JPS62285360A - Negative electrode for alkaline storage battery - Google Patents

Negative electrode for alkaline storage battery

Info

Publication number
JPS62285360A
JPS62285360A JP61128633A JP12863386A JPS62285360A JP S62285360 A JPS62285360 A JP S62285360A JP 61128633 A JP61128633 A JP 61128633A JP 12863386 A JP12863386 A JP 12863386A JP S62285360 A JPS62285360 A JP S62285360A
Authority
JP
Japan
Prior art keywords
cadmium
hydroxide
discharge
active material
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61128633A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61128633A priority Critical patent/JPS62285360A/en
Publication of JPS62285360A publication Critical patent/JPS62285360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/526Removing gases inside the secondary cell, e.g. by absorption by gas recombination on the electrode surface or by structuring the electrode surface to improve gas recombination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To enable the improvement of oxygen gas absorption capability at the time of charge and the suppression of the decrease in the discharge voltage and battery capacity in cycle life, by forming an active material layer of cadmium on a hydrogen absorption alloy. CONSTITUTION:The surfaces of the grains of a powdered hydrogen absorption alloy are coated with metal cadmium, cadmium hydroxide or the like to suppress oxidation by oxygen from an opposite electrode to prevent extreme pulverization. Since cadmium clinging to the surface is also an active material for a negative electrode, a higher capacity is achieved than by simply coating the surfaces with another metal. Since the cadmium also has a high oxygen gas absorbing capability, the cadmium is convenient to keep hermetic sealing. Since a surface layer also acts as an active material due to the cadmium, most portions become cadmium and only a portion becomes cadmium hydroxide at the time of charge and only a portion becomes cadmium and most portions become cadmium hydroxide at the time of discharge. For that reason, although the surface of the hydrogen absorption alloy is coated with the cadmium, cadmium oxide or another cadmium compound, they become the metal cadmium and the cadmium hydroxide at the time of battery charge and discharge as mentioned above.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、正極にニッケル電極などを用いるアルカリ蓄
電池の負極に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to the negative electrode of an alkaline storage battery using a nickel electrode or the like as the positive electrode.

従来の技術 各種のポータプル機器2通信、鉄道などの電源、さらに
は、非常灯、予備用などの電源に、鉛蓄電池とともにア
ルカリ蓄電池が用いられている。
BACKGROUND OF THE INVENTION Alkaline storage batteries are used along with lead-acid batteries in power sources for various portable devices, such as communications and railways, as well as emergency lights, backup power sources, and the like.

最も広く使われているアルカリ蓄電池は、ニッケルーカ
ドミウム蓄電池である。また、宇宙用など特殊な用途に
ニッケルー水素蓄電池が注目されて採用されている。
The most widely used alkaline storage battery is the nickel-cadmium storage battery. Additionally, nickel-metal hydride storage batteries are attracting attention and being adopted for special applications such as space applications.

まず、ニスケル−カドミウム蓄電池は、放電特性の点で
優れ、とくに高放電で容量の減少が少ない。焼結式電極
の採用でこの放電特性は一層向上し、また、寿命、低温
特性などの点でも覆れている。
First, the Niskel-cadmium storage battery has excellent discharge characteristics, especially at high discharge, with little loss of capacity. The use of sintered electrodes further improves this discharge characteristic, and also improves lifespan and low-temperature characteristics.

ところが高エネルギー密度に関しては、相轟改良すべき
であって、ニッケル電極の高容量化がはかられた。発泡
状二ソケル極はその1例である。
However, with regard to high energy density, improvements should be made, and efforts were made to increase the capacity of nickel electrodes. A foamed disokel pole is one example.

しかし、一方のカドミウム極については、現在のところ
顕著な改良は進んでいない。
However, no significant improvements have been made so far regarding the cadmium pole.

そこで、カドミウムに代って金属水素化物、つまり水素
吸蔵合金が注目されている。宇宙用に採用されている水
素ガス拡散電極と異なり、この水素吸蔵合金は、通常の
カドミウム、亜鉛や鉄などの負極と同じ扱いで電池を構
成できる。その他に、実質的にはカドミウム極よシも単
位当りの容量を大きくすることができるので、カドミウ
ム極に代って高エネルギー密度のアルカリ蓄電池の負極
としても注目されている。
Therefore, metal hydrides, that is, hydrogen storage alloys, are attracting attention in place of cadmium. Unlike hydrogen gas diffusion electrodes used in space applications, this hydrogen storage alloy can be used in batteries in the same way as regular negative electrodes made of cadmium, zinc, or iron. In addition, since cadmium electrodes can substantially increase the capacity per unit, they are attracting attention as negative electrodes for high energy density alkaline storage batteries in place of cadmium electrodes.

発明が解決しようとする問題点 ところがこの水素吸蔵合金をアルカリ蓄電池、とくに密
閉形アルカリ電池で、ノイマン方式でガス吸収を行なう
電池に用いると相手極(正極)から発生する酸素ガスに
より表面が酸化されて水素の吸蔵、放出能力の低下をも
たらす。したがって、充放電サイクル中に負極の電位や
容量が低下してしまう。その他に、水素吸蔵合金は、水
素の吸蔵放出の繰り返しで微粉化が促進され、嵩比重の
低下とともに電極の変形や脱落などが生ずる。
Problems to be Solved by the Invention However, when this hydrogen storage alloy is used in an alkaline storage battery, especially a sealed alkaline battery that uses the Neumann method to absorb gas, the surface becomes oxidized by oxygen gas generated from the other electrode (positive electrode). This results in a decrease in the ability to absorb and release hydrogen. Therefore, the potential and capacity of the negative electrode decrease during charge/discharge cycles. In addition, hydrogen storage alloys are pulverized by repeated storage and release of hydrogen, resulting in a decrease in bulk specific gravity and deformation or falling off of the electrodes.

そこで、このような酸化や微粉化を抑制する目的で、表
面を金属で被覆する試みがあり、とくに銅を用いたもの
がマイクロカプセルの名称でよく知られている。このよ
うな銅によるマイクロカプセルは、酸化や微粉化の抑制
には効果があることが示されているが、本発明の目的と
するエネルギー密度の向上には、むしろ水素の吸蔵、放
出の能力が減少するので適した手段とはいえない。
Therefore, in order to suppress such oxidation and pulverization, attempts have been made to coat the surface with metal, and in particular, those using copper are well known under the name microcapsules. It has been shown that such copper microcapsules are effective in suppressing oxidation and pulverization, but the ability to absorb and release hydrogen is rather important in improving energy density, which is the objective of the present invention. This is not a suitable method as it reduces the amount of

本発明は、カドミウム負極からみれば、単独のカドミウ
ム極よシも高容量化を可能にするものであり、水素吸蔵
合金負極からみれば、高エネルギー密度を若干犠牲にし
て、酸化の抑制、微粉化の抑制、さらにガス吸収能力の
向上などを可能にすることを目的とする。
From the perspective of a cadmium negative electrode, the present invention enables higher capacity than a single cadmium electrode, and from the perspective of a hydrogen-absorbing alloy negative electrode, it is possible to suppress oxidation and reduce fine powder at the expense of some high energy density. The purpose is to suppress the gas absorption and further improve the gas absorption capacity.

問題点を解決するための手段 本発明は、水素吸蔵合金粉末の表面を多孔性のカドミウ
ム、酸化カドミウム、水酸化カドミウムのうちの少なく
とも1種で被覆してアルカリ蓄電池用の負極としたもの
である。
Means for Solving the Problems The present invention provides a negative electrode for an alkaline storage battery by coating the surface of a hydrogen storage alloy powder with at least one of porous cadmium, cadmium oxide, and cadmium hydroxide. .

作  用 このように金属カドミウムあるいは酸化カドミウム、水
酸化カドミウムなどによシ水素吸蔵合金の粉末表面を被
覆することにより、相手極からの酸素による酸化を抑制
し、また、極端な微粉化も防止できる。また、表面に付
着しているカドミウムも負極活物質であるから、単に他
の金属を被覆するよりも高容量になシ、また、カドミウ
ムはすぐれた酸素ガス吸収能を有するので、密閉の保持
ニ都合がよい。なお、カドミウムによる表面層も活物質
として働くので、充電時には主にカドミウム、一部が水
酸化カドミウムに、放電時には逆に一部がカドミウム、
大部分が水酸化カドミウムになる。
Effect: By coating the powder surface of a hydrogen storage alloy such as metal cadmium, cadmium oxide, cadmium hydroxide, etc. in this way, oxidation by oxygen from the other electrode can be suppressed, and extreme pulverization can also be prevented. . In addition, since the cadmium attached to the surface is also a negative electrode active material, it has a higher capacity than simply coating with other metals.Also, since cadmium has excellent oxygen gas absorption ability, it is necessary to maintain the airtightness. convenient. Note that the surface layer made of cadmium also acts as an active material, so during charging, it mainly becomes cadmium, and some of it becomes cadmium hydroxide, and when discharging, some of it becomes cadmium,
Most of it becomes cadmium hydroxide.

したがって、水素吸蔵合金の表面に、カドミウム、酸化
カドミウム、水酸化カドミウム、さらには他のカドミウ
ム化合物を用いて被覆しても、電池の充放電時には、こ
のように金属カドミウムと水酸化カドミウムになる。
Therefore, even if the surface of a hydrogen storage alloy is coated with cadmium, cadmium oxide, cadmium hydroxide, or even other cadmium compounds, the metal cadmium and cadmium hydroxide will turn into metal cadmium and cadmium hydroxide during charging and discharging of the battery.

なお、水素吸蔵合金表面へのカドミウムあるいはその化
合物の被覆法としては、カドミウムの場合には、無電解
メッキや粉末電解メッキ、塩の含浸後の還元などの方法
がある。また、酸化カドミウムの場合には、極く微細な
粉末を製造し、これを水素吸蔵合金上に吸着させる方法
がよい。水酸化カドミウムも同じ方法でよいが、この場
合は、塩を含浸した後に乾燥し、か性アルカリ水溶液中
に浸せきして水酸化カドミウムに転化させてもよい。
In the case of cadmium, methods for coating the surface of the hydrogen storage alloy with cadmium or its compound include electroless plating, powder electrolytic plating, and reduction after salt impregnation. In the case of cadmium oxide, it is better to produce extremely fine powder and adsorb it onto a hydrogen storage alloy. The same method may be used for cadmium hydroxide, but in this case, it may be impregnated with salt, dried, and immersed in a caustic alkaline aqueous solution to be converted to cadmium hydroxide.

また、水素吸蔵合金上に形成するカドミウム活物質の量
については、とくに限定することはないが、水素吸蔵合
金の高エネルギー密度を発揮させるためには、これを主
体とし、カドミウム活物質層は、金属カドミウム換算で
5〜3o重量係が好ましい。
The amount of cadmium active material formed on the hydrogen storage alloy is not particularly limited; A weight ratio of 5 to 3 o in terms of metal cadmium is preferable.

実施例 水素吸蔵合金へのカドミウム活物質層の形成法として最
も簡単なカドミウム塩溶液含浸、か性アルカリ浸せきに
よる方法を例にして詳述する。
EXAMPLES As a method for forming a cadmium active material layer on a hydrogen storage alloy, the simplest method of impregnation with a cadmium salt solution and caustic alkali immersion will be described in detail as an example.

水素吸蔵合金としてMmNl 3.8Mno 、 4A
tO,2COo 、6を取り上げ、重量比でこの粉末9
0部、ニッケル粉末5部、アクリロニトリル系繊維0.
5を十分混合し、1oqbポリビニルアルコール水溶液
によシペーストにする。これを厚さQ 、 15 tt
rm 、孔径1.8m、開孔度62%のニッケルメッキ
鉄製のパンチングメタルに塗着し、スリットを通して厚
さを0.6mに調整する。ついで80℃で2時間乾燥す
る。
MmNl 3.8Mno, 4A as a hydrogen storage alloy
tO,2COo, 6 is taken up, and the weight ratio of this powder is 9
0 parts, nickel powder 5 parts, acrylonitrile fiber 0.
Mix thoroughly and make a paste with 1 ozb polyvinyl alcohol aqueous solution. This is the thickness Q, 15 tt
rm, a hole diameter of 1.8 m, and a pore size of 62%, applied to a punched metal made of nickel-plated iron, and adjusted to a thickness of 0.6 m through a slit. It is then dried at 80°C for 2 hours.

これを、硝酸カドミウム(cd(NO3)2・4H20
) :水を75:25(重量比)とした水溶液中に、室
温で約3分間浸せきし、その後に60℃で3時間乾燥す
る。ついで、20重量%のか性カリ水溶液中に、SO℃
で1.5時間浸せきし、水洗して6003時間乾燥する
。このようなカドミウム塩含浸、アルカリ浸せきの工程
をくり返してもよいが、1回の工程で本発明の目的は達
成できる。このようにして、水素吸蔵合金上に水酸化カ
ドミウムの層を形成する。
Add this to cadmium nitrate (cd(NO3)2.4H20
): Immerse in an aqueous solution of water at a ratio of 75:25 (weight ratio) for about 3 minutes at room temperature, and then dry at 60° C. for 3 hours. Then, in a 20% by weight caustic potassium aqueous solution, SO ℃
Soak for 1.5 hours, wash with water and dry for 6003 hours. Although the steps of impregnating with cadmium salt and impregnating with alkali may be repeated, the object of the present invention can be achieved with one step. In this way, a layer of cadmium hydroxide is formed on the hydrogen storage alloy.

用いる電池としては、ニッケルーカドミウム蓄電池を例
とし、密閉形の単二サイズとした。
The battery used is a nickel-cadmium storage battery, which is a sealed AA size battery.

まず、相手極のニッケル極としては、厚さ0.66m、
幅38団、長さ210厘、充てん容量密度500mAh
/ccの発泡状ニッケル極を用い九公称容量は2.eA
hである。セパレータトシては、ポリアミド不織布、電
解液としては比重1.2のか性カリ水溶液に水酸化リチ
ウムを251/を溶解して用いた。
First, the mating nickel electrode has a thickness of 0.66 m.
Width: 38 mm, length: 210 mm, filling capacity density: 500 mAh
/cc using foamed nickel electrodes with a nominal capacity of 2. eA
It is h. A polyamide nonwoven fabric was used as the separator, and lithium hydroxide (251%) was dissolved in a caustic potassium aqueous solution with a specific gravity of 1.2 as the electrolytic solution.

本発明の電池Aでは、この水酸化カドミウム含浸水素吸
蔵合金電極を幅は同じり38rrr!nとし、長さを2
50mに裁断して用いた。なお、この水素吸蔵合金電極
の放電可能な容量は、20℃、o 、 2Cで3.6A
h、(水酸化)カドミウムがo、8Ahである。
In battery A of the present invention, this cadmium hydroxide-impregnated hydrogen storage alloy electrode has the same width of 38 rrr! Let n be the length 2
It was cut into 50m lengths and used. The discharge capacity of this hydrogen storage alloy electrode is 3.6 A at 20°C and 2C.
h, cadmium (hydroxide) is o, 8Ah.

比較例として、水素吸蔵合金は、電池Aと同じ製法によ
り製作し、水酸化カドミウムによる被覆は行なわず、そ
の代り、放電可能の容量を4.4Ahとした電池を加え
、これをBとした。
As a comparative example, a hydrogen storage alloy was manufactured using the same manufacturing method as Battery A, but instead of being coated with cadmium hydroxide, a battery with a discharge capacity of 4.4 Ah was added, and this was designated as B.

まず、電池AとBについて、室温25℃および45℃で
放電を行なった。充電は、いずれも25℃で0.2Cで
7時間とした。
First, batteries A and B were discharged at room temperatures of 25°C and 45°C. Charging was carried out at 25° C. and 0.2 C for 7 hours in each case.

その結果、電池A、Bとも0.2C放電で約2.6Ah
、1C放電で2.4sAhが25℃で得られ、45℃で
は、それぞれ2 、7Ah、2.5sAhであった。
As a result, both batteries A and B were approximately 2.6Ah at 0.2C discharge.
, 2.4 sAh was obtained at 25°C with 1C discharge, and 2, 7Ah, and 2.5sAh were obtained at 45°C, respectively.

つぎに、充電時での発生酸素ガスの吸収能を比較した。Next, we compared the ability to absorb generated oxygen gas during charging.

周囲温度0℃、充電IC(1,4時間)の条件で電池内
圧を測定したところ、電池Aでは、最高圧力が3 Ky
 / adであったのに対して電池Bでは5 KP /
 crdであった。その後、同じく0℃で0.20放電
を行ない、ふたたびこの条件で充電・放電を10回くり
返した。その結果、電池Aでは、3〜4に9/−の最高
内圧であったが、電池Bでは、徐々に内圧が上昇し、1
oプサイル充電時には8 Kp / crlに達しだ。
When the internal pressure of the battery was measured under the conditions of ambient temperature 0℃ and charging IC (1.4 hours), the maximum pressure for battery A was 3 Ky.
/ ad, whereas in battery B it was 5 KP /
It was crd. Thereafter, a 0.20 discharge was performed at 0° C., and charging and discharging were repeated 10 times under these conditions. As a result, in battery A, the maximum internal pressure was 3 to 4 to 9/-, but in battery B, the internal pressure gradually increased to 1
It reaches 8 Kp/crl when charged with o psi.

すなわち、本願は、充電時の酸素ガスの吸収にすぐれた
負極を提供していることがわかる。
That is, it can be seen that the present application provides a negative electrode that is excellent in absorbing oxygen gas during charging.

最後に、寿命特性を比較した。室温25℃のもとで、0
.2C−7時間充電−0、sCo 、 8Vまで放電の
条件で充放電サイクルを繰り返した。
Finally, we compared the life characteristics. At room temperature 25℃, 0
.. Charge-discharge cycles were repeated under the conditions of 2C-7 hour charge-0, sCo, and discharge to 8V.

その結果、1Qサイクルにおいては、電池A。As a result, in the 1Q cycle, battery A.

Bとも平均放電電圧は1.22V、放電容量は2.62
Ahであった。ところが、200サイクルで、容量はい
ずれも2.48Ahであったが、平均放電電圧がAでは
、1.22VであったのにBでは1.20Vになシ、さ
らに300サイクルでは、容量は2.42Ahであった
が、電圧はAが1.20Vに対してBは1.14vにな
った。
For both B, the average discharge voltage is 1.22V, and the discharge capacity is 2.62.
It was Ah. However, after 200 cycles, the capacity was 2.48Ah, but the average discharge voltage was 1.22V in A, but 1.20V in B, and further, after 300 cycles, the capacity was 2.48Ah. .42Ah, but the voltage was 1.20V for A and 1.14V for B.

さらに600サイクルになると、Aでは2.43Ah。Furthermore, when it comes to 600 cycles, A has 2.43Ah.

1.196V  に対してBでは1.86Ahで1.0
3Vのように電池電圧、容量ともに低下した。Bの゛低
下の原因は、サイクル時に負極の酸化による劣化が表面
にカドミウム活物質層を持つAよりも大きいことが主で
あると考えられる。
1.196V vs. 1.86Ah in B, 1.0
Both the battery voltage and capacity decreased to 3V. The main reason for the decrease in B is considered to be that the deterioration due to oxidation of the negative electrode during cycling is greater than in A, which has a cadmium active material layer on the surface.

発明の効果 以上詳述したように水素吸蔵合金上にカドミウム活物質
層を形成させることにより、充電時での酸素ガス吸収能
の向上と、サイクル寿命での放電電圧や容量の低下の抑
制が可能になる。
Effects of the Invention As detailed above, by forming a cadmium active material layer on a hydrogen storage alloy, it is possible to improve the oxygen gas absorption ability during charging and suppress the decrease in discharge voltage and capacity during the cycle life. become.

Claims (2)

【特許請求の範囲】[Claims] (1)水素吸蔵合金粉末の表面に、多孔性のカドミウム
活物質層が形成されていることを特徴とするアルカリ蓄
電池用負極。
(1) A negative electrode for an alkaline storage battery, characterized in that a porous cadmium active material layer is formed on the surface of a hydrogen storage alloy powder.
(2)水素吸蔵合金電極面に、カドミウム、酸化カドミ
ウム、水酸化カドミウムよりなる群から選んだ少なくと
も1種の層が形成されている特許請求の範囲第1項記載
のアルカリ蓄電池用負極。
(2) The negative electrode for an alkaline storage battery according to claim 1, wherein at least one layer selected from the group consisting of cadmium, cadmium oxide, and cadmium hydroxide is formed on the hydrogen storage alloy electrode surface.
JP61128633A 1986-06-03 1986-06-03 Negative electrode for alkaline storage battery Pending JPS62285360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61128633A JPS62285360A (en) 1986-06-03 1986-06-03 Negative electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61128633A JPS62285360A (en) 1986-06-03 1986-06-03 Negative electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS62285360A true JPS62285360A (en) 1987-12-11

Family

ID=14989638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61128633A Pending JPS62285360A (en) 1986-06-03 1986-06-03 Negative electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS62285360A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043233A (en) * 1989-03-10 1991-08-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
WO2000010219A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell
KR100509323B1 (en) * 2001-03-09 2005-08-23 캐논 가부시끼가이샤 Alkaline rechargeable battery and process for the production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043233A (en) * 1989-03-10 1991-08-27 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
USRE34471E (en) * 1989-03-10 1993-12-07 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for use in an alkaline storage cell and its manufacturing method
WO2000010219A1 (en) * 1998-08-10 2000-02-24 Toyota Jidosha Kabushiki Kaisha Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell
KR100447461B1 (en) * 1998-08-10 2004-09-07 도요다 지도샤 가부시끼가이샤 Method for judging state of secondary cell and device for judging state thereof, and method for regenerating secondary cell
US6924623B2 (en) 1998-08-10 2005-08-02 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7030618B2 (en) 1998-08-10 2006-04-18 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7075305B2 (en) 1998-08-10 2006-07-11 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7180298B2 (en) 1998-08-10 2007-02-20 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
US7235326B2 (en) 1998-08-10 2007-06-26 Toyota Jidosha Kabushiki Kaisha Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
KR100509323B1 (en) * 2001-03-09 2005-08-23 캐논 가부시끼가이샤 Alkaline rechargeable battery and process for the production thereof

Similar Documents

Publication Publication Date Title
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JPS62285360A (en) Negative electrode for alkaline storage battery
US5547784A (en) Alkaline storage battery and method for producing the same
JPH1173957A (en) Alkaline storage battery and manufacture of nickel positive pole plate thereof
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JP4531874B2 (en) Nickel metal hydride battery
JPS6351051A (en) Hydrogen absorption alloy negative electrode for alkaline cell
JP3370111B2 (en) Hydrogen storage alloy electrode
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP2003187804A (en) Nickel/hydrogen storage battery
JPH11238507A (en) Alkaline storage battery
JPS6097560A (en) Sealed type alkaline storage battery
JP2932711B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline battery
JP2589750B2 (en) Nickel cadmium storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP2925578B2 (en) Method for manufacturing electrode plate for storage battery
JP2002260643A (en) Hydrogen storage alloy electrode and manufacturing method therefor, and alkaline storage battery
JPS63170852A (en) Cadmium electrode for alkaline storage battery
JP2003317712A (en) Nickel - hydrogen storage battery
JPH0620717A (en) Manufacture of sealed nickel-cadmium storage battery
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH03289050A (en) Manufacture of sintered type nickel positive electrode