JPH11307116A - Cadmium negative electrode for alkaline storage battery - Google Patents

Cadmium negative electrode for alkaline storage battery

Info

Publication number
JPH11307116A
JPH11307116A JP10113564A JP11356498A JPH11307116A JP H11307116 A JPH11307116 A JP H11307116A JP 10113564 A JP10113564 A JP 10113564A JP 11356498 A JP11356498 A JP 11356498A JP H11307116 A JPH11307116 A JP H11307116A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
cadmium
battery
cadmium negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10113564A
Other languages
Japanese (ja)
Inventor
Masataka Shinyashiki
昌孝 新屋敷
Masahiro Hosoda
正弘 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10113564A priority Critical patent/JPH11307116A/en
Publication of JPH11307116A publication Critical patent/JPH11307116A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen gas absorbing performance improving effect by virtue of carbon coating while restraining harmful influence of the carbon coating. SOLUTION: A carbon aqueous solution in which 1.00 pts.wt. of polytetrafluoroethylene(PTFE) as a binder and 3.00 pts.wt. of acetylene black as carbon powder are dissolved is applied to the surface of an outermost peripheral part 11 to become the outermost periphery when a base negative electrode 10 and a positive electrode is spirally wound with a separator in between. If carbon in an amount of 0.005-0.6 mg/cm<2> is stuck on both surfaces of the outermost peripheral part 11 by the coating of the carbon aqueous solution, an oxygen gas absorbing performance improving effect can be provided while restraining harmful influence of the carbon coating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はニッケル−カドミウ
ム蓄電池に用いるカドミウム負極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cadmium negative electrode used for a nickel-cadmium storage battery.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム蓄電池に用
いるカドミウム負極には、ニッケル粉末を焼結して形成
した多孔性焼結基板に酸化カドミウムあるいは水酸化カ
ドミウムよりなる負極活物質を充填した焼結式負極と、
酸化カドミウムあるいは水酸化カドミウムよりなる負極
活物質と合成繊維、糊料等とを混練してペースト状とし
てパンチングメタル等の導電性芯体(基板)に塗着した
非焼結式負極とがある。
2. Description of the Related Art Conventionally, a cadmium negative electrode used for a nickel-cadmium storage battery has a sintering method in which a porous sintered substrate formed by sintering nickel powder is filled with a negative electrode active material made of cadmium oxide or cadmium hydroxide. A negative electrode,
There is a non-sintered negative electrode in which a negative electrode active material made of cadmium oxide or cadmium hydroxide is kneaded with a synthetic fiber, a paste, or the like, and applied as a paste to a conductive core (substrate) such as a punched metal.

【0003】近年、アルカリ蓄電池の高容量化、大電流
充放電特性、長寿命化などの要求が高まり、これらの要
求に応えるために種々の改良が行われた。例えば、高容
量化については、活物質の充填密度を増加させること、
あるいは正・負極を分離するセパレータを薄型化するこ
とにより、その目的が達成されるようになった。
In recent years, demands for higher capacity, higher current charge / discharge characteristics, and longer life of alkaline storage batteries have been increased, and various improvements have been made to meet these demands. For example, for higher capacity, increasing the packing density of the active material,
Alternatively, the purpose has been achieved by reducing the thickness of the separator for separating the positive and negative electrodes.

【0004】しかしながら、高容量化のために高密度に
活物質を充填した場合、電極内で電解液を保持するため
の空間(残空間)が活物質に占有されて、電極内で保持
すべき電解液量が減少することとなる。このため、電解
液と接触する活物質量が減少して、負極での充放電反応
を円滑に進行させることが困難となり、充放電サイクル
の進行に伴い、放電できない金属カドミウムが蓄積され
るようになる。
However, when the active material is filled at a high density to increase the capacity, a space (remaining space) for holding the electrolytic solution in the electrode is occupied by the active material and must be held in the electrode. The amount of electrolyte will be reduced. For this reason, the amount of active material in contact with the electrolyte decreases, making it difficult for the charge-discharge reaction at the negative electrode to proceed smoothly.As the charge-discharge cycle progresses, metal cadmium that cannot be discharged is accumulated. Become.

【0005】この結果、酸素ガス吸収性能が低下した
り、あるいは活物質利用率が低下して充放電特性が悪化
する等の問題を生じるため、高容量化と大電流充放電特
性の両方の要求を満足させることは非常に困難なことで
ある。
[0005] As a result, problems such as deterioration of oxygen gas absorption performance or deterioration of charge / discharge characteristics due to reduction of the active material utilization rate occur. Therefore, both requirements for high capacity and large current charge / discharge characteristics are required. Is very difficult to satisfy.

【0006】そこで、カドミウム負極の酸素ガス吸収性
能を向上させる方法として、カドミウム負極の全表面に
カーボンを塗着してカーボンによる導電層を設けること
が特公平2−50585号公報において提案された。こ
の特公平2−50585号公報において提案された方法
にあっては、カドミウム負極表面の導電性が向上するた
めに、電気的ガス吸収反応を促進することが可能となっ
て、電池内部のガス圧力の上昇を防止して、電池の寿命
を長くすることができるようになる。
Therefore, as a method for improving the oxygen gas absorption performance of a cadmium negative electrode, Japanese Patent Publication No. 2-50585 proposes to provide a conductive layer of carbon by coating carbon on the entire surface of the cadmium negative electrode. In the method proposed in Japanese Patent Publication No. 50585/1990, the conductivity of the cadmium negative electrode surface is improved, so that the electric gas absorption reaction can be promoted, and the gas pressure inside the battery is reduced. , And the life of the battery can be prolonged.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た特公平2−50585号公報において提案された方法
にあっては、カーボンをカドミウム負極の全表面に塗着
するため、高率(ハイレート)で充・放電を行うと、カ
ーボン被膜がカドミウム負極表面での化学反応を阻害し
て過電圧を生じる。このため、充電電圧が上昇したり、
放電電圧が低下してしまうという恐れが生じる。
However, in the method proposed in Japanese Patent Publication No. 50585/1990, since carbon is applied to the entire surface of the cadmium negative electrode, it is charged at a high rate (high rate). -When the discharge is performed, the carbon film inhibits a chemical reaction on the surface of the cadmium negative electrode and generates an overvoltage. For this reason, the charging voltage increases,
There is a risk that the discharge voltage will drop.

【0008】また、カーボンを多量に塗着すると、カー
ボンが充電時に発生した酸素と反応して炭酸根となり、
アルカリ電解液中に溶け込んで電解液の濃度の低下を招
来して、結局は電池容量が低下するという問題も生じ
た。逆に、このような弊害をさけるために、微量のカー
ボンをカドミウム負極の全表面に塗着するようにする
と、カドミウム負極表面におけるカーボン濃度が低くな
るため、導電性向上効果が薄れて酸素ガスの吸収反応が
促進されないという問題を生じる。
When a large amount of carbon is applied, the carbon reacts with oxygen generated at the time of charging to form a carbonate group,
There is also a problem that the concentration of the electrolytic solution is reduced by dissolving in the alkaline electrolytic solution, and eventually the battery capacity is reduced. Conversely, if a small amount of carbon is applied to the entire surface of the cadmium negative electrode in order to avoid such adverse effects, the carbon concentration on the cadmium negative electrode surface will be low, so that the effect of improving the conductivity will be weakened and oxygen gas This causes a problem that the absorption reaction is not promoted.

【0009】[0009]

【課題を解決するための手段およびその作用・効果】そ
こで、本発明は上記課題を解決するためになされたもの
であって、カーボン塗着の弊害を抑制しつつ、カーボン
塗着による酸素ガス吸収性能向上効果が得られるように
することをその目的とするものである。このため、本発
明のアルカリ蓄電池用カドミウム負極は、カドミウム負
極を渦巻状に巻回された渦巻状電極体の最外周部に位置
するように配置するとともに、カドミウム負極の最外周
部に位置する部分はカーボンが塗着されているようにし
ている。
SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to suppress oxygen gas absorption by carbon coating while suppressing the adverse effects of carbon coating. It is an object of the present invention to obtain a performance improving effect. For this reason, the cadmium negative electrode for an alkaline storage battery of the present invention is arranged such that the cadmium negative electrode is located at the outermost peripheral portion of the spirally wound spiral electrode body, and a portion located at the outermost peripheral portion of the cadmium negative electrode. Has carbon coated.

【0010】カドミウム負極を渦巻状に卷回された渦巻
状電極体の最外周部に配置すると、この最外周部のカド
ミウム負極は片面のみが正極と対向することとなる。こ
のため、充電時にこの最外周部のカドミウム負極と対向
する正極とが反応する活物質量(反応量)は内周部のカ
ドミウム負極に比較して半分程度に減少するため、充電
反応により生成される金属カドミウム量も減少する。そ
こで、本発明においては、渦巻状電極体の最外周部に配
置されたカドミウム負極のみにカーボンを塗着するよう
にしている。
When the cadmium negative electrode is disposed at the outermost periphery of the spirally wound spiral electrode body, only one surface of the cadmium negative electrode at the outermost periphery is opposed to the positive electrode. Therefore, during charging, the amount of active material (reaction amount) at which the cadmium negative electrode at the outermost periphery reacts with the positive electrode opposite to the cadmium negative electrode at the outermost periphery is reduced to about half as compared with the cadmium negative electrode at the inner peripheral portion. Metal cadmium content is also reduced. Therefore, in the present invention, carbon is applied only to the cadmium negative electrode disposed at the outermost periphery of the spiral electrode body.

【0011】このように、カドミウム負極の最外周部に
配置された部分のみにカーボンを塗着するようにする
と、この部分の導電性が向上して充電反応が促進されて
金属カドミウムの生成量が増大する。このため、この部
分の金属カドミウムと酸素ガスとの接触が容易となっ
て、酸素ガスの吸収性能が向上する。つまり、カーボン
をカドミウム負極の全体に塗着するのではなく、渦巻状
に巻き取られた際の最外周部に位置する部分のみに塗着
するので、内周部のカドミウム負極にはカーボン膜がな
いため、高率(ハイレート)で充・放電を行った際にカ
ーボン膜が反応を阻害することがなくなり、過電圧が生
じるということも起こらない。なお、内周部のカドミウ
ム負極にカーボンを塗着しなくても、この部分は両面で
正極と対向しているため、ガス吸収に必要な十分な金属
カドミウムが生成されて、ガス吸収機能が確保できる。
As described above, if carbon is applied only to the portion disposed on the outermost peripheral portion of the cadmium negative electrode, the conductivity of this portion is improved, the charging reaction is promoted, and the amount of generated metal cadmium is reduced. Increase. Therefore, contact between the metal cadmium and oxygen gas in this portion is facilitated, and the oxygen gas absorption performance is improved. In other words, instead of applying carbon to the entire cadmium negative electrode, the carbon is applied only to the portion located at the outermost peripheral portion when it is spirally wound, so that the carbon film is applied to the cadmium negative electrode at the inner peripheral portion. Therefore, when charging / discharging is performed at a high rate (high rate), the carbon film does not hinder the reaction, and overvoltage does not occur. Even if carbon is not applied to the cadmium negative electrode on the inner periphery, this part is opposed to the positive electrode on both sides, so sufficient metal cadmium necessary for gas absorption is generated, and the gas absorption function is secured. it can.

【0012】そして、カドミウム負極の最外周部に配置
された部分のみにカーボンを塗着する場合であっても、
カーボンの塗着量が多すぎると、このカーボンが充電時
に発生した酸素と反応して炭酸根となり、アルカリ電解
液中に溶け込んで電解液の濃度の低下を招来して、結局
は電池容量の低下を招くことがあるが、カーボンの塗着
量を単位面積(cm2)当たり0.005〜0.6mg
とすることにより、電池容量の低下を防止できるように
なる。このように少量のカーボンであっても、カドミウ
ム負極の渦巻状に巻回された渦巻状電極体の最外周部に
配置された部分のみに塗着することで、カーボン濃度の
低下を抑えて、導電性を維持し、酸素ガス吸収反応を促
進することができるようになる。
[0012] Even when carbon is applied only to the outermost portion of the cadmium negative electrode,
If the amount of carbon applied is too large, this carbon reacts with the oxygen generated during charging to form a carbonate group, which dissolves in the alkaline electrolyte to cause a decrease in the concentration of the electrolyte, and eventually lowers the battery capacity. However, the amount of carbon applied is 0.005 to 0.6 mg per unit area (cm 2 ).
By doing so, it is possible to prevent a decrease in battery capacity. Even with such a small amount of carbon, by applying only to the portion arranged at the outermost peripheral portion of the spirally wound spiral electrode body of the cadmium negative electrode, a reduction in carbon concentration is suppressed, The conductivity can be maintained and the oxygen gas absorption reaction can be promoted.

【0013】[0013]

【発明の実施の形態】ついで、本発明の実施の形態を以
下の順序で説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in the following order.

【0014】1.カドミウム負極の作製 まず、パンチングメタルからなる極板芯体の表面にニッ
ケル焼結多孔体(多孔度80%)を形成した後、化学含
浸法により所定量のカドミウム活物質をニッケル焼結多
孔体内に充填する。即ち、ニッケル焼結多孔体を硝酸カ
ドミウムに含浸した後、アルカリ処理を行って、水酸化
カドミウムを生成させるという工程を数回繰り返すこと
によって、所定量のカドミウム活物質(水酸化カドミウ
ムを主体とする負極活物質)をニッケル焼結多孔体内に
充填する。ついで、この活物質を充填した電極をアルカ
リ水溶液(例えば、水酸化カリウム水溶液(KOH))
中に配置して、充放電を行うことにより化成した後、水
洗、乾燥してベース負極10を作成する。
1. Preparation of Cadmium Negative Electrode First, after forming a nickel sintered porous body (porosity 80%) on the surface of an electrode core made of punched metal, a predetermined amount of a cadmium active material was introduced into the nickel sintered porous body by a chemical impregnation method. Fill. That is, by repeating the process of impregnating the nickel sintered porous body with cadmium nitrate and then performing alkali treatment to generate cadmium hydroxide several times, a predetermined amount of cadmium active material (mainly cadmium hydroxide) The negative electrode active material) is filled in the nickel sintered porous body. Next, the electrode filled with the active material is placed in an alkaline aqueous solution (for example, potassium hydroxide aqueous solution (KOH)).
After being placed inside and being formed by performing charge and discharge, it is washed with water and dried to form the base negative electrode 10.

【0015】実施例1 このベース負極10の図示しない正極とセパレータを介
して渦巻状に巻回したとき、渦巻状電極体の最外周とな
る最外周部11の表面に、水100重量部に対して結着
剤としてのポリテトラフルオロエチレン(PTFE)
1.00重量部とカーボン粉末としてのアセチレンブラ
ック(電気化学工業製:デンカブラック)3.00重量
部とを溶解させたカーボン水溶液を塗着する。このカー
ボン水溶液の塗着により、最外周部11の両面には単位
面積当たり0.03mg/cm2のカーボンが付着す
る。この後、乾燥して実施例1の負極aを作製する。
Embodiment 1 When the base negative electrode 10 is spirally wound through a positive electrode (not shown) and a separator, the surface of the outermost peripheral portion 11 which is the outermost periphery of the spiral electrode body is exposed to 100 parts by weight of water. Polytetrafluoroethylene (PTFE) as binder
An aqueous carbon solution in which 1.00 parts by weight and 3.00 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as carbon powder are applied is applied. By applying the carbon aqueous solution, 0.03 mg / cm 2 of carbon per unit area adheres to both surfaces of the outermost peripheral portion 11. Thereafter, drying is performed to produce the negative electrode a of Example 1.

【0016】比較例1 上述したベース負極10の全表面11,12に、水10
0重量部に対して結着剤としてのポリテトラフルオロエ
チレン(PTFE)1.00重量部を分散させた水溶液
を塗着する。このカーボンなしの負極を乾燥して比較例
1の負極bを作製する。
COMPARATIVE EXAMPLE 1 Water 10 was applied to all surfaces 11 and 12 of base anode 10 described above.
An aqueous solution in which 1.00 part by weight of polytetrafluoroethylene (PTFE) as a binder is dispersed with respect to 0 part by weight is applied. The negative electrode without carbon was dried to prepare a negative electrode b of Comparative Example 1.

【0017】比較例2 上述したベース負極10の全表面11,12に、水10
0重量部に対して結着剤としてのポリテトラフルオロエ
チレン(PTFE)1.00重量部とカーボン粉末とし
てのアセチレンブラック(電気化学工業製:デンカブラ
ック)3.00重量部とを溶解させたカーボン水溶液を
塗着する。このカーボン水溶液の塗着により、ベース負
極10の全両表面には単位面積当たり0.03mg/c
2のカーボンが付着する。この後、乾燥して比較例2
の負極cを作製する。
Comparative Example 2 Water 10 was applied to all surfaces 11 and 12 of base anode 10 described above.
Carbon in which 1.00 part by weight of polytetrafluoroethylene (PTFE) as a binder and 3.00 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Kogyo) are dissolved in 0 parts by weight. Apply the aqueous solution. By applying the carbon aqueous solution, 0.03 mg / c per unit area is applied to both surfaces of the base negative electrode 10.
carbon m 2 is attached. After that, it was dried to obtain Comparative Example 2.
To produce the negative electrode c.

【0018】比較例3 上述したベース負極10の図示しない正極とセパレータ
を介して渦巻状に巻回したときの内周となる内周部12
の表面に、水100重量部に対して結着剤としてのポリ
テトラフルオロエチレン(PTFE)1.00重量部と
カーボン粉末としてのアセチレンブラック(電気化学工
業製:デンカブラック)3.00重量部とを溶解させた
カーボン水溶液を塗着する。このカーボン水溶液の塗着
により、内周部12の両面には単位面積当たり0.03
mg/cm2のカーボンが付着する。この後、乾燥して
比較例3の負極dを作製する。
Comparative Example 3 An inner peripheral portion 12 serving as an inner periphery when the above-described base negative electrode 10 is spirally wound through a positive electrode (not shown) and a separator.
1.00 parts by weight of polytetrafluoroethylene (PTFE) as a binder and 3.00 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Kogyo Co.) as a carbon powder with respect to 100 parts by weight of water. Is applied with a carbon aqueous solution in which is dissolved. Due to the application of the carbon aqueous solution, 0.03 per unit area
mg / cm 2 of carbon adheres. Thereafter, drying is performed to produce a negative electrode d of Comparative Example 3.

【0019】4.密閉型ニッケル−カドミウム蓄電池の
作製 以上のようにして作製したa,b,c,dの4種類のカ
ドミウム負極に部分充電により所定量の予備充電(プリ
チャージ)を施し、こうしてプリチャージを施したカド
ミウム負極と焼結式ニッケル正極板とをナイロン不織布
製のセパレータを介して対向するように卷回して4種類
の渦巻状電極体とし、これらの4種類の渦巻状電極体を
それぞれ外装缶内に挿入した後、30重量%の水酸化カ
リウム水溶液(KOH)を注液し、密閉して、電池A
(実施例1)、電池B(比較例1)、電池C(比較例
2)、電池D(比較例3)の4種類のニッケル−カドミ
ウム蓄電池(公称容量が1700mAhのもの)を作製
した。
4. Production of Sealed Nickel-Cadmium Storage Battery A predetermined amount of preliminary charge (precharge) was given to the four kinds of cadmium negative electrodes a, b, c, and d produced as described above by partial charge, and thus precharge was given. A cadmium negative electrode and a sintered nickel positive electrode plate are wound so as to face each other with a nylon nonwoven fabric separator interposed therebetween to form four kinds of spiral electrode bodies, and these four kinds of spiral electrode bodies are respectively placed in an outer can. After the insertion, a 30% by weight aqueous solution of potassium hydroxide (KOH) was injected and sealed.
Four types of nickel-cadmium storage batteries (with a nominal capacity of 1700 mAh) of (Example 1), Battery B (Comparative Example 1), Battery C (Comparative Example 2), and Battery D (Comparative Example 3) were produced.

【0020】5.内圧上昇試験 ついで、上述したようにして作製したA,B,C,Dの
4種類のニッケル−カドミウム蓄電池を用いて、室温
(25℃)で9Aの電流で充電を行い、ピーク電圧を越
えた後、10mVだけ電圧が低下した時点で電圧をカッ
ト(−デルタV方式)し、ピーク電圧時点での電池の内
圧を測定すると、下記の表1に示すような結果となっ
た。
[5] Internal Pressure Rise Test Next, using the four types of nickel-cadmium storage batteries A, B, C, and D prepared as described above, charging was performed at room temperature (25 ° C.) at a current of 9 A, and the peak voltage was exceeded. Thereafter, when the voltage was reduced by 10 mV, the voltage was cut (-delta V method), and the internal pressure of the battery at the peak voltage was measured. The result was as shown in Table 1 below.

【0021】[0021]

【表1】 [Table 1]

【0022】上記表1より明らかなように、電池B(比
較例1)のようにカーボンを塗着していないカドミウム
負極を用いた電池にあっては電池内圧が非常に高いが、
電池A(実施例1)、電池C(比較例2)、電池D(比
較例3)のようにカーボンを塗着したカドミウム負極を
用いた電池にあっては、電池内圧が減少する。ただし、
電池D(比較例3)はガス吸収に必要な十分な金属カド
ミウムが生成する内周部12のみにカーボンを塗着して
いるため、内圧上昇の減少効果も僅かであることが分か
る。
As is clear from Table 1, in the battery using the cadmium negative electrode not coated with carbon, such as the battery B (Comparative Example 1), the internal pressure of the battery is very high.
In a battery using a cadmium negative electrode coated with carbon, such as Battery A (Example 1), Battery C (Comparative Example 2), and Battery D (Comparative Example 3), the internal pressure of the battery decreases. However,
In the battery D (Comparative Example 3), since only the inner peripheral portion 12 where sufficient metal cadmium necessary for gas absorption is generated is coated with carbon, the effect of reducing the increase in internal pressure is small.

【0023】一方、電池A(実施例1)のように渦巻状
電極体とした場合に最外周となる最外周部11のみにカ
ーボンを塗着したカドミウム負極を用いた電池にあって
は、正極と片側のみが対向している最外周部11の導電
性が向上するために、ガス吸収に必要な十分な金属カド
ミウムが生成されて、カドミウム負極全体にカーボンを
塗着した電池C(比較例2)とほぼ同等の内圧上昇の減
少効果が得られることが分かる。
On the other hand, in the battery using a cadmium negative electrode in which carbon is applied only to the outermost peripheral portion 11 which is the outermost periphery when the spiral electrode body is used as in the battery A (Example 1), the positive electrode In order to improve the conductivity of the outermost peripheral portion 11 where only one side is opposed to the other, a sufficient amount of metal cadmium necessary for gas absorption is generated, and a battery C in which carbon is coated on the entire cadmium negative electrode (Comparative Example 2) It can be seen that the effect of reducing the increase in the internal pressure, which is almost the same as that of (1) is obtained.

【0024】6.サイクル試験 ついで、上述したようにして作製したA,B,C,Dの
4種類のニッケル−カドミウム蓄電池を用いて、室温
(25℃)で9Aの電流で充電を行い、ピーク電圧を越
えた後、10mVだけ電圧が低下した時点で電圧をカッ
ト(−デルタV方式)し、1時間充電を休止した後、1
5Aの電流で電池電圧が0.8Vになるまで放電を行
う。その後、1時間放電を休止した後、再び上記と同様
な条件で充電を行うというサイクル試験を行うと、図2
に示すような結果となった。なお、図2は充放電サイク
ル数に対する電池容量を示している。
6. Cycle Test Next, using the four types of nickel-cadmium storage batteries A, B, C, and D prepared as described above, charging was performed at room temperature (25 ° C.) at a current of 9 A, and after exceeding the peak voltage. When the voltage drops by 10 mV, the voltage is cut (-Delta V method), and after charging is suspended for one hour, 1
Discharge is performed at a current of 5 A until the battery voltage becomes 0.8 V. Thereafter, after performing a cycle test in which the discharge was suspended for 1 hour and then charging was performed again under the same conditions as above, FIG.
The result was as shown in the figure. FIG. 2 shows the battery capacity with respect to the number of charge / discharge cycles.

【0025】図2より明らかなように、電池B(比較例
1)、電池C(比較例2)、電池D(比較例3)は電池
容量が劣化していることが分かる。これは電池B(比較
例1)はカーボンを塗着していないカドミウム負極を用
いたことにより、ガス吸収性能が悪いことに起因して電
池内圧上昇が生じて、安全弁が作動したことに伴い、電
池内部の電解液が電池外に放出されて電池容量の低下が
生じたものと考えられる。
As is clear from FIG. 2, the battery capacity of the battery B (Comparative Example 1), the battery C (Comparative Example 2), and the battery D (Comparative Example 3) are deteriorated. This is because the battery B (Comparative Example 1) uses a cadmium negative electrode to which carbon was not applied, and the internal pressure of the battery increased due to poor gas absorption performance, and the safety valve was activated. It is considered that the electrolytic solution inside the battery was discharged outside the battery and the battery capacity was reduced.

【0026】また、カドミウム負極全体に高濃度のカー
ボンを塗着した電池C(比較例2)およびカドミウム負
極の渦巻状電極体の内周部12に高濃度のカーボンを塗
着した電池D(比較例3)にあっては、充電時に発生し
た酸素ガスがカーボンと反応して炭酸根となり、この炭
酸根がアルカリ電解液中に溶け込んで電解液濃度の低下
を招来して電池容量が劣化したと考えられる。
A battery C (Comparative Example 2) in which high-concentration carbon was coated on the entire cadmium negative electrode and a battery D (Comparative Example) in which high-concentration carbon was coated on the inner peripheral portion 12 of the spiral electrode body of the cadmium negative electrode In Example 3), oxygen gas generated at the time of charging reacts with carbon to form a carbonate, and this carbonate dissolves in the alkaline electrolyte to cause a decrease in the concentration of the electrolyte, resulting in deterioration of the battery capacity. Conceivable.

【0027】一方、電池A(実施例1)は充放電サイク
ルによる電池容量の劣化がないことが分かる。これは、
電池A(実施例1)のように渦巻状電極体とした場合に
最外周になる最外周部11にカーボンを塗着したカドミ
ウム負極を用いると、カドミウム負極全体としてのカー
ボンの塗着量が減少するため、充電時に発生した酸素ガ
スとカーボンとの反応が少なくなって、炭酸根の生成量
も少なくて容量が劣化しないと考えられる。
On the other hand, it can be seen that the battery A (Example 1) has no deterioration in battery capacity due to the charge / discharge cycle. this is,
When a cadmium negative electrode in which carbon is applied to the outermost peripheral portion 11 which is the outermost periphery when a spiral electrode body is used as in the battery A (Example 1), the amount of carbon applied as the entire cadmium negative electrode decreases. Therefore, it is considered that the reaction between oxygen gas and carbon generated at the time of charging is reduced, and the amount of carbonate groups generated is small, so that the capacity is not deteriorated.

【0028】7.カーボン塗着量の検討 実施例2 上述したベース負極10の図示しない正極とセパレータ
を介して渦巻状に巻回したとき、渦巻状電極体の最外周
となる最外周部11の表面に、水100重量部に対して
結着剤としてのポリテトラフルオロエチレン(PTF
E)1.00重量部とカーボン粉末としてのアセチレン
ブラック(電気化学工業製:デンカブラック)0.3重
量部とを溶解させたカーボン水溶液を塗着する。このカ
ーボン水溶液の塗着により、最外周部11の両面には単
位面積当たり0.003mg/cm2のカーボンが付着
する。この後、乾燥して実施例2の負極eを作製する。
7. Example 2 Examination of carbon coating amount Example 2 When water is spirally wound through a positive electrode (not shown) of the above-described base negative electrode 10 and a separator, water 100 is applied to the surface of outermost peripheral portion 11 which is the outermost periphery of the spiral electrode body. Polytetrafluoroethylene (PTF) as a binder for parts by weight
E) An aqueous carbon solution in which 1.00 part by weight and 0.3 part by weight of acetylene black as carbon powder (manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black) is dissolved is applied. Due to the application of the carbon aqueous solution, 0.003 mg / cm 2 of carbon per unit area adheres to both surfaces of the outermost peripheral portion 11. Thereafter, drying is performed to produce the negative electrode e of Example 2.

【0029】実施例3 上述したベース負極10の図示しない正極とセパレータ
を介して渦巻状に巻回したとき、渦巻状電極体の最外周
となる最外周部11の両表面に、水100重量部に対し
て結着剤としてのポリテトラフルオロエチレン(PTF
E)1.00重量部とカーボン粉末としてのアセチレン
ブラック(電気化学工業製:デンカブラック)0.5重
量部とを溶解させたカーボン水溶液を塗着する。このカ
ーボン水溶液の塗着により、最外周部11の両面には単
位面積当たり0.005mg/cm2のカーボンが付着
する。この後、乾燥して実施例3の負極fを作製する。
Example 3 When the above-described base negative electrode 10 is spirally wound with a positive electrode (not shown) and a separator, both surfaces of the outermost peripheral portion 11 which is the outermost periphery of the spiral electrode body are provided with 100 parts by weight of water. Against polytetrafluoroethylene (PTF) as a binder
E) An aqueous carbon solution in which 1.00 part by weight and 0.5 part by weight of acetylene black as a carbon powder (manufactured by Denki Kagaku Kogyo Co., Ltd .: Denka Black) is dissolved is applied. Due to the application of the aqueous carbon solution, 0.005 mg / cm 2 of carbon per unit area adheres to both surfaces of the outermost peripheral portion 11. Thereafter, drying is performed to produce the negative electrode f of Example 3.

【0030】実施例4 上述したベース負極10の図示しない正極とセパレータ
を介して渦巻状に巻回したとき、渦巻状電極体の最外周
となる最外周部11の両表面に、水100重量部に対し
て結着剤としてのポリテトラフルオロエチレン(PTF
E)1.00重量部とカーボン粉末としてのアセチレン
ブラック(電気化学工業製:デンカブラック)60重量
部とを溶解させたカーボン水溶液を塗着する。このカー
ボン水溶液の塗着により、最外周部11の両面には単位
面積当たり0.6mg/cm2のカーボンが付着する。
この後、乾燥して実施例4の負極gを作製する。
Embodiment 4 When the above-mentioned base negative electrode 10 is spirally wound with a positive electrode (not shown) and a separator, both surfaces of an outermost peripheral portion 11 which is the outermost periphery of the spiral electrode body are provided with 100 parts by weight of water. Against polytetrafluoroethylene (PTF) as a binder
E) A carbon aqueous solution in which 1.00 parts by weight and 60 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Kogyo Co., Ltd.) as a carbon powder is applied is applied. Due to the application of the aqueous carbon solution, 0.6 mg / cm 2 of carbon per unit area adheres to both surfaces of the outermost peripheral portion 11.
Thereafter, drying is performed to produce the negative electrode g of Example 4.

【0031】実施例5 上述したベース負極10の図示しない正極とセパレータ
を介して渦巻状に巻回したとき、渦巻状電極体の最外周
となる最外周部11の両表面に、水100重量部に対し
て結着剤としてのポリテトラフルオロエチレン(PTF
E)1.00重量部とカーボン粉末としてのアセチレン
ブラック(電気化学工業製:デンカブラック)100重
量部とを溶解させたカーボン水溶液を塗着する。このカ
ーボン水溶液の塗着により、最外周部11の両面には単
位面積当たり1mg/cm2のカーボンが付着する。こ
の後、乾燥して実施例5の負極hを作製する。
Embodiment 5 When the above-described base negative electrode 10 is spirally wound with a positive electrode (not shown) and a separator, both surfaces of the outermost peripheral portion 11 which is the outermost periphery of the spiral electrode body are provided with 100 parts by weight of water. Against polytetrafluoroethylene (PTF) as a binder
E) An aqueous carbon solution in which 1.00 part by weight and 100 parts by weight of acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) as carbon powder are applied is applied. By applying the aqueous carbon solution, 1 mg / cm 2 of carbon per unit area adheres to both surfaces of the outermost peripheral portion 11. Thereafter, drying is performed to produce the negative electrode h of Example 5.

【0032】ついで、上述のようにして作製したe,
f,g,hの4種類のカドミウム負極に部分充電により
所定量の予備充電(プリチャージ)を施し、こうしてプ
リチャージを施したカドミウム負極と焼結式ニッケル正
極板とをナイロン不織布製のセパレータを介して対向す
るように卷回して4種類の電極体とし、これらの4種類
の電極体をそれぞれ外装缶内に挿入した後、30重量%
の水酸化カリウム水溶液(KOH)を注液し、密閉し
て、電池E(実施例2)、電池F(実施例3)、電池G
(実施例4)、電池H(実施例5)の4種類のニッケル
−カドミウム蓄電池(公称容量が1700mAhのも
の)を作製した。
Then, e,
A predetermined amount of precharge (precharge) is performed by partially charging the four types of cadmium negative electrodes f, g, and h, and the thus precharged cadmium negative electrode and the sintered nickel positive plate are separated by a nylon nonwoven fabric separator. After being wound so as to face each other with the electrodes interposed therebetween, four types of electrode bodies were inserted into the outer can.
Aqueous potassium hydroxide solution (KOH) was injected and sealed, and batteries E (Example 2), F (Example 3), and G
(Example 4) Four types of nickel-cadmium storage batteries (having a nominal capacity of 1700 mAh) of a battery H (Example 5) were produced.

【0033】ついで、上述したようにして作製したE,
F,G,Hの4種類のニッケル−カドミウム蓄電池を用
いて、室温(25℃)で9Aの電流で充電を行い、ピー
ク電圧を越えた後、10mVだけ電圧が低下した時点で
電圧をカット(−デルタV方式)し、ピーク電圧時点で
の電池の内圧を測定すると、下記の表2に示すような結
果となった。なお、表2においては、前述した電池A
(実施例1)も併せて示している。
Next, E,
Using four types of nickel-cadmium storage batteries of F, G, and H, charging was performed at room temperature (25 ° C.) with a current of 9 A, and after the peak voltage was exceeded, the voltage was cut when the voltage dropped by 10 mV ( Then, when the internal pressure of the battery at the peak voltage was measured, the results shown in Table 2 below were obtained. In Table 2, the above-mentioned battery A
(Example 1) is also shown.

【0034】[0034]

【表2】 [Table 2]

【0035】上記表2より明らかなように、電池A(実
施例1)、電池F(実施例3)、電池G(実施例4)お
よび電池H(実施例5)は電池内圧が減少しているが、
電池E(実施例2)は電池内圧が増大していることが分
かる。これは、電池A(実施例1:カーボンの付着量が
0.03mg/cm2のもの)、電池F(実施例3:カ
ーボンの付着量が0.005mg/cm2のもの)、電
池G(実施例4:カーボンの付着量が0.6mg/cm
2のもの)および電池H(実施例5:カーボンの付着量
が1mg/cm2のもの)のように、渦巻状電極体とし
た場合に最外周部11に塗着したカーボン量が多いとカ
ーボン濃度も高いため、ガス吸収に必要な十分な金属カ
ドミウムが生成すると考えられる。
As is clear from Table 2, the internal pressure of the battery A (Example 1), the battery F (Example 3), the battery G (Example 4) and the battery H (Example 5) decrease. But
It can be seen that the internal pressure of the battery E (Example 2) has increased. This is because battery A (Example 1: carbon deposition amount of 0.03 mg / cm 2 ), battery F (Example 3: carbon deposition amount of 0.005 mg / cm 2 ), battery G ( Example 4: Carbon attachment amount of 0.6 mg / cm
2 ) and the battery H (Example 5: the amount of deposited carbon is 1 mg / cm 2 ), and when a spiral electrode body is used, if the amount of carbon applied to the outermost peripheral portion 11 is large, carbon Since the concentration is high, it is considered that sufficient metal cadmium necessary for gas absorption is generated.

【0036】一方、電池E(実施例2:カーボンの付着
量が0.003mg/cm2のもの)のように、渦巻状
電極体とした場合に最外周部11に塗着したカーボン量
が少ないとカーボン濃度も低いため、ガス吸収に必要な
十分な金属カドミウムが生成しないためと考えられる。
On the other hand, in the case of a spiral electrode body such as a battery E (Embodiment 2: a carbon deposition amount of 0.003 mg / cm 2 ), the amount of carbon applied to the outermost peripheral portion 11 is small. It is considered that, because the carbon concentration is low, sufficient cadmium metal required for gas absorption is not generated.

【0037】ついで、上述したようにして作製したE,
F,G,Hの4種類のニッケル−カドミウム蓄電池を用
いて、室温(25℃)で9Aの電流で充電を行い、ピー
ク電圧を越えた後、10mVだけ電圧が低下した時点で
電圧をカット(−デルタV方式)し、1時間充電を休止
した後、15Aの電流で電池電圧が0.8Vになるまで
放電を行う。その後、1時間放電を休止した後、再び上
記と同様な条件で充電を行うというサイクル試験を行う
と、図3に示すような結果となった。なお、図3におい
ては、充放電サイクル数に対する電池容量を示してお
り、前述した電池A(実施例1)も併せて示している。
Next, E,
Using four types of nickel-cadmium storage batteries of F, G, and H, charging was performed at room temperature (25 ° C.) with a current of 9 A, and after the peak voltage was exceeded, the voltage was cut when the voltage dropped by 10 mV ( -Delta V method), and after suspending charging for 1 hour, discharging is performed at a current of 15 A until the battery voltage becomes 0.8 V. Thereafter, after performing a cycle test in which the discharge was suspended for 1 hour and then charging was performed again under the same conditions as above, the results shown in FIG. 3 were obtained. FIG. 3 shows the battery capacity with respect to the number of charge / discharge cycles, and also shows the battery A (Example 1) described above.

【0038】図3より明らかなように、電池A(実施例
1:カーボンの付着量が0.03mg/cm2のも
の)、電池F(実施例3:カーボンの付着量が0.00
5mg/cm2のもの)、電池G(実施例4:カーボン
の付着量が0.6mg/cm2のもの)は充放電サイク
ルにおける容量の劣化が認められないことが分かる。こ
れはカドミウム負極全体としてのカーボンの塗着量が減
少するためた、容量が劣化しないと考えられる。
As is clear from FIG. 3, battery A (Example 1: the amount of carbon adhered was 0.03 mg / cm 2 ), battery F (Example 3: the amount of carbon adhered was 0.00)
5 mg / cm 2 ) and Battery G (Example 4: one having an attached carbon amount of 0.6 mg / cm 2 ) show no deterioration in capacity in the charge / discharge cycle. This is thought to be because the amount of carbon applied as the entire cadmium negative electrode was reduced, and the capacity was not degraded.

【0039】一方、電池E(実施例2:カーボンの付着
量が0.005mg/cm2のもの)および電池H(実
施例5:カーボンの付着量が1mg/cm2のもの)は
充放電サイクルにおける容量の劣化が認められる。これ
は、電池Eにあっては、カーボンの付着量が0.005
mg/cm2と少ないために、ガス吸収性能が低下する
ことに起因して電池内圧上昇が生じて、安全弁が作動し
たことに伴い、電池内部の電解液が電池外に放出されて
電池容量の低下が生じたものと考えられる。また、電池
Hにあっては、カーボンの付着量が1mg/cm2と多
いために、充電時に発生した酸素ガスがカーボンと反応
して炭酸根となり、この炭酸根がアルカリ電解液中に溶
け込んで電解液濃度の低下を招来して電池容量が低下し
たと考えられる。
On the other hand, the battery E (Example 2: one having an adhesion amount of carbon of 0.005 mg / cm 2 ) and the battery H (Example 5: one having an adhesion amount of carbon of 1 mg / cm 2 ) , The deterioration of the capacity is observed. This is because in the case of the battery E, the carbon deposition amount was 0.005.
mg / cm 2 , the internal pressure of the battery rises due to the decrease in gas absorption performance, and when the safety valve is activated, the electrolyte inside the battery is discharged out of the battery and the battery capacity is reduced. It is probable that the decline occurred. In the battery H, since the amount of deposited carbon is as large as 1 mg / cm 2 , oxygen gas generated at the time of charging reacts with carbon to form carbonate, and this carbonate dissolves in the alkaline electrolyte. It is considered that the electrolyte capacity was lowered and the battery capacity was lowered.

【0040】このことから、カーボンの付着量を0.0
05〜0.6mg/cm2の範囲にすれば、カーボンの
塗着による弊害を抑制しつつ、大電流充放電時の酸素ガ
ス吸収性能を向上させることが可能となることが分か
る。
From this, it was found that the amount of carbon deposited was 0.0
It is understood that when the content is in the range of 0.05 to 0.6 mg / cm 2 , it is possible to improve the oxygen gas absorption performance at the time of large-current charge and discharge while suppressing the adverse effects of carbon coating.

【0041】上述したように、本発明のアルカリ蓄電池
用カドミウム負極にあっては、渦巻状電極体の最外周部
に配置されたカドミウム負極のみにカーボンを塗着する
ようにしている。このように、カドミウム負極の最外周
部に配置された部分のみにカーボンを塗着するようにし
ているので、この部分の導電性が向上して充電反応が促
進されて金属カドミウムの生成量が増大する。
As described above, in the cadmium negative electrode for an alkaline storage battery according to the present invention, carbon is applied only to the cadmium negative electrode arranged at the outermost peripheral portion of the spiral electrode body. As described above, since carbon is applied only to the portion arranged at the outermost peripheral portion of the cadmium negative electrode, the conductivity of this portion is improved, the charging reaction is promoted, and the amount of metal cadmium generated is increased. I do.

【0042】このため、この部分の金属カドミウムと酸
素ガスとの接触が容易となって、酸素ガスの吸収性能が
向上する。つまり、カーボンをカドミウム負極の全体に
塗着するのではなく、渦巻状に巻き取られた際の最外周
部に位置する部分のみに塗着しているので、内周部のカ
ドミウム負極にはカーボン膜がないため、高率(ハイレ
ート)で充・放電を行った際にカーボン膜が反応を阻害
することがなくなり、過電圧が生じるということも起こ
らない。この結果、酸素ガス吸収性能が向上するととも
に、充・放電サイクルに伴う容量の劣化も防止できるよ
うになる。
For this reason, the contact between the metal cadmium and oxygen gas in this portion is facilitated, and the oxygen gas absorption performance is improved. In other words, carbon is not coated on the entire cadmium negative electrode, but only on the outermost portion when it is wound in a spiral shape. Since there is no film, the carbon film does not hinder the reaction when charging / discharging is performed at a high rate (high rate), and no overvoltage occurs. As a result, the oxygen gas absorption performance is improved, and the capacity deterioration due to the charge / discharge cycle can be prevented.

【0043】なお、上述した実施形態においては、カー
ボンとしてアセチレンブラックを用いる例について説明
したが、ケッチェンブラックなどの他の種類のカーボン
を用いても同様な結果が得られることを確認している。
In the above-described embodiment, an example in which acetylene black is used as carbon has been described. However, it has been confirmed that similar results can be obtained by using other types of carbon such as Ketjen black. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のカドミウム負極を模式的に示す図で
ある。
FIG. 1 is a diagram schematically showing a cadmium negative electrode of the present invention.

【図2】 ニッケル−カドミウム蓄電池を構成した場合
のサイクル数と電池容量の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the number of cycles and the battery capacity when a nickel-cadmium storage battery is configured.

【図3】 図2と同様なニッケル−カドミウム蓄電池を
構成した場合のサイクル数と電池容量の関係を示す図で
ある。
FIG. 3 is a diagram showing the relationship between the number of cycles and the battery capacity when a nickel-cadmium storage battery similar to FIG. 2 is configured.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カドミウム活物質を主体とする負極と正
極とをセパレータを介して渦巻状に卷回して形成された
渦巻状電極体を備えたアルカリ蓄電池用カドミウム負極
であって、 前記カドミウム負極を前記渦巻状に卷回された渦巻状電
極体の最外周部に位置するように配置するとともに、 前記カドミウム負極の前記最外周部に位置する部分はカ
ーボンが塗着されていることを特徴とするアルカリ蓄電
池用カドミウム負極。
1. A cadmium negative electrode for an alkaline storage battery comprising a spiral electrode body formed by spirally winding a negative electrode mainly composed of a cadmium active material and a positive electrode via a separator, wherein the cadmium negative electrode is The cadmium negative electrode is arranged so as to be located at the outermost peripheral portion of the spirally wound spiral electrode body, and a portion of the cadmium negative electrode located at the outermost peripheral portion is coated with carbon. Cadmium negative electrode for alkaline storage batteries.
【請求項2】 前記カーボンはアセチレンブラックある
いはケッチェンブラックから選択したことを特徴とする
請求項1に記載のアルカリ蓄電池用カドミウム負極。
2. The cadmium negative electrode according to claim 1, wherein the carbon is selected from acetylene black and Ketjen black.
【請求項3】 前記カドミウム負極の前記最外周部に位
置する部分に塗着されたカーボンは単位面積(cm2
当たり0.005〜0.6mgとしたことを特徴とする
請求項1または請求項2に記載のアルカリ蓄電池用カド
ミウム負極。
3. The carbon coated on a portion of the cadmium negative electrode located at the outermost peripheral portion has a unit area (cm 2 ).
The cadmium negative electrode for an alkaline storage battery according to claim 1 or 2, wherein the cadmium amount is 0.005 to 0.6 mg per unit.
JP10113564A 1998-04-23 1998-04-23 Cadmium negative electrode for alkaline storage battery Pending JPH11307116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10113564A JPH11307116A (en) 1998-04-23 1998-04-23 Cadmium negative electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10113564A JPH11307116A (en) 1998-04-23 1998-04-23 Cadmium negative electrode for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11307116A true JPH11307116A (en) 1999-11-05

Family

ID=14615471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10113564A Pending JPH11307116A (en) 1998-04-23 1998-04-23 Cadmium negative electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11307116A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059552A (en) * 2001-07-30 2003-02-28 Harting Kg Aa Plug connector
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP2007149441A (en) * 2005-11-25 2007-06-14 Toyota Motor Corp Rolled power storage device
US8105716B2 (en) 2005-11-30 2012-01-31 Samsung Sdi Co., Ltd. Active material for rechargeable lithium battery and rechargeable lithium battery including same
US8394532B2 (en) 2005-11-30 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US9209463B2 (en) 2010-03-04 2015-12-08 Samsung Sdi Co., Ltd. Secondary battery and method of fabricating of the secondary battery
US10263305B2 (en) 2015-12-01 2019-04-16 Denso Corporation Magnesium oxygen battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059552A (en) * 2001-07-30 2003-02-28 Harting Kg Aa Plug connector
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP2007149441A (en) * 2005-11-25 2007-06-14 Toyota Motor Corp Rolled power storage device
US8105716B2 (en) 2005-11-30 2012-01-31 Samsung Sdi Co., Ltd. Active material for rechargeable lithium battery and rechargeable lithium battery including same
US8241794B2 (en) 2005-11-30 2012-08-14 Samsung Sdi Co., Ltd. Active material for rechargeable lithium battery and rechargeable lithium battery including same
US8394532B2 (en) 2005-11-30 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US9209463B2 (en) 2010-03-04 2015-12-08 Samsung Sdi Co., Ltd. Secondary battery and method of fabricating of the secondary battery
US10263305B2 (en) 2015-12-01 2019-04-16 Denso Corporation Magnesium oxygen battery

Similar Documents

Publication Publication Date Title
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JPH06215765A (en) Alkaline storage battery and manufacture thereof
JP2684707B2 (en) Paste type cadmium negative electrode
JP5655808B2 (en) Cylindrical alkaline storage battery
JPH0578141B2 (en)
JPH0624148B2 (en) Sealed nickel cadmium storage battery
JPH09171818A (en) Nickel-metal hydride storage battery and its preparation
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JPH09274916A (en) Alkaline storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH06196161A (en) Alkaline storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP2001283902A (en) Alkaline battery
JPH05283071A (en) Activation of metal hydride storage battery
JP2734523B2 (en) Battery separator
JP2009238447A (en) Cylindrical alkaline storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JPH0410181B2 (en)
JPH08185864A (en) Electrode plate for alkaline storage battery and its manufacture
JP3524748B2 (en) Method for producing sintered cadmium negative electrode
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery