JPH0785866A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH0785866A
JPH0785866A JP5230385A JP23038593A JPH0785866A JP H0785866 A JPH0785866 A JP H0785866A JP 5230385 A JP5230385 A JP 5230385A JP 23038593 A JP23038593 A JP 23038593A JP H0785866 A JPH0785866 A JP H0785866A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
powder
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5230385A
Other languages
Japanese (ja)
Inventor
Yoichiro Tsuji
庸一郎 辻
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Naoko Maekawa
奈緒子 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5230385A priority Critical patent/JPH0785866A/en
Publication of JPH0785866A publication Critical patent/JPH0785866A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a hydrogen storage alloy electrode of high activity, high capacity and a long life by applying Ni plating having Co powder or hydrogen storage alloy powder,dispersed, to a surface of the hydrogen storage alloy electrode, or further soaking this electrode in a high temperature alkali. CONSTITUTION:As an example, a hydrogen storage alloy expressed by ZrMn 0.6 V 0.2 Cr 0.2 Ni 1.15, being one of C15 type Laves phase alloys, is subjected to Ni plating by means of an Ni plating bath wherein powder of ZrMn 0.8 V 0.1 Ni 1.1 is dispersed, and a well-known nickel oxide electrode is used as a positive electrode, to constitute a battery. Then, an electrode excellent in initial activation and capable of quick charging/discharging can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を使用し
た電極およびその製造法に関するものである。さらに詳
しくは、ニッケル−水素蓄電池などのアルカリ蓄電池に
有用な水素吸蔵合金電極およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode using a hydrogen storage alloy and its manufacturing method. More specifically, the present invention relates to a hydrogen storage alloy electrode useful for an alkaline storage battery such as a nickel-hydrogen storage battery and a method for producing the same.

【0002】[0002]

【従来の技術】最近、アルカリ蓄電池の一層の高エネル
ギ−密度を達成するために、カドミウム電極の代わりに
水素吸蔵合金電極を使ったニッケル−水素蓄電池が注目
され、製法などに多くの提案がされている。水素吸蔵合
金電極の製法としては、合金粉末を焼結する方式と、発
泡状、繊維状、パンチングメタルなどの3次元または2
次元の多孔性支持体に合金粉末を充填または塗着する方
式のペ−スト式とがある。このうち製法が簡単なのがペ
−スト式である。水素吸蔵合金は、カドミウムや亜鉛な
どと同様に電子伝導性の点で比較的優れているので、非
焼結式であるペースト式電極の可能性は大きい。
2. Description of the Related Art Recently, in order to achieve a higher energy density of an alkaline storage battery, a nickel-hydrogen storage battery using a hydrogen storage alloy electrode instead of a cadmium electrode has been attracting attention, and many proposals have been made for its manufacturing method. ing. The hydrogen storage alloy electrode can be manufactured by sintering alloy powder, or by foaming, fibrous, punching metal or other three-dimensional or two-dimensional method.
There is a paste type in which a three-dimensional porous support is filled or coated with alloy powder. Of these, the paste method is the easiest to manufacture. Since hydrogen storage alloys are relatively excellent in electron conductivity, as is the case with cadmium and zinc, there is great potential for non-sintered paste electrodes.

【0003】このペースト式水素吸蔵合金電極の特性を
改善するために、たとえば水素吸蔵合金粉末の粒子表面
をニッケルや銅でメッキして多孔性の金属層を形成する
技術が、とくに耐酸化性、利用率、成形性を改善するた
めに知られている(特開平02−201870号公
報)。
In order to improve the characteristics of this paste-type hydrogen storage alloy electrode, for example, a technique of plating the surface of hydrogen storage alloy powder particles with nickel or copper to form a porous metal layer is particularly advantageous in terms of oxidation resistance, It is known to improve the utilization rate and moldability (Japanese Patent Laid-Open No. 02-201870).

【0004】[0004]

【発明が解決しようとする課題】従来の水素吸蔵合金を
用いた電池は、充放電サイクル初期の充放電特性、利用
率および高率充放電特性が十分満足された特性になって
いない。特に、実際の電極における合金の重量あたりの
放電容量は、その合金の持つ能力の80%程度である。
すなわち、水素吸蔵合金を電極にした場合、例えば多量
のNi粉末を合金粉末に混合して作製したような理想的
な電極における放電容量に比べて、ペースト式電極など
の実際の電池で使用される電極の放電容量は80%程度
に低下してしまう。この利用率の向上が電極の高容量化
に対して重要な課題である。前述の合金粉末の粒子表面
にメッキする方法によってもまだ特性は十分ではなく、
また、合金粒子すべてにメッキすることは電極の重量あ
たりのエネルギー密度の低下を招く。本発明は、前記従
来技術の課題を解決するため、合金の利用率を向上し、
高容量、高活性な水素吸蔵合金電極およびその製造法を
提供することを目的とする。
The battery using the conventional hydrogen storage alloy does not have sufficient charge / discharge characteristics, utilization rate and high rate charge / discharge characteristics at the beginning of the charge / discharge cycle. In particular, the discharge capacity per weight of the alloy in the actual electrode is about 80% of the capacity of the alloy.
That is, when a hydrogen storage alloy is used as an electrode, it is used in an actual battery such as a paste-type electrode as compared with the discharge capacity of an ideal electrode prepared by mixing a large amount of Ni powder with the alloy powder. The discharge capacity of the electrode is reduced to about 80%. The improvement of the utilization rate is an important issue for increasing the capacity of the electrode. The characteristics are not sufficient even by the method of plating the particle surface of the alloy powder described above,
In addition, plating all the alloy particles causes a decrease in energy density per weight of the electrode. The present invention, in order to solve the problems of the prior art, to improve the utilization rate of the alloy,
It is an object of the present invention to provide a high capacity, highly active hydrogen storage alloy electrode and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明の水素吸蔵合金電極は、水素を電気化学的に
吸蔵・放出する水素吸蔵合金によって形成された電極で
あって、前記電極表面にCo粉末を含むNiメッキある
いは、水素吸蔵合金粉末を含むNiメッキが施されてい
ることを特徴とする。ここで、水素吸蔵合金粉末を含む
メッキにおいては、この水素吸蔵合金粉末は電極中の水
素吸蔵合金に比べて、アルカリ溶液に溶出しやすい元素
の含量が多く、さらには、水素平衡圧力が低いことが好
ましい。この構成においては、水素吸蔵合金の主成分
が、一般式ABα(α=1.5〜2.5)で表され、合
金相が実質的に金属間化合物のラーバス(Laves)
相に属し、その結晶構造が6方対称のC14型および/
または立方対称のC15型であることが好ましい。
In order to achieve the above object, the hydrogen storage alloy electrode of the present invention is an electrode formed of a hydrogen storage alloy that electrochemically stores and releases hydrogen, and the electrode surface Is plated with Ni containing Co powder or Ni containing hydrogen absorbing alloy powder. Here, in the plating containing the hydrogen-absorbing alloy powder, the hydrogen-absorbing alloy powder has a larger content of elements that are easily eluted in the alkaline solution than the hydrogen-absorbing alloy in the electrode, and further, the hydrogen equilibrium pressure is low. Is preferred. In this structure, the main component of the hydrogen storage alloy is represented by the general formula ABα (α = 1.5 to 2.5), and the alloy phase is substantially intermetallic compound Lavas.
Phase and its crystal structure is hexagonal C14 type and / or
Alternatively, it is preferably cubic C15 type.

【0006】また、メッキ中の金属粉末の割合は10〜
30重量%、水素吸蔵合金粉末によって形成された電極
に対するメッキ量は、水素吸蔵合金重量に対して1〜1
0重量%程度が好ましい。次に、本発明の水素吸蔵合金
電極の製造方法は、水素を電気化学的に吸蔵・放出する
水素吸蔵合金粉末によって形成された電極の製造法であ
って、電極形成後、電極表面に前記Co粉末または水素
吸蔵合金粉末を分散したニッケルメッキ液を用いて電解
メッキする工程と、この電極を高温、特に80℃以上の
アルカリ水溶液に浸漬する工程を有することを特徴とす
る。
The ratio of metal powder in the plating is 10 to 10.
30% by weight, the plating amount on the electrode formed of the hydrogen storage alloy powder is 1 to 1 with respect to the weight of the hydrogen storage alloy.
About 0% by weight is preferable. Next, a method for producing a hydrogen storage alloy electrode of the present invention is a method for producing an electrode formed of a hydrogen storage alloy powder that electrochemically stores and releases hydrogen, wherein the Co The method is characterized by including a step of electrolytic plating using a nickel plating solution in which a powder or a hydrogen storage alloy powder is dispersed, and a step of immersing this electrode in an alkaline aqueous solution at a high temperature, particularly 80 ° C. or higher.

【0007】[0007]

【作用】前記本発明の構成によれば、電極表面にCo粉
末または水素吸蔵合金粉末を含むNiがメッキされてい
ること、あるいはさらに、このメッキされた電極を高温
のアルカリ溶液中に浸漬することにより、合金の利用率
を向上し、高容量、高活性な水素吸蔵合金電極とするこ
とができる。すなわち、電極の高容量化、急速充放電特
性、寿命の改善が図れる。
According to the structure of the present invention, the surface of the electrode is plated with Ni containing Co powder or hydrogen storage alloy powder, or further, the plated electrode is immersed in a high temperature alkaline solution. As a result, the utilization factor of the alloy can be improved and a high capacity, highly active hydrogen storage alloy electrode can be obtained. That is, the capacity of the electrode can be increased, the rapid charge / discharge characteristics, and the life can be improved.

【0008】メッキ中のCo粉末の作用については、C
o粒子がメッキの粒界に入り込み、メッキ表面が粉末を
添加しない場合に比べて荒くなり、表面積を増大させ、
過電圧を減少させているのではないかと考えられる。し
たがって、NiとCoの塩を含むメッキ浴から合金状態
で同時にメッキする方法に比べると効果が大きい。さら
に、この電極を高温のアルカリに浸漬することにより、
Coが一部溶出して表面積が増大するものと考えられ
る。一方、メッキ中に水素吸蔵合金粉末を含ませた場合
には、同様の表面積増加効果とともに、その触媒効果が
付加される。これを単に表面に塗布するだけではなく、
メッキ中に保持させることによって触媒効果を有効に発
揮させることができる。特に水素平衡圧の低い、つまり
ガス吸収能の高い水素吸蔵合金をメッキすることによっ
て、急速充電時のガス吸収を効率よく行わせることがで
きる。また、アルカリ中で溶出しやすいMn、V、Co
などの含量の多い水素吸蔵合金をメッキすることによっ
て、高温のアルカリに浸漬した場合の活性化効果をより
高め、活性の高い電極とすることができる。
Regarding the action of Co powder during plating,
o Particles enter the grain boundaries of the plating and the surface of the plating becomes rougher than when no powder is added, increasing the surface area,
It is considered that overvoltage is being reduced. Therefore, it is more effective than the method of simultaneously plating in an alloy state from a plating bath containing Ni and Co salts. Furthermore, by immersing this electrode in hot alkali,
It is considered that Co is partially eluted to increase the surface area. On the other hand, when the hydrogen storage alloy powder is included in the plating, the catalytic effect is added together with the similar surface area increasing effect. Not just applying this to the surface,
By holding it during plating, the catalytic effect can be effectively exhibited. Particularly, by plating a hydrogen storage alloy having a low hydrogen equilibrium pressure, that is, having a high gas absorption capacity, it is possible to efficiently perform gas absorption during rapid charging. In addition, Mn, V, and Co, which are easily dissolved in alkali
By plating a hydrogen storage alloy having a high content of, for example, the activation effect when immersed in high temperature alkali can be further enhanced, and an electrode with high activity can be obtained.

【0009】メッキ中に分散させる粒子の大きさは、あ
まり大きいとマトリックスとしてのNiのつながりを弱
め、また粒子自体も脱落しやすくなる。従って少なくと
も電極中の水素吸蔵合金粉末よりも小さいことが必要
で、好ましくは、10μm以下程度がよい。なお、前記
のような効果は、後記実施例に示すものなどのAB2
ラーバス相合金はもちろんのこと、MmNi3.7Mn0.3
Al0.3Co0.7などのCaCu5構造を有するAB5型な
どほかの水素吸蔵合金電極に対しても得られる。また、
メッキ中に分散する水素吸蔵合金もAB2型合金の電極
にAB5型の合金をメッキに含ませるなど、異なる構造
の水素吸蔵合金を組み合わせても効果がある。
If the size of the particles dispersed during plating is too large, the connection of Ni as a matrix is weakened, and the particles themselves easily fall off. Therefore, it is necessary to be at least smaller than the hydrogen storage alloy powder in the electrode, and preferably about 10 μm or less. The effects as described above are obtained not only for the AB 2 type Larvus phase alloys such as those shown in the examples below, but also for MmNi 3.7 Mn 0.3.
It can be obtained for other hydrogen storage alloy electrodes such as AB 5 type having a CaCu 5 structure such as Al 0.3 Co 0.7 . Also,
The hydrogen storage alloy dispersed during plating is also effective if a hydrogen storage alloy having a different structure is combined, such as an AB 2 type alloy electrode containing an AB 5 type alloy in the plating.

【0010】[0010]

【実施例】以下、実施例を用いて本発明を具体的に説明
する。 [実施例1]水素吸蔵合金として、主たる合金相がC1
5型ラーバス相である合金の一例としてZrMn0.6
0.2Ni1.3合金を用いる。これを機械的に38μm以下
に粉砕し、ポリビニルアルコールの3重量%水溶液を加
えてペーストにし、ついでこのペ−ストを多孔度95
%、厚さ0.8mmの発泡状ニッケル板に充填し、加圧
する。この電極を公知のワット浴に浸漬し、さらに粒径
5μm以下のCo粉末を10g/L加えて攪拌しながら
メッキを行う。こうして得た電極を電極Aとする。さら
に、この電極を100℃の水酸化カリウム水溶液に1時
間浸漬処理したものを電極Bとする。比較例として、メ
ッキを行わない電極を電極C、Niのみをメッキした電
極を電極Dとする。メッキ量は電極重量に対して5重量
%である。
EXAMPLES The present invention will be specifically described below with reference to examples. [Example 1] As a hydrogen storage alloy, the main alloy phase was C1.
ZrMn 0.6 V as an example of an alloy that is a 5 type Larvus phase
A 0.2 Ni 1.3 alloy is used. This was mechanically crushed to 38 μm or less, a 3% by weight aqueous solution of polyvinyl alcohol was added to form a paste, and the paste was then porosity 95%.
%, 0.8 mm thick foamed nickel plate is filled and pressed. This electrode is immersed in a known Watt's bath, 10 g / L of Co powder having a particle size of 5 μm or less is further added, and plating is performed while stirring. The electrode thus obtained is called electrode A. Further, this electrode was immersed in a potassium hydroxide aqueous solution at 100 ° C. for 1 hour, and was designated as an electrode B. As a comparative example, an electrode not plated is electrode C, and an electrode plated only with Ni is electrode D. The amount of plating is 5% by weight with respect to the weight of the electrode.

【0011】これらの電極を負極とし、対極に過剰の電
気容量を有する水酸化ニッケル電極を配し、電解液に比
重1.30の水酸化カリウム水溶液を用い、電解液が豊
富な条件下で水素吸蔵合金負極により容量が規制される
開放系で充放電を行った。充電は水素吸蔵合金1gあた
り100mAで5.5時間、放電は合金1gあたり50
mAで端子電圧が0.8Vまでとした。この結果を図1
に示す。電極Cは、充放電サイクル初期における放電容
量が低く、飽和放電容量に達するまでに4サイクル以上
を要し、飽和容量も0.335Ah/gである。また、
電極Dは、活性化が早くなり、飽和容量も0.350A
h/gに増大している。電極A、Bは、電極Dに比べて
さらに活性化が早くなり、飽和容量も0.36Ah/g
以上まで増加している。したがって本発明による電極
は、初期活性に優れ、合金の利用率が向上していること
がわかる。
These electrodes are used as negative electrodes, nickel hydroxide electrodes having an excess electric capacity are arranged on the counter electrodes, and an aqueous solution of potassium hydroxide having a specific gravity of 1.30 is used as an electrolytic solution. Charging and discharging were performed in an open system in which the capacity was regulated by the storage alloy negative electrode. Charging is 100 mA / g of hydrogen storage alloy for 5.5 hours, and discharging is 50 / g of alloy.
The terminal voltage was set to 0.8 V at mA. This result is shown in Figure 1.
Shown in. The electrode C has a low discharge capacity at the beginning of the charge / discharge cycle, requires 4 cycles or more to reach the saturated discharge capacity, and has a saturation capacity of 0.335 Ah / g. Also,
Electrode D is activated faster and has a saturation capacity of 0.350A.
It is increasing to h / g. Electrodes A and B are activated faster than electrode D and have a saturation capacity of 0.36 Ah / g
It has increased to above. Therefore, it can be seen that the electrode according to the present invention has an excellent initial activity and an improved utilization rate of the alloy.

【0012】次に、この電極を使用して密閉電池を構成
した結果について説明する。先の電極A、B、C、Dを
それぞれ幅3.9cm、長さ9.5cm、厚さ0.35
mmに調整し、正極、セパレータと組み合わせて渦巻き
状にしてAAサイズの電槽に収納する。なお、正極は、
公知の発泡式ニッケル電極で、幅3.9cm、長さ7.
8cmである。またセパレータは、親水性を付与したポ
リプロピレン不織布である。比重1.30の水酸化カリ
ウム水溶液に水酸化リチウムを30g/L溶解した電解
液を注液した後、封口して密閉形電池とする。この電池
は、正極容量規制で公称容量は1.2Ahである。電極
A、B、C、Dを用いた電池をそれぞれ電池a、b、
c、dとする。
Next, the results of constructing a sealed battery using this electrode will be described. The electrodes A, B, C and D are each 3.9 cm in width, 9.5 cm in length and 0.35 in thickness.
The thickness is adjusted to mm, combined with the positive electrode and the separator, and formed into a spiral shape and housed in an AA size battery case. The positive electrode is
Known foamed nickel electrode, width 3.9 cm, length 7.
It is 8 cm. The separator is a polypropylene non-woven fabric having hydrophilicity. An electrolyte solution in which 30 g / L of lithium hydroxide is dissolved in an aqueous potassium hydroxide solution having a specific gravity of 1.30 is poured and then sealed to obtain a sealed battery. This battery has a nominal capacity of 1.2 Ah according to the positive electrode capacity regulation. Batteries using the electrodes A, B, C, and D are batteries a, b, and
Let c and d.

【0013】これらの電池をそれぞれ10個ずつ作成
し、充放電サイクル試験によって評価した結果を説明す
る。20℃において、5時間率の定電流で容量の150
%充電し、同様に5時間率で1.0Vまで定電流放電す
る充放電を繰り返したところ、電池a、b、dの放電容
量は1サイクル目からほぼ1.2Ahであった。つまり
正極規制の電池になっていると考えられる。ところが電
池cは、放電容量は1サイクルで0.8Ahであり、2
サイクル目からほぼ1.2Ahの放電容量となった。こ
れは負極の活性化がメッキ処理によって早められたため
であると考えられる。これらの電池を充放電サイクルを
繰り返して十分に活性化した後、20℃において5時間
率で150%充電し、20℃または0℃において1時間
率で終止電圧1.0Vまで放電する条件で高率放電特性
を調べた。放電時の中間電圧と、20℃、5時間率放電
における放電容量に対する放電容量比を表1に示す。
The results of evaluating 10 by making 10 of each of these batteries and charging / discharging cycle test will be explained. At 20 ° C, the capacity is 150 at a constant current for 5 hours.
%, And the charging / discharging in which a constant current was similarly discharged to 1.0 V at a rate of 5 hours was repeated, and the discharge capacities of the batteries a, b, and d were about 1.2 Ah from the first cycle. In other words, it is considered that the battery is regulated by the positive electrode. However, the discharge capacity of the battery c was 0.8 Ah in one cycle, and
From the second cycle, the discharge capacity was about 1.2 Ah. It is considered that this is because the activation of the negative electrode was accelerated by the plating treatment. These batteries were repeatedly charged and discharged repeatedly and sufficiently activated, and then charged at 20 ° C. for 5 hours at a rate of 150% and at 20 ° C. or 0 ° C. for 1 hour at a final voltage of 1.0 V. The rate discharge characteristics were investigated. Table 1 shows the intermediate voltage at the time of discharge and the discharge capacity ratio to the discharge capacity at 20 ° C. for 5 hours.

【0014】[0014]

【表1】 [Table 1]

【0015】表1からわかるように電池a、bは高率放
電において優れた特性を示す。特に、放電電圧が高く、
メッキによって放電過電圧が減少していると考えられ
る。
As can be seen from Table 1, batteries a and b show excellent characteristics at high rate discharge. In particular, the discharge voltage is high,
It is considered that the discharge overvoltage was reduced by the plating.

【0016】[実施例2]水素吸蔵合金として、主たる
合金相がC15型ラーバス相である合金の一例としてZ
rMn0.6Cr0.20.2Ni1.15合金を用いる。まず、
電極作製について説明する。この合金を機械的に38μ
m以下に粉砕し、ポリエチレン粉末を3重量%加える。
この混合物をアルコールでペーストにし、このペ−スト
を多孔度95%、厚さ0.8mmの発泡状ニッケル板に
充填し、加圧して電極を得る。メッキ浴中に分散させる
水素吸蔵合金としてZrMn0.80.1Ni1.1合金を用
いる。この合金は、電極に用いた合金に比べて水素平衡
圧が低く、また、Mn量が多いためアルカリ溶液中に溶
出しやすい。これを粉砕して10μm以下の粉末を得
る。この粉末を5g/Lの割合で公知のワット浴に入
れ、攪拌しながら上記の電極にメッキを行う。こうして
得た電極を電極Eとする。また、電極Eを100℃の水
酸化カリウム溶液に1時間浸漬処理したものを電極Fと
する。比較例として、メッキを行わない電極を電極G、
Niをメッキした電極を電極Hとする。メッキ量は電極
の水素吸蔵合金重量に対して5重量%である。
[Example 2] As a hydrogen storage alloy, Z was used as an example of an alloy whose main alloy phase is a C15 type Larvus phase.
An rMn 0.6 Cr 0.2 V 0.2 Ni 1.15 alloy is used. First,
The electrode production will be described. This alloy is mechanically 38μ
Mill to m or less and add 3% by weight of polyethylene powder.
This mixture is made into a paste with alcohol, and this paste is filled into a foamed nickel plate having a porosity of 95% and a thickness of 0.8 mm and pressed to obtain an electrode. ZrMn 0.8 V 0.1 Ni 1.1 alloy is used as the hydrogen storage alloy dispersed in the plating bath. This alloy has a lower hydrogen equilibrium pressure than the alloy used for the electrode and has a large Mn content, so that it is easily eluted in an alkaline solution. This is pulverized to obtain a powder having a particle size of 10 μm or less. This powder is placed in a known Watt bath at a rate of 5 g / L, and the above electrodes are plated with stirring. The electrode thus obtained is referred to as an electrode E. Further, an electrode F is obtained by immersing the electrode E in a potassium hydroxide solution at 100 ° C. for 1 hour. As a comparative example, an electrode not plated is an electrode G,
An electrode plated with Ni is referred to as an electrode H. The amount of plating is 5% by weight with respect to the weight of the hydrogen storage alloy of the electrode.

【0017】これらの電極を負極とし、対極に過剰の電
気容量を有する水酸化ニッケル電極を配し、電解液に比
重1.30の水酸化カリウム水溶液を用い、電解液が豊
富な条件下で水素吸蔵合金負極により容量が規制される
開放系で充放電を行った。充電は水素吸蔵合金1gあた
り100mAで5.5時間、放電は合金1gあたり50
mAで端子電圧が0.8Vまでとした。この結果を図2
に示す。電極Gは、充放電サイクル初期における放電容
量が低く、飽和放電容量に達するまでに7サイクル以上
を要し、飽和容量も0.322Ah/gである。また、
電極Hは、活性化が早くなり、飽和容量も0.339A
h/gに増大している。電極E、Fは電極Hに比べてさ
らに活性化が早くなり、飽和容量も0.350Ah/g
程度まで増加している。特に、アルカリ溶液に浸漬処理
した電極Fは非常に早く活性化されている。
These electrodes are used as negative electrodes, nickel hydroxide electrodes having an excessive electric capacity are arranged on the counter electrodes, and an aqueous solution of potassium hydroxide having a specific gravity of 1.30 is used as an electrolytic solution. Charging and discharging were performed in an open system in which the capacity was regulated by the storage alloy negative electrode. Charging is 100 mA / g of hydrogen storage alloy for 5.5 hours, and discharging is 50 / g of alloy.
The terminal voltage was set to 0.8 V at mA. This result is shown in Figure 2.
Shown in. The electrode G has a low discharge capacity at the beginning of the charge / discharge cycle, requires 7 cycles or more to reach the saturated discharge capacity, and has a saturated capacity of 0.322 Ah / g. Also,
Electrode H is activated faster and has a saturation capacity of 0.339A.
It is increasing to h / g. Electrodes E and F are activated faster than electrode H and have a saturation capacity of 0.350 Ah / g.
It is increasing to the extent. In particular, the electrode F immersed in the alkaline solution is activated very quickly.

【0018】次に、これらの電極を使用して密閉電池を
構成した結果について説明する。先の電極E、F、G、
Hをそれぞれ幅3.9cm、長さ9.5cm、厚さ0.
35mmに調整し、正極、セパレータと組み合わせて渦
巻き状にしてAAサイズの電槽に収納する。なお、正極
は、公知の発泡式ニッケル電極で、幅3.9cm、長さ
7.8cmである。またセパレータは、親水性を付与し
たポリプロピレン不織布である。比重1.30の水酸化
カリウム水溶液に水酸化リチウムを30g/L溶解した
電解液を注液した後封口して密閉形電池とする。この電
池は、正極容量規制で公称容量は1.2Ahである。電
極E、F、G、Hを用いた電池をそれぞれ電池e、f、
g、hとする。
Next, the result of constructing a sealed battery using these electrodes will be described. The electrodes E, F, G,
Each H has a width of 3.9 cm, a length of 9.5 cm, and a thickness of 0.
It is adjusted to 35 mm, combined with a positive electrode and a separator to form a spiral shape, and is housed in an AA size battery case. The positive electrode is a known foaming nickel electrode, and has a width of 3.9 cm and a length of 7.8 cm. The separator is a polypropylene non-woven fabric having hydrophilicity. An electrolyte solution obtained by dissolving 30 g / L of lithium hydroxide in a potassium hydroxide aqueous solution having a specific gravity of 1.30 is poured and then sealed to obtain a sealed battery. This battery has a nominal capacity of 1.2 Ah according to the positive electrode capacity regulation. Batteries using the electrodes E, F, G, and H are batteries e, f, and
g and h.

【0019】これらの電池をそれぞれ10個ずつ作成
し、充放電サイクル試験によって評価した結果を説明す
る。20℃において5時間率の定電流で容量の150%
充電し、同様に5時間率で1.0Vまで定電流放電する
充放電を繰り返したところ、電池e、fは、放電容量は
1サイクル目からほぼ1.2Ahであった。つまり正極
規制の電池になっていると考えられる。ところが電池
g、hは、放電容量は1サイクルで1.2Ahに達せず
サイクルの増加と共に放電容量が増大し、正極規制にな
るまでに電池gは5サイクルを、電池hは3サイクルを
それぞれ必要とした。十分に充放電サイクルを繰り返し
た後、20℃において5時間率で150%充電し、20
℃または0℃において1時間率で終止電圧1.0Vまで
放電する条件で高率放電特性を調べた。放電時の中間電
圧と、20℃、5時間率放電における放電容量に対する
放電容量比を表2に示す。
The results of making 10 of each of these batteries and evaluating them by a charge / discharge cycle test will be described. 150% of capacity at a constant current of 5 hours at 20 ° C
When charging and discharging were repeated for 5 hours at a constant current of 1.0 V, the discharge capacities of the batteries e and f were about 1.2 Ah from the first cycle. In other words, it is considered that the battery is regulated by the positive electrode. However, the discharge capacities of the batteries g and h did not reach 1.2 Ah in one cycle, and the discharge capacities increased as the number of cycles increased, so that the battery g required 5 cycles and the battery h required 3 cycles before the positive regulation. And After sufficiently repeating the charge / discharge cycle, charge at 20 ° C. for 5 hours at a rate of 150%, and
The high rate discharge characteristics were examined under the condition of discharging at a final voltage of 1.0 V at a rate of 1 hour at 0 ° C or 0 ° C. Table 2 shows the intermediate voltage at the time of discharge and the discharge capacity ratio to the discharge capacity at 20 ° C., 5 hour rate discharge.

【0020】[0020]

【表2】 [Table 2]

【0021】表2からわかるように電池e、fは高率放
電において優れた特性を示す。特に、放電電圧が高く、
メッキによって放電過電圧が減少していると考えられ
る。次に、急速充電特性について検討した。20℃にお
いて1時間率で電池容量の200%まで充電を行い、そ
のときの電池内圧を測定した。その結果、電池gは内圧
が20気圧を越えて漏液し、電池hも10気圧まで上昇
したが、電池e、fはそれぞれ3.4気圧、2.7気圧
に抑えられた。さらに、サイクル寿命について検討し
た。充電は1/2時間率で120%、放電は1/2時間
率で1.0Vまでの定電流充放電により放電容量の変化
を調べた。その結果を図3に示す。本発明による電池
e、fは500サイクルを越えても初期の放電容量の9
0%以上の容量を維持しており、サイクル特性にも優れ
ていることがわかる。
As can be seen from Table 2, the batteries e and f show excellent characteristics at high rate discharge. In particular, the discharge voltage is high,
It is considered that the discharge overvoltage was reduced by the plating. Next, the rapid charge characteristics were examined. The battery was charged at 20 ° C. at an hourly rate to 200% of the battery capacity, and the battery internal pressure at that time was measured. As a result, the internal pressure of the battery g exceeded 20 atm and the liquid leaked, and the battery h rose to 10 atm, but the batteries e and f were suppressed to 3.4 atm and 2.7 atm, respectively. Furthermore, the cycle life was examined. The change of the discharge capacity was examined by charging and discharging at a constant current of up to 1.0 V at a half hour rate of 120% and at a half hour rate of discharge. The result is shown in FIG. The batteries e and f according to the present invention have an initial discharge capacity of 9 even after 500 cycles.
It can be seen that the capacity is maintained at 0% or more and the cycle characteristics are excellent.

【0022】[0022]

【発明の効果】以上のように本発明によれば、従来から
の問題であった合金の初期活性、利用率を向上させ、充
放電効率も改善することが可能となり、高性能な水素吸
蔵合金電極を提供できる。
As described above, according to the present invention, it has become possible to improve the initial activity and utilization rate of the alloy, which has been a problem in the past, and to improve the charge / discharge efficiency. An electrode can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び従来例の水素吸蔵合金電極
の開放系における放電特性を比較した図である。
FIG. 1 is a diagram comparing discharge characteristics in an open system of hydrogen storage alloy electrodes of an example of the present invention and a conventional example.

【図2】本発明の実施例及び従来例の水素吸蔵合金電極
の開放系における放電特性を比較した図である。
FIG. 2 is a diagram comparing discharge characteristics in an open system of hydrogen storage alloy electrodes of an example of the present invention and a conventional example.

【図3】本発明の実施例及び従来例の水素吸蔵合金電極
を用いた密閉電池のサイクル特性を比較した図である。
FIG. 3 is a diagram comparing the cycle characteristics of sealed batteries using hydrogen storage alloy electrodes of an example of the present invention and a conventional example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前川 奈緒子 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoko Maekawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素を電気化学的に吸蔵・放出する水素
吸蔵合金粉末からなる電極の表面に、Co粉末を含むN
iがメッキされていることを特徴とする水素吸蔵合金電
極。
1. An N containing Co powder on the surface of an electrode made of a hydrogen storage alloy powder capable of electrochemically storing and releasing hydrogen.
A hydrogen storage alloy electrode, wherein i is plated.
【請求項2】 水素を電気化学的に吸蔵・放出する水素
吸蔵合金粉末からなる電極の表面に、水素吸蔵合金粉末
を含むNiがメッキされていることを特徴とする水素吸
蔵合金電極。
2. A hydrogen storage alloy electrode, characterized in that Ni containing hydrogen storage alloy powder is plated on the surface of the electrode made of hydrogen storage alloy powder which stores and releases hydrogen electrochemically.
【請求項3】 水素を電気化学的に吸蔵・放出する水素
吸蔵合金粉末からなる電極の表面に、Co粉末または水
素吸蔵合金粉末を分散したニッケルメッキ液中において
電解メッキする工程と、次にこの電極を高温のアルカリ
水溶液中に浸漬する工程を有することを特徴とする水素
吸蔵合金電極の製造法。
3. A step of electrolytic plating in a nickel plating solution in which Co powder or hydrogen storage alloy powder is dispersed on the surface of an electrode made of hydrogen storage alloy powder that electrochemically stores and releases hydrogen, and then this step A method for producing a hydrogen storage alloy electrode, comprising a step of immersing the electrode in a high temperature alkaline aqueous solution.
JP5230385A 1993-09-16 1993-09-16 Hydrogen storage alloy electrode and manufacture thereof Pending JPH0785866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5230385A JPH0785866A (en) 1993-09-16 1993-09-16 Hydrogen storage alloy electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5230385A JPH0785866A (en) 1993-09-16 1993-09-16 Hydrogen storage alloy electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0785866A true JPH0785866A (en) 1995-03-31

Family

ID=16907049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5230385A Pending JPH0785866A (en) 1993-09-16 1993-09-16 Hydrogen storage alloy electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0785866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017415A1 (en) * 2000-08-22 2002-02-28 Matsushita Electric Industrial Co., Ltd. Alkali storage battery and hydrogen absorbing alloy electrode for use therein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017415A1 (en) * 2000-08-22 2002-02-28 Matsushita Electric Industrial Co., Ltd. Alkali storage battery and hydrogen absorbing alloy electrode for use therein
US7247409B2 (en) 2000-08-22 2007-07-24 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery and hydrogen storage alloy electrode used therefor

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP3200822B2 (en) Nickel-metal hydride storage battery
JP2579072B2 (en) Hydrogen storage alloy electrode
JPH0785866A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3387314B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2926965B2 (en) Hydrogen storage alloy
JPS60119079A (en) Hydrogen absorption electrode
JP2586752B2 (en) Hydrogen storage alloy electrode
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH1040950A (en) Alkaline secondary battery
JP3092262B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JP2553775B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2553780B2 (en) Hydrogen storage alloy electrode
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3370111B2 (en) Hydrogen storage alloy electrode
JPH0528989A (en) Hydrogen storage alloy electrode
JPH06124704A (en) Manufacture of hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH0668875A (en) Manufacture of hydrogen storage alloy electrode for battery