 10 to 12. Next, the precipitate was collected, washed with water and dried to prepare active material particles containing nickel hydroxide as a main component.

【0015】次に上記水酸化ニッケルを主成分とする活
物質粒子に約4倍(重量比)の水を加え混合分散し、こ
の分散液に対し、濃度が金属量換算で約10重量%の硫
酸コバルト水溶液に対して硫酸亜鉛5重量%添加した多
成分溶液と水酸化ナトリウム水溶液とを添加し、上記活
物質粒子表面にコバルト化合物と亜鉛化合物とからなる
多成分化合物を被覆した。その後、上記多成分化合物で
被覆された活物質を水洗、窒素雰囲気中(酸素濃度0.
5体積%以下)80℃で乾燥させたものを参考例活物質
aと称する。
Next, about 4 times (weight ratio) of water is added to the active material particles containing nickel hydroxide as a main component and mixed and dispersed. The concentration of the dispersion liquid is about 10% by weight in terms of metal amount. A multi-component solution prepared by adding 5% by weight of zinc sulfate to a cobalt sulfate aqueous solution and a sodium hydroxide aqueous solution were added to coat the surfaces of the active material particles with a multi-component compound including a cobalt compound and a zinc compound. Then, the active material coated with the above multi-component compound is washed with water and in a nitrogen atmosphere (oxygen concentration: 0.
5 vol% or below) which was dried at 80 ° C. referred to as Reference Example active material a.

【0016】(参考例2) 前記実施例1における活物質の作製において、窒素雰囲
気中に代えてヘリウム雰囲気中(酸素濃度0.5体積%
以下)で乾燥させた以外は参考例1と同様にして参考例
活物質bを作製した。
Reference Example 2 In the production of the active material in Example 1, the nitrogen atmosphere was replaced with a helium atmosphere (oxygen concentration 0.5% by volume).
A reference example active material b was prepared in the same manner as in the reference example 1 except that it was dried in the following).

【0017】(参考例3) 前記参考例1における活物質の作製において、窒素雰囲
気中に代えて真空中で乾燥させた以外は参考例1と同様
にして参考例活物質cを作製した。
[0017] In the preparation of the active material in Reference Example 3 Reference Example 1, except that dried in vacuo instead of nitrogen atmosphere to prepare Reference Example active material c in the same manner as in Reference Example 1.

【0018】(比較例1) 前記参考例1における活物質の作製において、窒素雰囲
気中に代えて空気中で乾燥させた以外は参考例1と同様
にして比較活物質xを作製した。
[0018] In the preparation of the active material in Comparative Example 1 Reference Example 1, except that dried in air instead of nitrogen atmosphere to prepare a comparison active material x in the same manner as in Reference Example 1.

【0019】[電池の作製]前記のように作製した各活
物質a、b、c、xと前記活物質に対して0.1重量%
のヒドロキシプロピルセルロースを溶解させた水溶液5
0重量%とを混合してスラリーとし、このスラリーを多
孔度95%の発泡ニッケルに充填して、乾燥後所定厚み
に圧延して正極を作製した。
[Production of Battery] 0.1 wt% of each active material a, b, c, x produced as described above and the active material.
Aqueous solution of hydroxypropyl cellulose
0% by weight was mixed to form a slurry, the foamed nickel having a porosity of 95% was filled, dried and rolled to a predetermined thickness to produce a positive electrode.

【0020】このように作製した正極と、この正極に対
し充分な放電容量を有する公知の水素吸蔵電極とをセパ
レータを介して巻回して渦巻電極体を作製した。この渦
巻電極体を電池外装缶に挿入し、電解液を注液した後、
密閉させて公称容量1200mAhのニッケル水素電池
をそれぞれ作製した。 [電池の試験条件]前記のように作製したニッケル水素
電池を用いて、120mAの電流値で24時間充電し、
400mAの電流値で電池電圧が1.0Vに達するまで
放電して放電容量を測定した。そして、下記式に基づい
て利用率を求めてその結果を下記表1に示す。
The positive electrode thus produced and a known hydrogen storage electrode having a sufficient discharge capacity for the positive electrode were wound around a separator to produce a spiral electrode body. After inserting this spiral electrode body into the battery outer can and injecting the electrolytic solution,
Sealing was performed to manufacture nickel hydrogen batteries having a nominal capacity of 1200 mAh. [Battery test conditions] Using the nickel-hydrogen battery produced as described above, the battery was charged at a current value of 120 mA for 24 hours,
The battery was discharged at a current value of 400 mA until the battery voltage reached 1.0 V, and the discharge capacity was measured. Then, the utilization rate was calculated based on the following formula, and the result is shown in Table 1 below.

【0021】放電容量/公称容量 × 100 但し、本発明活物質aを100とした時の指数で示す。Discharge capacity / nominal capacity × 100 However, it is shown by an index when the active material a of the present invention is 100.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、参考例の活物質
a、b及びcは、空気中で乾燥させた比較活物質xより
も利用率が優れていることがわかる。
As is clear from Table 1, the active materials a, b and c of the reference example have a higher utilization rate than the comparative active material x dried in air.

【0024】これは、空気のように乾燥雰囲気中に過剰
の酸素が存在すると、性質上不安定な粒子表面の水酸化
コバルトが酸化劣化を受け、四酸化三コバルト(Co3
4)等の低導電性のコバルト化合物が形成され活物質
粒子間の導電性が低下するために、活物質の利用率の低
下を招いたためと考えられる。
This is because when excess oxygen is present in a dry atmosphere like air, cobalt hydroxide on the surface of the particles, which is unstable in nature, undergoes oxidative deterioration, and tricobalt tetraoxide (Co 3
It is considered that a low conductivity cobalt compound such as O 4 ) is formed and conductivity between the active material particles is reduced, which leads to a decrease in utilization rate of the active material.

【0025】(実施例) この実施例では、アルカリ存在下での加熱処理につい
て検討を行った。
Example 1 In this example 1 , the heat treatment in the presence of alkali was examined.

【0026】前記参考例1、2及び3の各活物質の作製
において、乾燥する前にアルカリを添加した後、空気中
で加熱処理を施す以外は前記参考例1、2及び3と同様
にして本発明活物質をA、B及びCをそれぞれ作製し
た。
In the preparation of the active materials of Reference Examples 1, 2 and 3, the same procedure as in Reference Examples 1, 2 and 3 was carried out except that an alkali was added before drying and then heat treatment was performed in air. The active material of the present invention was prepared as A, B and C, respectively.

【0027】そして、前記[電池の作製]及び[電池の
試験条件]に準じて、利用率を求めてその結果を下記表
2に示す。
Then, according to the above [Production of Battery] and [Test Conditions of Battery], the utilization rate was obtained and the results are shown in Table 2 below.

【0028】但し、前記参考例活物質aを100とした
時の指数で示す。
[0028] However, it is shown by an index when the Reference Example active material a is 100.

【0029】[0029]

【表2】 [Table 2]

【0030】表2から明らかなように、乾燥工程の前に
アルカリ共存下で加熱処理すると飛躍的に利用率が向上
することがわかる。これは、アルカリ熱処理によって表
面に被覆されたコバルト化合物が導電性の高いオキシ水
酸化コバルトに変化したために、活物質粒子間の導電性
が向上し、利用率が向上したためと考えられる。
As is clear from Table 2, the utilization factor is dramatically improved by heat treatment in the presence of alkali before the drying step. It is considered that this is because the cobalt compound coated on the surface by the alkali heat treatment was changed to highly conductive cobalt oxyhydroxide, so that the conductivity between the active material particles was improved and the utilization rate was improved.

【0031】(参考例4) この参考例4では、乾燥温度について検討を行った。 Reference Example 4 In Reference Example 4 , the drying temperature was examined.

【0032】前記参考例1の活物質の作製において、乾
燥温度をそれぞれ50、120、150、180、20
0℃に変化させた以外は前記参考例1と同様にして活物
質をそれぞれ作製した。
In the preparation of the active material of Reference Example 1, the drying temperatures were 50, 120, 150, 180 and 20, respectively.
Active materials were prepared in the same manner as in Reference Example 1 except that the temperature was changed to 0 ° C.

【0033】そして、前記[電池の作製]及び[電池の
試験条件]に準じて、利用率を求めてその結果を下記表
3に示す。
Then, according to the above [Production of battery] and [Test conditions of battery], the utilization rate was obtained and the results are shown in Table 3 below.

【0034】但し、前記参考例活物質aを100とした
時の指数で示す。
[0034] However, it is shown by an index when the Reference Example active material a is 100.

【0035】[0035]

【表3】 [Table 3]

【0036】表3から明らかなように、乾燥温度が18
0℃を越えると活物質利用率の低下が見られるため、乾
燥温度を180℃以下にすることが好ましい。これは、
乾燥温度を過剰に高くすると、水酸化ニッケル粒子表面
の水酸化コバルトが酸化劣化を受け、四酸化三コバルト
(Co34)等の低導電性のコバルト化合物が形成され
活物質粒子間の導電性が低下するために、活物質の利用
率の低下を招いたためと考えられる。
As is apparent from Table 3, the drying temperature is 18
When the temperature exceeds 0 ° C, the utilization factor of the active material decreases, so that the drying temperature is preferably 180 ° C or lower. this is,
If the drying temperature is excessively increased, the cobalt hydroxide on the surface of the nickel hydroxide particles is oxidatively deteriorated, and a low-conductivity cobalt compound such as tricobalt tetraoxide (Co 3 O 4 ) is formed, so that the conductivity between the active material particles is increased. It is considered that this is because the utilization rate of the active material was lowered due to the decrease in the property.

【0037】尚、本実施例では、被覆層の成分をコバル
ト化合物と亜鉛化合物との2成分化合物を用いたが、こ
れに限らずコバルト化合物と、ニッケル化合物、カドミ
ウム化合物、マグネシウム化合物、アルミニウム化合物
またはインジウム化合物との2成分化合物を用いても同
様の効果が得られる。また、コバルト化合物とこれらの
化合物の2種以上との多成分化合物で被覆層を構成して
も同様の効果が得られる。
In this embodiment, the component of the coating layer is a two-component compound of a cobalt compound and a zinc compound. The same effect can be obtained by using a binary compound with an indium compound. Also, the same effect can be obtained by forming the coating layer with a multi-component compound of a cobalt compound and two or more of these compounds.

【0038】また、本実施例では、不活性気体としてヘ
リウムを用いたが、これに限らずネオン、アルゴンまた
はキセノンを用いても同様の効果が得られる。また、こ
れらの混合気体を用いても同様の効果が得られる。
In this embodiment, helium is used as the inert gas, but the present invention is not limited to this, and the same effect can be obtained by using neon, argon or xenon. The same effect can be obtained by using these mixed gases.

【0039】[0039]

【発明の効果】以上の如く本発明の製造方法によれば、
表面に被覆されたコバルト化合物の酸化劣化を効果的に
防止することができ、コバルト化合物の導電性改善効果
が長期にわたって充分に発揮することができるため、活
物質利用率が高く、高容量の電池が得られる。
As described above, according to the manufacturing method of the present invention,
Since the cobalt compound coated on the surface can be effectively prevented from oxidative deterioration and the conductivity improving effect of the cobalt compound can be sufficiently exerted for a long period of time, a high active material utilization rate and a high capacity battery Is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 良貴 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平3−62457(JP,A) 特開 平5−89876(JP,A) 特開 昭61−110962(JP,A) 特開 昭62−222566(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/52 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshitaka Baba 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-3-62457 (JP, A) JP HEI 5-89876 (JP, A) JP 61-110962 (JP, A) JP 62-222566 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4 / 52

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水酸化ニッケルを主成分とする活物質粒
子表面を、ニッケル、亜鉛、カドミウム、マグネシウ
ム、アルミニウム、インジウムからなる群より選択され
た少なくとも一種以上の化合物とコバルト化合物とから
なる多成分化合物で被覆する活物質被覆工程と、前記多
成分化合物で被覆した活物質粒子を、アルカリ共存下で
加熱処理し、前記多成分化合物中にオキシ水酸化コバル
トを形成する加熱処理工程と、前記加熱処理を施した活
物質粒子を窒素あるいは不活性気体雰囲気下、または真
空下で乾燥する乾燥工程とを備えたことを特徴とするア
ルカリ蓄電池用正極活物質の製造方法。
1. A multi-component comprising a cobalt compound and at least one compound selected from the group consisting of nickel, zinc, cadmium, magnesium, aluminum and indium on the surface of active material particles containing nickel hydroxide as a main component. an active material coating step of coating with a compound, the multi
Active material particles coated with component compounds in the presence of alkali
After heat treatment, cobalt oxyhydroxide is added to the multi-component compound.
And a drying step of drying the heat-treated active material particles under a nitrogen or inert gas atmosphere or under a vacuum, the positive electrode active material for an alkaline storage battery. Manufacturing method.
【請求項2】 前記不活性気体はヘリウム、ネオン、ア
ルゴン及びキセノンから選択された少なくとも1種以上
であることを特徴とする請求項1記載のアルカリ蓄電池
用正極活物質の製造方法。
2. The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein the inert gas is at least one selected from helium, neon, argon and xenon.
【請求項3】 前記乾燥工程の乾燥温度を180℃以下
で行うことを特徴とする請求項1記載のアルカリ蓄電池
用正極活物質の製造方法。
3. The method for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein the drying temperature in the drying step is 180 ° C. or lower.
JP30013795A 1995-11-17 1995-11-17 Method for producing positive electrode active material for alkaline storage battery Expired - Fee Related JP3515251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30013795A JP3515251B2 (en) 1995-11-17 1995-11-17 Method for producing positive electrode active material for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30013795A JP3515251B2 (en) 1995-11-17 1995-11-17 Method for producing positive electrode active material for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09147857A JPH09147857A (en) 1997-06-06
JP3515251B2 true JP3515251B2 (en) 2004-04-05

Family

ID=17881189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30013795A Expired - Fee Related JP3515251B2 (en) 1995-11-17 1995-11-17 Method for producing positive electrode active material for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3515251B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297758A (en) * 2000-04-12 2001-10-26 Matsushita Electric Ind Co Ltd Positive electrode active material for alkaline storage cell and manufacturing method and alkaline storage cell using above
JP5842794B2 (en) * 2012-11-20 2016-01-13 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same
JP5892048B2 (en) * 2012-11-20 2016-03-23 住友金属鉱山株式会社 Coated nickel hydroxide powder for positive electrode active material of alkaline secondary battery and method for producing the same

Also Published As

Publication number Publication date
JPH09147857A (en) 1997-06-06

Similar Documents

Publication Publication Date Title
US5672447A (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
US6007946A (en) Non-sintered nickel electrode for alkaline storage battery, alkaline storage battery including the same, and method for production of non-sintered nickel electrode for alkaline storage battery
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
CA2321293C (en) Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
JP3386634B2 (en) Alkaline storage battery
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JP3515251B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP2930331B2 (en) Paste nickel positive electrode and alkaline storage battery
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP3454627B2 (en) Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery
JP3454606B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JPH11238507A (en) Alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH10154508A (en) Alkaline storage battery, its nickel electrode, and its manufacture
JP3316946B2 (en) Sintered cadmium cathode plate for alkaline storage battery and method of manufacturing the same
JPS62285360A (en) Negative electrode for alkaline storage battery
JPH103940A (en) Nickel-metal hydride storage battery and its manufacture
JP3354331B2 (en) Non-sintered nickel hydroxide positive electrode plate and alkaline storage battery provided with the positive electrode plate
JP2981537B2 (en) Negative electrode for alkaline batteries
JP3374995B2 (en) Manufacturing method of nickel electrode
JP3499923B2 (en) Hydrogen storage alloy electrode for metal-hydride alkaline storage batteries and hydrogen storage alloy particles for metal-hydride alkaline storage batteries
JPH0773876A (en) Nickel electrode for secondary battery and manufacture thereof
JP2953641B2 (en) Nickel electrode for alkaline storage battery and method for producing metal cobalt-coated cobalt monoxide

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees