JPH09171818A - Nickel-metal hydride storage battery and its preparation - Google Patents

Nickel-metal hydride storage battery and its preparation

Info

Publication number
JPH09171818A
JPH09171818A JP7271353A JP27135395A JPH09171818A JP H09171818 A JPH09171818 A JP H09171818A JP 7271353 A JP7271353 A JP 7271353A JP 27135395 A JP27135395 A JP 27135395A JP H09171818 A JPH09171818 A JP H09171818A
Authority
JP
Japan
Prior art keywords
cathode
storage battery
anode
nickel
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7271353A
Other languages
Japanese (ja)
Inventor
Soon-Sun Kang
スーンスン、カン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung Display Devices Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Devices Co Ltd filed Critical Samsung Display Devices Co Ltd
Publication of JPH09171818A publication Critical patent/JPH09171818A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/288Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of short-circuiting caused by the contact of an anode with a cathode by forming an insulating layer in the edge part of at least one electrode of the cathode and the anode. SOLUTION: An insulating layer 20 made of synthetic resin is formed by coating and drying in the edge part of at least one electrode of a sheet-shaped cathode 1 containing a metal oxide or a metal hydroxide and a sheet-shaped anode 2 containing a hydrogen storage alloy. The cathode 1 and the anode 2 are spirally wound through an insulating separator 3 to form an electrode group 4. The spirally wound cylindrical electrode group 4 is inserted into a case 5. An electrolyte is filled in the case 5, and a sealing body 8 is fit to the opening of the case 5 through a gasket 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−金属水
素化物蓄電池、およびその製造方法に関し、とくに、ケ
ースの内部に巻回された電極の縁部に樹脂剤の絶縁物質
を塗布形成した活物質などの脱落によるショットなどの
発生を防止するようにされたニッケル−金属水素化物蓄
電池、およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-metal hydride storage battery and a method for manufacturing the same, and more particularly to an active material in which an insulating material of a resin agent is applied to the edge of an electrode wound inside a case. The present invention relates to a nickel-metal hydride storage battery designed to prevent the occurrence of shots and the like due to falling off, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】一般に、ニッケル−金属水素化物蓄電池
は、水素吸蔵合金と水素ガスの固体、気体反応などと同
様にアルカリ電解液内で電気化学反応によって可逆的に
水素を吸蔵させた水素吸蔵合金の特性を利用するもので
あるが、これは水素吸蔵合金を電極としてアルカリ電解
液内の還元反応を起すと、水が分解されるとともに、水
素吸蔵合金の表面で水素と水酸イオンとが生成されるよ
うになり、前記水素吸蔵合金から生成された水素は合金
の内部へ拡散されて吸蔵されることによって、金属水素
化物を生成させて充填反応を行うようになる。
2. Description of the Related Art Generally, a nickel-metal hydride storage battery is a hydrogen storage alloy in which hydrogen is reversibly stored by an electrochemical reaction in an alkaline electrolyte as in the solid or gas reaction of a hydrogen storage alloy and hydrogen gas. However, when the hydrogen storage alloy is used as an electrode to cause a reduction reaction in the alkaline electrolyte, water is decomposed and hydrogen and hydroxide ions are generated on the surface of the hydrogen storage alloy. As a result, the hydrogen generated from the hydrogen storage alloy is diffused and stored inside the alloy to generate a metal hydride and carry out a filling reaction.

【0003】さらに、これに反し、酸化反応を起す金属
水素化物内の水素は、合金の表面で水酸イオンと反応し
て水を生成させることによって、放電反応を行うように
なる。
Further, on the contrary, the hydrogen in the metal hydride which causes the oxidation reaction reacts with the hydroxide ion on the surface of the alloy to generate water, thereby causing the discharge reaction.

【0004】このようなニッケル−金属水素化物蓄電池
の構造は、図1に示すように、金属酸化物、または金属
水酸化物などを含むシート状の陽極(1)と、水素吸蔵
合金を含むシート状の陰極(2)と、前記陽極(1)、
および陰極(2)との間に介されて絶縁が行われるよう
にするセファレータ(3)を積層させて渦巻状に巻回さ
れて電極群(4)を形成し、該電極群(4)は陰極端子
兼用のケース(5)内に密挿されるとともに、該ケース
(5)と陰極(2)とを陰極リード線(6)で接続させ
ている。
As shown in FIG. 1, the structure of such a nickel-metal hydride storage battery has a sheet-like anode (1) containing a metal oxide or a metal hydroxide, and a sheet containing a hydrogen storage alloy. -Shaped cathode (2) and said anode (1),
And a separator (3) for interposing insulation between the cathode and the cathode (2) to form an electrode group (4) which is spirally wound to form an electrode group (4). The case (5), which also serves as a cathode terminal, is tightly inserted, and the case (5) and the cathode (2) are connected by a cathode lead wire (6).

【0005】さらに、前記ケース(5)の上側の内部に
は環状のパッキング(7)を介して上側に陽極キャップ
(8a)を形成させた密封体(8)が装着されており、該
密封体(8)内には電池内部の圧力が急激に上昇する場
合に密封体を上昇させて内部のガスを大気中に放出させ
るようにする金属ばね(9)が弾設されており、前記密
封体(8)と陽極(1)とは陽極リード線(10)により
電気的に接続されている。
Further, a sealing body (8) having an anode cap (8a) formed on the upper side is mounted inside the upper side of the case (5) through an annular packing (7), and the sealing body is formed. In (8), a metal spring (9) for elastically raising the sealing body to release the gas in the atmosphere into the atmosphere when the pressure inside the battery rapidly rises is provided. (8) and the anode (1) are electrically connected by the anode lead wire (10).

【0006】[0006]

【発明が解決しようとする課題】ところで、かように構
成された従来のニッケル−金属水素化物蓄電池は、陽
極、および陰極が渦巻状に巻回される開始端部が相接さ
れるか、あるいは陽極と陰極の上下側の縁部が相接され
るか、または製造工程なり充放電の進行時に電極の表面
に形成された水素吸蔵合金である化活物質が脱落される
などの原因によってショットが発生し、これにより蓄電
池の寿命が顕著に短縮されるとともに、容量が低下され
るなどの問題点があった。
By the way, in the conventional nickel-metal hydride storage battery configured as described above, the anode and the cathode are spirally wound at the start end portions thereof being contacted with each other, or The upper and lower edges of the anode and the cathode are contacted with each other, or the active material that is a hydrogen storage alloy formed on the surface of the electrode during the manufacturing process progresses during charging / discharging. However, there is a problem in that the life of the storage battery is significantly shortened and the capacity is reduced.

【0007】また、従来このような問題点を解決するた
めに、陽極と陰極との間に介されるセファレータの重量
なり肉厚をそれぞれ相違に形成させて短絡によるサイク
ル寿命の劣化を防止するとともに、容量も満足できるよ
うにされたニッケル−金属水素化物蓄電池が特開平3−
59957号公報、および同平3−39958号公報に
開示されている。
Further, in order to solve the above problems, the separator interposed between the anode and the cathode is formed to have different weights and wall thicknesses to prevent the deterioration of the cycle life due to a short circuit. A nickel-metal hydride storage battery having a satisfactory capacity is also disclosed
It is disclosed in Japanese Patent Publication No. 59957 and Japanese Patent Publication No. 3-39958.

【0008】ところで、電解液の供給が難しくなるばか
りか、電極群間の電解液分布が不均一で、ガスの発生に
よる圧力の増加によって安定性に問題があり、とりわけ
セファレータの重量が小か、肉薄の場合には、ショット
などの発生により不良率が増加し、セファレータの重量
が大か、肉厚の場合には、電池の容量が減少されるばか
りか、製造工程においても、電極群をケース内に挿入す
る作業が極めて難しいという問題点があった。
By the way, not only the supply of the electrolytic solution becomes difficult, but also the electrolytic solution is not evenly distributed between the electrode groups, and there is a problem in stability due to an increase in pressure due to the generation of gas. When the wall is thin, the defective rate increases due to shots, and when the separator is heavy or the wall is thick, the battery capacity is reduced. There was a problem that the work of inserting it inside was extremely difficult.

【0009】そこで、本発明は、上記のような種々の問
題点を解決するためになされたものであって、本発明の
目的は、陽極と陰極との間に常時定間隔が保持されるよ
うにして、陰極と陽極間の接触によるショットの発生を
防止して不良率を顕著に減少させるとともに、蓄電池の
寿命をさらに延長できるニッケル−金属水素化物蓄電
池、およびその製造方法を提供することにある。
Therefore, the present invention has been made to solve the above-mentioned various problems, and an object of the present invention is to always maintain a constant distance between an anode and a cathode. Thus, it is to provide a nickel-metal hydride storage battery, which can prevent the occurrence of shots due to contact between the cathode and the anode to significantly reduce the defective rate, and further extend the life of the storage battery, and a manufacturing method thereof. .

【0010】[0010]

【課題を解決するための手段】上記のごとき目的を達成
するために、本発明によるニッケル−金属水素化物蓄電
池は、金属酸化物、または金属水酸化物を含む陽極と、
水素吸蔵合金を含む陰極と、前記陽極、陰極との間に介
されたセファレータが備えられている蓄電池において、
前記陽極、または陰極中の少なくともいずれか一つの電
極には縁部に絶縁層が塗布形成されていることを特徴と
する。
In order to achieve the above object, a nickel-metal hydride storage battery according to the present invention comprises an anode containing a metal oxide or a metal hydroxide,
In a storage battery provided with a cathode containing a hydrogen storage alloy, the anode, a separator interposed between the cathode,
An insulating layer is applied and formed on an edge of at least one of the anode and the cathode.

【0011】さらに、本発明によるニッケル−金属水素
化物蓄電池の製造方法は、陽極、および陰極の間にセフ
ァレータを介して巻回した後、電極群を形成し、前記電
極群をケース内に挿入した後、内部に電解液を充填し上
側には陽極キャップを有する密封体を密挿して蓄電池を
製造する方法において、前記陽極、および陰極中少なく
ともいずれか一つの電極の縁部に合成樹脂を塗布した
後、乾燥させて絶縁層を形成させる工程が含まれている
ことを特徴とする。
Further, in the method for manufacturing a nickel-metal hydride storage battery according to the present invention, after winding a positive electrode and a negative electrode via a separator, an electrode group is formed and the electrode group is inserted into a case. Then, in the method of manufacturing a storage battery by filling the inside with an electrolyte solution and tightly inserting a sealing body having an anode cap on the upper side, a synthetic resin is applied to an edge portion of at least one of the anode and the cathode. After that, a step of drying to form an insulating layer is included.

【0012】[0012]

【発明の実施の形態】以下、本発明による一実施例につ
いて添付図面2および4に沿って詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the accompanying drawings 2 and 4.

【0013】図において、従来の構成と同一の構成につ
いては同一の名称、および同一の符号を併記して、詳細
な説明は省略する。
In the figure, the same structure as the conventional structure is given the same name and the same reference numeral, and the detailed description is omitted.

【0014】まず、本発明は金属酸化物、または金属水
酸化物を含むシート状の陽極(1)と水素吸蔵合金を含
むシート状の陰極(2)中少なくともいずれか一つの電
極の縁部に合成樹脂材の絶縁層(20)を塗布して乾燥さ
せる絶縁層形成工程と、前記陽極(1)、および陰極
(2)の間に絶縁材のセファレータ(3)を介させて
後、渦巻状に巻回して電極群(4)を形成する巻回工程
と、該巻回工程で形成された円筒状の電極群(4)のケ
ース(5)への挿入工程と、前記ケース(5)の内部に
カセイカリなどの電解液を充填し、上側開口部にパッキ
ング(7)を介して密封体(8)を固設させる工程とか
らなる。
First, according to the present invention, a sheet-shaped anode (1) containing a metal oxide or a metal hydroxide and a sheet-shaped cathode (2) containing a hydrogen storage alloy are provided at the edge of at least one electrode. An insulating layer forming step of applying and drying an insulating layer (20) of a synthetic resin material, and a separator (3) of an insulating material between the anode (1) and the cathode (2), and then a spiral shape. A winding step of winding the electrode group (4) to form an electrode group (4), and a step of inserting the cylindrical electrode group (4) formed in the winding step into the case (5); The process comprises the steps of filling the inside with an electrolytic solution such as caustic, and fixing the sealing body (8) to the upper opening via the packing (7).

【0015】さらに、前記絶縁層形成工程では図4Aに
示すように、陽極(1)、または陰極(2)の縁部、例
えば、セファレータ(3)を介して巻回される電極の開
始端部に縦方向へ所定幅の絶縁層(20)を塗布形成して
いる。
Further, in the step of forming the insulating layer, as shown in FIG. 4A, an edge portion of the anode (1) or the cathode (2), for example, a start end portion of an electrode wound via a separator (3). An insulating layer (20) having a predetermined width is vertically formed by coating.

【0016】前記絶縁層(20)は、陽極(1)、または
陰極(2)の開始端部に縦方向へ形成させるものに限定
されず、例えば、図4Bに示すように、前記陽極
(1)、または陰極(2)の上下側縁部中いずれかの一
側の縁部に絶縁層(20)を形成させることもできるし、
図4Cに示すように、陽極(1)、または陰極(2)の
開始端部、および上下側縁部に絶縁層(20)を形成させ
ることもできるし、また図4Dに示すように、陽極
(1)、または陰極(2)の左右、上下のそれぞれの縁
部に所定の肉厚、および幅を有する絶縁層(20)を形成
させることもできる。
The insulating layer (20) is not limited to one vertically formed at the starting end of the anode (1) or the cathode (2), and for example, as shown in FIG. ), Or an insulating layer (20) can be formed on one of the upper and lower edges of the cathode (2),
As shown in FIG. 4C, an insulating layer (20) may be formed on the starting end and the upper and lower side edges of the anode (1) or the cathode (2), or as shown in FIG. It is also possible to form an insulating layer (20) having a predetermined thickness and width on the left, right, and upper edges of the cathode (2) or the cathode (2).

【0017】また、前記絶縁層(20)は、合成樹脂で形
成されるのが好ましく、さらに好ましくは熱硬化性樹
脂、例えば、フェノール樹脂、エポキシ樹脂、ケイ素樹
脂などが適用されうるし、また熱可塑性樹脂、例えば、
ポリエチレン、ポリプロピレン、フッ素樹脂などが適用
されうる。
The insulating layer (20) is preferably made of a synthetic resin, more preferably a thermosetting resin such as a phenol resin, an epoxy resin, a silicon resin or the like, or a thermoplastic resin. Resin, for example
Polyethylene, polypropylene, fluororesin, etc. may be applied.

【0018】さらに、前記絶縁層(20)は、液体状態の
樹脂中に陽極(1)、または陰極(2)中のいずれか一
つの電極の縁部を浸漬させた後、乾燥させて形成する
か、噴射、あるいは筆などの手段で塗布することができ
るし、絶縁層(20)の肉厚は0.05mmより肉薄の場合
は電極間の絶縁状態が不良になり、0.3mmより肉厚の
場合には所定の肉厚を有するように形成させる塗布作業
が難しくなることによって、0.05mm〜0.3mmばか
りの肉厚で形成されるのが結構好ましい。
Further, the insulating layer (20) is formed by immersing the edge portion of either one of the anode (1) and the cathode (2) in a liquid resin and then drying it. Alternatively, it can be applied by means such as spraying or brushing, and if the thickness of the insulating layer (20) is thinner than 0.05 mm, the insulation between the electrodes will be poor, and the thickness will be thicker than 0.3 mm. In this case, it becomes difficult to carry out a coating operation for forming a film having a predetermined thickness, so that it is preferable to form the film with a thickness of 0.05 mm to 0.3 mm.

【0019】また、前記絶縁層形成工程において絶縁層
(20)の塗布作業が容易になる樹脂の粘度は5,000
〜50,000CPくらいが保持されるようにするのがさ
らに好ましい。
Further, in the insulating layer forming step, the viscosity of the resin which facilitates the work of applying the insulating layer (20) is 5,000.
More preferably, about 50,000 CP is retained.

【0020】[0020]

【実施例】【Example】

(実施例1)ニッケル焼結体を気体としてこれにニッケ
ル酸化物、またはニッケル水酸化物を充填させる焼結式
なり、多孔性金属を気体としてこれにニッケル酸化物、
またはニッケル水素化物を添着させるフェースト式でシ
ート状の陽極(1)を製造し、金属網、ポンチングメタ
ル、エキスファンディドメタルなどの多孔性金属を気体
として水素吸蔵合金の粉末を圧着させた後、焼結する焼
結式なり、水素吸蔵合金の粉末をフェースト式状にして
前記多孔性金属からなる気体に添着して乾燥させた後、
プレースなどにより圧着してシート状に形成するフェー
スト式によって陰極(2)を製造する。
(Embodiment 1) Sintering method in which a nickel sintered body is used as a gas and is filled with nickel oxide or nickel hydroxide, and a porous metal is used as a gas and nickel oxide is added to the sintered body.
Alternatively, a face-type sheet-shaped anode (1) in which nickel hydride is impregnated is manufactured, and after the powder of the hydrogen storage alloy is pressure-bonded by using a porous metal such as a metal net, punching metal, or expanded metal as a gas, Sintering is performed, and the hydrogen storage alloy powder is made into a facet type by being impregnated with the gas made of the porous metal and dried,
The cathode (2) is manufactured by a facet method in which a sheet or the like is pressure-bonded by a place or the like.

【0021】さらに、前記陰極(2)の開始端部と上下
側縁部に0.1mmの肉厚を有するようにエポキシ樹脂を
塗布して絶縁層(20)を形成させ、前記絶縁層(20)を
形成された陰極(2)と、絶縁層(20)が形成されてい
ない陽極(1)との間にセファレータ(3)を介した状
態で巻回して電極群(4)を形成した後、ケース(5)
内に挿入させた後、電解液を充電させ、前記ケース
(5)の上側の開口部にパッキング(7)を介して陽極
キャップ(8a)を有する密封体(8)を結合させて蓄電
池が出来あがった。
Further, an epoxy resin is applied to the starting end and the upper and lower side edges of the cathode (2) so as to have a thickness of 0.1 mm to form an insulating layer (20), and the insulating layer (20) is formed. ) Is formed on the cathode (2) and the anode (1) on which the insulating layer (20) is not formed with the separator (3) interposed therebetween to form the electrode group (4). , Case (5)
After being inserted into the inside, the electrolytic solution is charged, and the sealing body (8) having the anode cap (8a) is connected to the upper opening of the case (5) through the packing (7) to form a storage battery. I got up.

【0022】この際、本発明によって製造された蓄電池
の初期、または充放電時のショットによる不良率を表1
に示しており、充放電時のサイクル特性による蓄電池の
劣化率を表2に示した。
At this time, the defective rate due to shots at the initial stage or during charge / discharge of the storage battery manufactured according to the present invention is shown in Table 1.
Table 2 shows the deterioration rate of the storage battery due to the cycle characteristics during charging and discharging.

【0023】(実施例2)上述の実施例1と同様の方式
で製造された陽極(1)と陰極(2)の開始端部の縁部
に縦方向にエポキシ樹脂を0.1mmの肉厚で塗布して絶
縁層(20)を形成し、前記陽極(1)と陰極(2)との
間にセファレータ(3)を介させた状態で巻回して電極
群(4)を形成し、残余分は実施例1と同様の方式で蓄
電池を製造した。
(Embodiment 2) Epoxy resin having a thickness of 0.1 mm is vertically provided on the edges of the starting ends of the anode (1) and the cathode (2) manufactured by the same method as in the above-mentioned Embodiment 1. To form an insulating layer (20), which is wound around the anode (1) and the cathode (2) with a separator (3) interposed therebetween to form an electrode group (4). A storage battery was manufactured in the same manner as in Example 1.

【0024】さらに、本発明によって製造された蓄電池
の初期、または充放電時のショットによる不良率を表1
に示しており、充放電時のサイクル特性による蓄電池の
劣化率を表2に示した。
Further, the defective rate by the shot of the storage battery manufactured according to the present invention at the initial stage or during charging / discharging is shown in Table 1.
Table 2 shows the deterioration rate of the storage battery due to the cycle characteristics during charging and discharging.

【0025】(比較例1)実施例1と同様の方式で製造
された陽極(1)、および陰極(2)の上下、左右の縁
部をラウンドされた状態で切断していかなる処理も行わ
ずに前記陽極(1)、および陰極(2)の間にセファレ
ータ(3)を介して電極群(4)を形成し、残余分は実
施例1と同様の方式で製造された蓄電池の初期、または
充放電時のショットによる不良率を表1に示しており、
充放電時のサイクル特性による蓄電池の劣化率を表2に
示した。
(Comparative Example 1) The anode (1) and the cathode (2) manufactured in the same manner as in Example 1 were cut at the upper and lower edges and the left and right edges in a rounded state without any treatment. An electrode group (4) is formed between the anode (1) and the cathode (2) through a separator (3), and the rest is the initial stage of a storage battery manufactured in the same manner as in Example 1, or The defective rate due to shots during charging and discharging is shown in Table 1.
Table 2 shows the deterioration rates of the storage batteries due to the cycle characteristics during charging and discharging.

【0026】(比較例2)実施例1と同様の方式で製造
された陽極(1)、および陰極(2)を巻回される開始
端部に長さ5mmばかりの補助セファレータ、およびセフ
ァレータ(3)を介させた後、巻回して電極群(4)を
形成し、残余分は実施例1と同様の方式で製造された蓄
電池の初期、または充放電時のショットによる不良率を
表1に示しており、充放電時のサイクル特性による蓄電
池の劣化率を表2に示した。
COMPARATIVE EXAMPLE 2 An anode (1) and a cathode (2) manufactured in the same manner as in Example 1 were wound around an auxiliary end septum and a separator (3) having a length of about 5 mm at the starting end. ) And then wound to form an electrode group (4), and the remainder is shown in Table 1 as a defective rate at the initial stage of a storage battery manufactured by the same method as in Example 1 or by a shot at the time of charging / discharging. Table 2 shows the deterioration rate of the storage battery due to the cycle characteristics during charging and discharging.

【0027】(比較例3)実施例1と同様の方式で製造
された陽極(1)、および陰極(2)の間に材質の相違
するナイロン樹脂、およびポリプロピレン樹脂でセファ
レータ(3)を構成して電極群(4)を形成し、残余分
は実施例1と同様の方式で製造された蓄電池の初期、ま
たは充放電時のショットによる不良率を表1に示してお
り、充放電時のサイクル特性による蓄電池の劣化率を表
2に示した。
(Comparative Example 3) A separator (3) is made of a nylon resin and a polypropylene resin having different materials between an anode (1) and a cathode (2) manufactured in the same manner as in Example 1. The electrode group (4) is formed by using the same method, and the residual is shown in Table 1 as a defective rate due to shots at the initial stage or charging / discharging of the storage battery manufactured by the same method as in Example 1. Table 2 shows the deterioration rate of the storage battery depending on the characteristics.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】ただし、前記比較例3の蓄電池では充放電
時に50%からの蓄電池からガスの発生による圧力の増
加によって液漏れが発生した。
However, in the storage battery of Comparative Example 3, liquid leakage occurred due to an increase in pressure due to the generation of gas from the storage battery at 50% during charging and discharging.

【0031】上述の本実施例などでは密閉円筒状のニッ
ケル金属水素化物蓄電池について図示、および説明をし
たが、これに限定せず、例えば、角形ニッケル−金属水
素化物の蓄電池にも適用できることは言うまでもない。
In the above-mentioned embodiment and the like, the closed-cylindrical nickel metal hydride storage battery is shown and described, but the present invention is not limited to this, and it is needless to say that the present invention can be applied to, for example, a prismatic nickel-metal hydride storage battery. Yes.

【0032】[0032]

【発明の効果】上述のように、本発明によれば、陽極、
または陰極の巻回開始端部、巻回終了部、および上下縁
部に所定の肉厚を有する絶縁層を形成させることによっ
て、蓄電池の外部から加わる衝撃などに伴う陽極、およ
び陰極の接触によるショットの発生を防止するととも
に、不良率を最少化できるし、これによって蓄電池の寿
命がさらに延長されて充放電の特性が向上される。
As described above, according to the present invention, the anode,
Alternatively, by forming an insulating layer having a predetermined thickness on the winding start end, winding end, and upper and lower edges of the cathode, the shot due to the contact between the anode and the cathode due to the impact applied from the outside of the storage battery. And the defect rate can be minimized, which further extends the life of the storage battery and improves the charge / discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】通常のニッケル−金属水素化物蓄電池を示す全
体縦断面図である。
FIG. 1 is an overall vertical cross-sectional view showing a normal nickel-metal hydride storage battery.

【図2】本発明に適用されたニッケル−金属水素化物蓄
電池を示す全体縦断面図である。
FIG. 2 is an overall vertical cross-sectional view showing a nickel-metal hydride storage battery applied to the present invention.

【図3】本発明の要部を示す一部拡大縦断面図である。FIG. 3 is a partially enlarged vertical sectional view showing a main part of the present invention.

【図4】(A)(B)(C)(D)は本発明によって形
成された電極のそれぞれ異なる態様を示す斜視図であ
る。
4 (A), (B), (C), and (D) are perspective views showing different aspects of an electrode formed according to the present invention.

【符号の説明】[Explanation of symbols]

1…陽極 2…陰極 3…セファレータ 4…電極群 5…ケース 8a…陽極キャップ 8…密封体 20…絶縁層 DESCRIPTION OF SYMBOLS 1 ... Anode 2 ... Cathode 3 ... Separator 4 ... Electrode group 5 ... Case 8a ... Anode cap 8 ... Sealing body 20 ... Insulating layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物、または金属水酸化物を含む
陽極と、水素吸蔵合金を含む陰極と、前記陽極、陰極と
の間に介されたセファレータが備えられている蓄電池に
おいて、 前記陽極、または陰極中の少なくともいずれか一つの電
極には縁部に絶縁層が塗布形成されていることを特徴と
するニッケル−金属水素化物蓄電池。
1. A storage battery comprising: an anode containing a metal oxide or a metal hydroxide; a cathode containing a hydrogen storage alloy; and a separator provided between the anode and the cathode. Alternatively, the nickel-metal hydride storage battery is characterized in that at least one of the electrodes in the cathode is coated with an insulating layer on the edge thereof.
【請求項2】 前記絶縁層は、合成樹脂なることを特徴
とする請求項1記載のニッケル−金属水素化物蓄電池。
2. The nickel-metal hydride storage battery according to claim 1, wherein the insulating layer is made of synthetic resin.
【請求項3】 前記陽極、および陰極の間にセファレー
タを介して巻回した後、電極群を形成し、前記電極群を
ケース内に挿入した後、内部に電解液を充填し上側には
陽極キャップを有する密封体を密挿して蓄電池を製造す
る方法において、 前記陽極、および陰極中少なくともいずれか一つの電極
の縁部に合成樹脂を塗布した後、乾燥させて絶縁層を形
成させる工程が含まれていることを特徴とするニッケル
−金属水素化物蓄電池の製造方法。
3. An electrode group is formed after being wound between the anode and the cathode via a separator, the electrode group is inserted into a case, and the inside is filled with an electrolytic solution. A method for manufacturing a storage battery by tightly inserting a sealed body having a cap, including a step of applying a synthetic resin to an edge portion of at least one of the anode and the cathode, and then drying to form an insulating layer. And a method for manufacturing a nickel-metal hydride storage battery.
【請求項4】 前記絶縁層の肉厚は0.05〜0.3mm
なることを特徴とする請求項3記載のニッケル−金属水
素化物蓄電池の製造方法。
4. The thickness of the insulating layer is 0.05 to 0.3 mm
The method for manufacturing a nickel-metal hydride storage battery according to claim 3, wherein
【請求項5】 前記絶縁層は、フェノール樹脂、エポキ
シ樹脂、ケイ素樹脂、ポリエチレン、ポリプロピレン、
フッ素樹脂中いずれかの一つなることを特徴とする請求
項3記載のニッケル−金属水素化物蓄電池の製造方法。
5. The insulating layer comprises phenol resin, epoxy resin, silicon resin, polyethylene, polypropylene,
The method for manufacturing a nickel-metal hydride storage battery according to claim 3, wherein the method is one of fluororesins.
JP7271353A 1994-12-26 1995-10-19 Nickel-metal hydride storage battery and its preparation Pending JPH09171818A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1994-36923 1994-12-26
KR1019940036923A KR960027029A (en) 1994-12-26 1994-12-26 Nickel-Metal Hydride Accumulator and Manufacturing Method Thereof

Publications (1)

Publication Number Publication Date
JPH09171818A true JPH09171818A (en) 1997-06-30

Family

ID=19403621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7271353A Pending JPH09171818A (en) 1994-12-26 1995-10-19 Nickel-metal hydride storage battery and its preparation

Country Status (4)

Country Link
JP (1) JPH09171818A (en)
KR (1) KR960027029A (en)
DE (1) DE19548355C2 (en)
TW (1) TW293954B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210304A (en) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk Sealed type battery and its manufacturing method
US6387564B1 (en) * 1997-02-28 2002-05-14 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery having an aggregation layer
WO2004095620A1 (en) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co. Ltd. Alkali storage battery and method of producing the same
CN100347901C (en) * 2003-04-22 2007-11-07 松下电器产业株式会社 Alkali storage battery and method of producing the same
JP2008123770A (en) * 2006-11-10 2008-05-29 Gs Yuasa Corporation:Kk Battery
JP2015215988A (en) * 2014-05-09 2015-12-03 川崎重工業株式会社 Square battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960027029A (en) * 1994-12-26 1996-07-22 윤종용 Nickel-Metal Hydride Accumulator and Manufacturing Method Thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147661A (en) * 1985-12-23 1987-07-01 Sanyo Electric Co Ltd Manufacture of spiral electrode
KR960027029A (en) * 1994-12-26 1996-07-22 윤종용 Nickel-Metal Hydride Accumulator and Manufacturing Method Thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387564B1 (en) * 1997-02-28 2002-05-14 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery having an aggregation layer
JP2001210304A (en) * 2000-01-27 2001-08-03 Nec Mobile Energy Kk Sealed type battery and its manufacturing method
WO2004095620A1 (en) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co. Ltd. Alkali storage battery and method of producing the same
CN100347901C (en) * 2003-04-22 2007-11-07 松下电器产业株式会社 Alkali storage battery and method of producing the same
US7595135B2 (en) 2003-04-22 2009-09-29 Panasonic Corporation Alkali storage battery and method of producing the same
JP2008123770A (en) * 2006-11-10 2008-05-29 Gs Yuasa Corporation:Kk Battery
JP2015215988A (en) * 2014-05-09 2015-12-03 川崎重工業株式会社 Square battery

Also Published As

Publication number Publication date
DE19548355C2 (en) 1999-01-14
KR960027029A (en) 1996-07-22
TW293954B (en) 1996-12-21
DE19548355A1 (en) 1996-06-27

Similar Documents

Publication Publication Date Title
EP0697746A1 (en) Sealed zinc secondary battery and zinc electrode therefor
US3897266A (en) Alkaline battery cell
KR20020053807A (en) Rechargeable nickel-zinc cells
JPH09171818A (en) Nickel-metal hydride storage battery and its preparation
JP3324372B2 (en) Cylindrical battery
US6656640B1 (en) Non-sintered electrode with three-dimensional support for a secondary electrochemical cell having an alkaline electrolyte
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JPH1083829A (en) Rolled electrode plate unit and its manufacture
CN110419138B (en) Nickel-metal hydride battery and method for manufacturing same
JP4334386B2 (en) battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JPH0732026B2 (en) Method for manufacturing sealed electrochemical cell
JP3449663B2 (en) Battery
WO2021192978A1 (en) Alkaline storage battery
JPH1186897A (en) Sealed nickel hydrogen battery
JPH05283071A (en) Activation of metal hydride storage battery
JPH11307089A (en) Battery electrode plate
JPH0251874A (en) Alkaline zinc lead-acid battery
WO1994029909A1 (en) Method and apparatus for assembling electrochemical cell
JP2990725B2 (en) Sealed nickel-cadmium battery
JP3177311B2 (en) Manufacturing method of alkaline storage battery
JPH0773860A (en) Manufacture of square alkaline battery
JP4112854B2 (en) Square battery and manufacturing method thereof
JPH0620718A (en) Cylindrical hydride secondary battery