JP3524748B2 - Method for producing sintered cadmium negative electrode - Google Patents

Method for producing sintered cadmium negative electrode

Info

Publication number
JP3524748B2
JP3524748B2 JP02913098A JP2913098A JP3524748B2 JP 3524748 B2 JP3524748 B2 JP 3524748B2 JP 02913098 A JP02913098 A JP 02913098A JP 2913098 A JP2913098 A JP 2913098A JP 3524748 B2 JP3524748 B2 JP 3524748B2
Authority
JP
Japan
Prior art keywords
negative electrode
cadmium
active material
sintered
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02913098A
Other languages
Japanese (ja)
Other versions
JPH11213994A (en
Inventor
正弘 細田
彰 平川
和昭 尾崎
昌孝 新屋敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP02913098A priority Critical patent/JP3524748B2/en
Publication of JPH11213994A publication Critical patent/JPH11213994A/en
Application granted granted Critical
Publication of JP3524748B2 publication Critical patent/JP3524748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はニッケル−カドミウ
ム蓄電池に用いる焼結式カドミウム負極の製造方法に関
するものである。
The present invention relates to a nickel - relates manufacturing method of sintered cadmium negative electrode for use in cadmium battery.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム蓄電池に用
いるカドミウム負極には、ニッケル粉末を焼結して形成
した多孔性焼結基板に酸化カドミウムあるいは水酸化カ
ドミウムよりなる負極活物質を充填した焼結式負極と、
酸化カドミウムあるいは水酸化カドミウムよりなる負極
活物質と合成繊維、糊料等とを混練してペースト状とし
てパンチングメタル等の導電性芯体(基板)に塗着した
非焼結式負極とがある。このうち、焼結式負極は、電極
内に多孔性焼結基板の導電性マトリックスが存在すると
ともに、負極活物質が直接多孔性焼結基板に接触するた
め、導電性に優れており、かつ、高率充放電特性および
酸素ガス吸収性能が良好であることから、種々のポータ
ブル機器の電源として広く使用されている。
2. Description of the Related Art Conventionally, a cadmium negative electrode used in a nickel-cadmium storage battery is a sintering type in which a negative electrode active material made of cadmium oxide or cadmium hydroxide is filled in a porous sintered substrate formed by sintering nickel powder. Negative electrode,
There is a non-sintered negative electrode in which a negative electrode active material made of cadmium oxide or cadmium hydroxide is kneaded with a synthetic fiber, a paste and the like to form a paste and applied on a conductive core (substrate) such as punching metal. Among these, the sintered negative electrode, the conductive matrix of the porous sintered substrate is present in the electrode, since the negative electrode active material directly contacts the porous sintered substrate, excellent in conductivity, and, It has been widely used as a power source for various portable devices because of its high rate charge / discharge characteristics and good oxygen gas absorption performance.

【0003】近年、アルカリ蓄電池の高容量化、大電流
充放電特性、長寿命化などの要求が高まり、これらの要
求に応えるために種々の改良が行われた。例えば、高容
量化については、活物質の充填密度を増加させること、
あるいは正・負極を分離するセパレータを薄型化するこ
とにより、その目的が達成されるようになった。
In recent years, there have been increasing demands for higher capacity, large current charge / discharge characteristics and longer life of alkaline storage batteries, and various improvements have been made to meet these demands. For example, to increase the capacity, increase the packing density of the active material,
Alternatively, the purpose has been achieved by thinning the separator for separating the positive and negative electrodes.

【0004】しかしながら、高容量化のために高密度に
活物質を充填した場合、電極内で電解液を保持するため
の空間(残空間)が活物質に占有されて、電極内で保持
すべき電解液量が減少することとなる。このため、電解
液と接触する活物質量が減少して、負極での充放電反応
を円滑に進行させることが困難となり、充放電サイクル
の進行に伴い、放電できない金属カドミウムが蓄積され
るようになる。
However, when the active material is packed at a high density to increase the capacity, the space (remaining space) for holding the electrolytic solution in the electrode is occupied by the active material and should be held in the electrode. The amount of electrolytic solution will be reduced. Therefore, the amount of the active material in contact with the electrolytic solution is reduced, and it becomes difficult to smoothly proceed the charge / discharge reaction at the negative electrode, and as the charge / discharge cycle progresses, metal cadmium that cannot be discharged is accumulated. Become.

【0005】この結果、酸素ガス吸収性能が低下した
り、あるいは活物質利用率が低下して充放電特性が悪化
する等の問題を生じるため、高容量化と大電流充放電特
性の両方の要求を満足させることは非常に困難なことで
ある。また、充放電のサイクルが繰り返されるに伴い、
充電状態の金属カドミウムの表面が放電状態の水酸化カ
ドミウムで緻密に被覆される、いわゆる負極活物質の閉
塞化が生じて、負極の内部に放電不能な金属カドミウム
が蓄積されることによって、電池寿命に達するという現
象も生じた。
As a result, there arises a problem that the oxygen gas absorption performance is lowered, or the active material utilization rate is lowered, so that the charge / discharge characteristics are deteriorated. Therefore, both high capacity and large current charge / discharge characteristics are required. It is very difficult to satisfy. Also, as the charge and discharge cycle is repeated,
The surface of the charged metal cadmium is densely covered with the discharged cadmium hydroxide, so-called clogging of the negative electrode active material occurs, and non-dischargeable metal cadmium accumulates inside the negative electrode, resulting in battery life. There was also a phenomenon of reaching.

【0006】そこで、活物質の表面をポリビニルアルコ
ール(PVA)の皮膜で覆った後、ポリビニルアルコー
ルを架橋させてカドミウム負極とすることが特開昭63
−121255号公報で提案された。この特開昭63−
121255号公報で提案されたカドミウム負極にあっ
ては、放電時に活物質である金属カドミウムの表面に放
電生成物の水酸化カドミウムの被膜が形成されるのを防
止して、金属カドミウムの表面に水酸化カドミウムを不
均一に生成させ、カドミウム負極の内部の金属カドミウ
ムと電解液との接触を良好にして、放電不能な金属カド
ミウムの増加を抑制して負極容量の低下を防止し、サイ
クル特性を向上させるようにしている。
Therefore, it is possible to cover the surface of the active material with a film of polyvinyl alcohol (PVA) and then cross-link the polyvinyl alcohol to form a cadmium negative electrode.
-121255. This Japanese Patent Laid-Open No. 63-
In the cadmium negative electrode proposed in Japanese Patent No. 121255, it is possible to prevent a film of cadmium hydroxide, which is a discharge product, from being formed on the surface of metal cadmium which is an active material at the time of discharge, and to prevent water on the surface of metal cadmium. Cadmium oxide is generated non-uniformly, the contact between the metal cadmium inside the cadmium negative electrode and the electrolyte is improved, the increase in the amount of metal cadmium that cannot be discharged is suppressed, the decrease in negative electrode capacity is prevented, and the cycle characteristics are improved. I am trying to let you.

【0007】また、カドミウム負極の内部に多糖類また
はその誘導体を添加して、多糖類またはその誘導体によ
って負極活物質の表面を覆うことが特開昭63−195
963号公報で提案された。この特開昭63−1959
63号公報で提案されたカドミウム負極にあっては、金
属カドミウムの表面に析出する水酸化カドミウムの生成
核の発生数を抑制して、水酸化カドミウム粒子の微細化
を防止するようにしている。
It is also possible to add a polysaccharide or a derivative thereof to the inside of a cadmium negative electrode and cover the surface of the negative electrode active material with the polysaccharide or a derivative thereof.
Proposed in Japanese Patent No. 963. This Japanese Patent Laid-Open No. 63-1959
In the cadmium negative electrode proposed in Japanese Patent Laid-Open No. 63, the number of generated nuclei of cadmium hydroxide deposited on the surface of metal cadmium is suppressed to prevent the cadmium hydroxide particles from becoming fine.

【0008】一方、カドミウム負極の表面をポリビニル
ピロリドン(PVP)の皮膜で覆うとともに、その外側
にフッ素樹脂の皮膜で覆うことが特開平9−45316
号公報で提案された。この特開平9−45316号公報
で提案されたカドミウム負極にあっては、カドミウム負
極の表面に高分子糊料であるPVPと、その外側に撥水
性を有するフッ素樹脂を配しているので、この負極がア
ルカリ蓄電池に組み込まれた状態では、PVP層がカド
ミウム負極の表面を覆い、充放電サイクルの進行時に発
生しやすい負極活物質の閉塞化により放電不能な金属カ
ドミウムが蓄積するのを防止する。また、撥水性を有す
るフッ素樹脂も配されていることにより、負極活物質お
よびニッケル焼結体、電解液、酸素ガスの三相界面の生
成が容易となって、カドミウム負極の酸素ガス吸収能力
が向上する。
On the other hand, it is necessary to cover the surface of the negative electrode of cadmium with a film of polyvinylpyrrolidone (PVP) and the outside thereof with a film of fluororesin.
It was proposed in the publication. In the cadmium negative electrode proposed in Japanese Patent Application Laid-Open No. 9-45316, PVP, which is a polymer paste, and a fluororesin having water repellency are arranged on the outside of the cadmium negative electrode. In the state where the negative electrode is incorporated in the alkaline storage battery, the PVP layer covers the surface of the cadmium negative electrode, and prevents the cadmium that cannot be discharged from accumulating due to the clogging of the negative electrode active material that is likely to occur during the progress of the charge / discharge cycle. In addition, since a fluororesin having water repellency is also provided, it becomes easy to generate a three-phase interface between the negative electrode active material, the nickel sintered body, the electrolytic solution, and the oxygen gas, and the oxygen gas absorption capacity of the cadmium negative electrode is improved. improves.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特開昭
63−121255号公報で提案されたカドミウム負極
にあっては、PVAは親水性の糊材であるため、この親
水性のPVAをカドミウム負極に保持させるとカドミウ
ム活物質とアルカリ電解液との接触が良好になって、カ
ドミウム活物質とアルカリ電解液が化学的に反応して、
水酸化カドミウムに変化し、自己放電が助長されるとい
う弊害を生じた。
However, in the cadmium negative electrode proposed in Japanese Unexamined Patent Publication No. 63-12125, since PVA is a hydrophilic paste material, this hydrophilic PVA is used as a cadmium negative electrode. When kept, the contact between the cadmium active material and the alkaline electrolyte becomes good, and the cadmium active material and the alkaline electrolyte chemically react,
It was changed to cadmium hydroxide, which had the adverse effect of promoting self-discharge.

【0010】また、特開昭63−195963号公報で
提案されたカドミウム負極にあっては、水酸化カドミウ
ム粒子の微細化を防止するため、放電不能な金属カドミ
ウムの生成は抑制できるが、放電生成物である水酸化カ
ドミウムの負極表面への移行まで抑制することは不可能
である。
Further, in the cadmium negative electrode proposed in Japanese Patent Application Laid-Open No. 63-195963, in order to prevent the cadmium hydroxide particles from becoming finer, the generation of non-dischargeable metal cadmium can be suppressed, but the discharge generation It is impossible to suppress the migration of cadmium hydroxide, which is a substance, to the surface of the negative electrode.

【0011】さらに、特開平9−45316号公報で提
案されたカドミウム負極にあっては、撥水性を有するフ
ッ素樹脂が配されていることにより、負極の酸素ガス吸
収能力が向上する反面、PVPは充放電サイクルが進行
するに伴ってアルカリ電解液中で膨潤するため、フッ素
樹脂の撥水効果を低下させるという問題を生じた。
Further, in the cadmium negative electrode proposed in Japanese Patent Application Laid-Open No. 9-45316, a fluorine resin having water repellency is arranged, so that the oxygen gas absorbing ability of the negative electrode is improved, but PVP is Since it swells in the alkaline electrolyte as the charge / discharge cycle progresses, there arises a problem that the water repellent effect of the fluororesin is reduced.

【0012】本発明は上記の問題を解消しようとするも
ので、その目的は、充放電サイクルの進行に伴い発生す
る放電不能な金属カドミウムの蓄積を抑制するととも
に、放電生成物である水酸化カドミウムが負極表面に移
行するのを抑制し、また、充電状態のカドミウム活物質
が水酸化カドミウムに変化する自己放電を抑制して、高
容量でサイクル特性の優れたカドミウム負極を得ること
にある。
The present invention seeks to solve the above problems.
Therefore, the purpose is to suppress the accumulation of non-dischargeable metal cadmium that occurs with the progress of the charge-discharge cycle, and to suppress the transfer of cadmium hydroxide, which is a discharge product, to the negative electrode surface, and also the charge state. In order to obtain a cadmium negative electrode having a high capacity and excellent cycle characteristics, it is possible to suppress the self-discharge in which the cadmium active material described above changes into cadmium hydroxide.

【0013】[0013]

【課題を解決するための手段およびその作用・効果】本
発明は、上記の目的を達成するため、ニッケル焼結基板
にカドミウム活物質を充填する活物質充填工程と、前記
カドミウム活物質が充填された焼結基板にポリビニルピ
ロリドン、ポリビニルアルコール、ビニルピロリドン又
はビニルアルコールの共重合体のうちの少なくともいず
れか1つを含浸もしくは塗布する工程と、前記共重合体
が含浸もしくは塗布された前記焼結基板を乾燥した後、
同焼結基板の表面に存在する前記共重合体を研磨して除
去する除去工程と、この除去工程にて前記共重合体が除
去された前記焼結基板の表面にフッ素樹脂ディスパージ
ョンを塗布した後に乾燥させる工程からなる焼結式カド
ミウム負極の製造方法を案出したものである
Means for Solving the Problem and Its Action / Effect The present invention, in order to achieve the above object , comprises an active material filling step of filling a nickel sintered substrate with a cadmium active material ,
Sintered substrates filled with cadmium active material are coated with polyvinyl
Loridone, polyvinyl alcohol, vinylpyrrolidone or
Is at least one of the vinyl alcohol copolymers
A step of impregnating or applying one of them, and the copolymer
After drying the sintered substrate impregnated or coated with,
The copolymer existing on the surface of the sintered substrate is polished and removed.
And the removal step, in which the copolymer is removed.
On the surface of the aforesaid sintered substrate, fluororesin discharge
Saddle type consisting of the process of coating and then drying
This is a method for manufacturing a negative electrode of miium .

【0014】[0014]

【0015】[0015]

【0016】[0016]

【0017】[0017]

【0018】上記の本発明による焼結式カドミウム負極
の製造方法においては、共重合体を含浸もしくは塗布し
乾燥した後、除去工程により負極の表面に存在する共重
体を除去した後、負極の表面にフッ素樹脂ディスパー
ジョンを塗布するようにすると、カドミウム負極の表
は親水性が阻害されて撥水性が付与される。この結果、
放電生成物である水酸化カドミウムの負極表面への移
に伴って水酸化カドミウム結晶が粗大化し、この粗大化
した結晶がセパレータに対して垂直方向に成長すること
抑制できる。また、負極表面へ付与された撥水性の効
果でカドミウム活物質とアルカリ電解液との接触により
起こる自己放電が抑制できるため、高容量で、長寿命の
アルカリ蓄電池が得られるようになる。
Sintered Cadmium Negative Electrode According to the Present Invention
In the method of manufacturing, after impregnation or coating and drying the copolymer, after removing the copolycondensation <br/> case body is present on the surface of the anode by the removal process, applying a fluororesin dispersion onto the surface of the negative electrode When so as to, the front surface of the cadmium negative electrode
Water repellency is imparted is inhibited the parent aqueous. As a result,
Transition to the surface of the negative electrode of cadmium hydroxide is the discharge product
Cadmium hydroxide crystals are coarsened I accompanied to, this coarsening
The grown crystal grows perpendicular to the separator
It can be suppressed. In addition, since the self-discharge caused by the contact between the cadmium active material and the alkaline electrolyte can be suppressed by the water-repellent effect imparted to the surface of the negative electrode, a high-capacity and long-life alkaline storage battery can be obtained.

【0019】[0019]

【発明の実施の形態】1.カドミウム負極板の作製 実施例 パンチングメタルからなる極板芯体の表面にニッケル焼
結多孔体(多孔度80%)を形成した後、化学含浸法に
より所定量のカドミウム活物質をニッケル焼結多孔体内
に充填する。即ち、ニッケル焼結多孔体を硝酸カドミウ
ムに含浸した後、アルカリ処理を行って、水酸化カドミ
ウムを生成させるという工程を数回繰り返すことによっ
て、所定量のカドミウム活物質(水酸化カドミウムを主
体とする負極活物質)をニッケル焼結多孔体内に充填す
る。
BEST MODE FOR CARRYING OUT THE INVENTION 1. Preparation Example of Cadmium Negative Electrode Plate After forming a nickel sintered porous body (porosity 80%) on the surface of an electrode plate core made of punching metal, a predetermined amount of cadmium active material was added by a chemical impregnation method to the nickel sintered porous body. To fill. That is, after impregnating the sintered nickel porous body with cadmium nitrate, performing an alkali treatment and generating cadmium hydroxide several times, a predetermined amount of cadmium active material (mainly composed of cadmium hydroxide) A negative electrode active material) is filled in a nickel sintered porous body.

【0020】ついで、この活物質を充填した電極をアル
カリ水溶液(例えば、水酸化カリウム水溶液(KO
H))中に配置して、充放電を行うことにより化成し、
部分充電により所定量の予備充電量(プレチャージ)を
確保した後、水洗、乾燥してベース負極を作成する。
Then, the electrode filled with the active material is treated with an alkaline aqueous solution (for example, potassium hydroxide aqueous solution (KO
H)), and formed by charging and discharging,
After securing a predetermined amount of pre-charge (pre-charge) by partial charge, it is washed with water and dried to form a base negative electrode.

【0021】このベース負極を水100重量部に対して
重合度500のポリビニルアルコール(PVA(商品
名:クラレポバール,クラレ製)、以下PVAという)
を6重量部溶解させたPVA水溶液中に60秒間浸漬す
る。この浸漬工程によってベース負極にPVAが含浸さ
れる。ベース負極にPVAを含浸した後、ベース負極を
PVA水溶液より引き上げた後、80℃で完全に乾燥さ
せる。この後、ワイヤー入りブラシを用いて極板表面を
0.5〜1.0Kgf/cm2の圧力で研磨する。
This base negative electrode is made of polyvinyl alcohol having a degree of polymerization of 500 with respect to 100 parts by weight of water (PVA (trade name: manufactured by Kuraray Poval, manufactured by Kuraray), hereinafter referred to as PVA).
Is soaked in an aqueous PVA solution in which 6 parts by weight of is dissolved for 60 seconds. By this immersion step, the base negative electrode is impregnated with PVA. After impregnating the base negative electrode with PVA, the base negative electrode is pulled up from the PVA aqueous solution and then completely dried at 80 ° C. Then, the surface of the electrode plate is polished with a wire-containing brush at a pressure of 0.5 to 1.0 Kgf / cm 2 .

【0022】ついで、このベース負極の表面に、水10
0重量部に対して5重量部のポリテトラフルオロエチレ
ン(PTFE:商品名ルブロン,ダイキン工業製)を分
散させた水溶液(フッ素樹脂ディスパージョン)を塗布
した後、乾燥して実施例のカドミウム負極(負極a)を
作製する。
Then, water 10 is applied to the surface of the base negative electrode.
An aqueous solution (fluorine resin dispersion) in which 5 parts by weight of polytetrafluoroethylene (PTFE: trade name Lubron, manufactured by Daikin Industries, Ltd.) was dispersed with respect to 0 parts by weight was applied, and then dried to obtain the cadmium negative electrode of the example ( The negative electrode a) is produced.

【0023】比較例1 上述したベース負極を水100重量部に対して重合度5
00のPVAを6重量部溶解させたPVA水溶液中に6
0秒間浸漬する。この浸漬工程によってベース負極にP
VAが含浸される。ついで、このベース負極をPVA水
溶液より引き上げた後、80℃で完全に乾燥させる。つ
いで、実施例と同様にして、ワイヤー入りブラシを用い
て極板表面を0.5〜1.0Kgf/cm2の圧力で研
磨して比較例1のカドミウム負極板(負極b)を作製す
る。
Comparative Example 1 The above-mentioned base negative electrode was polymerized to a polymerization degree of 5 with respect to 100 parts by weight of water.
6 parts by weight in a PVA aqueous solution prepared by dissolving 6 parts by weight of PVA of 00.
Soak for 0 seconds. By this dipping process, P is added to the base negative electrode.
VA is impregnated. Then, after pulling this base negative electrode from the PVA aqueous solution, it is completely dried at 80 ° C. Then, in the same manner as in the example, the electrode plate surface is polished with a wire-containing brush at a pressure of 0.5 to 1.0 Kgf / cm 2 to prepare a cadmium negative electrode plate (negative electrode b) of Comparative Example 1.

【0024】比較例2 上述したベース負極を水100重量部に対して重合度5
00のPVAを6重量部溶解させたPVA水溶液中に6
0秒間浸漬する。この浸漬工程によってベース負極にP
VAが含浸される。ベース負極にPVAを含浸した後、
ベース負極をPVA水溶液より引き上げた後、80℃で
完全に乾燥させる。ついで、PVAを含浸して乾燥した
ベース負極の表面に、実施例と同様にして、水100重
量部に対して5重量部のポリテトラフルオロエチレン
(PTFE:商品名ルブロン,ダイキン工業製)を分散
させた水溶液(フッ素樹脂ディスパージョン)を塗布し
た後、乾燥して比較例2のカドミウム負極(負極c)を
作製する。
Comparative Example 2 The above-mentioned base negative electrode was used in a polymerization degree of 5 with respect to 100 parts by weight of water.
6 parts by weight in a PVA aqueous solution prepared by dissolving 6 parts by weight of PVA of 00.
Soak for 0 seconds. By this dipping process, P is added to the base negative electrode.
VA is impregnated. After impregnating the base negative electrode with PVA,
After pulling up the base negative electrode from the PVA aqueous solution, it is completely dried at 80 ° C. Then, on the surface of the base negative electrode impregnated with PVA and dried, 5 parts by weight of polytetrafluoroethylene (PTFE: trade name Lubron, manufactured by Daikin Industries) was dispersed in 100 parts by weight of water in the same manner as in the example. The aqueous solution (fluororesin dispersion) thus prepared is applied and then dried to prepare a cadmium negative electrode (negative electrode c) of Comparative Example 2.

【0025】2.密閉型ニッケル−カドミウム蓄電池の
作製 以上のようにして作製したa,b,cの3種類のカドミ
ウム負極板と焼結式ニッケル正極板とをナイロン不織布
製のセパレータを介して対向するように卷回して3種類
の電極体とし、これらの3種類の電極体をそれぞれ外装
缶内に挿入した後、30重量%の水酸化カリウム水溶液
(KOH)を注液し、密閉して、A,B,Cの3種類の
ニッケル−カドミウム蓄電池(公称容量が1900mA
hのもの)を作製した。
2. Production of sealed nickel-cadmium storage battery The three types of a, b and c cadmium negative electrode plates and the sintered nickel positive electrode plate produced as described above were wound so as to face each other with a nylon nonwoven fabric separator interposed therebetween. 3 types of electrode bodies, each of these 3 types of electrode bodies is inserted into an outer can, and then 30 wt% potassium hydroxide aqueous solution (KOH) is poured and sealed, and A, B, C 3 types of nickel-cadmium storage battery (nominal capacity 1900mA
h) was produced.

【0026】3.充放電サイクル試験 ついで、上述したようにして作製したA,B,Cの3種
類のニッケル−カドミウム蓄電池を用いて、室温(23
±5℃)で1.9A(1C)の充電々流で1.5時間充
電を行い、1時間充電を休止した後、1.9A(1C)
の放電々流で電池電圧が1Vになるまで放電させ、1時
間放電を休止する。このような充放電サイクルを繰り返
し、電池容量が公称容量の60%に低下した時点までの
サイクル数をサイクル寿命とする充放電サイクル試験を
行うと、以下の表1に示すような結果となった。
3. Charge / Discharge Cycle Test Next, using the three types of nickel-cadmium storage batteries A, B, and C manufactured as described above, at room temperature (23
After charging for 1.9A (1C) for 1.5 hours at ± 5 ° C, charging was suspended for 1 hour, then 1.9A (1C).
Is discharged until the battery voltage becomes 1 V, and the discharge is stopped for 1 hour. When such a charge / discharge cycle was repeated and a charge / discharge cycle test was conducted with the cycle life as the number of cycles until the battery capacity decreased to 60% of the nominal capacity, the results shown in Table 1 below were obtained. .

【0027】[0027]

【表1】 上記表1より明らかなように、電池A(実施例のカドミ
ウム負極aを用いた電池)の充放電サイクル数は、電池
B(比較例1のカドミウム負極bを用いた電池)および
電池C(比較例2のカドミウム負極cを用いた電池)よ
りも、充放電サイクル数が大きいことが分かる。これ
は、カドミウム負極の表面の一部は親水性が阻害される
とともに、カドミウム負極の表面は撥水性が付与され、
図1(なお、図1は電池Aの充放電後の負極表面の状態
を示す電子顕微鏡写真である)に示すように、カドミウ
ム負極表面に放電生成物である水酸化カドミウムの負極
表面への移行、およびこの移行に伴って生じる水酸化カ
ドミウム結晶の粗大化、ならびにセパレータに対して垂
直方向にこの結晶が成長することが抑制されたためと考
えることができる。
[Table 1] As is clear from Table 1 above, the number of charge / discharge cycles of the battery A (battery using the cadmium negative electrode a of the example) was the same as that of the battery B (battery using the cadmium negative electrode b of the comparative example 1) and battery C (comparison). It can be seen that the number of charge and discharge cycles is larger than that of the battery using the cadmium negative electrode c of Example 2). This is because part of the surface of the cadmium negative electrode is impaired in hydrophilicity and water repellency is imparted to the surface of the cadmium negative electrode.
As shown in FIG. 1 (FIG. 1 is an electron micrograph showing the state of the negative electrode surface after charging / discharging of battery A), the transfer of cadmium hydroxide, which is a discharge product, to the negative electrode surface on the surface of the negative electrode of cadmium. It can be considered that this is because the coarsening of the cadmium hydroxide crystal caused by this transition and the growth of this crystal in the direction perpendicular to the separator were suppressed.

【0028】一方、電池Bおよび電池Cは、図2(な
お、図2は電池Cの充放電後の負極表面の状態を示す電
子顕微鏡写真である)に示すように、放電生成物である
水酸化カドミウムが負極表面へ移行し、この移行に伴い
水酸化カドミウムの結晶が粗大化するとともに、セパレ
ータに対して垂直方向にこの結晶が成長している。
On the other hand, as shown in FIG. 2 (note that FIG. 2 is an electron micrograph showing the state of the negative electrode surface of the battery C after charging and discharging), the batteries B and C are water, which is a discharge product. Cadmium oxide migrates to the surface of the negative electrode, and along with this migration, the crystals of cadmium hydroxide coarsen, and the crystals grow in the direction perpendicular to the separator.

【0029】これは、電池Bのように負極表面にPTF
Eを塗布しないと、負極表面に撥水性が付与されないた
め、水酸化カドミウムの負極表面への移行、およびこの
移行に伴って生じる水酸化カドミウム結晶の粗大化、な
らびにセパレータに対して垂直方向にこの結晶が成長す
ることが抑制されないためと考えられる。また、電池C
のように負極表面のPVAを一部除去しないと、この上
にPTFEを塗布しても充分に撥水性を発揮できないた
め、電池Bと同様に、水酸化カドミウムの負極表面への
移行、およびこの移行に伴って生じる水酸化カドミウム
結晶の粗大化、ならびにセパレータに対して垂直方向に
この結晶が成長することが抑制されないためと考えられ
る。
This is the same as Battery B on the surface of the negative electrode.
If E is not applied, water repellency is not imparted to the surface of the negative electrode, so that the migration of cadmium hydroxide to the surface of the negative electrode and the coarsening of the cadmium hydroxide crystals caused by this migration, and the vertical direction with respect to the separator It is considered that the crystal growth is not suppressed. Also, the battery C
If PVA on the surface of the negative electrode is not partially removed as described above, sufficient water repellency cannot be exhibited even if PTFE is applied onto the surface of the negative electrode. Therefore, as in Battery B, the migration of cadmium hydroxide to the surface of the negative electrode and It is considered that this is because the cadmium hydroxide crystal is coarsened due to the migration and the growth of the crystal in the direction perpendicular to the separator is not suppressed.

【0030】4.保存特性試験 上述したようにして作製したA,B,Cの3種類のニッ
ケル−カドミウム蓄電池を用いて、1.9A(1C)の
充電々流で1.5時間充電を行い、室温(23±5℃)
で28日間保存した後、380mA(0.2C)の放電
々流で電池電圧が1Vになるまで放電させ、放電時間か
ら電池容量を測定すると、以下の表2に示すような結果
となった。
4. Storage characteristic test Using the three types of nickel-cadmium storage batteries A, B, and C produced as described above, charging was performed for 1.5 hours at a charge flow of 1.9 A (1 C) at room temperature (23 ± 5 ° C)
After 28 days of storage, the battery was discharged with a discharge current of 380 mA (0.2 C) until the battery voltage reached 1 V, and the battery capacity was measured from the discharge time. The results are shown in Table 2 below.

【0031】[0031]

【表2】 上記表2より明らかなように、電池A(実施例のカドミ
ウム負極aを用いた電池)の保存後電池容量は、電池B
(比較例1のカドミウム負極bを用いた電池)および電
池C(比較例2のカドミウム負極cを用いた電池)の保
存後電池容量よりも大きいことが分かる。これは、カド
ミウム負極の表面の一部は親水性が阻害されるととも
に、カドミウム負極の表面は撥水性が付与され、充電状
態の金属カドミウムが電解液と接触するのが抑制され
て、自己放電が抑制されたためと考えることができる。
[Table 2] As is clear from Table 2 above, the battery capacity after storage of battery A (battery using the cadmium negative electrode a of the example) is battery B
It can be seen that it is larger than the battery capacities after storage (battery using the cadmium negative electrode b of Comparative Example 1) and battery C (battery using the cadmium negative electrode c of Comparative Example 2). This is because part of the surface of the cadmium negative electrode is impaired in hydrophilicity, and the surface of the cadmium negative electrode is provided with water repellency, which suppresses contact of the metal cadmium in the charged state with the electrolytic solution and self-discharge. It can be considered that it was suppressed.

【0032】一方、電池Bのように負極表面にPTFE
を塗布しないと、負極表面に撥水性が付与されないた
め、充電状態の金属カドミウムが電解液と接触すること
が多くなって自己放電が助長され、保存特性が低下する
ためと考えられる。また、電池Cのように負極表面のP
VAを一部除去しないと、この上にPTFEを塗布して
も充分に撥水性を発揮できないため、電池Bと同様に自
己放電が助長され、保存特性が低下するためと考えられ
る。
On the other hand, as in the case of battery B, the negative electrode surface is coated with PTFE.
It is considered that since the water repellency is not imparted to the surface of the negative electrode unless C. is applied, the metal cadmium in the charged state often comes into contact with the electrolytic solution, which promotes self-discharge and deteriorates the storage characteristics. In addition, as in battery C, P on the negative electrode surface
It is considered that if VA is not partially removed, even if PTFE is applied on the VA, the water repellency cannot be sufficiently exhibited, so that self-discharge is promoted like the battery B and the storage characteristics are deteriorated.

【0033】上述したように、本発明においては、カド
ミウム負極の表面に撥水性を保持させることにより、放
電生成物である水酸化カドミウムの負極表面への移行が
抑制されるとともに、セパレータに対して垂直方向に水
酸化カドミウムの結晶が粗大化するのが抑制されるた
め、正・負極が短絡するのが防止でき、長寿命なアルカ
リ蓄電池が得られるようになる。また、カドミウム負極
の表面に撥水性を保持させると、充電状態の金属カドミ
ウムが電解液と接触するのが抑制されて、自己放電も抑
制されるようになって、保存特性も向上する。
As described above, in the present invention, by retaining the water repellency on the surface of the negative electrode of cadmium, the migration of the discharge product cadmium hydroxide to the surface of the negative electrode is suppressed, and at the same time with respect to the separator. Since the crystals of cadmium hydroxide are prevented from coarsening in the vertical direction, it is possible to prevent the positive and negative electrodes from being short-circuited, and a long-life alkaline storage battery can be obtained. Further, if water repellency is maintained on the surface of the cadmium negative electrode, contact of metal cadmium in a charged state with the electrolytic solution is suppressed, self-discharge is also suppressed, and storage characteristics are improved.

【0034】なお、上述した実施形態においては、ポリ
ビニルアルコール(PVA)の共重合体を用いる例につ
いてのみ説明したが、PVAの他に、ポリビニルピロリ
ドン(PVP)、ビニルピロリドンあるいはビニルアル
コールの共重合体を用いても同様な結果が得られること
を確認している。
In the above-mentioned embodiment, only the example of using the copolymer of polyvinyl alcohol (PVA) has been described. However, in addition to PVA, a copolymer of polyvinylpyrrolidone (PVP), vinylpyrrolidone or vinyl alcohol. It has been confirmed that similar results can be obtained by using.

【0035】また、上述した実施形態においては、カド
ミウム負極をPVA水溶液に浸漬して、カドミウム負極
にPVAを含浸する例について説明したが、カドミウム
負極にPVA水溶液を塗布するようにしても、同様な結
果が得られることを確認している。さらに、上述した実
施形態においては、フッ素樹脂としてポリテトラフルオ
ロエチレン(PTFE)を用いる例について説明した
が、撥水性を有するフッ素樹脂であれば同様な効果を得
ることができる。
Further, in the above-described embodiment, an example in which the cadmium negative electrode is dipped in the PVA aqueous solution to impregnate the cadmium negative electrode with PVA has been described. However, even if the cadmium negative electrode is coated with the PVA aqueous solution, the same result is obtained. We confirm that the results can be obtained. Further, in the above-described embodiment, an example in which polytetrafluoroethylene (PTFE) is used as the fluororesin has been described, but the same effect can be obtained as long as the fluororesin has water repellency.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のカドミウム負極の充放電サイクル後
の負極表面の状態を示す電子顕微鏡写真である。
FIG. 1 is an electron micrograph showing a state of a negative electrode surface after a charge / discharge cycle of a cadmium negative electrode of the present invention.

【図2】 従来例(比較例)のカドミウム負極の充放電
サイクル後の負極表面の状態を示す電子顕微鏡写真であ
る。
FIG. 2 is an electron micrograph showing a state of a negative electrode surface after a charge / discharge cycle of a cadmium negative electrode of a conventional example (comparative example).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新屋敷 昌孝 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平4−79160(JP,A) 特開 昭63−202857(JP,A) 特開 平4−19963(JP,A) 特開 平3−1442(JP,A) 特開 平6−243863(JP,A) 特開 昭61−147455(JP,A) 特開 平1−239766(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 H01M 4/26 H01M 4/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masataka Shinyashiki 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-4-79160 (JP, A) JP Sho 63-202857 (JP, A) JP 4-19963 (JP, A) JP 3-1442 (JP, A) JP 6-243863 (JP, A) JP 61-147455 (JP , A) JP-A-1-239766 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01M 4/24 H01M 4/26 H01M 4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ニッケル焼結基板にカドミウム活物質を充
填する活物質充填工程と、 前記カドミウム活物質が充填された焼結基板にポリビニ
ルピロリドン、ポリビニルアルコール、ビニルピロリド
又はビニルアルコールの共重合体のうちの少なくとも
いずれか1つを含浸もしくは塗布する工程と、 前記共重合体が含浸もしくは塗布された前記焼結基板
乾燥した後、同焼結基板の表面に存在する前記共重合体
を研磨して除去する除去工程と、この 除去工程にて前記共重合体が除去された前記焼結基
の表面にフッ素樹脂ディスパージョンを塗布した後
乾燥させる工程からなる焼結式カドミウム負極の製造方
法。
1. An active material filling step of filling a nickel sintered substrate with a cadmium active material, and a polyvinyl pyrrolidone, polyvinyl alcohol, vinylpyrrolidone or a copolymer of vinyl alcohol on the sintered substrate filled with the cadmium active material. A step of impregnating or applying at least any one of them, and the copolymer existing on the surface of the sintered substrate after drying the sintered substrate impregnated or applied with the copolymer
A removal step of removing by polishing, the sintered Yuimoto said copolymer in the removing step is removed
Sintered type method for producing a cadmium negative electrode comprising a step of <br/> dried after coating the fluororesin dispersion onto the surface of the plate.
【請求項2】 前記除去工程にて前記焼結基板の表面に
存在する前記共重合体をワイヤー入りブラシで研磨して
除去するようにしたことを特徴とする請求項2に記載の
焼結式カドミウム負極の製造方法。
2. The surface of the sintered substrate in the removing step
The copolymer present is polished by a wire entering brush
The method for producing a sintered cadmium negative electrode according to claim 2, characterized in that the negative electrode is removed .
JP02913098A 1998-01-26 1998-01-26 Method for producing sintered cadmium negative electrode Expired - Lifetime JP3524748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02913098A JP3524748B2 (en) 1998-01-26 1998-01-26 Method for producing sintered cadmium negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02913098A JP3524748B2 (en) 1998-01-26 1998-01-26 Method for producing sintered cadmium negative electrode

Publications (2)

Publication Number Publication Date
JPH11213994A JPH11213994A (en) 1999-08-06
JP3524748B2 true JP3524748B2 (en) 2004-05-10

Family

ID=12267725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02913098A Expired - Lifetime JP3524748B2 (en) 1998-01-26 1998-01-26 Method for producing sintered cadmium negative electrode

Country Status (1)

Country Link
JP (1) JP3524748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696086B2 (en) * 2000-12-28 2005-09-14 三洋電機株式会社 Cadmium negative electrode for alkaline storage battery and method for producing the same

Also Published As

Publication number Publication date
JPH11213994A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
US4263383A (en) Zinc electrode
JP3524748B2 (en) Method for producing sintered cadmium negative electrode
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JP3588268B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JP2022525730A (en) Electrodes of rechargeable energy storage devices
JP3953278B2 (en) Sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP4007745B2 (en) Alkaline storage battery
JP3332139B2 (en) Sealed alkaline storage battery
JP3653441B2 (en) Method for producing negative electrode for alkaline storage battery
JP2981538B2 (en) Electrodes for alkaline batteries
JP2000106178A (en) Manufacture of sintered cadmium negative electrode
JP3097238B2 (en) Anode plate for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH11273669A (en) Manufacture of sintered cadmium negative electrode
JP2589750B2 (en) Nickel cadmium storage battery
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JP2000077067A (en) Positive electrode for alkaline storage battery
JP2981537B2 (en) Negative electrode for alkaline batteries
JP3095236B2 (en) Paste nickel positive electrode
JPH11149920A (en) Nickel electrode for alkali secondary battery and alkali secondary battery
JPH0251874A (en) Alkaline zinc lead-acid battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

EXPY Cancellation because of completion of term