JPH06124704A - Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode - Google Patents

Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode

Info

Publication number
JPH06124704A
JPH06124704A JP4274640A JP27464092A JPH06124704A JP H06124704 A JPH06124704 A JP H06124704A JP 4274640 A JP4274640 A JP 4274640A JP 27464092 A JP27464092 A JP 27464092A JP H06124704 A JPH06124704 A JP H06124704A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
alloy
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4274640A
Other languages
Japanese (ja)
Inventor
庸一郎 ▲辻▼
Yoichiro Tsuji
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4274640A priority Critical patent/JPH06124704A/en
Publication of JPH06124704A publication Critical patent/JPH06124704A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a hydrogen storage alloy electrode of large capacity and high activity, and such a hydrogen storage alloy electrode incorporating a larger alloy utilization factor, and an improvement in terms of initial charge and discharge characteristics, lifetime characteristic or charge and discharge characteristics at a high rate. CONSTITUTION:As one of examples, the powder of hydrogen storage alloy as one of C15 type Laves phase alloys and expressed as ZrMn0.5V0.2Co0.1Ni1.2, is formed on an electrode, and the surface of the electrode is plated with an alloy of nickel and tin. This electrode is used as a negative electrode and a publicly known nickel oxide electrode is used as a positive electrode, thereby constituting a battery. According to this construction, initial charge and discharge characteristics are enhanced and a battery can be provided, while ensuring large capacity, long lifetime, and quick charge and discharge capability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−水素蓄電池
などのアルカリ蓄電池の負電極として用いられる水素吸
蔵合金電極の製造法及び水素吸蔵合金電極に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrogen storage alloy electrode used as a negative electrode of an alkaline storage battery such as a nickel-hydrogen storage battery, and a hydrogen storage alloy electrode.

【0002】[0002]

【従来の技術】従来、各種の電源として広く使われてい
る蓄電池としては鉛蓄電池とアルカリ蓄電池がある。こ
のうちアルカリ蓄電池は高信頼性が期待でき、小形軽量
化も可能などの理由で小型電池は各種ポ−タブル機器用
に、大型は産業用として使われてきた。
2. Description of the Related Art Conventionally, there are lead storage batteries and alkaline storage batteries as storage batteries widely used as various power sources. Among them, the alkaline storage battery can be expected to have high reliability and can be made small and lightweight. For this reason, the small battery has been used for various portable devices and the large battery has been used for industrial purposes.

【0003】このアルカリ蓄電池において、正極は一部
空気極や酸化銀極なども取り上げられているが、ほとん
どの場合ニッケル極である。また、ポケット式から焼結
式に代わって特性が向上し、さらに密閉化が可能になる
とともに用途も広がった。一方、負極としてはカドミウ
ムの他に亜鉛、鉄、水素などが対象となっている。
In this alkaline storage battery, most of the positive electrodes are nickel electrodes, although some of them are air electrodes or silver oxide electrodes. In addition, the characteristics were improved from the pocket type to the sintered type, and it became possible to further seal and expand the applications. On the other hand, as the negative electrode, in addition to cadmium, zinc, iron, hydrogen, etc. are targeted.

【0004】最近、一層の高エネルギ−密度を達成する
ために、負極として水素吸蔵合金電極を使ったニッケル
−水素蓄電池が注目され、その製法などに多くの提案が
されている。
Recently, in order to achieve a higher energy density, a nickel-hydrogen storage battery using a hydrogen storage alloy electrode as a negative electrode has received attention, and many proposals have been made for its production method and the like.

【0005】この水素吸蔵合金電極の製法としては合金
粉末を焼結する方式と、発泡状、繊維状、パンチングメ
タルなどの多孔性支持体に充填や塗着する方式のペ−ス
ト式とがある。このうち製法が簡単なのがペ−スト式で
ある。水素吸蔵合金はカドミウム極や亜鉛極などと同様
に電子伝導性の点で比較的優れているので、非焼結式極
として用いられる可能性は大きい。すなわち結着剤とと
もにペ−スト状としこれを3次元あるいは2次元構造の
多孔性導電板に充填あるいは塗着している。
As a method for producing the hydrogen storage alloy electrode, there are a method of sintering alloy powder and a paste method of filling or coating a porous support such as foamed, fibrous or punched metal. . Of these, the paste method is the easiest to manufacture. The hydrogen storage alloy is relatively excellent in electron conductivity like the cadmium electrode and the zinc electrode, and thus has a high possibility of being used as a non-sintered electrode. That is, it is formed into a paste with a binder and is filled or adhered to a porous conductive plate having a three-dimensional or two-dimensional structure.

【0006】その中で、水素吸蔵合金電極の特性を改善
するために、たとえば水素吸蔵合金粉末の粒子表面をニ
ッケルや銅でメッキして多孔性の金属層を形成する技術
が、とくに耐酸化性、利用率、成形性を改善するために
知られている。また特性向上のために合金製作後真空で
熱処理したり、アルカリ溶液に浸漬するなどの工程が提
案されている。
Among them, in order to improve the characteristics of the hydrogen storage alloy electrode, for example, a technique of forming a porous metal layer by plating the particle surface of the hydrogen storage alloy powder with nickel or copper is particularly resistant to oxidation. , Known to improve utilization, moldability. Further, in order to improve the characteristics, a process such as heat treatment in a vacuum after making the alloy or immersing in an alkaline solution has been proposed.

【0007】さらに密閉形に適用する際には、とくに過
充電時に正極から発生する酸素ガスの吸収性を改良する
ために、フッソ樹脂や触媒の添加が試みられている。
Further, in the case of applying to a closed type, it has been attempted to add a fluorine resin or a catalyst in order to improve the absorption of oxygen gas generated from the positive electrode during overcharge.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、蓄電池
に以上のような水素吸蔵合金電極を用いた場合、充放電
サイクルの初期での充放電特性、寿命特性、利用率、あ
るいは高率放電特性は十分でないため、それらを更に改
良する必要があるという課題がある。
However, when the above hydrogen storage alloy electrode is used for the storage battery, the charge / discharge characteristics, life characteristics, utilization rate, or high rate discharge characteristics at the beginning of the charge / discharge cycle are not sufficient. However, there is a problem that they need to be further improved.

【0009】特に、実際の電極での合金の重量あたりの
放電容量はその合金が持つ能力の80%程度であった。
In particular, the discharge capacity per weight of the alloy in the actual electrode was about 80% of the capacity of the alloy.

【0010】本発明は、従来のこのような課題を考慮
し、合金の利用率が向上し、初期での充放電特性、寿命
特性、あるいは高率放電特性が改善された高容量、高活
性な水素吸蔵合金電極の製造法及び水素吸蔵合金電極を
提供することを目的とするものである。
In consideration of the above problems of the prior art, the present invention has a high capacity, a high activity in which the utilization rate of the alloy is improved and the initial charge / discharge characteristics, life characteristics, or high rate discharge characteristics are improved. It is an object of the present invention to provide a method for producing a hydrogen storage alloy electrode and a hydrogen storage alloy electrode.

【0011】[0011]

【課題を解決するための手段】請求項1の本発明は、水
素を電気化学的に吸蔵、放出する水素吸蔵合金材料を電
極に成形後、その電極表面にニッケルとスズの合金をメ
ッキする水素吸蔵合金電極の製造法である。
According to the present invention of claim 1, hydrogen is formed by forming a hydrogen storage alloy material that electrochemically stores and releases hydrogen electrochemically on an electrode, and then plating the surface of the electrode with an alloy of nickel and tin. This is a method for manufacturing an occlusion alloy electrode.

【0012】請求項4の本発明は、表面にニッケルとス
ズの合金がメッキされている水素吸蔵合金電極である。
The present invention according to claim 4 provides a hydrogen storage alloy electrode, the surface of which is plated with an alloy of nickel and tin.

【0013】[0013]

【作用】本発明は、水素吸蔵合金表面にニッケルとスズ
の合金をメッキすることによって、電極の高容量化、急
速充放電特性、寿命の改善が図れる。
In the present invention, by plating the surface of the hydrogen storage alloy with an alloy of nickel and tin, the capacity of the electrode can be increased, the rapid charge / discharge characteristics and the life can be improved.

【0014】[0014]

【実施例】以下に、本発明をその実施例を示す図面に基
づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings showing its embodiments.

【0015】水素吸蔵合金として、主たる合金相がC1
5型ラーヴェス(Laves)相合金の一つであるZr
Mn0.50.2Co0.1Ni1.2合金を用いた。
As the hydrogen storage alloy, the main alloy phase is C1.
Zr, one of the type 5 Laves phase alloys
An Mn 0.5 V 0.2 Co 0.1 Ni 1.2 alloy was used.

【0016】まず、電極作成について説明する。上記の
水素吸蔵合金をジェットミルで粉砕して得た平均粒径2
5μmの粉末に、ポリエチレン粉末を1重量%加え、エ
タノールでペーストにする。ついでこのペ−ストを多孔
度95%厚さ0.8mmの発泡状ニッケル板に充填し、
加圧して電極を得た。これに硫酸ニッケル、硫酸スズ等
からなるメッキ浴を用いてメッキを行った。メッキ相中
のスズの含有量は5,30,50重量%のものをそれぞ
れ作製した。これが本発明の実施例であり、それぞれ電
極A,B,Cとする。なお、メッキ量は水素吸蔵合金量
に対して5重量%とした。
First, the production of electrodes will be described. Average particle size 2 obtained by crushing the above hydrogen storage alloy with a jet mill
1% by weight of polyethylene powder is added to the powder of 5 μm, and the mixture is made into a paste with ethanol. Then, this paste was filled in a foamed nickel plate having a porosity of 95% and a thickness of 0.8 mm,
An electrode was obtained by applying pressure. This was plated using a plating bath composed of nickel sulfate, tin sulfate or the like. The tin contents in the plating phase were 5, 30 and 50% by weight, respectively. This is an embodiment of the present invention, and is referred to as electrodes A, B, and C, respectively. The amount of plating was 5% by weight with respect to the amount of hydrogen storage alloy.

【0017】又、この電極の特性を比較するために、従
来の方法による電極も合わせて作製した。すなわち、従
来の方法としては同様にZrMn0.50.2Co0.1Ni
1.2の組成の水素吸蔵合金を粉砕し、得た合金粉末を、
前述の実施例と同様の方法で電極にした。これを従来法
による比較例として電極Dとする。また、スズの添加効
果を見るために、ニッケルのみをメッキした電極も比較
例として作製した。これを電極Eとする。
In order to compare the characteristics of this electrode, an electrode by a conventional method was also manufactured. That is, as in the conventional method, ZrMn 0.5 V 0.2 Co 0.1 Ni is similarly used.
The alloy powder obtained by crushing the hydrogen storage alloy having the composition of 1.2 ,
An electrode was formed in the same manner as in the above-mentioned embodiment. This is designated as an electrode D as a comparative example by the conventional method. Further, in order to see the effect of adding tin, an electrode plated only with nickel was also manufactured as a comparative example. This is an electrode E.

【0018】以上のように作製した電極を負極とし、正
極として過剰の電気容量を有する酸化ニッケル極を配
し、電解液に比重1.30の水酸化カリウム水溶液を用
い、電解液が豊富な条件下で水素吸蔵合金負極で容量規
制を行なった開放系で充放電を行った。充電は水素吸蔵
合金1gあたり100mA×5.5時間、放電は合金1
gあたり50mAで端子電圧が0.8Vまでとした。
The electrode prepared as described above is used as a negative electrode, a nickel oxide electrode having an excessive electric capacity is arranged as a positive electrode, and an aqueous solution of potassium hydroxide having a specific gravity of 1.30 is used as the electrolytic solution. Charging and discharging were performed under an open system in which the capacity was regulated with a hydrogen storage alloy negative electrode. Charging is 100 mA x 5.5 hours per 1 g of hydrogen storage alloy, discharging is alloy 1
The terminal voltage was set to 0.8 V at 50 mA per gram.

【0019】このときの放電容量の変化を図1に示す。
ここで、何も処理していない従来の製法による電極Dは
飽和容量0.351Ah/gで、飽和容量に達するまで
に5サイクル要した。また、ニッケルのみをメッキした
電極Eは飽和容量は0.362Ah/gと若干増加した
が、この容量に達するまでに同様に5サイクルを要し
た。ところがニッケル−スズ合金をメッキした本実施例
の電極A,B,Cは1サイクル目から放電容量が向上
し、すべて0.38Ah/gを上回った。特にスズ量3
0重量%の電極Bは0.383Ah/gの放電容量を示
した。また、メッキをしていない電極Dに比べてほかの
電極はサイクルによる容量の劣化が小さかった。
The change in discharge capacity at this time is shown in FIG.
Here, the electrode D manufactured by the conventional method, which had not been treated, had a saturation capacity of 0.351 Ah / g, and it took 5 cycles to reach the saturation capacity. Further, the electrode E plated only with nickel had a slightly increased saturation capacity of 0.362 Ah / g, but it took 5 cycles to reach this capacity. However, the discharge capacities of the electrodes A, B, and C of this example plated with nickel-tin alloy improved from the first cycle, and all exceeded 0.38 Ah / g. Especially tin content 3
0% by weight of electrode B showed a discharge capacity of 0.383 Ah / g. In addition, the deterioration of the capacity due to the cycle of the other electrodes was smaller than that of the non-plated electrode D.

【0020】次に、これら電極を使用して密閉形電池を
構成した結果について説明する。上述の電極A,B,
C,D,Eをそれぞれ幅3.3cm、長さ21cm、厚
さ0.52mmに調整し、リード板を所定の2カ所に取
り付けた。そして、正極、セパレータと組み合わせて円
筒状に3層に渦巻き状にしてSCサイズの電槽に収納し
た。このときの正極は、公知の発泡式ニッケル極を選
び、幅3.3cm、長さ16cmとして用いた。この場
合もリード板を2カ所に取り付けた。また、セパレータ
は、親水性を付与したポリプロピレン不織布を用いた。
電解液としては、比重1.30の水酸化カリウム水溶液
に水酸化リチウムを30g/l溶解して用いた。これを
封口して密閉形電池とした。このように構成した電池
は、正極容量規制で公称容量は3.0Ahである。この
密閉形電池で水素吸蔵合金電極の電極Aで構成した電池
を電池A、同様に電極B,C,D,Eで構成した電池を
それぞれ電池B,C,D,Eとする。
Next, the result of constructing a sealed battery using these electrodes will be described. The above electrodes A, B,
Each of C, D and E was adjusted to have a width of 3.3 cm, a length of 21 cm and a thickness of 0.52 mm, and lead plates were attached at predetermined two positions. Then, in combination with the positive electrode and the separator, it was made into a cylindrical three-layer spiral shape and housed in an SC size battery case. As the positive electrode at this time, a known foaming nickel electrode was selected and used with a width of 3.3 cm and a length of 16 cm. Also in this case, the lead plates were attached at two places. As the separator, a polypropylene non-woven fabric having hydrophilicity was used.
As an electrolytic solution, 30 g / l of lithium hydroxide was dissolved in an aqueous potassium hydroxide solution having a specific gravity of 1.30 and used. This was sealed to form a sealed battery. The battery thus configured has a nominal capacity of 3.0 Ah according to the positive electrode capacity regulation. In this sealed battery, the battery composed of the electrode A of the hydrogen storage alloy electrode is referred to as battery A, and the batteries composed of the electrodes B, C, D and E are referred to as batteries B, C, D and E, respectively.

【0021】これらの電池をそれぞれ10個づつ作成
し、充放電サイクル試験によって評価した結果を説明す
る。
The results of evaluations made by charge / discharge cycle tests of 10 of each of these batteries will be described.

【0022】まず、初期の放電電圧と容量を比較した。
5時間率で容量の150%定電流充電、同様に5時間率
で1.0Vまでの定電流放電を20℃で行なったとこ
ろ、電池A,B,Cは平均放電電圧が1.28Vであ
り、放電容量は1サイクル目からほぼ3.0Ahであっ
た。ところが電池D,Eでは平均放電電圧はそれぞれ
1.20V,1.22Vであり、放電容量は1サイクル
で3.0Ahに達せず、2サイクル目から正極規制にな
った。
First, the initial discharge voltage and capacity were compared.
When a constant current charge of 150% of capacity at a rate of 5 hours and a constant current discharge up to 1.0 V at a rate of 5 hours were performed at 20 ° C., the average discharge voltage of the batteries A, B and C was 1.28 V. The discharge capacity was about 3.0 Ah from the first cycle. However, in batteries D and E, the average discharge voltage was 1.20 V and 1.22 V, respectively, and the discharge capacity did not reach 3.0 Ah in one cycle, and the positive electrode regulation was applied from the second cycle.

【0023】次に、低温での高率放電特性を比較した。
充電を20℃で5時間率で電池容量に対して150%ま
で行い、その後0℃で1時間率で放電して、1.0Vま
での容量を比較した。その結果、電池Dは標準容量に対
して48%しか放電せず、平均放電電圧も1.06Vで
あり、電池Eでも61%、1.08Vであったのに対
し、ニッケル−スズメッキを行った電極を用いた電池
A,B,Cは放電容量比82,89,85%となり、平
均放電電圧もすべてほぼ1.15Vであった。
Next, the high rate discharge characteristics at low temperature were compared.
Charging was performed at 20 ° C. for 5 hours to 150% of the battery capacity, and then discharged at 0 ° C. for 1 hour to compare the capacities up to 1.0V. As a result, the battery D discharged only 48% with respect to the standard capacity, the average discharge voltage was 1.06 V, and the battery E was 61% and 1.08 V, while nickel-tin plating was performed. Batteries A, B, and C using the electrodes had a discharge capacity ratio of 82, 89, and 85%, and the average discharge voltage was all about 1.15V.

【0024】また、充電1/2時間率で150%、放電
1/2時間率で1.0Vまでの定電流充放電で寿命特性
を比較した。その結果を図2に示す。放電容量は電池A
が300サイクルで初期の96%、600サイクルで8
8%、電池Bが300サイクルで初期の97%、600
サイクルで92%、電池Cが300サイクルで初期の9
6%、600サイクルで89%、電池Dは300サイク
ルで負極律速になり初期の80%まで容量が低下し、ま
た電池Eは300サイクルで初期の91%、600サイ
クルで77%となった。したがって本発明による水素吸
蔵合金電極は寿命特性も向上した。なお、メッキ相中の
スズの含有量は5〜60重量%が望ましく、メッキ中の
スズ量が60%を越えると、ニッケル単独メッキ以上の
顕著な効果は得られなかった。
Further, the life characteristics were compared by charging / discharging at a constant current of 150% at a 1/2 hour charge rate and 1.0 V at a 1/2 hour discharge rate. The result is shown in FIG. Discharge capacity is battery A
Is 300% in the initial 96%, and 600 cycles is 8
8%, Battery B is 300 cycles, initial 97%, 600
92% in cycle, battery C is 300 cycles and initial 9
6%, 89% at 600 cycles, Battery D reached negative electrode rate limiting at 300 cycles and the capacity decreased to the initial 80%, and Battery E reached 91% at 300 cycles and 77% at 600 cycles. Therefore, the hydrogen storage alloy electrode according to the present invention has improved life characteristics. Incidentally, the tin content in the plating phase is preferably 5 to 60% by weight, and when the tin content in the plating exceeds 60%, the remarkable effect of nickel plating alone cannot be obtained.

【0025】また、水素吸蔵合金中にニッケル−スズ合
金の粉末を混合するだけでは顕著な効果がなく、メッキ
が膜状に電極表面を覆ってネットワークを形成している
ことが有効であると考えられる。また、スズの添加効果
に関しては、ニッケルの触媒効果に加えて、スズの展性
が水素吸蔵合金が微粉化しても密着性良く合金をメッキ
しているからではないかと考えられる。
Further, mixing the nickel-tin alloy powder into the hydrogen storage alloy does not have a remarkable effect, and it is considered that it is effective that the plating covers the electrode surface like a film to form a network. To be Regarding the effect of addition of tin, it is considered that, in addition to the catalytic effect of nickel, the malleability of tin is because the alloy is plated with good adhesion even if the hydrogen storage alloy is pulverized.

【0026】以上のように、水素吸蔵合金を電極にした
場合、例えば多量のNi粉末と合金粉末を混合したよう
な理想的な電極での放電容量に比べて、実際の電極の放
電容量は80%程度に低下してしまうが、水素吸蔵合金
にニッケルとスズの合金をメッキすることによって、電
極の高容量化、急速充放電特性、寿命の改善を図ること
ができる。
As described above, when the hydrogen storage alloy is used as the electrode, the actual discharge capacity of the electrode is 80 compared with the discharge capacity of the ideal electrode in which a large amount of Ni powder and alloy powder are mixed. %, But by plating the hydrogen storage alloy with an alloy of nickel and tin, the capacity of the electrode can be increased, the rapid charge / discharge characteristics, and the life can be improved.

【0027】なお、上記実施例では、水素吸蔵合金とし
て、主たる合金相がC15型ラーヴェス(Laves)
相合金の一つであるZrMn0.50.2Co0.1Ni1.2
金を用いたが、これに限らず、他の組成の、一般式がA
Bα(α=1.5〜2.5)で表され、合金相が実質的
に金属間化合物のラーヴェス(Laves)相に属し、
その結晶構造が6方対称のC14型または(および)立
方対称のC15型である水素吸蔵合金、AB2 型Lav
es相合金はもちろんのこと、MmNi3.7Mn0.3Al
0.3Co0.7 などのCaCu5構造を有するAB5型水素
吸蔵合金を用いた場合も同様の効果が得られた。
In the above embodiment, as the hydrogen storage alloy, the main alloy phase is C15 type Laves.
ZrMn 0.5 V 0.2 Co 0.1 Ni 1.2 alloy, which is one of the phase alloys, was used, but the invention is not limited to this, and the general formula of other compositions is A
It is represented by Bα (α = 1.5 to 2.5), and the alloy phase substantially belongs to the Laves phase of the intermetallic compound,
AB 2 Lav, a hydrogen storage alloy whose crystal structure is hexagonal C14 type or (and) cubic C15 type
Not to mention es phase alloy, MmNi 3.7 Mn 0.3 Al
Similar effects were obtained when an AB 5 type hydrogen storage alloy having a CaCu 5 structure such as 0.3 Co 0.7 was used.

【0028】[0028]

【発明の効果】以上述べたところから明らかなように本
発明は、水素吸蔵合金材料を電極に成形後、その電極表
面にニッケルとスズの合金をメッキするので、合金の利
用率が向上し、初期での充放電特性、寿命特性、あるい
は高率放電特性が改善されるという長所を有する。
As is apparent from the above description, according to the present invention, after the hydrogen storage alloy material is formed into an electrode, the electrode surface is plated with an alloy of nickel and tin, so that the utilization factor of the alloy is improved, It has the advantage that the initial charge / discharge characteristics, life characteristics, or high rate discharge characteristics are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる実施例と従来例との開放系での
放電特性を比較した図である。
FIG. 1 is a diagram comparing discharge characteristics in an open system between an example according to the present invention and a conventional example.

【図2】同実施例と従来例との密閉型電池での寿命特性
を比較した図である。
FIG. 2 is a diagram comparing the life characteristics of a sealed battery of the same example and a conventional example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩城 勉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tsutomu Iwaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素を電気化学的に吸蔵、放出する水素
吸蔵合金材料を電極に成形後、その電極表面にニッケル
とスズの合金をメッキすることを特徴とする水素吸蔵合
金電極の製造法。
1. A method for producing a hydrogen storage alloy electrode, which comprises forming an electrode of a hydrogen storage alloy material capable of electrochemically storing and releasing hydrogen electrochemically, and plating the surface of the electrode with an alloy of nickel and tin.
【請求項2】 主たる水素吸蔵合金の一般式がABα
(α=1.5〜2.5)で表され、合金相が実質的に金
属間化合物のラーヴェス(Laves)相に属し、その
結晶構造が6方対称のC14型又は/及び立方対称のC
15型であることを特徴とする請求項1記載の水素吸蔵
合金電極の製造法。
2. The general formula of the main hydrogen storage alloy is ABα.
(Α = 1.5 to 2.5), the alloy phase substantially belongs to the Laves phase of the intermetallic compound, and the crystal structure thereof is C14 type with hexagonal symmetry and / or C with cubic symmetry.
15. The method for producing a hydrogen storage alloy electrode according to claim 1, wherein the method is a 15 type.
【請求項3】 メッキ合金中のニッケルに対するスズの
割合が5〜60重量%であることを特徴とする請求項1
記載の水素吸蔵合金の製造法。
3. The ratio of tin to nickel in the plated alloy is 5 to 60% by weight.
A method for producing the hydrogen storage alloy described.
【請求項4】 表面にニッケルとスズの合金がメッキさ
れていることを特徴とする水素吸蔵合金電極。
4. A hydrogen storage alloy electrode having a surface coated with an alloy of nickel and tin.
JP4274640A 1992-10-13 1992-10-13 Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode Pending JPH06124704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4274640A JPH06124704A (en) 1992-10-13 1992-10-13 Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4274640A JPH06124704A (en) 1992-10-13 1992-10-13 Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode

Publications (1)

Publication Number Publication Date
JPH06124704A true JPH06124704A (en) 1994-05-06

Family

ID=17544525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4274640A Pending JPH06124704A (en) 1992-10-13 1992-10-13 Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH06124704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123579A1 (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Method for producing negative electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123579A1 (en) * 2016-12-27 2018-07-05 株式会社豊田自動織機 Method for producing negative electrode material

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3010724B2 (en) Hydrogen storage alloy electrode for batteries
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3370111B2 (en) Hydrogen storage alloy electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3316687B2 (en) Nickel-metal hydride storage battery
JP3136688B2 (en) Nickel-hydrogen storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2574542B2 (en) Hydrogen storage alloy electrode and its manufacturing method
JPH06150923A (en) Manufacture of hydrogen storage alloy electrode for sealed battery
JP3118812B2 (en) Alkaline storage battery
JPH06231760A (en) Hydrogen storage alloy electrode and its manufacture
JPH0668876A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery
JPH0528989A (en) Hydrogen storage alloy electrode
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0785866A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS60119079A (en) Hydrogen absorption electrode
JPS62252072A (en) Manufacture of negative electrode for alkaline storage battery