JP3363670B2 - Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery - Google Patents

Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery

Info

Publication number
JP3363670B2
JP3363670B2 JP19509695A JP19509695A JP3363670B2 JP 3363670 B2 JP3363670 B2 JP 3363670B2 JP 19509695 A JP19509695 A JP 19509695A JP 19509695 A JP19509695 A JP 19509695A JP 3363670 B2 JP3363670 B2 JP 3363670B2
Authority
JP
Japan
Prior art keywords
active material
cobalt
storage battery
alkaline storage
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19509695A
Other languages
Japanese (ja)
Other versions
JPH08148146A (en
Inventor
章史 山脇
真介 中堀
太計男 浜松
良貴 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP19509695A priority Critical patent/JP3363670B2/en
Priority to KR1019960004030A priority patent/KR100385480B1/en
Priority to EP96301881A priority patent/EP0757395B1/en
Priority to DE69629772T priority patent/DE69629772T2/en
Priority to CN96107379A priority patent/CN1084057C/en
Publication of JPH08148146A publication Critical patent/JPH08148146A/en
Priority to US08/671,199 priority patent/US5688616A/en
Priority to US08/670,170 priority patent/US5672447A/en
Priority to US08/929,253 priority patent/US6632568B1/en
Priority to HK98111391A priority patent/HK1010429A1/en
Application granted granted Critical
Publication of JP3363670B2 publication Critical patent/JP3363670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ蓄電池用ニッ
ケル電極の製造方法に関し、特に金属水素化物蓄電池や
ニッケル・カドミウム蓄電池のようなアルカリ蓄電池に
用いるニッケル電極の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a nickel electrode for an alkaline storage battery, and more particularly to a method for manufacturing a nickel electrode used in an alkaline storage battery such as a metal hydride storage battery or a nickel-cadmium storage battery.

【0002】[0002]

【従来の技術】アルカリ蓄電池用水酸化ニッケル電極の
製造方法としては、 活物質保持体としての多孔性ニッケル焼結基板を硝
酸ニッケルなどの酸性ニッケル塩含浸液に浸漬し該基板
の孔中にニッケル塩を含浸した後、該ニッケル塩をアル
カリ中で水酸化ニッケルに変化させるという活物質充填
操作を繰り返し行って水酸化ニッケル電極を製造すると
いう焼結式、或るいは、 水酸化ニッケル粉末をメチルセルロース等の結着剤
を溶解させた水溶液と混合して、活物質スラリーとし
て、発泡体ニッケルに直接充填して水酸化ニッケル電極
を製造するという非焼結式がある。
2. Description of the Related Art As a method for producing a nickel hydroxide electrode for an alkaline storage battery, a porous nickel sintered substrate as an active material holder is dipped in an acidic nickel salt impregnating solution such as nickel nitrate to form nickel salt in the holes of the substrate. After the impregnation with the nickel salt, the nickel salt is converted into nickel hydroxide in an alkali and the active material filling operation is repeated to produce a nickel hydroxide electrode. There is a non-sintering method in which a nickel hydroxide electrode is manufactured by mixing the binder with an aqueous solution in which the binder is dissolved and directly filling the foamed nickel as an active material slurry.

【0003】の方法では、ニッケル焼結基板への活物
質の充填量は1回の操作では充分な充填量が得られない
ため、数回繰り返して行わなければ所望の活物質を充填
することができない。活物質の充填効率を上げ、製造工
程を簡略化するために、含浸液に高温高濃度硝酸ニッケ
ル水溶液を用い、少ない含浸回数で所望の活物質量を得
ることが行われているが、基板の腐食が激しいという問
題がある。また、焼結基板の腐食を防止しようとして、
焼結基板の表面に耐酸化性の酸化ニッケルを生成させる
方法が提案されているが、酸化ニッケルは、導電性が悪
く、活物質と基板との導電性が著しく損なわれるとうい
う問題があった。そこで、特開昭63−216268号
公報には、焼結基板の腐食防止及び活物質と基板との導
電性の向上を目的として、多孔性ニッケル焼結基板の表
面に水酸化コバルトを生成させ、次いで、前記基板をア
ルカリと酸素の共存下で加熱処理した後、該基板に酸性
ニッケル塩の含浸を伴う活物質充填操作を行うことが開
示されている。しかしながら、この方法では、活物質と
基板との導電性は向上しても、活物質である水酸化ニッ
ケル粒子間の導電性向上は不十分である。また、焼結式
は、基板の製法や活物質の充填等の点で、製法が煩雑で
ある。更に焼結式は基板の多孔度が非焼結式に比べて小
さく、活物質の充填量に限界があり、高容量化にも限界
がある。
According to the method (1), the nickel sintered substrate cannot be filled with a desired active material unless it is repeated several times, because a sufficient amount of the active material cannot be obtained with one operation. Can not. In order to increase the filling efficiency of the active material and to simplify the manufacturing process, a high-temperature high-concentration nickel nitrate aqueous solution is used as the impregnation liquid, and the desired amount of active material is obtained with a small number of impregnations. There is a problem of severe corrosion. Also, to prevent the corrosion of the sintered substrate,
A method for producing oxidation resistant nickel oxide on the surface of a sintered substrate has been proposed, but nickel oxide has a problem that conductivity is poor and conductivity between the active material and the substrate is significantly impaired. . Therefore, in JP-A-63-216268, cobalt hydroxide is generated on the surface of a porous nickel sintered substrate for the purpose of preventing corrosion of the sintered substrate and improving the conductivity between the active material and the substrate. Then, it is disclosed that after the substrate is heat-treated in the presence of alkali and oxygen, the substrate is subjected to an active material filling operation involving impregnation with an acidic nickel salt. However, according to this method, even if the conductivity between the active material and the substrate is improved, the conductivity between the nickel hydroxide particles as the active material is not sufficiently improved. Further, the sintering method is complicated in terms of the method of manufacturing the substrate, filling of the active material, and the like. Further, in the sintering method, the porosity of the substrate is smaller than that in the non-sintering method, the amount of the active material filled is limited, and there is also a limit in increasing the capacity.

【0004】の方法では、の焼結式に比べて水酸化
ニッケルの利用率がやや悪く、これを向上させるために
導電性の高い高次コバルトを添加することが有効であ
る。そこで、特開平1−200555号公報には、水酸
化ニッケルの利用率向上のために、前記水酸化ニッケル
よりなる活物質表面に水酸化コバルトを形成してアルカ
リ共存下で加熱処理を行うことにより、導電性の高い高
次コバルト酸化物、例えばCoOOH、Co23等を水
酸化ニッケル活物質表面に形成することが開示されてい
る。
In the method (1), the utilization rate of nickel hydroxide is slightly lower than that in the sintering method, and it is effective to add high-order cobalt having high conductivity in order to improve the utilization rate. Therefore, in JP-A-1-200555, in order to improve the utilization rate of nickel hydroxide, cobalt hydroxide is formed on the surface of the active material made of nickel hydroxide, and heat treatment is performed in the presence of alkali. It is disclosed that a highly conductive high-order cobalt oxide such as CoOOH or Co 2 O 3 is formed on the surface of the nickel hydroxide active material.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
1−200555に記載されているような方法では、活
物質の利用率は向上するものの、過放電したときの容量
の低下が著しいという問題があった。
However, in the method described in JP-A-1-200555, although the utilization factor of the active material is improved, there is a problem that the capacity is remarkably reduced when it is over-discharged. It was

【0006】本発明は、前記問題点に鑑みてなされたも
のであり、活物質の利用率向上及び過放電したときの容
量の低下を防止しようとすることを課題とする。
The present invention has been made in view of the above problems, and an object of the present invention is to improve the utilization rate of an active material and prevent a decrease in capacity when over-discharged.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、亜鉛、カドミウム、マグネシウムまたは
カルシウムの1種以上を固溶状態で添加した水酸化ニッ
ケル粒子表面に、酸素とアルカリ共存下で加熱処理する
ことにより得た結晶構造の乱れた2価よりも大きいコバ
ルト化合物の層を有する活物質を備えたことを特徴とす
る。
Means for Solving the Problems In order to solve the above problems, the present invention relates to the presence of oxygen and an alkali on the surface of nickel hydroxide particles to which one or more of zinc, cadmium, magnesium or calcium is added in a solid solution state. Heat treatment under
It is characterized in that it comprises an active material having a layer of a cobalt compound having a crystal structure in which the crystal structure is disordered and which is larger than divalent.

【0008】また、前記亜鉛等を固溶状態で添加した水
酸化ニッケル粒子表面に、結晶構造の乱れた2価よりも
大きいコバルト化合物の層を有する活物質を備えた非焼
結式ニッケル電極を作製する方法としては、以下の2つ
の方法がある。
Further, a non-sintered nickel electrode having an active material having a layer of a cobalt compound having a disordered crystal structure and having a valence greater than 2 is formed on the surface of nickel hydroxide particles to which zinc or the like is added in a solid solution state. There are the following two methods for manufacturing.

【0009】 亜鉛、カドミウム、マグネシウムまた
はカルシウムの1種以上を固溶状態で添加した水酸化ニ
ッケル粉末と、金属コバルトまたはコバルト化合物との
混合物を、酸素とアルカリ共存下で加熱処理して活物質
を得、この活物質を活物質保持体に保持させることを特
徴とする。
A mixture of nickel hydroxide powder containing one or more of zinc, cadmium, magnesium or calcium added in a solid solution and metallic cobalt or a cobalt compound is heat treated in the presence of oxygen and an alkali to form an active material. It is characterized in that the active material is retained on the active material holder.

【0010】 亜鉛、カドミウム、マグネシウムまた
はカルシウムの1種以上を固溶状態で添加した水酸化ニ
ッケル粉末に、硫酸コバルトまたは硝酸コバルトの水溶
液を添加し、pH8.0〜12.0に調整された水溶液
中で中和した後、酸素とアルカリ共存下で加熱処理して
活物質を得、この活物質を活物質保持体に保持させるこ
とを特徴とする。
An aqueous solution adjusted to pH 8.0 to 12.0 by adding an aqueous solution of cobalt sulfate or cobalt nitrate to nickel hydroxide powder to which one or more kinds of zinc, cadmium, magnesium or calcium are added in a solid solution state. It is characterized in that after being neutralized in the medium, it is heat-treated in the presence of oxygen and an alkali to obtain an active material, and the active material is held by an active material holder.

【0011】また、本発明のアルカリ蓄電池は、亜鉛、
カドミウム、マグネシウムまたはカルシウムの1種以上
を固溶状態で添加した水酸化ニッケル粒子表面に、酸素
とアルカリ共存下で加熱処理することにより得た結晶構
造の乱れた2価よりも大きいコバルト化合物の層を有す
る活物質を備えたニッケル電極と、アルカリ電解液と、
ポリオレフィン樹脂繊維の不織布を主体とするセパレー
タと、MmNi5系水素吸蔵合金を備えた負極と、を有して
いることを特徴とする。
Further, the alkaline storage battery of the present invention comprises zinc,
Oxygen is added to the surface of nickel hydroxide particles to which one or more of cadmium, magnesium or calcium is added in a solid solution state.
And a nickel electrode provided with an active material having a layer of a cobalt compound having a crystal structure disturbed by a heat treatment in the presence of an alkali and having a disordered crystal structure, and an alkaline electrolyte,
It is characterized by having a separator mainly composed of a non-woven fabric of polyolefin resin fiber and a negative electrode provided with an MmNi 5 type hydrogen storage alloy.

【0012】[0012]

【作用】水酸化ニッケル粒子表面に水酸化コバルト等の
コバルト化合物の層を形成し、酸素とアルカリ共存下で
加熱処理することにより、結晶構造の乱れた2価よりも
大きい高次コバルト酸化物層が水酸化ニッケル粒子表面
に得られる。この結晶構造の乱れた2価よりも大きい高
次コバルト酸化物層は、非常に導電性が高いので活物質
の利用率が著しく向上する。更に、前記水酸化ニッケル
中に亜鉛、カドミウム、マグネシウムまたはカルシウム
の1種以上を固溶状態で存在させ、かつ結晶構造の乱れ
た2価よりも大きい高次コバルト酸化物層が、水酸化ニ
ッケル粒子表面に形成していると、高い利用率を維持し
つつ過放電したときの容量の低下が抑制される。
[Function] By forming a layer of a cobalt compound such as cobalt hydroxide on the surface of nickel hydroxide particles and performing heat treatment in the coexistence of oxygen and alkali, a higher order cobalt oxide layer having a crystal structure that is larger than divalent Are obtained on the surface of the nickel hydroxide particles. The higher order cobalt oxide layer having a disordered crystal structure larger than divalent has extremely high conductivity, and therefore the utilization factor of the active material is remarkably improved. Further, the higher cobalt oxide layer having one or more of zinc, cadmium, magnesium or calcium in a solid solution state in the nickel hydroxide and having a crystal structure disordered and having a higher degree than divalent nickel hydroxide particles is nickel hydroxide particles. When it is formed on the surface, it is possible to suppress a decrease in capacity when over-discharging while maintaining a high utilization rate.

【0013】亜鉛、カドミウム、マグネシウムまたはカ
ルシウムの1種以上を固溶状態で添加した水酸化ニッケ
ル粒子表面に、結晶構造の乱れた2価よりも大きいコバ
ルト化合物の層を有する活物質の作製方法としては、前
記亜鉛等を固溶状態で添加した水酸化ニッケル粉末と金
属コバルトまたはコバルト化合物との混合物を、酸素と
アルカリ共存下で加熱処理する方法がある。この方法で
は粉末同士を混合するだけなので、製造方法が容易であ
るという特長がある。この方法において、前記金属コバ
ルトまたはコバルト化合物は、水酸化ニッケルに対して
5mol%以上14mol%以下混合することが好まし
い。これは、導電性の高い高次コバルト酸化物層を水酸
化ニッケル粒子表面に十分に形成させるには、水酸化ニ
ッケルに対して5mol%以上必要である。また、水酸
化ニッケル量の減少による容量に与える影響を最小限に
抑えるためには、14mol%以下にする必要がある。
As a method for producing an active material having a layer of a cobalt compound having a larger crystallographically disordered divalent compound on the surface of nickel hydroxide particles to which one or more kinds of zinc, cadmium, magnesium or calcium are added in a solid solution state Is a method of heat-treating a mixture of nickel hydroxide powder to which zinc or the like is added in a solid solution state and metallic cobalt or a cobalt compound in the presence of oxygen and an alkali. This method has a feature that the manufacturing method is easy because the powders are mixed together. In this method, the metal cobalt or cobalt compound is preferably mixed in an amount of 5 mol% or more and 14 mol% or less with respect to nickel hydroxide. This is required in order to sufficiently form the highly conductive high-order cobalt oxide layer on the surface of the nickel hydroxide particles, at least 5 mol% with respect to nickel hydroxide. Further, in order to minimize the influence on the capacity due to the decrease in the amount of nickel hydroxide, it is necessary to make it 14 mol% or less.

【0014】一方、別の作製方法として、亜鉛、カドミ
ウム、マグネシウムまたはカルシウムの1種以上を固溶
状態で添加した水酸化ニッケル粉末に、硫酸コバルトま
たは硝酸コバルトの水溶液を添加し、pH8.0〜1
2.0に調整された水溶液中で中和した後、酸素とアル
カリ共存下で加熱処理する方法がある。この方法では、
前記水酸化ニッケル粉末粒子表面に結晶構造の乱れた2
価よりも大きいコバルト化合物の層をより均一にコーテ
ィングできる特長がある。また中和するときの水溶液の
pHの値が8.0未満になると前記コバルト化合物層を
水酸化ニッケル粒子表面に充分に生成できなく、また、
pHの値が12.0を越えると水酸化ニッケル粒子表面
に前記コバルト化合物層が表面に均一にコーティングで
きないので、活物質の利用率が低下する。従って、pH
8.0〜12.0に調整された水溶液中で中和する必要
がある。
On the other hand, as another production method, an aqueous solution of cobalt sulfate or cobalt nitrate is added to nickel hydroxide powder containing one or more of zinc, cadmium, magnesium or calcium added in a solid solution state to obtain a pH of 8.0 to 8.0. 1
After neutralizing in an aqueous solution adjusted to 2.0, there is a method of heat treatment in the presence of oxygen and alkali. in this way,
Disordered crystal structure on the surface of the nickel hydroxide powder particles
It has the feature that it can coat a layer of cobalt compound, which is larger than the valence, more uniformly. Further, when the pH value of the aqueous solution at the time of neutralization becomes less than 8.0, the cobalt compound layer cannot be sufficiently formed on the surface of the nickel hydroxide particles, and
If the pH value exceeds 12.0, the cobalt compound layer cannot be uniformly coated on the surface of the nickel hydroxide particles, so that the utilization rate of the active material decreases. Therefore, the pH
It is necessary to neutralize in an aqueous solution adjusted to 8.0 to 12.0.

【0015】水酸化ニッケル粒子表面に水酸化コバルト
を形成し、酸素とアルカリ共存下で加熱処理する時に用
いるアルカリは、濃度が15〜40重量%のアルカリ水
溶液にすると、アルカリへの水酸化コバルトの溶解性が
大きくなり、またアルカリ溶液の粘性も小さくなるの
で、活物質への浸透性が良く、活物質の利用率が向上す
る。また、前記アルカリ中にリチウムイオンが含有して
いると、過放電したときの容量低下の抑制効果が更に高
まる。
The alkali used when cobalt hydroxide is formed on the surface of nickel hydroxide particles and heat-treated in the coexistence of oxygen and alkali is converted into an alkali aqueous solution having a concentration of 15 to 40% by weight. Since the solubility is high and the viscosity of the alkaline solution is low, the permeability to the active material is good and the utilization rate of the active material is improved. Further, when lithium ions are contained in the alkali, the effect of suppressing the capacity decrease at the time of over-discharge is further enhanced.

【0016】加熱処理において、加熱温度を50〜15
0℃とすると、アルカリへの水酸化コバルトの溶解性が
大きく、また水酸化ニッケルが活物質でない酸化ニッケ
ルに変化しないため、活物質の利用率が更に向上する。
In the heat treatment, the heating temperature is 50 to 15
When the temperature is 0 ° C., the solubility of cobalt hydroxide in alkali is large, and since nickel hydroxide does not change to nickel oxide which is not the active material, the utilization rate of the active material is further improved.

【0017】水酸化ニッケル活物質と遊離状態で亜鉛、
亜鉛化合物、カドミウムまたはカドミウム化合物の一種
以上を存在させると、充電時の酸素発生電位が貴にシフ
トし、高温での充電受け入れ性が向上する。
Zinc free of nickel hydroxide active material,
When one or more zinc compounds, cadmium or cadmium compounds are present, the oxygen generation potential during charging shifts to a noble value and the charge acceptability at high temperatures is improved.

【0018】[0018]

【実施例】【Example】

〈実験1(過放電特性)〉 〔実施例1〕 (正極の作製)硫酸ニッケル水溶液に、硫酸ニッケルに
対して2mol%の硫酸亜鉛水溶液と、水酸化ナトリウ
ム水溶液とを、アンモニア水でpHを調整しながら徐々
に加えて亜鉛を2mol%固溶状態で添加させた水酸化
ニッケル粉末を析出させた。
<Experiment 1 (Overdischarge characteristics)> [Example 1] (Production of positive electrode) An aqueous solution of nickel sulfate, an aqueous solution of zinc sulfate of 2 mol% with respect to nickel sulfate, and an aqueous solution of sodium hydroxide were adjusted to pH with ammonia water. While adding gradually, nickel hydroxide powder containing 2 mol% of solid solution zinc was deposited.

【0019】次に、亜鉛を2mol%固溶状態で添加さ
せた水酸化ニッケル粉末と、前記水酸化ニッケルに対し
て10mol%の水酸化コバルト粉末との混合粉末を2
5重量%の水酸化ナトリウム水溶液を添加し、その後、
空気中で100℃で加熱処理し、水洗、乾燥させて本発
明活物質a1を作製した。
Next, 2 mixed powders of nickel hydroxide powder to which zinc was added in a solid solution state of 2 mol% and cobalt hydroxide powder of 10 mol% with respect to the nickel hydroxide were prepared.
5% by weight aqueous sodium hydroxide solution was added, then
The active material a 1 of the present invention was produced by heating at 100 ° C. in air, washing with water and drying.

【0020】このようにして作製した活物質a1100
重量部に、0.2重量%のメチルセルロースを溶解させ
た水溶液50重量部とを混合して、スラリー液とした。
このスラリー液を多孔度95%の発泡体ニッケル(厚み
約1.6mm)に充填、保持し、乾燥する。その後、圧
延して厚み約0.6mmの本発明ニッケル電極A1を作
製した。
The active material a 1 100 produced in this way
50 parts by weight of an aqueous solution in which 0.2% by weight of methyl cellulose was dissolved was mixed with parts by weight to prepare a slurry liquid.
The slurry liquid is filled in a foam nickel having a porosity of 95% (thickness: about 1.6 mm), held, and dried. Then, it was rolled to prepare a nickel electrode A 1 of the invention having a thickness of about 0.6 mm.

【0021】(負極の作製)合金成分のミッシュメタル
(Mm;希土類元素の混合物)、ニッケル、コバルト、
アルミニウム、及びマンガンを、それぞれの添加比率が
1:3.6:0.6:0.2:0.6となるように所定
量秤量して混合した。そして、この混合物を、アルゴン
ガス雰囲気の高周波誘導炉で誘導加熱して溶融させた
後、合金溶融物をロール法にて冷却し、Mm1.0Ni3.6
Co0.6Al0.2Mn0.6で示される水素吸蔵合金のイン
ゴットを作製した。次に、この水素吸蔵合金のインゴッ
トを機械的に粉砕し、平均粒径約100μmの水素吸蔵
合金粉末を得た。
(Preparation of Negative Electrode) Alloy components of misch metal (Mm; mixture of rare earth elements), nickel, cobalt,
A predetermined amount of aluminum and manganese were weighed and mixed so that the respective addition ratios were 1: 3.6: 0.6: 0.2: 0.6. Then, this mixture is induction-heated and melted in a high-frequency induction furnace in an argon gas atmosphere, and then the alloy melt is cooled by a roll method to obtain Mm 1.0 Ni 3.6.
An ingot of hydrogen storage alloy represented by Co 0.6 Al 0.2 Mn 0.6 was produced. Next, this hydrogen storage alloy ingot was mechanically crushed to obtain a hydrogen storage alloy powder having an average particle diameter of about 100 μm.

【0022】この後、前記水素吸蔵合金粉末に、ポリエ
チレンオキサイド等の結着剤と適量の水を加えて混合
し、水素吸蔵合金ペーストを調整した。この水素吸蔵合
金ペーストをパンチングメタルに塗布し、圧延して厚み
約0.4mmの水素吸蔵合金負極を作製した。
Thereafter, a binder such as polyethylene oxide and an appropriate amount of water were added to the hydrogen storage alloy powder and mixed to prepare a hydrogen storage alloy paste. This hydrogen storage alloy paste was applied to punching metal and rolled to prepare a hydrogen storage alloy negative electrode having a thickness of about 0.4 mm.

【0023】(電池の作製)そして、前記本発明ニッケ
ル電極A1、水素吸蔵合金電極、及びポリオレフィン樹
脂繊維の不織布を主体とするセパレータをそれぞれ所定
寸法に切断し、前記ニッケル電極と水素吸蔵合金電極と
をセパレータを介して巻き取り、電池ケースに挿入した
後、アルカリ電解液を注液して、公称容量1200mA
Hのニッケル・水素蓄電池(A1)を作製した。
(Preparation of Battery) Then, the nickel electrode A 1 of the present invention, the hydrogen storage alloy electrode, and the separator mainly composed of a nonwoven fabric of polyolefin resin fiber are cut into predetermined dimensions, respectively, and the nickel electrode and the hydrogen storage alloy electrode are cut. After winding and through the separator and inserting into the battery case, inject alkaline electrolyte to obtain a nominal capacity of 1200mA.
A nickel-hydrogen storage battery (A 1 ) of H was produced.

【0024】実施例1における硫酸亜鉛水溶液を硫酸カ
ドミウム水溶液に代え、水酸化ニッケル粉末にカドミウ
ムを2mol%固溶状態で添加した以外は、前記実施例
1と同様にして本発明電池(A2)を作製した。
The battery of the present invention (A 2 ) was prepared in the same manner as in Example 1 except that the aqueous zinc sulfate solution in Example 1 was replaced with an aqueous cadmium sulfate solution and 2 mol% of cadmium was added to nickel hydroxide powder as a solid solution. Was produced.

【0025】実施例1における硫酸亜鉛水溶液を硝酸マ
グネシウム水溶液に代え、水酸化ニッケル粉末にマグネ
シウムを2mol%固溶状態で添加した以外は、前記実
施例1と同様にして本発明電池(A3)を作製した。
The battery of the present invention (A 3 ) was prepared in the same manner as in Example 1 except that the zinc sulfate aqueous solution in Example 1 was replaced with a magnesium nitrate aqueous solution and magnesium was added to nickel hydroxide powder in a solid solution state of 2 mol%. Was produced.

【0026】実施例1における硫酸亜鉛水溶液を硝酸カ
ルシウム水溶液に代え、水酸化ニッケル粉末にカルシウ
ムを2mol%固溶状態で添加した以外は、前記実施例
1と同様にして本発明電池(A4)を作製した。
The battery of the present invention (A 4 ) was prepared in the same manner as in Example 1 except that the aqueous solution of zinc sulfate in Example 1 was replaced with an aqueous solution of calcium nitrate and calcium was added to nickel hydroxide powder in a solid solution state of 2 mol%. Was produced.

【0027】実施例1における2mol%の硫酸亜鉛水
溶液に代え、1mol%の硫酸亜鉛水溶液と1mol%
の硫酸カドミウム水溶液を用いて、水酸化ニッケル粉末
に亜鉛を1mol%及びカドミウム1mol%を固溶状
態で添加した以外は、前記実施例1と同様にして本発明
電池(A5)を作製した。
Instead of the 2 mol% zinc sulfate aqueous solution in Example 1, 1 mol% zinc sulfate aqueous solution and 1 mol%
A battery (A 5 ) of the present invention was produced in the same manner as in Example 1 except that 1 mol% of zinc and 1 mol% of cadmium were added to the nickel hydroxide powder in a solid solution using the aqueous cadmium sulfate solution.

【0028】実施例1における10mol%の水酸化コ
バルトに代えて、水酸化ニッケルに対して10mol%
の金属コバルト粉末を混合した以外は、実施例1と同様
にして本発明電池(A6)を作製した。
Instead of 10 mol% of cobalt hydroxide in Example 1, 10 mol% of nickel hydroxide was used.
A battery (A 6 ) of the present invention was produced in the same manner as in Example 1 except that the metal cobalt powder of 1 was mixed.

【0029】水酸化ニッケル粉末と水酸化コバルト粉末
との混合粉末に、実施例1における25重量%の水酸化
ナトリウム水溶液に代えて、25重量%の水酸化ナトリ
ウム水溶液と同一のモル数の水酸化ナトリウムと水酸化
リチウムの混合溶液(水酸化ナトリウムと水酸化リチウ
ムのモル比が9:1)を添加する以外は、前記実施例1
と同様にして本発明電池(A7)を作製した。
The mixed powder of nickel hydroxide powder and cobalt hydroxide powder was replaced with the 25 wt% sodium hydroxide aqueous solution in Example 1, and the same molar number as the 25 wt% sodium hydroxide aqueous solution was used. Example 1 except that a mixed solution of sodium and lithium hydroxide (molar ratio of sodium hydroxide and lithium hydroxide was 9: 1) was added.
A battery (A 7 ) of the present invention was produced in the same manner as in.

【0030】〔実施例2〕硫酸ニッケルに、硫酸ニッケ
ルに対して2mol%の硫酸亜鉛水溶液と、水酸化ナト
リウム水溶液とを、アンモニア水でpHを調整しながら
徐々に加えて亜鉛を2mol%固溶状態で添加させた水
酸化ニッケル粉末を析出させた。
[Example 2] A 2 mol% zinc sulfate aqueous solution and a sodium hydroxide aqueous solution were gradually added to nickel sulfate while adjusting the pH with ammonia water to form a 2 mol% solid solution of zinc. The nickel hydroxide powder added in the state was deposited.

【0031】次に、亜鉛を2mol%固溶状態で添加さ
せた水酸化ニッケル粉末に硫酸コバルトの水溶液と水酸
化ナトリウム水溶液とを添加し、その添加量を調整し、
pH10に維持したアルカリ水溶液中で、前記水酸化ニ
ッケル粉末の粒子表面に水酸化ニッケルに対して10m
ol%のコバルト化合物層をコーティングさせた。そし
て、表面にコバルト化合物層をコーティングさせた前記
水酸化ニッケル粉末を25重量%の水酸化ナトリウム水
溶液を添加した後、空気中で100℃で加熱処理し、水
洗、乾燥させて本発明活物質b1を作製した。その他
は、前記実施例1と同様にして本発明電池(B1)を作
製した。
Next, an aqueous solution of cobalt sulfate and an aqueous solution of sodium hydroxide were added to nickel hydroxide powder to which zinc was added in a solid solution state of 2 mol%, and the addition amount was adjusted.
In an alkaline aqueous solution maintained at a pH of 10, the surface of the particles of the nickel hydroxide powder is 10 m against the nickel hydroxide.
Cobalt compound layer of ol% was coated. Then, the nickel hydroxide powder coated with a cobalt compound layer on its surface was added with a 25 wt% sodium hydroxide aqueous solution, and then heat-treated in air at 100 ° C., washed with water and dried to obtain the active material b of the present invention. 1 was produced. Other than the above, a battery (B 1 ) of the present invention was produced in the same manner as in Example 1.

【0032】実施例2における硫酸亜鉛水溶液を硫酸カ
ドミウム水溶液に代え、水酸化ニッッケル粉末にカドミ
ウムを2mol%固溶状態で添加させた水酸化ニッケル
粉末を用いた以外は前記実施例2と同様にして本発明電
池(B2)を作製した。
The same procedure as in Example 2 was repeated except that the zinc sulfate aqueous solution in Example 2 was replaced with a cadmium sulfate aqueous solution, and nickel hydroxide powder was added to the nickel hydroxide powder in a 2 mol% solid solution state. A battery (B 2 ) of the present invention was produced.

【0033】実施例2における硫酸亜鉛水溶液を硝酸マ
グネシウム水溶液に代え、水酸化ニッケル粉末にマグネ
シウムを2mol%固溶状態で添加させた水酸化ニッケ
ル粉末を用いた以外は前記実施例2と同様にして本発明
電池(B3)を作製した。
The same procedure as in Example 2 was repeated except that the aqueous solution of zinc sulfate in Example 2 was replaced with an aqueous solution of magnesium nitrate, and nickel hydroxide powder was used in which 2 mol% of magnesium hydroxide was added in a solid solution state. The battery of the present invention (B 3 ) was produced.

【0034】実施例2における硫酸亜鉛水溶液を硝酸カ
ルシウム水溶液に代え、水酸化ニッケル粉末にカルシウ
ムを2mol%固溶状態で添加させた水酸化ニッケル粉
末を用いた以外は前記実施例2と同様にして本発明電池
(B4)を作製した。
The same procedure as in Example 2 was repeated except that the aqueous zinc sulfate solution in Example 2 was replaced with an aqueous calcium nitrate solution, and nickel hydroxide powder was used in which 2 mol% of calcium was added in a solid solution state to nickel hydroxide powder. A battery of the present invention (B 4 ) was produced.

【0035】実施例2における2mol%の硫酸亜鉛水
溶液を1mol%の硫酸亜鉛水溶液と1mol%の硫酸
カドミウム水溶液に代え、水酸化ニッケル粉末に亜鉛を
1mol%及びカドミウムを1mol%固溶状態で添加
させた水酸化ニッケル粉末を用いた以外は前記実施例2
と同様にして本発明電池(B5)を作製した。
The 2 mol% zinc sulfate aqueous solution in Example 2 was replaced with a 1 mol% zinc sulfate aqueous solution and a 1 mol% cadmium sulfate aqueous solution, and 1 mol% zinc and 1 mol% cadmium were added in solid solution to nickel hydroxide powder. Example 2 except that nickel hydroxide powder was used
A battery of the present invention (B 5 ) was produced in the same manner as in.

【0036】〔比較例〕実施例1の水酸化ニッケル活物
質の作製に際し、硫酸ニッケルに対し硫酸亜鉛等を全く
加えない以外は全て同様にして比較電池(C1)を作製
した。
Comparative Example A comparative battery (C 1 ) was prepared in the same manner as in Example 1, except that zinc sulfate or the like was not added to nickel sulfate.

【0037】また、実施例1の水酸化ニッケル活物質の
作製に際し、硫酸ニッケルに対して2重量%の酸化亜鉛
を遊離状態で添加した以外は全て同様にして比較電池
(C6)を作製した。
A comparative battery (C 6 ) was prepared in the same manner as in Example 1 except that 2% by weight of zinc oxide was added to nickel sulfate in a free state. .

【0038】実施例2の水酸化ニッケル活物質の作製に
際し、硫酸ニッケルに対し硫酸亜鉛等を全く加えない以
外は全て同様にして比較電池(D1)を作製した。
A comparative battery (D 1 ) was prepared in the same manner as in Example 2, except that zinc sulfate or the like was not added to nickel sulfate.

【0039】また、実施例2の水酸化ニッケル活物質の
作製に際し、硫酸ニッケルに対して2重量%の酸化亜鉛
を遊離状態で添加した以外は全て同様にして比較電池
(D6)を作製した。
A comparative battery (D 6 ) was prepared in the same manner as in Example 2, except that 2% by weight of zinc oxide was added in a free state to nickel sulfate. .

【0040】前記本発明電池(A1)〜(A7)、
(B1)〜(B5)及び比較電池(C1)、(C6)、(D
1)、(D6)について、1サイクル目の放電容量と、過
放電を5サイクル施した時の5サイクル目の放電容量を
測定し、1サイクル目の放電容量に対する前記5サイク
ル目の放電容量の比を求め、この結果を表1に示す。こ
のときの試験条件は、室温にて1Cの電流(1200m
A)で充電を行い、−ΔV(充電電圧が最大値を示して
からの電圧降下量)の値が10mVを検出した時点で充
電を止め、1時間休止した後、1Cの電流で放電を行
い、放電終止電圧が1Vになった時放電を終止した。
The batteries of the present invention (A 1 ) to (A 7 ),
(B 1 ) to (B 5 ) and comparative batteries (C 1 ), (C 6 ), (D
For 1 ) and (D 6 ), the discharge capacity at the first cycle and the discharge capacity at the fifth cycle when over-discharging was performed for five cycles were measured, and the discharge capacity at the fifth cycle with respect to the discharge capacity at the first cycle was measured. Was calculated and the results are shown in Table 1. The test conditions at this time were 1 C current (1200 m
Charging is performed in A), the charging is stopped when the value of −ΔV (voltage drop amount after the charging voltage reaches the maximum value) of 10 mV is detected, the charging is stopped for 1 hour, and then the discharging is performed with a current of 1C. The discharge was stopped when the discharge cutoff voltage reached 1V.

【0041】また、過放電については、前記充放電後、
更に0.05Cの電流で(60mA)16時間強制的に
放電させるという条件で行った。
Regarding over-discharge, after the charge and discharge,
Further, it was carried out under the condition that it was forcibly discharged at a current of 0.05 C (60 mA) for 16 hours.

【0042】[0042]

【表1】 [Table 1]

【0043】表1から明らかなように、本発明電池(A
1)〜(A7)、(B1)〜(B5)は、水酸化ニッケル活
物質中に亜鉛、カドミウム、マグネシウムまたはカルシ
ウムを全く添加していない比較電池(C1)、(D1)及
び遊離状態で亜鉛を添加した比較電池(C6)、(D6
に比べて、過放電したときの容量の低下を抑制すること
ができた。
As is clear from Table 1, the battery of the present invention (A
1) ~ (A 7), (B 1) ~ (B 5) is zinc in the nickel hydroxide active material, cadmium, comparative battery without added any magnesium or calcium (C 1), (D 1 ) And comparative batteries with zinc added in the free state (C 6 ), (D 6 ).
Compared with the above, it was possible to suppress the decrease in capacity when over-discharged.

【0044】また、リチウムイオンを含有したアルカリ
を使用した本発明電池(A7)では、更に過放電したと
きの容量の低下を抑制することができた。以上のことか
ら、ニッケル活物質中に亜鉛、カドミウム、マグネシウ
ムまたはカルシウムを固溶状態で添加することが重要で
ある。更にリチウムイオンを含有したアルカリ溶液を添
加、加熱処理すれば、過放電したときの容量の低下を更
に抑制することができることがわかる。 <実験2(活物質の利用率の測定)>実施例1の水酸化
ニッケル電極の作製に際し、水酸化ニッケル粉末と前記
水酸化ニッケルに対して10mol%の水酸化コバルト
との混合粉末を水酸化ナトリウム水溶液を添加せず、即
ち、アルカリを存在させずに空気中で100℃で加熱処
理する以外は全て同様にして比較電極C2を作製した。
Further, in the battery (A 7 ) of the present invention using an alkali containing lithium ions, it was possible to suppress the decrease in capacity when further discharged. From the above, it is important to add zinc, cadmium, magnesium or calcium in a solid solution state to the nickel active material. It can be seen that the addition of an alkaline solution containing lithium ions and heat treatment can further suppress the decrease in capacity when overdischarged. <Experiment 2 (Measurement of Utilization Rate of Active Material)> When the nickel hydroxide electrode of Example 1 was prepared, a mixed powder of nickel hydroxide powder and 10 mol% of cobalt hydroxide was hydrated. Comparative electrode C 2 was prepared in the same manner except that the aqueous sodium solution was not added, that is, the heating treatment was performed in the air at 100 ° C. in the absence of alkali.

【0045】実施例1の水酸化ニッケル電極の作製に際
し、水酸化ニッケル粉末と前記水酸化ニッケルに対して
10mol%の水酸化コバルトとの混合粉末をH22
酸化する以外は全て同様にして比較電極C3を作製し
た。
When the nickel hydroxide electrode of Example 1 was prepared, the same procedure was followed except that a mixed powder of nickel hydroxide powder and 10 mol% of cobalt hydroxide with respect to the nickel hydroxide was oxidized with H 2 O 2. A comparative electrode C 3 was produced.

【0046】実施例1の水酸化ニッケル電極の作製に際
し、水酸化コバルト単独を25重量%の水酸化ナトリウ
ム水溶液を添加し、その後空気中で100℃で加熱処理
して、水酸化ニッケルと混合した以外は全て同様にして
比較電極C4を作製した。
In preparing the nickel hydroxide electrode of Example 1, cobalt hydroxide alone was added to a 25% by weight aqueous solution of sodium hydroxide, and then heat treated in air at 100 ° C. to mix with nickel hydroxide. A comparative electrode C 4 was prepared in the same manner except for the above.

【0047】実施例1の水酸化ニッケル活物質の作製に
際し、水酸化ニッケル粉末と前記水酸化ニッケルに対し
て10mol%の水酸化コバルトとの混合粉末に水酸化
ナトリウム水溶液を添加せず、また、空気中で加熱処理
しない以外は全て同様にして比較電極C5を作製した。
In producing the nickel hydroxide active material of Example 1, an aqueous sodium hydroxide solution was not added to the mixed powder of nickel hydroxide powder and 10 mol% of cobalt hydroxide with respect to the nickel hydroxide, and A comparative electrode C 5 was prepared in the same manner except that it was not heat-treated in air.

【0048】実施例2の水酸化ニッケル活物質の作製に
際し、水酸化ニッケル粉末に硫酸コバルト塩の水溶液と
水酸化ナトリウム水溶液とを添加し、水酸化コバルト層
を水酸化ニッケル表面に形成させたものに水酸化ナトリ
ウム水溶液を添加せず、また、空気中で加熱処理しない
以外は全て同様にして比較電極D2を作製した。
When the nickel hydroxide active material of Example 2 was prepared, an aqueous solution of cobalt sulfate and an aqueous solution of sodium hydroxide were added to nickel hydroxide powder to form a cobalt hydroxide layer on the surface of nickel hydroxide. Comparative electrode D 2 was prepared in the same manner except that the aqueous sodium hydroxide solution was not added to and the heat treatment was not performed in air.

【0049】前記本発明電極A1、B1及び上記比較電極
2、C3、C4、C5、D2について活物質の利用率を測
定し、その結果を表2に示す。
The utilization ratio of the active material was measured for the electrodes A 1 and B 1 of the present invention and the reference electrodes C 2 , C 3 , C 4 , C 5 and D 2 and the results are shown in Table 2.

【0050】この時の試験方法としては、対極をNi板
として、解放系の約25重量%の水酸化カリウム溶液中
で、充電電流0.1C(120mA)で24時間充電を
行い、1/3C(400mA)の電流で放電を行い、前
記Ni板に対して放電終止電圧が−0.8Vになった時
放電を終止した。
As a test method at this time, using a Ni plate as a counter electrode, charging was performed for 24 hours at a charging current of 0.1 C (120 mA) in a potassium hydroxide solution of about 25% by weight of an open system, and 1/3 C was used. Discharge was performed at a current of (400 mA), and the discharge was stopped when the discharge cutoff voltage for the Ni plate reached −0.8V.

【0051】[0051]

【表2】 [Table 2]

【0052】表2から明らかなように本発明電極A1
びB1は、空気中のみで酸化させた比較電極C2、H22
等の酸化剤によって酸化させた比較電極C3、水酸化コ
バルトを単独酸化させた比較電極C4、全く酸化させて
いない比較電極C5及びD2に比較して、著しく利用率が
高いことがわかる。また、前記比較電極C2、C3、C4
は酸化させていない比較電極C5及びD2と比較しても利
用率が低くなっている。これは、アルカリが存在してい
ない下で酸化させると、導電性の悪い2価よりも大きい
高次コバルト酸化物層が生成され、かえって利用率の低
下をもたらしたものといえる。
As is apparent from Table 2, the electrodes A 1 and B 1 of the present invention are the reference electrodes C 2 and H 2 O 2 which are oxidized only in air.
The utilization efficiency is remarkably higher than that of the reference electrode C 3 oxidized with an oxidizing agent such as C, the reference electrode C 4 obtained by alone oxidizing cobalt hydroxide, and the reference electrodes C 5 and D 2 not oxidized at all. Recognize. In addition, the comparison electrodes C 2 , C 3 , C 4
Has a low utilization rate as compared with the non-oxidized reference electrodes C 5 and D 2 . It can be said that when oxidized in the absence of an alkali, a high-order cobalt oxide layer having a poor conductivity, which is higher than divalent, is generated, which rather lowers the utilization rate.

【0053】以上のことから、水酸化ニッケルの表面上
に水酸化コバルト層を形成したものを酸素とアルカリ共
存下で加熱処理することが重要である。
From the above, it is important to heat-treat nickel hydroxide having a cobalt hydroxide layer formed on the surface thereof in the presence of oxygen and alkali.

【0054】また、図1は水酸化コバルトを、酸素とア
ルカリ共存下で加熱処理したものと全くそのような処理
をしていないものとのX線回折の分析結果を示してい
る。
FIG. 1 shows the results of X-ray diffraction analysis of cobalt hydroxide which was heat-treated in the presence of oxygen and alkali and those which were not treated at all.

【0055】ここで、図1(a)は水酸化コバルトを、
酸素とアルカリ共存下で加熱処理したもののX線回折を
表している。
Here, FIG. 1A shows cobalt hydroxide,
It shows the X-ray diffraction of the material that was heat-treated in the coexistence of oxygen and alkali.

【0056】また、図1(b)は水酸化コバルトであ
り、酸素とアルカリ共存下で加熱処理を全く施していな
いもののX線回折を表している。
Further, FIG. 1 (b) shows X-ray diffraction of cobalt hydroxide which was not subjected to any heat treatment in the coexistence of oxygen and alkali.

【0057】図1から明らかなように、(a)のX線回
折ピークは、(b)のX線回折ピークが殆ど消失してい
る。特に、19度と38度付近のX線回折のピークの消
失が著しい。
As is clear from FIG. 1, the X-ray diffraction peak of (a) almost disappears from the X-ray diffraction peak of (b). In particular, the disappearance of X-ray diffraction peaks near 19 degrees and 38 degrees is remarkable.

【0058】このことから、酸素とアルカリ共存下で加
熱処理によりコバルト酸化物の結晶構造が乱れているこ
とがわかる。
From this, it is understood that the crystal structure of cobalt oxide is disturbed by the heat treatment in the presence of oxygen and alkali.

【0059】<実験3(単位活物質量当りの容量測定)
>実施例1における水酸化ニッケル活物質の作製におい
て、水酸化ニッケルに対して水酸化コバルト粉末の添加
量を種々変えて混合して作製した水酸化ニッケル活物質
の単位活物質量当りの容量測定結果を表3及び図2に示
す。
<Experiment 3 (capacity measurement per unit amount of active material)
In the preparation of the nickel hydroxide active material in Example 1, the capacity of the nickel hydroxide active material per unit amount of active material was prepared by mixing the nickel hydroxide powder with various amounts of cobalt hydroxide powder mixed. The results are shown in Table 3 and FIG.

【0060】尚、この時の試験方法も前記実験2と同様
にして行った。
The test method at this time was the same as in Experiment 2.

【0061】[0061]

【表3】 [Table 3]

【0062】表3及び図2より明らかなように、実施例
1の製造方法のように水酸化ニッケル粉末と水酸化コバ
ルト粉末とを混合した場合、添加する水酸化コバルトの
量は水酸化ニッケルに対して5〜14mol%であるこ
とが好ましい。これは、水酸化コバルト量が水酸化ニッ
ケルに対して5mol%未満であれば、水酸化コバルト
量が少ないために導電性の高い高次コバルト酸化物層の
形成が不十分であるためである。また、14mol%を
越える範囲では、酸素とアルカリ共存下での加熱処理の
効果よりも活物質である水酸化ニッケル量の減少の方が
容量に与える影響が大きいためであると考えられる。
As is clear from Table 3 and FIG. 2, when nickel hydroxide powder and cobalt hydroxide powder were mixed as in the manufacturing method of Example 1, the amount of cobalt hydroxide added was nickel hydroxide. On the other hand, it is preferably 5 to 14 mol%. This is because if the amount of cobalt hydroxide is less than 5 mol% with respect to nickel hydroxide, the amount of cobalt hydroxide is too small to form a highly conductive high-order cobalt oxide layer. Further, it is considered that in the range of more than 14 mol%, the decrease in the amount of nickel hydroxide as the active material has a larger effect on the capacity than the effect of the heat treatment in the coexistence of oxygen and alkali.

【0063】また、実施例2における水酸化ニッケル活
物質の作製において、硫酸コバルト塩の水溶液の添加量
を種々変えて作製した水酸化ニッケル活物質の単位活物
質量当りの容量測定結果を表4及び図3に示す。
In addition, in the preparation of the nickel hydroxide active material in Example 2, the capacity measurement results per unit active material amount of the nickel hydroxide active material prepared by changing the addition amount of the cobalt sulfate aqueous solution are shown in Table 4. And shown in FIG.

【0064】尚、この時の試験方法も前記実験2と同様
にして行った。
The test method at this time was the same as in Experiment 2.

【0065】[0065]

【表4】 [Table 4]

【0066】表4及び図3より明らかなように、実施例
2の製造方法のように水酸化ニッケル粉末に硫酸コバル
ト塩の水溶液とアルカリ溶液とを添加した場合、添加す
る水酸化コバルトの量は水酸化ニッケルに対して3〜1
4mol%であることが好ましい。これは、3mol%
未満では、コバルト化合物量が少ないために導電性の高
いコバルト酸化物層の形成が不十分であるためである。
また14mol%を越える範囲では酸素とアルカリ共存
下での加熱処理の効果よりも活物質である水酸化ニッケ
ル量の減少の方が容量に与える影響が大きいためと考え
られる。 <実験4(アルカリ濃度と利用率の関係)>実施例1に
おけるニッケル電極の作製において、水酸化ニッケル粉
末と水酸化コバルト粉末との混合粉末を、様々な濃度の
水酸化ナトリウム水溶液を添加、加熱処理して作製した
水酸化ニッケル電極の利用率の値を表5及び図4に示
す。
As is clear from Table 4 and FIG. 3, when the aqueous solution of cobalt sulfate and the alkaline solution were added to the nickel hydroxide powder as in the production method of Example 2, the amount of cobalt hydroxide added was 3 to 1 for nickel hydroxide
It is preferably 4 mol%. This is 3 mol%
If it is less than 1, the formation of the highly conductive cobalt oxide layer is insufficient due to the small amount of cobalt compound.
Further, it is considered that in the range of more than 14 mol%, the decrease in the amount of nickel hydroxide as the active material has a greater effect on the capacity than the effect of the heat treatment in the coexistence of oxygen and alkali. <Experiment 4 (Relationship between Alkali Concentration and Utilization Rate)> In the production of the nickel electrode in Example 1, a mixed powder of nickel hydroxide powder and cobalt hydroxide powder was added with an aqueous sodium hydroxide solution of various concentrations and heated. Table 5 and FIG. 4 show the values of the utilization rates of the nickel hydroxide electrodes produced by the treatment.

【0067】尚、この時の試験方法も前記実験2の試験
方法と同様にして行った。
The test method at this time was the same as the test method of Experiment 2.

【0068】[0068]

【表5】 [Table 5]

【0069】表5及び図4より明らかなように、アルカ
リ水溶液の濃度範囲は15〜40重量%であることが好
ましい。
As is clear from Table 5 and FIG. 4, the concentration range of the alkaline aqueous solution is preferably 15 to 40% by weight.

【0070】これは、水酸化ナトリウム濃度が15重量
%未満であると、水酸化コバルトの溶解性が低く、効果
が認められなかったと考えられる。
It is considered that when the sodium hydroxide concentration was less than 15% by weight, the solubility of cobalt hydroxide was low and no effect was observed.

【0071】また、水酸化ナトリウム濃度が40重量%
を越えると水酸化ナトリウム水溶液の粘性が高くなるた
めに活物質への浸透性が低下し効果が認められなかった
と考えられる。
The sodium hydroxide concentration is 40% by weight.
It is considered that when the value exceeds the above range, the viscosity of the aqueous sodium hydroxide solution becomes high, so that the permeability to the active material is lowered and the effect is not recognized.

【0072】また、実施例2におけるニッケル電極の作
製において、水酸化ニッケル粉末に硫酸コバルト塩の水
溶液と水酸化ナトリウム水溶液とを添加することによっ
て、水酸化ニッケル表面にコバルト化合物層をコーティ
ングさせたものに、様々な濃度の水酸化ナトリウム水溶
液を添加、加熱処理して作製した水酸化ニッケル電極の
利用率の値を表6及び図5に示す。
Further, in the preparation of the nickel electrode in Example 2, a nickel compound powder was coated with a cobalt compound layer by adding an aqueous solution of a cobalt sulfate salt and an aqueous solution of sodium hydroxide to the nickel hydroxide powder. Table 6 and FIG. 5 show the values of the utilization rates of nickel hydroxide electrodes prepared by adding various concentrations of aqueous sodium hydroxide solution and heat treatment.

【0073】尚、この時の試験方法も前記実験2の試験
方法と同様にして行った。
The test method at this time was the same as the test method of Experiment 2.

【0074】[0074]

【表6】 [Table 6]

【0075】表6及び図5より明らかなように、アルカ
リ水溶液の濃度範囲は15〜40重量%であることが好
ましい。
As is clear from Table 6 and FIG. 5, the concentration range of the alkaline aqueous solution is preferably 15 to 40% by weight.

【0076】これは、水酸化ナトリウム濃度が15重量
%未満であると、水酸化コバルトの溶解性が低く、効果
が認められなかったと考えられる。
It is considered that when the sodium hydroxide concentration was less than 15% by weight, the solubility of cobalt hydroxide was low and no effect was observed.

【0077】また、水酸化ナトリウム濃度が40重量%
を越えると水酸化ナトリウム水溶液の粘性が高くなるた
めに活物質への浸透性が低下し効果が認められなかった
と考えられる。
The sodium hydroxide concentration is 40% by weight.
It is considered that when the value exceeds the above range, the viscosity of the aqueous sodium hydroxide solution becomes high, so that the permeability to the active material is lowered and the effect is not recognized.

【0078】尚、アルカリ種については、水酸化カリウ
ム水溶液についても同様の効果が認められた。また、水
酸化ナトリウムまたは水酸化カリウム水溶液中にLiO
Hが含有していても同様の効果が認められた。 <実験5(加熱温度と利用率の関係)>実施例1におけ
るニッケル電極の作製において、水酸化ニッケル粉末と
水酸化コバルト粉末との混合粉末を、様々な温度で加熱
処理して作製した水酸化ニッケル電極の利用率の値を表
7及び図6に示す。尚、他の条件は全て実施例1と同様
である。
With respect to the alkaline species, the same effect was observed with an aqueous solution of potassium hydroxide. In addition, LiO in an aqueous solution of sodium hydroxide or potassium hydroxide
Similar effects were observed even if H was contained. <Experiment 5 (Relationship between heating temperature and utilization rate)> In the production of the nickel electrode in Example 1, a mixed hydroxide of nickel hydroxide powder and cobalt hydroxide powder was heat-treated at various temperatures to produce a hydroxide. The values of the utilization rate of the nickel electrode are shown in Table 7 and FIG. All other conditions were the same as in Example 1.

【0079】また、この時の試験方法も前記実験2と同
様にして行った。
The test method at this time was the same as in Experiment 2.

【0080】[0080]

【表7】 [Table 7]

【0081】表7及び図6より明らかなように、加熱温
度は50℃〜150℃の範囲が好ましい。
As is clear from Table 7 and FIG. 6, the heating temperature is preferably in the range of 50 ° C to 150 ° C.

【0082】これは、加熱温度が50℃未満であると、
アルカリへの水酸化コバルトの溶解性が低く効果が認め
られなかったと考えられる。また、加熱温度が150℃
を越えると水酸化ニッケル自身の結晶構造も変化し、利
用率の低下を招いたと考えられる。
When the heating temperature is less than 50 ° C.,
It is considered that the solubility of cobalt hydroxide in alkali was low and no effect was observed. Also, the heating temperature is 150 ℃
It is considered that when the content exceeds the range, the crystal structure of nickel hydroxide itself also changes, and the utilization rate is lowered.

【0083】また、実施例2におけるニッケル電極の作
製において、水酸化ニッケル粉末に硫酸コバルト塩の水
溶液と水酸化ナトリウム水溶液とを添加することによっ
て、水酸化ニッケル表面にコバルト化合物層をコーティ
ングさせたものを、様々な温度で加熱処理して作製した
利用率の値を表8及び図7に示す。尚、他の条件は全て
実施例2と同様である。
Further, in the preparation of the nickel electrode in Example 2, the nickel hydroxide surface was coated with a cobalt compound layer by adding an aqueous solution of cobalt sulfate and an aqueous solution of sodium hydroxide to the nickel hydroxide powder. Table 8 and FIG. 7 show the values of the utilization rate produced by heat-treating the above. All other conditions were the same as in Example 2.

【0084】また、この時の試験方法も前記実験2の試
験方法と同様にして行った。
The test method at this time was the same as the test method of Experiment 2.

【0085】[0085]

【表8】 [Table 8]

【0086】表8及び図7より明らかなように、加熱温
度は50℃〜150℃の範囲が好ましい。
As is clear from Table 8 and FIG. 7, the heating temperature is preferably in the range of 50 ° C to 150 ° C.

【0087】これは、加熱温度が50℃未満であると、
アルカリへの水酸化コバルトの溶解性が低く効果が認め
られなかったと考えられる。また、加熱温度が150℃
を越えると水酸化ニッケル自身の結晶構造も変化し、利
用率の低下を招いたと考えられる。 <実験6(高温での充電温度特性)>実施例1の正極の
作製における活物質a1100重量部に代えて、活物質
1100重量部に4重量部の酸化亜鉛を添加する以外
は、前記実施例1と同様にして本発明電池(A8)を作
製した。
When the heating temperature is less than 50 ° C.,
It is considered that the solubility of cobalt hydroxide in alkali was low and no effect was observed. Also, the heating temperature is 150 ℃
It is considered that when the content exceeds the range, the crystal structure of nickel hydroxide itself also changes, and the utilization rate is lowered. <Experiment 6 (Charging temperature characteristics at high temperature)> In place of 100 parts by weight of the active material a 1 in the production of the positive electrode of Example 1, 4 parts by weight of zinc oxide was added to 100 parts by weight of the active material a 1. A battery (A 8 ) of the present invention was produced in the same manner as in Example 1.

【0088】実施例1における2mol%の硫酸亜鉛水
溶液を6mol%の硫酸亜鉛水溶液に代えて、水酸化ニ
ッケル粉末に亜鉛を6mol%固溶状態で添加し、即ち
上記本発明電池(A8)の正極に含まれる亜鉛の量と同
一にした以外は、前記実施例1と同様にして本発明電池
(A9)を作製した。
The 2 mol% zinc sulfate aqueous solution in Example 1 was replaced with a 6 mol% zinc sulfate aqueous solution, and zinc was added to the nickel hydroxide powder in a 6 mol% solid solution state, that is, in the battery (A 8 ) of the present invention. A battery (A 9 ) of the present invention was produced in the same manner as in Example 1 except that the amount of zinc contained in the positive electrode was the same.

【0089】本発明電池(A8)及び本発明電池(A9
ついて、40℃と60℃で充電した時における放電容量
について測定し、25℃で充電した時における放電容量
との比を求めた。この結果を表9に示す。尚、25℃で
充電した時の放電容量を100%とした。
Battery of the present invention (A 8 ) and battery of the present invention (A 9 ).
Then, the discharge capacity at the time of charging at 40 ° C. and 60 ° C. was measured, and the ratio to the discharge capacity at the time of charging at 25 ° C. was obtained. The results are shown in Table 9. The discharge capacity when charged at 25 ° C. was set to 100%.

【0090】このときの試験条件は、25℃、40℃及
び60℃にて0.1Cの電流(120mA)で16時間
充電を行い、25℃にて3時間休止した後、1C(12
00mA)の電流で放電を行い、放電終止電圧が1Vに
なった時放電を終止した。
The test conditions at this time were as follows: charging was performed at 25 ° C., 40 ° C. and 60 ° C. with a current of 0.1 C (120 mA) for 16 hours, and after resting at 25 ° C. for 3 hours, 1 C (12
Discharging was performed with a current of 00 mA), and the discharge was terminated when the discharge termination voltage reached 1V.

【0091】[0091]

【表9】 [Table 9]

【0092】また、実施例2の正極の作製における活物
質b1100重量部に代え、活物質b1100重量部に4
重量部の酸化亜鉛を添加する以外は、前記実施例2と同
様にして本発明電池(B6)を作製した。
In place of 100 parts by weight of the active material b 1 in the production of the positive electrode of Example 2, 4 parts by weight of 100 parts by weight of the active material b 1 were used.
A battery (B 6 ) of the present invention was produced in the same manner as in Example 2 except that zinc oxide in an amount of part by weight was added.

【0093】実施例2における2mol%の硫酸亜鉛水
溶液を6mol%の硫酸亜鉛水溶液に代えて、水酸化ニ
ッケル粉末に亜鉛を6mol%固溶状態で添加し、即ち
上記本発明電池(B6)の正極に含まれる亜鉛の量と同
一にした以外は、前記実施例1と同様にして本発明電池
(B7)を作製した。
The 2 mol% zinc sulfate aqueous solution in Example 2 was replaced with a 6 mol% zinc sulfate aqueous solution, and zinc was added to the nickel hydroxide powder in a 6 mol% solid solution state, that is, in the battery (B 6 ) of the present invention. A battery (B 7 ) of the present invention was produced in the same manner as in Example 1 except that the amount of zinc contained in the positive electrode was the same.

【0094】本発明電池(B6)及び本発明電池(B7
について、40℃と60℃で充電した時における放電容
量について測定し、25℃で充電した時における放電容
量との比を求めた。この結果を表10に示す。尚、25
℃で充電した時の放電容量を100%とした。
Battery of the present invention (B 6 ) and battery of the present invention (B 7 ).
Was measured for the discharge capacity at the time of charging at 40 ° C. and 60 ° C., and the ratio to the discharge capacity at the time of charging at 25 ° C. was obtained. The results are shown in Table 10. 25
The discharge capacity when charged at 100C was set to 100%.

【0095】このときの試験条件も前記と同様に、25
℃、40℃及び60℃にて0.1Cの電流(120m
A)で16時間充電を行い、25℃にて3時間休止した
後、1C(1200mA)の電流で放電を行い、放電終
止電圧が1Vになった時放電を終止した。
The test condition at this time is 25 as in the above.
0.1C current at 120 ℃, 40 ℃ and 60 ℃ (120m
The battery was charged in A) for 16 hours, rested at 25 ° C. for 3 hours, then discharged at a current of 1 C (1200 mA), and stopped when the discharge cutoff voltage reached 1V.

【0096】[0096]

【表10】 [Table 10]

【0097】表9及び表10から明らかなように、本発
明電池(A8)及び(B6)は、本発明電池(A9)及び
(B7)より高温での充電温度特性が向上した。これ
は、水酸化ニッケルと遊離状態で酸化亜鉛を存在させた
ために、充電時の酸素発生電位が貴にシフトし、高温で
の充電受け入れ性が向上したものと考えられる。
As is clear from Tables 9 and 10, the batteries (A 8 ) and (B 6 ) of the present invention have improved charging temperature characteristics at higher temperatures than the batteries (A 9 ) and (B 7 ) of the present invention. . This is considered to be because the presence of nickel hydroxide and zinc oxide in a free state caused the oxygen generation potential during charging to shift to a noble level, thus improving charge acceptability at high temperatures.

【0098】尚、酸化亜鉛だけを遊離状態で保持させた
以外に、亜鉛、亜鉛化合物、カドミウム、カドミウム化
合物の1種以上を保持させても同様の効果が得られた。 <実験7(pHと利用率の関係)>実施例2におけるニ
ッケル電極の作製において、水酸化ニッケル粉末に硫酸
コバルト塩の水溶液と水酸化ナトリウム水溶液のpH値
を種々変化させた時の利用率の値を表11及び図8に示
す。尚、他の条件は全て実施例2と同様である。
The same effect was obtained by holding at least one of zinc, a zinc compound, cadmium, and a cadmium compound, in addition to holding only zinc oxide in a free state. <Experiment 7 (Relationship between pH and Utilization Rate)> In the production of the nickel electrode in Example 2, the utilization rate of nickel hydroxide powder when the pH values of the aqueous solution of cobalt sulfate and the aqueous solution of sodium hydroxide were variously changed. The values are shown in Table 11 and FIG. All other conditions were the same as in Example 2.

【0099】この時の試験方法も前記実験2と同様にし
て行った。
The test method at this time was the same as in Experiment 2.

【0100】[0100]

【表11】 [Table 11]

【0101】表11及び図8より明らかなように、pH
の値は8〜12.0の範囲が好ましい。これは、pHが
8未満では完全なコバルト化合物として生成しない。
As is clear from Table 11 and FIG.
The value of is preferably in the range of 8 to 12.0. It does not form as a complete cobalt compound at pH below 8.

【0102】また、pHが12.0を越えると、水酸化
ニッケル表面に均一にコーティングできないためであ
る。
If the pH exceeds 12.0, the surface of nickel hydroxide cannot be uniformly coated.

【0103】尚、本実施例では、亜鉛等を固溶させた水
酸化ニッケル粉末表面に水酸化コバルト層を形成した
後、水酸化ナトリウム水溶液を添加し、空気中で加熱処
理しているが、これに限定されるべきではなく、水酸化
ナトリウム水溶液を霧状態で吹き付けて、空気中で加熱
しても同様の効果が認められた。
In this example, after forming a cobalt hydroxide layer on the surface of nickel hydroxide powder in which zinc or the like is solid-dissolved, an aqueous sodium hydroxide solution is added and heat treatment is performed in air. It should not be limited to this, and the same effect was observed by spraying an aqueous sodium hydroxide solution in a mist state and heating it in the air.

【0104】また、本実施例では、水酸化ナトリウム水
溶液を用いたが、水酸化カリウム水溶液等のアルカリを
用いてもよい。
Although the sodium hydroxide aqueous solution is used in this embodiment, an alkali such as potassium hydroxide aqueous solution may be used.

【0105】[0105]

【発明の効果】以上説明したように、本発明によれば、
活物質の単位重量あたりの容量及び利用率が高いものが
得られると共に、過放電したときの容量低下を抑制でき
るので、本発明電極を備えたアルカリ蓄電池は、容量が
大きく安定性にも優れており、その工業的価値は極めて
高い。
As described above, according to the present invention,
A high capacity and a high utilization rate per unit weight of the active material can be obtained, and since the capacity decrease upon overdischarge can be suppressed, the alkaline storage battery provided with the electrode of the present invention has a large capacity and excellent stability. And its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明活物質と比較活物質とのX線回折図であ
る。
FIG. 1 is an X-ray diffraction diagram of an active material of the present invention and a comparative active material.

【図2】実施例1の単位活物質量当りの容量と水酸化コ
バルト濃度の関係図である。
FIG. 2 is a graph showing the relationship between the capacity per unit amount of active material and the cobalt hydroxide concentration in Example 1.

【図3】実施例2の単位活物質量当りの容量と水酸化コ
バルト濃度の関係図である。
FIG. 3 is a relationship diagram of the capacity per unit active material amount and the cobalt hydroxide concentration in Example 2.

【図4】実施例1のニッケル電極の製造方法における水
酸化ナトリウム水溶液濃度と利用率の関係図である。
FIG. 4 is a relationship diagram between the concentration of sodium hydroxide aqueous solution and the utilization rate in the method for producing a nickel electrode of Example 1.

【図5】実施例2のニッケル電極の製造方法における水
酸化ナトリウム水溶液濃度と利用率の関係図である。
FIG. 5 is a relationship diagram between sodium hydroxide aqueous solution concentration and utilization rate in the method for manufacturing a nickel electrode of Example 2.

【図6】実施例1のニッケル電極の製造方法における加
熱温度と利用率の関係図である。
FIG. 6 is a relationship diagram between a heating temperature and a utilization rate in the manufacturing method of the nickel electrode of Example 1.

【図7】実施例2のニッケル電極の製造方法における加
熱温度と利用率の関係図である。
FIG. 7 is a relationship diagram between a heating temperature and a utilization rate in the method for manufacturing a nickel electrode of Example 2.

【図8】実施例2のニッケル電極の製造方法における水
酸化ナトリウム水溶液のpHの値と利用率の関係図であ
る。
FIG. 8 is a relationship diagram between the pH value and the utilization rate of the aqueous sodium hydroxide solution in the method for producing a nickel electrode of Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 馬場 良貴 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平1−200555(JP,A) 特開 平6−140036(JP,A) 特開 平3−78965(JP,A) 特開 平2−109261(JP,A) 特開 平5−21064(JP,A) 特公 平6−38336(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/52 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshitaka Baba 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-1-200555 (JP, A) JP HEI 6-140036 (JP, A) JP HEI 3-78965 (JP, A) HEI 2-109261 (JP, A) HEI 5-21064 (JP, A) JP-B HEI 6-38336 (JP , B2) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/24-4/52

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 亜鉛、カドミウム、マグネシウムまたは
カルシウムの1種以上を固溶状態で添加した水酸化ニッ
ケル粒子表面に、酸素とアルカリ共存下で加熱処理する
ことにより得た結晶構造の乱れた2価よりも大きいコバ
ルト化合物の層を有する活物質を備えたことを特徴とす
るアルカリ蓄電池用非焼結式ニッケル電極。
1. The surface of nickel hydroxide particles to which one or more kinds of zinc, cadmium, magnesium or calcium are added in a solid solution state is heat treated in the presence of oxygen and alkali.
A non-sintered nickel electrode for an alkaline storage battery, comprising an active material having a layer of a cobalt compound having a crystal structure in which the crystal structure is disordered and which is larger than divalent.
【請求項2】 亜鉛、カドミウム、マグネシウムまたは
カルシウムの1種以上を固溶状態で添加した水酸化ニッ
ケル粉末と、金属コバルトまたはコバルト化合物粉末と
の混合物を、酸素とアルカリ共存下で加熱処理して活物
質を得、この活物質を活物質保持体に保持させることを
特徴とするアルカリ蓄電池用非焼結式ニッケル電極の製
造方法。
2. A mixture of nickel hydroxide powder to which one or more of zinc, cadmium, magnesium or calcium is added in a solid solution and metallic cobalt or cobalt compound powder is heat treated in the presence of oxygen and alkali. A method for producing a non-sintered nickel electrode for an alkaline storage battery, which comprises obtaining an active material and holding the active material on an active material holder.
【請求項3】 前記金属コバルトまたはコバルト化合物
は、水酸化ニッケルに対して、5〜14mol%である
ことを特徴とする請求項2に記載のアルカリ蓄電池用非
焼結式ニッケル電極の製造方法。
3. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 2, wherein the metallic cobalt or cobalt compound is 5 to 14 mol% with respect to nickel hydroxide.
【請求項4】 前記アルカリは、濃度が15〜40重量
%のアルカリ溶液であることを特徴とする請求項2に記
載のアルカリ蓄電池用非焼結式ニッケル電極の製造方
法。
4. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 2, wherein the alkali is an alkaline solution having a concentration of 15 to 40% by weight.
【請求項5】 前記アルカリは、リチウムイオンを含ん
でいることを特徴とする請求項2に記載のアルカリ蓄電
池用非焼結式ニッケル電極の製造方法。
5. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 2, wherein the alkali contains lithium ions.
【請求項6】 前記加熱処理時の温度は、50〜150
℃であることを特徴とする請求項2に記載のアルカリ蓄
電池用非焼結式ニッケル電極の製造方法。
6. The temperature during the heat treatment is 50 to 150.
The temperature is in ° C. The method for manufacturing a non-sintered nickel electrode for an alkaline storage battery according to claim 2.
【請求項7】 前記活物質保持体に、前記活物質と、亜
鉛、亜鉛化合物、カドミウムまたはカドミウム化合物の
一種以上を保持させることを特徴とする請求項2に記載
のアルカリ蓄電池用非焼結式ニッケル電極の製造方法。
7. The non-sintering type for alkaline storage batteries according to claim 2, wherein the active material holder holds the active material and one or more of zinc, a zinc compound, cadmium or a cadmium compound. Manufacturing method of nickel electrode.
【請求項8】 亜鉛、カドミウム、マグネシウムまたは
カルシウムの1種以上を固溶状態で添加した水酸化ニッ
ケル粉末を、硫酸コバルト塩または硝酸コバルト塩の水
溶液中に添加すると共にpH8.0〜12.0に調整さ
れた水溶液中で中和した後、酸素とアルカリ共存下で加
熱処理して活物質を得、この活物質を活物質保持体に保
持させることを特徴とするアルカリ蓄電池用非焼結式ニ
ッケル電極の製造方法。
8. Nickel hydroxide powder prepared by adding one or more of zinc, cadmium, magnesium or calcium in a solid solution state is added to an aqueous solution of cobalt sulfate or cobalt nitrate, and pH is 8.0 to 12.0. Non-sintered type for alkaline storage batteries, characterized in that after being neutralized in an aqueous solution adjusted to, heat treatment is carried out in the coexistence of oxygen and alkali to obtain an active material, and the active material is held by an active material holder. Manufacturing method of nickel electrode.
【請求項9】 前記コバルト塩は水酸化ニッケルに対し
て3〜14mol%であることを特徴とする請求項8記
載のアルカリ蓄電池用非焼結式ニッケル電極の製造方
法。
9. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 8, wherein the cobalt salt is 3 to 14 mol% with respect to nickel hydroxide.
【請求項10】 前記アルカリは、濃度が15〜40重
量%のアルカリ溶液であることを特徴とする請求項8記
載のアルカリ蓄電池用非焼結式ニッケル電極の製造方
法。
10. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 8, wherein the alkali is an alkaline solution having a concentration of 15 to 40% by weight.
【請求項11】 前記加熱温度は、50〜150℃であ
ることを特徴とする請求項8記載のアルカリ蓄電池用非
焼結式ニッケル電極の製造方法。
11. The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 8, wherein the heating temperature is 50 to 150 ° C.
【請求項12】 前記活物質保持体に、前記活物質と、
亜鉛、亜鉛化合物、カドミウムまたはカドミウム化合物
の一種以上を保持させることを特徴とする請求項8記載
のアルカリ蓄電池用非焼結式ニッケル電極の製造方法。
12. The active material-supporting body, the active material,
The method for producing a non-sintered nickel electrode for an alkaline storage battery according to claim 8, wherein one or more of zinc, a zinc compound, cadmium or a cadmium compound is held.
【請求項13】 亜鉛、カドミウム、マグネシウムまた
はカルシウムの1種以上を固溶状態で添加した水酸化ニ
ッケル粒子表面に、酸素とアルカリ共存下で加熱処理す
ることにより得た結晶構造の乱れた2価よりも大きいコ
バルト化合物の層を有する活物質を備えたニッケル電極
と、アルカリ電解液と、ポリオレフィン樹脂繊維の不織
布を主体とするセパレータと、MmNi5系水素吸蔵合金を
備えた負極と、を有してなるアルカリ蓄電池。
13. The surface of nickel hydroxide particles to which one or more kinds of zinc, cadmium, magnesium or calcium are added in a solid solution state is heat treated in the presence of oxygen and alkali.
A nickel electrode having an active material having a layer of a cobalt compound having a disordered crystal structure larger than that of a divalent compound obtained by an alkaline electrolyte, a separator mainly composed of a non-woven fabric of a polyolefin resin fiber, and an MmNi 5 system An alkaline storage battery comprising: a negative electrode having a hydrogen storage alloy.
JP19509695A 1994-09-21 1995-07-31 Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery Expired - Lifetime JP3363670B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP19509695A JP3363670B2 (en) 1994-09-21 1995-07-31 Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
KR1019960004030A KR100385480B1 (en) 1995-07-31 1996-02-21 Manufacturing method of non-sintered nickel electrode for alkaline battery and alkaline storage battery
DE69629772T DE69629772T2 (en) 1995-07-31 1996-03-20 Unsintered nickel electrode, alkaline storage cell and manufacturing process
EP96301881A EP0757395B1 (en) 1995-07-31 1996-03-20 A non-sintered nickel electrode, an alkaline storage cell and manufacturing method
CN96107379A CN1084057C (en) 1995-07-31 1996-03-21 Non-sintered nickel electrode for alkaline cell with good overdischarging characteristics
US08/671,199 US5688616A (en) 1995-07-31 1996-06-27 Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
US08/670,170 US5672447A (en) 1995-07-31 1996-06-27 Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
US08/929,253 US6632568B1 (en) 1995-07-31 1997-09-15 Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
HK98111391A HK1010429A1 (en) 1995-07-31 1998-10-21 A non-sintered nickel electrode, an alkaline storage cell and manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-226977 1994-09-21
JP22697794 1994-09-21
JP19509695A JP3363670B2 (en) 1994-09-21 1995-07-31 Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH08148146A JPH08148146A (en) 1996-06-07
JP3363670B2 true JP3363670B2 (en) 2003-01-08

Family

ID=26508922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19509695A Expired - Lifetime JP3363670B2 (en) 1994-09-21 1995-07-31 Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3363670B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191752B2 (en) * 1996-12-26 2001-07-23 松下電器産業株式会社 Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
JP3661045B2 (en) 1997-05-30 2005-06-15 松下電器産業株式会社 Alkaline storage battery
JP3296754B2 (en) 1997-07-04 2002-07-02 三洋電機株式会社 Nickel electrode active material for alkaline storage battery and method for producing the same
JPH11238508A (en) 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery and its manufacture
JP2000003707A (en) 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd Alkaline storage battery
JP2001357845A (en) * 2000-06-16 2001-12-26 Canon Inc Nickel-based secondary battery and method of manufacturing for this secondary battery
JP4736372B2 (en) 2004-07-30 2011-07-27 トヨタ自動車株式会社 Positive electrode active material for alkaline storage battery, positive electrode for alkaline storage battery, and alkaline storage battery
JP2011071125A (en) * 2010-11-10 2011-04-07 Toyota Motor Corp Manufacturing method of positive electrode active material for alkaline storage battery

Also Published As

Publication number Publication date
JPH08148146A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP3738052B2 (en) Nickel electrode active material, nickel electrode and nickel alkaline storage battery using the same, and production method thereof
JP4710225B2 (en) Method for producing nickel electrode material
JP4514265B2 (en) Electrode and non-aqueous electrolyte secondary battery
JP3363670B2 (en) Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4608128B2 (en) Cobalt compound, method for producing the same, positive electrode plate for alkaline storage battery and alkaline storage battery using the same
JP4458725B2 (en) Alkaline storage battery
KR100596117B1 (en) Alkaline Storage Battery and Process for the Production Thereof
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JP3895985B2 (en) Nickel / hydrogen storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3454606B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3454627B2 (en) Method for producing positive electrode active material for alkaline storage battery and alkaline storage battery
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3374995B2 (en) Manufacturing method of nickel electrode
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP4357133B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP4436574B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH10172550A (en) Alkaline battery with nickel positive electrode and its activating method
JP3485753B2 (en) Method for producing hydrogen storage alloy electrode
JP2001006666A (en) Hydrogen storage alloy for alkaline storage battery and manufacture of such alloy
JP2003017064A (en) Additive for nickel electrode active material of alkaline storage battery
JP2000188125A (en) Manufacture of sealed alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071025

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151025

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term