JPH0620717A - Manufacture of sealed nickel-cadmium storage battery - Google Patents

Manufacture of sealed nickel-cadmium storage battery

Info

Publication number
JPH0620717A
JPH0620717A JP4177976A JP17797692A JPH0620717A JP H0620717 A JPH0620717 A JP H0620717A JP 4177976 A JP4177976 A JP 4177976A JP 17797692 A JP17797692 A JP 17797692A JP H0620717 A JPH0620717 A JP H0620717A
Authority
JP
Japan
Prior art keywords
cadmium
negative electrode
electrode
nickel
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4177976A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Yoichiro Tsuji
庸一郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4177976A priority Critical patent/JPH0620717A/en
Publication of JPH0620717A publication Critical patent/JPH0620717A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To simplify manufacturing processes, and provide a long-life sealed Ni-Cd storage battery by applying water treatment to a negative electrode obtained of CdO to be a negative electrode, and combining it with a positive electrode mainly comprising Ni(OH)6 to which Co is added. CONSTITUTION:A negative electrode obtained of CdO is treated in hot water of a specified temperature to be used as a negative electrode. Using Ni(OH)6 to which Co is added for a positive electrode, a battery is composed. Otherwise, Cd(OH)2 is added to CdO to form a negative electrode, and it is combined with a positive electrode mainly comprising Ni(OH)6 including Co. At this time, addition quantity of Cd(OH)2 is set to be within a specified weight%, and paste is applied to a core material to form the Cd electrode. Co is used as carbonyl cobalt, and the Cd is press moulded. In this constitution, formation of the Cd negative electrode solely can be omitted, and a manufacturing processes can be simplified. An average voltage is high, and a battery life is long when charge and discharge are repeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形ニッケル−カドミ
ウム蓄電池の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sealed nickel-cadmium storage battery.

【0002】[0002]

【従来の技術】各種の電源として使われるアルカリ蓄電
池は高信頼性が期待でき、小形軽量化も可能などの理由
で小型電池は各種ポータブル機器用に、大型は産業とし
て広く使われてきた。
2. Description of the Related Art Alkaline storage batteries used as various power sources have been widely used for various portable devices and large-sized industries for various reasons because they can be expected to have high reliability and can be made compact and lightweight.

【0003】このアルカリ蓄電池において、負極として
は亜鉛、鉄、水素なども対象となっているが現在実用の
主流はカドミウムである。一方正極としては一部空気極
や酸化銀極なども取り上げられているがほとんどの場合
ニッケル極である。ポケット式から焼結式に代わって特
性が向上し、さらに密閉化が可能になるとともに用途も
広がった。
In this alkaline storage battery, zinc, iron, hydrogen, etc. are targeted for the negative electrode, but cadmium is currently the mainstream in practical use. On the other hand, as the positive electrode, an air electrode, a silver oxide electrode, and the like are partially taken up, but in most cases, a nickel electrode. The characteristics have been improved from the pocket type to the sintered type, and it has become possible to further seal and expand the applications.

【0004】この密閉化はいわゆるノイマン方式が一般
的であり、これを達成するために通常負極はニッケル極
より高容量とし、ニッケル極と同量の容量の他に充電保
証用の未充電活物質と放電保証用の充電状態の活物質と
を余分にもたせている。未化成状態で負極を製造すれば
未充電であるから充電保証用になり、放電保証用の充電
状態の活物質を形成することが問題であり負極の種類で
異なる種々の提案がされている。
This sealing is generally based on the so-called Neumann method. To achieve this, the negative electrode usually has a higher capacity than the nickel electrode, and in addition to the same capacity as the nickel electrode, an uncharged active material for guaranteeing charging is also used. And an active material in a charged state for discharge guarantee are additionally provided. If the negative electrode is manufactured in a non-formed state, it is uncharged so that it can be used for guaranteeing charging, and it is problematic to form an active material in a charged state for discharging guarantee, and various proposals for different types of negative electrodes have been made.

【0005】放電保証用の充電状態の負極活物質の形成
法としてカドミウム極では大部分の活物質出発材料に酸
化物を用い一部金属粉末を添加して対応する。つまり酸
化物は未化成活物質に相当し金属が化成したと同じであ
る。しかし金属カドミウムは高価であり、しかも表面が
酸化しているとそのままでは放電保証用になり難い点が
問題である。そこで酸化カドミウムから得られたカドミ
ウム極をあらかじめ単独で部分充電を行なう方法がよく
用いられる。この方法では充電の操作とアルカリ除去の
ために水洗が必要である。
As a method of forming a negative electrode active material in a charged state for guaranteeing discharge, most of the cadmium electrode is prepared by using oxide as a starting material of active material and adding a part of metal powder. In other words, the oxide corresponds to the non-activated material and is the same as the metal formed. However, the problem is that metal cadmium is expensive, and if the surface is oxidized, it is difficult to guarantee the discharge as it is. Therefore, a method in which a cadmium electrode obtained from cadmium oxide is partially charged in advance is often used. In this method, washing with water is required for charging operation and alkali removal.

【0006】そこで1つの解決策としてニッケル極に使
われるコバルトとして金属コバルトを用い充電初期にこ
の金属コバルトが酸化されその間はニッケル極は充電さ
れず負極は充電され、しかも酸化を受けたコバルトはそ
れ自身が放電には寄与しない現象を利用する方式が提案
された。この方式は特別な処理や材料を必要としないの
で優れてはいる。
[0006] Therefore, as one solution, metallic cobalt is used as the cobalt used in the nickel electrode, and the metallic cobalt is oxidized at the initial stage of charging, the nickel electrode is not charged during that period, and the negative electrode is charged. A method that utilizes a phenomenon that does not contribute to discharge has been proposed. This method is excellent because it requires no special processing or materials.

【0007】[0007]

【発明が解決しようとする課題】しかしながら前記従来
技術のうち部分化成による方法は、製造工程が複雑であ
り、コバルトを利用する方法は、平均電圧が低く、その
うえ充電−放電を繰り返した時の電池寿命が短いという
問題があった。
However, the method of partial chemical formation among the above-mentioned prior arts has a complicated manufacturing process, and the method of using cobalt has a low average voltage, and further, a battery when charging and discharging are repeated. There was a problem that the life was short.

【0008】本発明は、前記従来技術の問題を解決する
ため、製造工程が簡易化でき、平均電圧が高く、そのう
え充電−放電を繰り返した時の電池寿命が長い密閉形ニ
ッケル−カドミウム蓄電池の製造法を提供することを目
的とする。
In order to solve the above-mentioned problems of the prior art, the present invention provides a sealed nickel-cadmium storage battery which can be simplified in manufacturing process, has a high average voltage, and has a long battery life when repeatedly charged and discharged. The purpose is to provide the law.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するた
め、本発明の密閉形ニッケル−カドミウム蓄電池の第1
番目の製造法は、カドミウム負極と、ニッケル正極とか
ら少なくとも構成される密閉形ニッケル−カドミウム蓄
電池を製造する方法であって、前記負極として酸化カド
ミウムから得られた負極を水処理して用い、前記正極と
してコバルトを加えた水酸化ニッケルを主成分とする正
極を用い、前記負極と正極を組み合わせ電池を構成して
化成することを特徴とする。
In order to achieve the above object, the first aspect of the sealed nickel-cadmium storage battery of the present invention is provided.
The second production method is a method of producing a sealed nickel-cadmium storage battery composed of at least a cadmium negative electrode and a nickel positive electrode, wherein the negative electrode obtained from cadmium oxide is used as the negative electrode after water treatment, It is characterized in that a positive electrode whose main component is nickel hydroxide to which cobalt is added is used as a positive electrode, and the negative electrode and the positive electrode are combined to form a battery.

【0010】前記構成においては、水が50〜100℃
の温水であることが好ましい。次に本発明の密閉形ニッ
ケル−カドミウム蓄電池の第2番目の製造法は、酸化カ
ドミウムに水酸化カドミウムを添加して得られた負極極
とコバルトを含む水酸化ニッケルを主成分とする正極と
組み合わせ電池を構成して化成することを特徴とする。
In the above structure, water is 50 to 100 ° C.
It is preferable that it is warm water. Next, the second manufacturing method of the sealed nickel-cadmium storage battery of the present invention is to combine a negative electrode obtained by adding cadmium hydroxide to cadmium oxide and a positive electrode containing nickel hydroxide containing cobalt as a main component. It is characterized in that a battery is constructed and formed.

【0011】前記構成においては、水酸化カドミウムの
添加量が10〜30重量%の範囲であることが好まし
い。また前記構成においては、ぺーストを芯材に塗着し
て得られたカドミウム極であることが好ましい。
In the above construction, the amount of cadmium hydroxide added is preferably in the range of 10 to 30% by weight. Further, in the above structure, a cadmium electrode obtained by applying a paste to a core material is preferable.

【0012】また前記構成においては、コバルトがカー
ボニルコバルトであることが好ましい。また前記構成に
おいては、カドミウム極を加圧する工程を含むことが好
ましい。
Further, in the above structure, it is preferable that the cobalt is carbonyl cobalt. Further, in the above configuration, it is preferable to include a step of pressurizing the cadmium electrode.

【0013】[0013]

【作用】前記した本発明の第1番目の製造方法の構成に
よれば、カドミウム負極単独の化成を省略できるので、
製造工程が簡易化できる。また、平均電圧が高く、その
うえ充電−放電を繰り返した時の電池寿命を長くするこ
とができる。
According to the structure of the first manufacturing method of the present invention described above, since the formation of the cadmium negative electrode alone can be omitted,
The manufacturing process can be simplified. In addition, the average voltage is high, and moreover, the battery life can be extended when charging and discharging are repeated.

【0014】前記構成においては、負極の水処理時の水
の温度に限定はないが、時間の短縮のためには50〜1
00℃の温水がよい。次に本発明の第2番目の製造方法
の構成によれば、水による処理の目的は酸化カドミウム
の一部が水酸化カドミウムに変化するので、あらかじめ
酸化カドミウムに水酸化カドミウムを添加しておくこと
が有効な手段である。この場合水酸化カドミウムの添加
量が10〜30重量%程度とし、加えすぎると水酸化カ
ドミウムは嵩比重が小さいので充填密度が小さくなり、
化成での充電効率も低下する。また水酸化カドミウムに
なると体積が膨張により大きくなるので電槽への挿入を
考慮して組み立て前にカドミウム極を加圧してもよい。
In the above construction, the temperature of the water during the water treatment of the negative electrode is not limited, but it is 50 to 1 in order to shorten the time.
Hot water at 00 ° C is good. Next, according to the configuration of the second production method of the present invention, since the purpose of the treatment with water is to change part of the cadmium oxide to cadmium hydroxide, it is necessary to add cadmium hydroxide to the cadmium oxide in advance. Is an effective means. In this case, the amount of cadmium hydroxide added is set to about 10 to 30% by weight, and if too much is added, the bulk density of cadmium hydroxide is small, and the packing density becomes small.
Charging efficiency during chemical conversion is also reduced. Further, since the volume of cadmium hydroxide increases due to expansion, the cadmium electrode may be pressurized before assembly in consideration of insertion into a battery case.

【0015】なおニッケル極に添加するコバルト粉末に
限定はないが微粉末が得られ純度も比較的高い点でカー
ボニルコバルトがよい。なお金属以外のコバルトの化合
物としては有害な陰イオンを持っていない点で酸化コバ
ルト粉末がよく、水酸化コバルトでもよい。
The cobalt powder to be added to the nickel electrode is not limited, but carbonyl cobalt is preferable because fine powder is obtained and the purity is relatively high. As a compound of cobalt other than metal, cobalt oxide powder is preferable because it does not have harmful anions, and cobalt hydroxide may be used.

【0016】[0016]

【実施例】以下実施例を用いて本発明を具体的に説明す
る。本発明においては、水による処理により放電保障用
のカドミウムが形成できることから、酸化カドミウム単
独より一部水酸化カドミウムを形成することで、充電の
受け入れ性が良くなり、ニッケル極の充電初期にコバル
トがニッケル極より低い電位で酸化され、その間はニッ
ケル極は充電されず負極は充電されるものと思われる。
EXAMPLES The present invention will be specifically described with reference to the following examples. In the present invention, since it is possible to form cadmium for discharge assurance by treatment with water, by partially forming cadmium hydroxide than cadmium oxide alone, the acceptability of charging is improved, and cobalt is formed at the initial charging stage of the nickel electrode. It is considered that the nickel electrode is oxidized at a potential lower than that of the nickel electrode, and during that period, the nickel electrode is not charged and the negative electrode is charged.

【0017】なお同じ水酸化カドミウムを存在させるの
にも水処理の方が水酸化カドミウムを添加するよりもカ
ドミウム極をあらかじめ単独で部分充電した場合と同じ
放電特性を示すことから水酸化カドミウムは酸化カドミ
ウム粒子の表面に形成した方がよいことも推定される。
Even when the same cadmium hydroxide is present, the water treatment shows the same discharge characteristics as the case where the cadmium electrode is preliminarily partially charged rather than the case where cadmium hydroxide is added. Therefore, cadmium hydroxide is oxidized. It is also presumed that it is better to form on the surface of the cadmium particles.

【0018】実施例1 市販の酸化カドミウム粉末にポリビニルアルコールの5
(重量)%のエチレングリコール溶液を樹脂が酸化カド
ミウム100部に対して2部になるようにしてペースト
を作成する。このペーストを厚さ0.17mm、孔径
1.8mm、開口度53%の鉄製でニッケルメッキを施
したパンチングメタル板に塗着し0.6mmのスリット
を通して平滑化した。その後170℃で5時間乾燥し
た。得られた電極はローラプレス機を通して厚さ0.5
5mmに調整した。このようにして得られたペースト式
カドミウム極をSubC形用として幅33mm、長さ2
30mmに裁断し、リード板をスポット溶接により取り
付けた。これを50℃の温水に2時間浸漬した。
Example 1 Commercially available cadmium oxide powder was mixed with 5 parts of polyvinyl alcohol.
A (wt)% ethylene glycol solution is made into a paste such that the resin is 2 parts with respect to 100 parts of cadmium oxide. This paste was applied to an iron-made nickel-plated punching metal plate having a thickness of 0.17 mm, a hole diameter of 1.8 mm and an opening degree of 53%, and smoothed through a slit of 0.6 mm. Then, it was dried at 170 ° C. for 5 hours. The obtained electrode was passed through a roller press to a thickness of 0.5.
It was adjusted to 5 mm. The paste-type cadmium electrode thus obtained was used for SubC type with a width of 33 mm and a length of 2 mm.
It was cut to 30 mm and the lead plate was attached by spot welding. This was immersed in warm water at 50 ° C. for 2 hours.

【0019】一方市販の水酸化ニッケル粉末87部、コ
バルト粉末7部を混合後これにカルボキシメチルセルロ
ースの2(重量)%の水溶液用いてペーストを得た。こ
のペーストを厚さ1.5mm、孔径200μm、多孔度
95%の発泡状ニッケル基板に充填塗着し、120℃で
1時間乾燥した。得られた電極は加圧して厚さ0.80
mmに調整した。このようにして得られた発泡式ニッケ
ル極をSubC形用として幅33mm、長さ160mm
に裁断し、リード板をスポット溶接により取り付けた。
このニッケル極の実際の放電容量は0.2Cで2.8A
hである。
On the other hand, 87 parts of a commercially available nickel hydroxide powder and 7 parts of cobalt powder were mixed and then a 2 (wt)% aqueous solution of carboxymethyl cellulose was used to obtain a paste. This paste was filled and applied on a foamed nickel substrate having a thickness of 1.5 mm, a pore diameter of 200 μm and a porosity of 95%, and dried at 120 ° C. for 1 hour. The resulting electrode is pressed to a thickness of 0.80
It was adjusted to mm. The foamed nickel electrode obtained in this way is used for Sub C type with a width of 33 mm and a length of 160 mm.
Then, the lead plate was attached by spot welding.
The actual discharge capacity of this nickel electrode is 2.8A at 0.2C.
h.

【0020】ポリアミド不織布セパレータを用いて密閉
形ニッケルーカドミウム蓄電池を構成した。比重1.2
5の苛性カリ水溶液に25g/リットルの水酸化リチウ
ムを溶解した電解液を注入した。電池はSubC型であ
る。この電池をAとする。
A sealed nickel-cadmium storage battery was constructed using a polyamide nonwoven fabric separator. Specific gravity 1.2
An electrolytic solution in which 25 g / liter of lithium hydroxide was dissolved was injected into the caustic potash aqueous solution of No. 5. The battery is a SubC type. This battery is designated as A.

【0021】比較のためにカドミウム極の水処理を行な
わず他は電池Aと同じ工程で得られた電池をBとして加
えた。また、カドミウム極をあらかじめ30重量%の苛
性カリ水溶液中で1.5Aで20分間充電後水洗、乾燥
しあらかじめ放電保証用容量を確保し、これを用いて他
は電池Aと同じ工程で得られた電池をCとして加えた。
For comparison, a battery obtained by the same process as the battery A except that the water treatment of the cadmium electrode was not performed was added as B. Further, the cadmium electrode was previously charged in a 30 wt% caustic potash aqueous solution at 1.5 A for 20 minutes, washed with water, and dried to secure a discharge guarantee capacity in advance. Batteries were added as C.

【0022】第1回目の化成として各電池を周囲温度2
5℃で0.3Aで初充電を行なった。0.9V付近での
平坦部がいずれも約1時間ありその後電位の上昇が始ま
った。充電は13時間行なった。その後放電は0.6A
で行なった。その結果AとCでは2.79Ahを示した
が、Bでは2.45Ahであった。また平均電圧がAと
Cでは1.25VであったがBでは1.19Vであっ
た。
As the first formation, each battery was set at an ambient temperature of 2
Initial charging was performed at 5 ° C. and 0.3 A. The flat parts around 0.9 V were all about 1 hour, and the potential started to rise after that. Charging was carried out for 13 hours. Then discharge is 0.6A
I did it in. As a result, A and C showed 2.79 Ah, but B had 2.45 Ah. The average voltage was 1.25 V for A and C, but 1.19 V for B.

【0023】以後は0.4Aで150%充電−1Aで
0.8Vまでの放電の化成を2回繰り返して化成を終了
した。化成終了後放電容量と平均電圧を調べた。まず、
各電池の1C(2.8A)放電を行ったところAとCで
は2.75Ahを示したが、Bでは2.26Ahであっ
た。また平均電圧がAとCでは1.20VであったがB
では1.08Vであった。最後に寿命を調べるために
0.7Aで125%充電−1Aで0.8Vまでの放電を
繰り返したところ600サイクルでAとCは初期容量の
95%以上であったが、Bでは62%に低下した。
Thereafter, formation of 150% charge at 0.4 A and discharge to 0.8 V at -1 A was repeated twice to complete formation. After the formation was completed, the discharge capacity and the average voltage were examined. First,
When 1 C (2.8 A) discharge of each battery was performed, A and C showed 2.75 Ah, but B was 2.26 Ah. The average voltage was 1.20V for A and C, but B
Was 1.08V. Finally, in order to check the life, when 125A was charged at 0.7A and discharged up to 0.8V at 1A, A and C were 95% or more of the initial capacity in 600 cycles, but B reached 62%. Fell.

【0024】実施例2 市販の酸化カドミウム粉末に15重量%水酸化カドミウ
ムを添加後以下実施例1と同様にしてポリビニルアルコ
ールの5(重量)%のエチレングリコール溶液を樹脂が
酸化カドミウムと水酸化カドミウム合計量に対して2.
2部になるようにしてペーストを作成する。このペース
トを厚さ0.17mm、孔径1.8mm、開口度53%
の鉄製でニッケルメッキを施したパンチングメタル板に
塗着し0.6mmのスリットを通して平滑化した。その
後170℃で5時間乾燥した。得られた電極はローラプ
レス機を通して厚さ0.55mmに調整した。このよう
にして得られたペースト式カドミウム極をSubC形用
として幅33mm、長さ230mmに裁断し、リード板
をスポット溶接により取り付けた。
Example 2 After adding 15% by weight of cadmium hydroxide to a commercially available cadmium oxide powder, the same procedure as in Example 1 was repeated except that a 5% (by weight) solution of polyvinyl alcohol in ethylene glycol was used as the resin for cadmium oxide and cadmium hydroxide. 2. Total amount
Make the paste into two parts. This paste has a thickness of 0.17 mm, a hole diameter of 1.8 mm, and an opening degree of 53%.
It was applied to a punching metal plate made of iron and plated with nickel and smoothed through a slit of 0.6 mm. Then, it was dried at 170 ° C. for 5 hours. The obtained electrode was adjusted to have a thickness of 0.55 mm through a roller press. The paste type cadmium electrode thus obtained was cut into a width C of 33 mm and a length of 230 mm for Sub C type, and a lead plate was attached by spot welding.

【0025】実施例1と同じように電池を構成し、化成
および特性評価も実施例1と同様に行った結果、ほぼA
と同じ性能を示した。以上説明した通り、本発明の実施
例によれば、酸化カドミウムから得られたカドミウム極
を50〜100℃の温水で処理するか酸化カドミウムに
水酸化カドミウムを添加して得られたカドミウム極のい
ずれかをコバルトを加えた水酸化ニッケルを主とするニ
ッケル極と組み合わせて電池を構成することにより工程
が簡易化できて性能の低下がない。
A battery was constructed in the same manner as in Example 1, and the formation and characteristic evaluation were performed in the same manner as in Example 1. As a result, almost A
It showed the same performance as. As described above, according to the embodiment of the present invention, either a cadmium electrode obtained by treating a cadmium electrode obtained from cadmium oxide with warm water at 50 to 100 ° C. or by adding cadmium hydroxide to cadmium oxide is used. By constructing a battery by combining it with a nickel electrode mainly containing nickel hydroxide to which cobalt is added, the process can be simplified and there is no deterioration in performance.

【0026】[0026]

【発明の効果】以上説明した通り、本発明の製造方法に
よれば、カドミウム負極単独の化成を省略できるので、
製造工程が簡易化できる。また、平均電圧の低下がな
く、そのうえ充電−放電を繰り返した時の電池寿命を長
くすることができる。
As described above, according to the production method of the present invention, the formation of the cadmium negative electrode alone can be omitted.
The manufacturing process can be simplified. Further, the average voltage does not decrease, and moreover, the battery life can be extended when charging and discharging are repeated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 庸一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoichiro Tsuji 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 カドミウム負極と、ニッケル正極とから
少なくとも構成される密閉形ニッケル−カドミウム蓄電
池を製造する方法であって、前記負極として酸化カドミ
ウムから得られた負極を水処理して用い、前記正極とし
てコバルトを加えた水酸化ニッケルを主成分とする正極
を用い、前記負極と正極を組み合わせ電池を構成して化
成することを特徴とする密閉形ニッケル−カドミウム蓄
電池の製造法。
1. A method for producing a sealed nickel-cadmium storage battery comprising at least a cadmium negative electrode and a nickel positive electrode, wherein the negative electrode obtained from cadmium oxide is treated with water as the negative electrode, and the positive electrode is used. A method for producing a sealed nickel-cadmium storage battery, characterized in that a positive electrode containing nickel hydroxide to which cobalt is added as a main component is used, and the negative electrode and the positive electrode are combined to form a battery.
【請求項2】 水が50〜100℃の温水である請求項
1記載の密閉形ニッケル−カドミウム蓄電池の製造法。
2. The method for producing a sealed nickel-cadmium storage battery according to claim 1, wherein the water is hot water at 50 to 100 ° C.
【請求項3】酸化カドミウムに水酸化カドミウムを添加
して得られた負極とコバルトを含む水酸化ニッケルを主
成分とする正極と組み合わせ電池を構成して化成するこ
とを特徴とする密閉形ニッケル−カドミウム蓄電池の製
造法。
3. A sealed nickel-containing battery comprising a negative electrode obtained by adding cadmium hydroxide to cadmium oxide and a positive electrode containing cobalt hydroxide containing nickel hydroxide as a main component to form a battery. Cadmium battery manufacturing method.
【請求項4】水酸化カドミウムの添加量が10〜30重
量%の範囲である請求項3記載の密閉形ニッケル−カド
ミウム蓄電池の製造法。
4. The method for producing a sealed nickel-cadmium storage battery according to claim 3, wherein the amount of cadmium hydroxide added is in the range of 10 to 30% by weight.
【請求項5】ぺーストを芯材に塗着して得られたカドミ
ウム極である請求項1または3記載の密閉形ニッケル−
カドミウム蓄電池の製造法。
5. The closed nickel-type according to claim 1, which is a cadmium electrode obtained by applying a paste to a core material.
Cadmium battery manufacturing method.
【請求項6】コバルトがカーボニルコバルトである請求
項1または3記載の密閉形ニッケル−カドミウム蓄電池
の製造法。
6. The method for producing a sealed nickel-cadmium storage battery according to claim 1, wherein the cobalt is carbonyl cobalt.
【請求項7】カドミウム極を加圧する工程を含む請求項
1または3記載の密閉形ニッケル−カドミウム蓄電池の
製造法。
7. The method for producing a sealed nickel-cadmium storage battery according to claim 1, which comprises a step of pressurizing a cadmium electrode.
JP4177976A 1992-07-06 1992-07-06 Manufacture of sealed nickel-cadmium storage battery Pending JPH0620717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4177976A JPH0620717A (en) 1992-07-06 1992-07-06 Manufacture of sealed nickel-cadmium storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4177976A JPH0620717A (en) 1992-07-06 1992-07-06 Manufacture of sealed nickel-cadmium storage battery

Publications (1)

Publication Number Publication Date
JPH0620717A true JPH0620717A (en) 1994-01-28

Family

ID=16040369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4177976A Pending JPH0620717A (en) 1992-07-06 1992-07-06 Manufacture of sealed nickel-cadmium storage battery

Country Status (1)

Country Link
JP (1) JPH0620717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180269B2 (en) * 2008-11-14 2012-05-15 Lexmark International, Inc. Resistive heating hot roll fuser
CN102700042A (en) * 2012-06-13 2012-10-03 林启鹏 Line production device for compression molding of large plastic sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8180269B2 (en) * 2008-11-14 2012-05-15 Lexmark International, Inc. Resistive heating hot roll fuser
CN102700042A (en) * 2012-06-13 2012-10-03 林启鹏 Line production device for compression molding of large plastic sheet

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JP5119577B2 (en) Nickel metal hydride battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JPH0620717A (en) Manufacture of sealed nickel-cadmium storage battery
US7364818B2 (en) Nickel positive electrode plate and alkaline storage battery
JPH05151990A (en) Chemical formation method for sealed type nickel-hydrogen storage battery
JP2923946B2 (en) Sealed alkaline secondary battery and method of manufacturing the same
JPS62285360A (en) Negative electrode for alkaline storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPH07134979A (en) Battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JPH09199119A (en) Alkaline storage battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof
JP3187882B2 (en) Method for manufacturing alkaline storage battery and method for manufacturing nickel plate for alkaline storage battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3094618B2 (en) Manufacturing method of hydrogen storage alloy electrode for alkaline storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPH05151965A (en) Manufacture of nickel electrode for alkaline storage battery
JPS6097560A (en) Sealed type alkaline storage battery
JP3267156B2 (en) Nickel hydride rechargeable battery
JP2003031216A (en) Method of manufacturing nickel positive electrode and method of manufacuring alkaline storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery