JP3454606B2 - Method for producing positive electrode active material for alkaline storage battery - Google Patents
Method for producing positive electrode active material for alkaline storage batteryInfo
- Publication number
- JP3454606B2 JP3454606B2 JP13234695A JP13234695A JP3454606B2 JP 3454606 B2 JP3454606 B2 JP 3454606B2 JP 13234695 A JP13234695 A JP 13234695A JP 13234695 A JP13234695 A JP 13234695A JP 3454606 B2 JP3454606 B2 JP 3454606B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- cobalt
- positive electrode
- weight
- storage battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、水酸化ニッケル活物質
を主成分とするアルカリ蓄電池用正極活物質の製造方法
に関係する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a positive electrode active material for an alkaline storage battery containing a nickel hydroxide active material as a main component.
【0002】[0002]
【従来の技術】近年、ワープロ、携帯電話、パソコン、
ビデオカメラなどに代表されるポータブル電子機器は、
益々小型化、軽量化される傾向がある。そして、これら
電子機器に使用される電池についても、その利便性を更
に向上させるために、一層高性能なものが要請されてい
る。2. Description of the Related Art In recent years, word processors, mobile phones, personal computers,
Portable electronic devices such as video cameras are
Increasingly smaller and lighter. Further, as for batteries used in these electronic devices, higher performance batteries are required in order to further improve convenience.
【0003】従来、アルカリ蓄電池に使用される正極と
しては、ニッケル粉末を主成分とするスラリーをパンチ
ングメタル等に塗着した後、焼結させて得た基板に、活
物質を含浸させて使用する所謂焼結式ニッケル正極が知
られている。しかし、この方式の電極は、基板を高多孔
度とした場合には強度が弱く、ニッケル粉末の脱落が生
じるために、実用上基板の多孔度を80%とするのが限
界であり、また、パンチングメタル等の芯体を必要とす
ることから活物質の充填密度が小さく、高エネルギー密
度を図る上では不利であるという欠点を有している。Conventionally, as a positive electrode used in an alkaline storage battery, a substrate obtained by applying a slurry containing nickel powder as a main component to a punching metal or the like and then sintering the substrate is impregnated with an active material. So-called sintered nickel positive electrodes are known. However, the electrode of this system is weak in strength when the substrate has high porosity, and nickel powder comes off, so that the practical limit of the porosity of the substrate is 80%. Since a core body such as punching metal is required, the packing density of the active material is small, which is disadvantageous in achieving high energy density.
【0004】更に、焼結基板の細孔は10μm以下と小
さく、活物質の充填方法は、繁雑な工程を必要とする溶
液含浸法や電着含浸法に限定される欠点がある。Further, the pores of the sintered substrate are as small as 10 μm or less, and the method of filling the active material has a drawback that it is limited to the solution impregnation method and the electrodeposition impregnation method which require complicated steps.
【0005】これらの欠点を改良する試みとして、例え
ば芯体を持たない多孔度約95%の発泡ニッケル等の金
属多孔体に水酸化ニッケル活物質粉末を結着剤とともに
直接充填する非焼結式ニッケル正極が提案されている。As an attempt to improve these drawbacks, for example, a non-sintering type in which a nickel hydroxide active material powder is directly filled with a binder in a metallic porous body such as nickel foam having a porosity of about 95% and having no core body Nickel positive electrodes have been proposed.
【0006】このような非焼結式ニッケル正極の活物質
の一つである水酸化ニッケルの利用率を向上させる手段
として、水酸化ニッケル粒子表面を水酸化コバルトなど
で被覆する方法が提案されている。このような被覆方法
として、特開平6−187984号公報には、正極活物
質の主構成材料である水酸化ニッケル母粒子の表面の一
部もしくは全部を、メカノケミカル反応によって金属、
金属酸化物あるいは炭素のうちの少なくとも一種からな
る子粒子材料で被覆処理することが開示されている。As a means for improving the utilization rate of nickel hydroxide, which is one of the active materials for such a non-sintered nickel positive electrode, a method of coating the surface of nickel hydroxide particles with cobalt hydroxide or the like has been proposed. There is. As such a coating method, in Japanese Patent Laid-Open No. 6-187984, a part or all of the surface of nickel hydroxide mother particles, which is a main constituent material of the positive electrode active material, is treated with a metal by a mechanochemical reaction.
It is disclosed that a coating treatment with a child particle material made of at least one of a metal oxide and carbon is performed.
【0007】ここで、表面を水酸化コバルトで被覆され
た水酸化ニッケル活物質を密閉型アルカリ蓄電池の正極
として使用すると、水酸化コバルトは初回充電時に酸化
されて導電性の高いオキシ水酸化コバルトになる。When a nickel hydroxide active material whose surface is coated with cobalt hydroxide is used as the positive electrode of a sealed alkaline storage battery, the cobalt hydroxide is oxidized at the time of the first charge and becomes highly conductive cobalt oxyhydroxide. Become.
【0008】しかし、充電開始時は導電性の低い水酸化
コバルトの状態であるため、平面電極の場合には電流密
度分布に偏りが生じ、表面の水酸化コバルトからオキシ
水酸化コバルトへの酸化反応(高次化)が均一に進行し
ないため、表面コバルトの機能が充分に発揮されず、未
コート品に比較してある程度利用率は向上するが充分で
はなかった。導電性の高い金属コバルトを出発物質とし
ても、金属コバルトがオキシ水酸化コバルトに変化する
際に、水酸化コバルトを経由するため同様の現象が生じ
る。さらに、過放電時には高次化していない水酸化コバ
ルト中のコバルトが母粒子である水酸化ニッケル中に移
動、拡散しやすくなるために表面コバルト濃度が減少
し、利用率の低下に伴い、過放電後の充放電サイクル特
性が低下するという問題点があった。However, since the state of cobalt hydroxide having low conductivity is present at the start of charging, the current density distribution becomes uneven in the case of a flat electrode, and the oxidation reaction from cobalt hydroxide on the surface to cobalt oxyhydroxide occurs. Since the (higher order) does not proceed uniformly, the function of the surface cobalt was not sufficiently exerted, and the utilization rate improved to some extent as compared with the uncoated product, but it was not sufficient. Even when metallic cobalt having high conductivity is used as a starting material, a similar phenomenon occurs when metallic cobalt is converted into cobalt oxyhydroxide by passing through cobalt hydroxide. Furthermore, during over-discharging, cobalt in cobalt hydroxide that is not highly ordered moves and diffuses easily into nickel hydroxide, which is the base particle, so the surface cobalt concentration decreases, and as the utilization rate decreases, over-discharging There was a problem that the charge / discharge cycle characteristics afterwards deteriorated.
【0009】[0009]
【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであり、過放電後の充放電サイク
ル特性を向上させることのできるアルカリ蓄電池用正極
活物質の製造方法を提供しようとすることを本発明の課
題とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a method for producing a positive electrode active material for an alkaline storage battery, which can improve charge / discharge cycle characteristics after overdischarge. It is an object of the present invention.
【0010】[0010]
【課題を解決するための手段】本発明のアルカリ蓄電池
用正極活物質の製造方法は、水酸化ニッケルを主成分と
する粒子と、少なくともコバルトを含む粒子とを高温ア
ルカリ水溶液により機械的に湿式混合し、メカノケミカ
ル反応により前記水酸化ニッケルを主成分とする粒子表
面の一部あるいは全部を少なくともコバルトを含む粒子
で物理的に被覆することを特徴とする。 The method for producing a positive electrode active material for an alkaline storage battery according to the present invention comprises nickel hydroxide as a main component.
The particles to be heated and the particles containing at least cobalt at high temperature.
Mechanically wet mix with Lucari aqueous solution
Of particles containing nickel hydroxide as a main component by a reaction
Particles containing cobalt on at least part of the surface
It is characterized in that it is physically covered with.
【0011】[0011]
【0012】本発明でのメカノケミカル反応とは、物質
に圧縮、せん断、摩擦、延伸などの手段により加えられ
る機械的エネルギーがその物質の化学的変化をもたらす
反応をいう。The mechanochemical reaction in the present invention refers to a reaction in which mechanical energy applied to a substance by means such as compression, shearing, rubbing or stretching causes a chemical change of the substance.
【0013】[0013]
【作用】メカノケミカル反応によって、正極材料である
水酸化ニッケル粒子の表面の一部あるいは全部を少なく
ともコバルトを含む粒子で被覆することにより、水酸化
ニッケル粒子と少なくともコバルトを含む粒子との結合
力が極めて強くなる。By coating a part or all of the surface of the nickel hydroxide particles, which is the positive electrode material, with the particles containing at least cobalt by the mechanochemical reaction, the binding force between the nickel hydroxide particles and the particles containing at least cobalt is increased. Become extremely strong.
【0014】また、電池に組み込む前に、水酸化ニッケ
ル粒子表面に被覆されたコバルト化合物をアルカリ水溶
液共存下で加熱すれば、表面のコバルト化合物が導電性
の高いオキシ水酸化コバルトに効率良く高次化されるた
めに利用率が向上する。If the cobalt compound coated on the surface of the nickel hydroxide particles is heated in the presence of an aqueous alkaline solution before being incorporated into the battery, the cobalt compound on the surface is efficiently converted into highly conductive cobalt oxyhydroxide. As a result, the utilization rate is improved.
【0015】また、高次化していない水酸化コバルトが
ほとんど存在せず、高次化したオキシ水酸化コバルト
は、放電時に水酸化コバルトに変化し難いためコバルト
が水酸化ニッケル中へ拡散しにくい。従って、過放電後
の充放電サイクル特性の低下を防止することができる。Further, there is almost no unordered cobalt hydroxide, and the enhanced cobalt oxyhydroxide is unlikely to change to cobalt hydroxide during discharge, so that cobalt is less likely to diffuse into nickel hydroxide. Therefore, it is possible to prevent deterioration of charge-discharge cycle characteristics after over-discharge.
【0016】さらに、表面被覆層中にコバルト化合物と
ともに亜鉛化合物、カドミウム化合物、ニッケル化合物
が同時に存在すると、これらはアルカリ水溶液共存下で
の加熱時にコバルト化合物と接している境界部分で部分
的に固溶し、活物質表面に添加されたコバルトが水酸化
ニッケル中に拡散しにくくなるため過放電後の充放電サ
イクル特性の低下を効果的に防止することができる。Further, when a zinc compound, a cadmium compound and a nickel compound are present together with the cobalt compound in the surface coating layer, these are partially solid-dissolved at the boundary portion in contact with the cobalt compound during heating in the presence of an alkaline aqueous solution. However, since cobalt added to the surface of the active material is less likely to diffuse into nickel hydroxide, it is possible to effectively prevent deterioration of charge / discharge cycle characteristics after overdischarge.
【0017】[0017]
【実施例】(参考例1)
[水酸化ニッケル活物質の作製]
モル比でニッケル1に対して、亜鉛0.02、コバルト
0.05となるように硫酸ニッケル、硫酸亜鉛、硫酸コ
バルトの混合水溶液を撹拌しながら、アンモニア水及び
水酸化ナトリウム水溶液を徐々に添加し、反応時のPH
が11になるようにアンモニア水及び水酸化ナトリウム
水溶液の添加量を制御し、水酸化ニッケルを析出させ
た。次に、この析出物を採取し、水洗、乾燥して水酸化
ニッケル粒子を作製した。Example ( Reference Example 1) [Preparation of nickel hydroxide active material] Mixing nickel sulfate, zinc sulfate, and cobalt sulfate in a molar ratio of 1 nickel to 0.02 zinc and 0.05 cobalt. While stirring the aqueous solution, gradually add ammonia water and an aqueous sodium hydroxide solution to adjust the pH during the reaction.
The amount of ammonia water and the aqueous sodium hydroxide solution added was controlled so that the ratio became 11, and nickel hydroxide was deposited. Next, this precipitate was collected, washed with water and dried to prepare nickel hydroxide particles.
【0018】次に内容積1リットルの容量のステンレス
製ポットに、上記水酸化ニッケル粒子95重量部とコバ
ルト粒子5重量部、または水酸化コバルト粒子5重量部
の割合で1kgとした活物質粒子と、ステンレス製ボール
1kgとを投入し、内部を不活性ガスで置換した後密閉し
た。このポットを回転数1500rpmで1時間回転させ
ることにより、コバルト粒子で表面が被覆された水酸化
ニッケル活物質A1または水酸化コバルト粒子で表面が
被覆された水酸化ニッケル活物質A2を作製した。
[アルカリ熱処理]
次に、前記活物質A1、A2に25重量%の水酸化ナト
リウム水溶液を滴下して水酸化ナトリウム水溶液含浸ニ
ッケル活物質粒子とし、この活物質粒子を80℃の加熱
空気中で3時間加熱した。次にこの活物質を水洗、乾燥
し、参考例活物質B1、B2を作製した。
[電極の作製]
前記のように作製した各活物質100重量部とヒドロキ
シプロピルセルロースの0.2重量%水溶液50重量部
とを混合し、活物質スラリーを作製した。この活物質ス
ラリーを、厚み約1.6mm、多孔度95%の発泡ニッケ
ルに充填して、乾燥後、圧延して厚み約0.6mmのニッ
ケル正極を作製した。
[試験セルの作製]
開放型簡易セルの作製
前記正極と、この正極よりも充分大きな容量を持つ公知
の焼結式カドミウム極を不織布からなるセパレータを介
してアクリル板により挟んで、加圧された状態で約25
重量%の水酸化カリウム水溶液中に浸漬し、開放型簡易
セルを作製した。
密閉型電池の作製
市販の金属元素をMmNi3.4Co0.8Al0.2Mn0.6と
なるように秤量し、高周波溶解炉にて溶解した後、この
溶湯を鋳型に流し込み水素吸蔵合金インゴットを作製し
た。次にこのインゴットをあらかじめ粗粉砕した後、不
活性ガス雰囲気中で平均粒径が150μm程度になるま
で機械的に粉砕を行った。Next, in a stainless steel pot having an internal volume of 1 liter, 95 parts by weight of the nickel hydroxide particles and 5 parts by weight of cobalt particles, or 5 parts by weight of cobalt hydroxide particles were added as active material particles of 1 kg. Then, 1 kg of stainless steel balls were charged, the inside was replaced with an inert gas, and then sealed. By rotating this pot at a rotation speed of 1500 rpm for 1 hour, a nickel hydroxide active material A1 having a surface coated with cobalt particles or a nickel hydroxide active material A2 having a surface coated with cobalt hydroxide particles was produced. [Alkaline heat treatment] Next, a 25 wt% sodium hydroxide aqueous solution was dropped onto the active materials A1 and A2 to obtain nickel active material particles impregnated with the sodium hydroxide aqueous solution. Heated for hours. Then washed with water this active material, followed by drying to produce a reference example active material B1, B2. [Preparation of Electrode] 100 parts by weight of each active material prepared as described above and 50 parts by weight of a 0.2 wt% aqueous solution of hydroxypropyl cellulose were mixed to prepare an active material slurry. This active material slurry was filled in foamed nickel having a thickness of about 1.6 mm and a porosity of 95%, dried and rolled to produce a nickel positive electrode having a thickness of about 0.6 mm. [Preparation of test cell] Preparation of open-type simple cell The positive electrode and a known sintered cadmium electrode having a sufficiently larger capacity than the positive electrode were sandwiched between acrylic plates via a separator made of nonwoven fabric, and pressed. About 25
An open type simple cell was prepared by immersing in an aqueous solution of potassium hydroxide of weight%. Production of Sealed Battery A commercially available metal element was weighed so as to be MmNi3.4Co0.8Al0.2Mn0.6 and melted in a high frequency melting furnace, and then this molten metal was poured into a mold to produce a hydrogen storage alloy ingot. Next, this ingot was roughly crushed in advance, and then mechanically crushed in an inert gas atmosphere until the average particle size became about 150 μm.
【0019】この合金粉末に結着剤としてのポリエチレ
ンオキサイド及び適量の水を加えて混合してスラリーと
した。このスラリーをパンチングメタルから成る集電体
の両面に塗布、乾燥後、プレスして厚み約0.4mmの負
極を作製した。Polyethylene oxide as a binder and an appropriate amount of water were added to this alloy powder and mixed to form a slurry. This slurry was applied on both sides of a collector made of punching metal, dried, and pressed to prepare a negative electrode having a thickness of about 0.4 mm.
【0020】前記正極と水素吸蔵合金からなる負極とを
不織布からなるセパレータを介して巻回し、電極群を作
製した。この電極群を電池缶に挿入し、7〜8.5規定
のKOH水溶液を2.0g注入した後、すぐに開口部を
密閉し、公称容量1200mAhのニッケル−水素蓄電
池を作製した。
[電池の試験条件]
単位活物質量当りの放電容量の測定
前記のように作製した開放型簡易セルを用いて、120
mAの電流値で24時間充電し、400mAの電流値で
電池電圧が1.0Vに達するまで放電して放電容量を測
定した。そして、単位活物質量当りの放電容量を求め、
その結果を下記表1に示す。
過放電特性の測定
前記のように作製した密閉型電池を用いて、120mA
の電流値で16時間充電し、次いで240mAの電流値
で1.0Vに達するまで放電するというサイクルを3サ
イクル繰り返し、電池を活性化した。The positive electrode and the negative electrode made of a hydrogen storage alloy were wound around a separator made of a non-woven fabric to prepare an electrode group. This electrode group was inserted into a battery can, 2.0 g of a KOH aqueous solution of 7 to 8.5 N was injected, and the opening was immediately closed to produce a nickel-hydrogen storage battery having a nominal capacity of 1200 mAh. [Battery test conditions] Measurement of discharge capacity per unit amount of active material The open type simple cell prepared as described above was used to measure 120
The battery was charged at a current value of mA for 24 hours, discharged at a current value of 400 mA until the battery voltage reached 1.0 V, and the discharge capacity was measured. Then, the discharge capacity per unit active material amount is obtained,
The results are shown in Table 1 below. Measurement of over-discharge characteristics Using the sealed battery prepared as described above, 120 mA
The battery was activated by repeating the cycle of charging for 16 hours at a current value of 16 hours and then discharging at a current value of 240 mA until 1.0 V was reached.
【0021】1200mAの電流値で充電を行い、充
電電圧が最大値を示してからの電圧降下量(−ΔV)が
10mVに達した時点で充電を止め、1時間休止する。Charging is performed at a current value of 1200 mA, and when the voltage drop amount (-ΔV) after the charging voltage reaches the maximum value reaches 10 mV, the charging is stopped and the battery is stopped for 1 hour.
【0022】1200mAの電流値で放電を行い、電
池電圧が1.0Vに達した時点で放電を終了し、放電容
量Xを測定する。Discharge is performed at a current value of 1200 mA, the discharge is terminated when the battery voltage reaches 1.0 V, and the discharge capacity X is measured.
【0023】前記放電終了後、更に60mAで16時
間強制的に放電する。After the end of the discharge, the discharge is further forced at 60 mA for 16 hours.
【0024】前記〜の工程を6回繰り返す。The above steps 1 to 6 are repeated 6 times.
【0025】この時初回サイクルにおける放電容量X1
と最終サイクルにおける放電容量X6との比(X6/X
1)を求め、この値を過放電特性とし、その結果を下記
表1に示す。At this time, the discharge capacity X1 in the first cycle
To the discharge capacity X6 in the final cycle (X6 / X
1) was obtained, and this value was used as the overdischarge characteristic, and the results are shown in Table 1 below.
【0026】尚、上記の測定結果は、活物質A1の値を
100とした指標で示す。The above measurement results are shown as an index with the value of the active material A1 as 100.
【0027】[0027]
【表1】 [Table 1]
【0028】表1から明らかなように、参考例の活物質
B1及びB2は、アルカリ熱処理していない比較活物質
A1及びA2よりも単位活物質容量が優れており、特
に、過放電特性が顕著に優れていることがわかる。アル
カリ熱処理により、さらに電気容量及び過放電特性が向
上したのは、アルカリ熱処理により導電性に優れた2価
を超える高次コバルト化合物になること、高次化してい
ない水酸化コバルトがほとんど存在しないために活物質
表面へ添加したコバルトが水酸化ニッケル粒子内へ拡散
されにくく、過放電後においてもコバルトの添加効果が
発揮されるためであると考えられる。As is clear from Table 1, the active materials B1 and B2 of the reference example have a higher unit active material capacity than the comparative active materials A1 and A2 which are not subjected to the alkali heat treatment, and in particular, the overdischarge characteristics are remarkable. It turns out that it is excellent. The alkali heat treatment further improved the electric capacity and the over-discharge characteristics because the alkali heat treatment changed the compound to a higher-order cobalt compound having a valence of more than 2 and excellent in conductivity, and almost no cobalt hydroxide was not formed. It is considered that this is because the cobalt added to the surface of the active material is not easily diffused into the nickel hydroxide particles, and the effect of adding the cobalt is exhibited even after overdischarge.
【0029】(参考例2) この参考例2では、表面被
覆物質について検討を行った。 Reference Example 2 In Reference Example 2, the surface coating substance was examined.
【0030】ここで用いた活物質は、前記参考例1の
[活物質の作製]に準じて、用意した。即ち、下記表2
に示す割合で混合した以外は、上記参考例1と同様にし
て参考例活物質B3〜B8を作製した。The active material used here was prepared according to [Preparation of active material] in Reference Example 1 above. That is, Table 2 below
Except that a mixing ratio shown in was prepared in Reference Example active material B3~B8 in the same manner as in Reference Example 1.
【0031】[0031]
【表2】 [Table 2]
【0032】次に、前記参考例1と同様にして開放型簡
易セル及び密閉型電池を作製し、前記電池の試験条件と
同様の条件にて、単位活物質容量及び過放電特性を測定
し、その結果を表3に示す。Then, an open simple cell and a sealed battery were prepared in the same manner as in Reference Example 1, and the unit active material capacity and overdischarge characteristics were measured under the same conditions as the test conditions of the battery. The results are shown in Table 3.
【0033】尚、上記の測定結果は、活物質A1の値を
100とした指標で示す。The above measurement results are shown as an index with the value of the active material A1 as 100.
【0034】[0034]
【表3】 [Table 3]
【0035】表3から明らかなように、表面被覆物質を
コバルト化合物と、カドミウム化合物、亜鉛化合物及び
ニッケル化合物の群から選ばれた少なくとも1つとの2
成分系にしてアルカリ熱処理を施せば、過放電特性が飛
躍的に向上することがわかる。As is clear from Table 3, the surface coating substance is a cobalt compound and at least one selected from the group of cadmium compounds, zinc compounds and nickel compounds.
It can be seen that if the component system is subjected to alkali heat treatment, the over-discharge characteristics are dramatically improved.
【0036】これは、表面被覆層中にコバルト化合物と
ともに亜鉛化合物、カドミウム化合物またはニッケル化
合物が同時に存在したためであり、これらはアルカリ熱
処理時にコバルト化合物と接している境界部分で部分的
に固溶し、活物質表面に添加されたコバルトが水酸化ニ
ッケル中により拡散しにくくなるため、オキシ水酸化コ
バルトによる活物質表面の導電性向上効果が過放電後に
おいても十分発揮されるためであると考えられる。This is because a zinc compound, a cadmium compound or a nickel compound was simultaneously present in the surface coating layer together with the cobalt compound, and these were partially solid-dissolved at the boundary portion in contact with the cobalt compound during the alkali heat treatment, It is considered that this is because the cobalt added to the surface of the active material is less likely to diffuse into nickel hydroxide, and therefore the effect of improving the conductivity of the surface of the active material by cobalt oxyhydroxide is sufficiently exerted even after overdischarge.
【0037】(実施例)この実施例では、参考例1とは
異なる製法について検討を行った。 Example In this example, a manufacturing method different from that of Reference Example 1 was examined.
【0038】各活物質は、前記参考例1及び参考例2の
活物質B1〜B8と同様の活物質組成とした。[0038] each active material were the same active material composition as the active material B1~B8 of Reference Example 1 and Reference Example 2.
【0039】具体的な製法としては、内容積1リットル
の容量のステンレスポットに参考例1及び2と同様の割
合で粒子を1kg、及びステンレス製ボール1kgを投入
し、さらに粒子が湿潤する程度に25重量%の水酸化ナ
トリウム水溶液を投入した後、密閉した。尚、内部は空
気であるが、酸素ガスで一部または全部を置換しても良
い。このポットを回転数1500rpm、80℃で2時
間回転させることにより、表面が少なくともコバルトを
含む粒子で被覆され、アルカリ水溶液の存在化で熱処理
された本発明水酸化ニッケル活物質C1〜C8を作製し
た。As a concrete manufacturing method, 1 kg of particles and 1 kg of stainless steel balls were put into a stainless steel pot having an internal volume of 1 liter at the same ratio as in Reference Examples 1 and 2, and the particles were wet to such an extent. After adding a 25 wt% sodium hydroxide aqueous solution, the mixture was sealed. Although the inside is air, a part or all of it may be replaced with oxygen gas. By rotating this pot at a rotation speed of 1500 rpm for 2 hours at 80 ° C., nickel hydroxide active materials C1 to C8 of the present invention were produced, the surface of which was coated with particles containing at least cobalt and heat-treated in the presence of an alkaline aqueous solution. .
【0040】次に、前記参考例1と同様にして開放型簡
易セル及び密閉型電池を作製し、前記電池の試験条件と
同様の条件にて、単位活物質容量及び過放電特性を測定
し、その結果を表4に示す。Next, an open simple cell and a sealed battery were prepared in the same manner as in Reference Example 1, and the unit active material capacity and overdischarge characteristics were measured under the same conditions as the test conditions of the battery, The results are shown in Table 4.
【0041】尚、上記の測定結果は、活物質A1の値を
100とした指標で示す。The above measurement results are shown as an index with the value of the active material A1 being 100.
【0042】[0042]
【表4】 [Table 4]
【0043】表4より、明らかなように参考例1と同程
度の効果が得られることがわかる。From Table 4, it is clear that the same effect as in Reference Example 1 can be obtained.
【0044】(参考例3)この参考例3では、全粒子の
重量に対する活物質表面を被覆する際に使用するコバル
ト化合物の重量比率と、電池特性について検討を行っ
た。 Reference Example 3 In Reference Example 3 , the weight ratio of the cobalt compound used for coating the surface of the active material to the weight of all particles and the battery characteristics were examined.
【0045】各活物質は、前記参考例1の[活物質の作
製]に準じて、用意した。即ち、活物質表面被覆時の水
酸化コバルトの使用量を調整することにより、全粒子の
重量に対する水酸化コバルトの重量比率を変化させてい
る。Each active material was prepared according to [Preparation of active material] in Reference Example 1 above. That is, the weight ratio of cobalt hydroxide to the weight of all particles is changed by adjusting the amount of cobalt hydroxide used for coating the surface of the active material.
【0046】具体的な各水酸化コバルトの重量比率とし
ては、0重量%、0.1重量%、0.5重量%、1.0
重量%、3.0重量%、5.0重量%、10.0重量
%、15.0重量%、20.0重量%、25.0重量%
とし、それぞれ活物質D1、D2、D3、D4、D5、
D6、D7、D8、D9、D10と称する。The specific weight ratio of each cobalt hydroxide is 0% by weight, 0.1% by weight, 0.5% by weight, 1.0
% By weight, 3.0% by weight, 5.0% by weight, 10.0% by weight, 15.0% by weight, 20.0% by weight, 25.0% by weight
And active materials D1, D2, D3, D4, D5,
Called D6, D7, D8, D9, D10.
【0047】次に、前記参考例1と同様にして開放型簡
易セルを作製し、前記電池の試験条件と同様の条件に
て、単位活物質容量を測定し、その結果を表5に示す。Next, an open type simple cell was prepared in the same manner as in Reference Example 1, and the unit active material capacity was measured under the same conditions as the test conditions of the battery, and the results are shown in Table 5.
【0048】尚、水酸化コバルトの重量比率が10.0
重量%、即ちD7の値を100とした指標で示す。The weight ratio of cobalt hydroxide is 10.0.
It is shown as an index with the weight%, that is, the value of D7 as 100.
【0049】[0049]
【表5】 [Table 5]
【0050】表5より、明らかなように水酸化コバルト
が1重量%未満となったとき、及び水酸化コバルトが1
5重量%を越えたときに活物質容量が大きく低下した。As is apparent from Table 5, when the cobalt hydroxide content is less than 1% by weight and when the cobalt hydroxide content is 1%,
When it exceeded 5% by weight, the capacity of the active material was greatly reduced.
【0051】この理由は1重量%未満ではコバルト化合
物の量が不足し、良好な導電性ネットワークを形成でき
ないためと考えられる。他方、15重量%を越えた場
合、活物質粒子中の水酸化ニッケル含有量が相対的に減
少することに起因するマイナス効果(エネルギー密度の
低下)が、導電性向上効果を上回るためと考えられる。It is considered that the reason is that if the amount is less than 1% by weight, the amount of the cobalt compound is insufficient and a good conductive network cannot be formed. On the other hand, when it exceeds 15% by weight, it is considered that the negative effect (decrease in energy density) due to the relative decrease in the nickel hydroxide content in the active material particles exceeds the conductivity improving effect. .
【0052】この結果から、コバルト化合物量は全粒子
に対して1〜15重量%の範囲とすることが好ましいこ
とが分かる。From these results, it is understood that the amount of cobalt compound is preferably in the range of 1 to 15% by weight based on all particles.
【0053】尚、実施例の製法においても、同様の結果
が得られたことを確認した。It was confirmed that similar results were obtained in the manufacturing method of the example .
【0054】(参考例4) この参考例4では、アルカ
リ熱処理時の加熱温度と、電池特性について検討を行っ
た。各活物質は、前記参考例1の[活物質の作製]に準
じて用意した。即ち、参考例1の活物質B2と同様の活
物質組成で、加熱温度のみを変化させて活物質を作製し
た。 Reference Example 4 In Reference Example 4 , the heating temperature during the alkaline heat treatment and the battery characteristics were examined. Each active material was prepared according to [Preparation of Active Material] in Reference Example 1. That is, an active material having the same active material composition as the active material B2 of Reference Example 1 was prepared by changing only the heating temperature.
【0055】具体的なアルカリ熱処理時の加熱温度とし
ては、30℃、40℃、60℃、80℃、100℃、1
20℃とし、それぞれ活物質E1、E2、E3、E4、
E5、E6と称する。Specific heating temperatures during the alkali heat treatment are 30 ° C., 40 ° C., 60 ° C., 80 ° C., 100 ° C., 1
20 ° C. and the active materials E1, E2, E3, E4,
Called E5 and E6.
【0056】次に、前記参考例1と同様にして開放型簡
易セルを作製し、前記電池の試験条件と同様の条件に
て、単位活物質容量を測定し、その結果を表6に示す。Next, an open type simple cell was prepared in the same manner as in Reference Example 1, and the unit active material capacity was measured under the same conditions as the battery test conditions, and the results are shown in Table 6.
【0057】尚、アルカリ熱処理時の加熱温度が80
℃、即ちE4の値を100とした指標で示す。The heating temperature during the alkali heat treatment is 80
It is indicated by an index with the value of ° C, that is, E4 being 100.
【0058】[0058]
【表6】 [Table 6]
【0059】表6より、明らかなように加熱温度が40
℃未満、及び100℃を超えると、活物質容量の低下が
大きくなる。従って、アルカリ熱処理における加熱温度
は40℃以上100℃以下の範囲で行うのが好ましい。As is apparent from Table 6, the heating temperature is 40
If the temperature is lower than 100 ° C. or higher than 100 ° C., the active material capacity is largely decreased. Therefore, it is preferable that the heating temperature in the alkaline heat treatment is in the range of 40 ° C. or higher and 100 ° C. or lower.
【0060】ここで、40℃〜100℃の加熱温度で良
好な結果が得られたのは、この範囲の温度であると、コ
バルトの高次化が円滑に進むこと、及び高次化コバルト
化合物の生成に際し、表面被覆層のミクロ構造が熱作用
により乱され、適度な孔隙を有する被覆層が形成された
ためと考えられる。適度な孔隙を有する被覆層である
と、被覆層が水酸化ニッケル粒子と電解液との接触を障
害しないので、電気化学的反応が円滑に行い得るからで
ある。Here, good results were obtained at a heating temperature of 40 ° C. to 100 ° C. When the temperature was within this range, the higher order of cobalt proceeded smoothly, and the higher order cobalt compound was obtained. It is probable that the microstructure of the surface coating layer was disturbed by the thermal action during the formation of the, and a coating layer having an appropriate porosity was formed. This is because, when the coating layer has an appropriate pore size, the coating layer does not hinder the contact between the nickel hydroxide particles and the electrolytic solution, so that the electrochemical reaction can be carried out smoothly.
【0061】これに対し、加熱温度が低くなると、アル
カリ溶液に対する水酸化コバルトの溶解度が低下し、ま
た被覆層に対する熱的作用が減少する。他方、加熱温度
が100℃を越えると、熱的作用が水酸化ニッケル粒子
自体に悪影響を及ぼしたためであると考えられる。On the other hand, when the heating temperature is lowered, the solubility of cobalt hydroxide in the alkaline solution is lowered, and the thermal action on the coating layer is reduced. On the other hand, it is considered that when the heating temperature exceeds 100 ° C., the thermal action adversely affects the nickel hydroxide particles themselves.
【0062】尚、実施例の製法においても、同様の結果
が得られたことを確認した。It was confirmed that similar results were obtained in the manufacturing method of the example .
【0063】(参考例5) この参考例5では、アルカ
リ濃度と、電池特性について検討を行った。各活物質
は、前記参考例1の[活物質の作製]に準じて用意し
た。即ち、参考例1の活物質B2と同様の活物質組成
で、アルカリ濃度のみを変化させて活物質を作製した。 Reference Example 5 In Reference Example 5 , the alkaline concentration and the battery characteristics were examined. Each active material was prepared according to [Preparation of Active Material] in Reference Example 1. That is, an active material having the same active material composition as the active material B2 of Reference Example 1 was prepared by changing only the alkali concentration.
【0064】具体的なアルカリ濃度としては、12重量
%、15重量%、25重量%、35重量%、40重量
%、45重量%とし、それぞれ活物質G1、G2、G
3、G4、G5、G6と称する。Specific alkali concentrations are 12% by weight, 15% by weight, 25% by weight, 35% by weight, 40% by weight and 45% by weight, respectively, and the active materials G1, G2 and G respectively.
3, G4, G5, G6.
【0065】次に、前記参考例1と同様にして開放型簡
易セルを作製し、前記電池の試験条件と同様の条件に
て、単位活物質容量を測定し、その結果を表7に示す。Next, an open type simple cell was prepared in the same manner as in Reference Example 1, the unit active material capacity was measured under the same conditions as the test conditions of the battery, and the results are shown in Table 7.
【0066】尚、アルカリ濃度が25重量%、即ちG3
の値を100とした指標で示す。The alkali concentration is 25% by weight, that is, G3
The value is shown as an index.
【0067】[0067]
【表7】 [Table 7]
【0068】表7より、明らかなようにアルカリ濃度が
15重量%未満、及び45重量%を超えると、活物質容
量の低下が大きくなる。この理由はアルカリ濃度が15
重量%未満であると、アルカリ溶液に対する水酸化コバ
ルトの溶解度が低下するために、水酸化コバルトの高次
化反応が円滑に進行しなく、他方、アルカリ濃度が40
重量%を超えると、溶液粘度が著しく高まるために、ア
ルカリが被覆層に浸透し難くなる結果、高次化反応が不
均一になるためではないかと考えられる。As is apparent from Table 7, when the alkali concentration is less than 15% by weight or exceeds 45% by weight, the capacity of the active material is largely decreased. This is because the alkali concentration is 15
When the content is less than 10% by weight, the solubility of cobalt hydroxide in an alkaline solution is lowered, so that the higher order reaction of cobalt hydroxide does not proceed smoothly, while the alkali concentration is 40% or less.
It is considered that when the content exceeds 5% by weight, the solution viscosity remarkably increases, and it becomes difficult for the alkali to permeate into the coating layer, so that the higher order reaction becomes non-uniform.
【0069】以上のことから、アルカリ水溶液共存下と
する際に、添加するアルカリ濃度は15重量%以上40
重量%以下の範囲で行うのが好ましい。From the above, the alkali concentration to be added is 15% by weight or more and 40% in the presence of an aqueous alkaline solution.
It is preferable to carry out in the range of not more than wt%.
【0070】尚、実施例の製法においても、同様の結果
が得られたことを確認した。It was confirmed that similar results were obtained in the manufacturing method of the example .
【0071】[0071]
【発明の効果】以上の如く本発明の製造方法によれば、
表面コバルトの水酸化ニッケル粒子中への拡散を効果的
に抑制することができるので、過放電後の充放電サイク
ル特性を向上させることができ、その工業的価値は極め
て大きい。As described above, according to the manufacturing method of the present invention,
Since the diffusion of surface cobalt into the nickel hydroxide particles can be effectively suppressed, the charge / discharge cycle characteristics after overdischarge can be improved, and its industrial value is extremely large.
フロントページの続き (56)参考文献 特開 平6−187984(JP,A) 特開 平1−281670(JP,A) 特開 平1−200555(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/00 - 4/62 Continuation of the front page (56) Reference JP-A-6-188794 (JP, A) JP-A-1-281670 (JP, A) JP-A-1-200555 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01M 4/00-4/62
Claims (5)
少なくともコバルトを含む粒子とを高温アルカリ水溶液
により機械的に湿式混合し、メカノケミカル反応により
前記水酸化ニッケルを主成分とする粒子表面の一部ある
いは全部を少なくともコバルトを含む粒子で物理的に被
覆することを特徴とするアルカリ蓄電池用正極活物質の
製造方法。1. Particles containing nickel hydroxide as a main component,
Mechanically wet mixing with particles containing at least cobalt in a high temperature alkaline aqueous solution, and physically or partially covering all or part of the surface of the particles containing nickel hydroxide as a main component with particles containing at least cobalt by a mechanochemical reaction. A method for producing a positive electrode active material for an alkaline storage battery, comprising:
を被覆する粒子材料はコバルトとともに、カドミウム、
亜鉛、ニッケルの群から選択された少なくとも1種以上
を含有することを特徴とする請求項1記載のアルカリ蓄
電池用正極活物質の製造方法。2. A particle material for coating the particles containing nickel hydroxide as a main component together with cobalt, cadmium,
Zinc, method for producing a positive electrode active material for an alkaline storage battery according to claim 1 Symbol mounting, characterized in that it contains more than at least one selected from the group of nickel.
て1重量%以上15重量%以下であることを特徴とする
請求項1記載のアルカリ蓄電池用正極活物質の製造方
法。Content according to claim 3, wherein the cobalt cathode active method for producing a material for an alkaline storage battery according to claim 1 Symbol mounting, characterized in that all particles is 15 wt% or less 1 wt% or more.
時の温度は40℃以上100℃以下であることを特徴と
する請求項1記載のアルカリ蓄電池用正極活物質の製造
方法。4. A process for producing a positive electrode active material for an alkaline storage battery according to claim 1, wherein the temperature during wet mixing in the presence of an alkaline aqueous solution coexistence is 100 ° C. or less than 40 ° C..
時の前記水溶液のアルカリ濃度は15重量%以上40重
量%以下であることを特徴とする請求項1記載のアルカ
リ蓄電池用正極活物質の製造方法。5. The preparation of the positive electrode active material for an alkaline storage battery according to claim 1, wherein the alkali concentration of the aqueous solution during wet mixing in the presence of an alkaline aqueous solution coexistence is 15% by weight to 40% by weight Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13234695A JP3454606B2 (en) | 1995-05-30 | 1995-05-30 | Method for producing positive electrode active material for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13234695A JP3454606B2 (en) | 1995-05-30 | 1995-05-30 | Method for producing positive electrode active material for alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08329942A JPH08329942A (en) | 1996-12-13 |
JP3454606B2 true JP3454606B2 (en) | 2003-10-06 |
Family
ID=15079204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13234695A Expired - Fee Related JP3454606B2 (en) | 1995-05-30 | 1995-05-30 | Method for producing positive electrode active material for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3454606B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1050231C (en) * | 1997-05-22 | 2000-03-08 | 南开大学 | Surface modified anodic active material for rechargeable alkaline battery |
JP2001357845A (en) * | 2000-06-16 | 2001-12-26 | Canon Inc | Nickel-based secondary battery and method of manufacturing for this secondary battery |
-
1995
- 1995-05-30 JP JP13234695A patent/JP3454606B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08329942A (en) | 1996-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3191751B2 (en) | Alkaline storage battery and surface treatment method for positive electrode active material thereof | |
EP0721229B1 (en) | Alkaline storage battery and method of producing Ni/Co hydroxide active mass for positive electrode | |
EP0851520A2 (en) | Nickel-hydrogen secondary battery and process for producing electrode therefor | |
JP2004071304A (en) | Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery | |
US7147676B2 (en) | Method of preparing a nickel positive electrode active material | |
JP3363670B2 (en) | Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery | |
JP3454606B2 (en) | Method for producing positive electrode active material for alkaline storage battery | |
JP4412877B2 (en) | Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery using the positive electrode active material obtained by this production method | |
JP2982199B2 (en) | Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode | |
JP3253476B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3454627B2 (en) | Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery | |
JP3515251B2 (en) | Method for producing positive electrode active material for alkaline storage battery | |
JP3229800B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3263601B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3541584B2 (en) | Method for producing active material for nickel electrode of alkaline storage battery | |
JP3249398B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JP2001266860A (en) | Nickel hydrogen storage battery | |
JP3374995B2 (en) | Manufacturing method of nickel electrode | |
JP4212129B2 (en) | Nickel electrode for alkaline storage battery and method for producing the same | |
JPH103940A (en) | Nickel-metal hydride storage battery and its manufacture | |
JPH10162821A (en) | Hydrogen storage alloy electrode and manufacture thereof | |
JPH0773876A (en) | Nickel electrode for secondary battery and manufacture thereof | |
JP3233013B2 (en) | Nickel electrode for alkaline storage battery | |
JPH11224666A (en) | Alkaline storage battery and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080725 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |