JPH1186897A - Sealed nickel hydrogen battery - Google Patents

Sealed nickel hydrogen battery

Info

Publication number
JPH1186897A
JPH1186897A JP9237468A JP23746897A JPH1186897A JP H1186897 A JPH1186897 A JP H1186897A JP 9237468 A JP9237468 A JP 9237468A JP 23746897 A JP23746897 A JP 23746897A JP H1186897 A JPH1186897 A JP H1186897A
Authority
JP
Japan
Prior art keywords
amount
electrolyte
case
electrode plate
sealed nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9237468A
Other languages
Japanese (ja)
Inventor
Yoshihiro Isogai
嘉宏 磯貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP9237468A priority Critical patent/JPH1186897A/en
Publication of JPH1186897A publication Critical patent/JPH1186897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealed nickel hydrogen battery with which the cycle service life can be remarkably improved more than usual without the use of a complicated process and a material. SOLUTION: In a sealed nickel hydrogen battery, a safety valve 4 is provided in an upper end part of a case 1, and an electrolyte-holding porous body 2 is arranged on a gas storage space side in the case 1. An injection quantity of an electrolyte is also filled by increasing the quantity by 5 to 40% more than normal, so as to become higher than an upper end surface of a plate. When the electrolyte is filled above the upper end surface of the plate in this way, the cycle service life of the sealed nickel hydrogen battery can be markedly prolonged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は密閉型ニッケル水素
電池に関する。
The present invention relates to a sealed nickel-metal hydride battery.

【0002】[0002]

【従来の技術】セパレータを挟んでニッケル正極板及び
水素吸蔵合金負極板を渦巻状または積層状に形成した電
極アセンブリを電解液とともにケ−スに密閉してなる従
来の密閉型ニッケル水素電池では、電池内圧の上昇によ
るケ−スの破裂を防止するためにケ−スの天板部に安全
弁を設けている。
2. Description of the Related Art A conventional sealed nickel-metal hydride battery in which an electrode assembly in which a nickel positive electrode plate and a hydrogen storage alloy negative electrode plate are formed in a spiral or laminated shape with a separator interposed therebetween is sealed in a case together with an electrolyte, A safety valve is provided on the top plate of the case to prevent the case from being ruptured due to an increase in battery internal pressure.

【0003】このような安全弁をもつ密閉型ニッケル水
素電池では、安全弁が作動した場合に安全弁から電解液
が漏出するのを防止するために、過剰な電解液が使用状
態において極板の上縁部を超えてその上部のガス溜め空
間に滞留しないようにしている。すなわち、安全弁作動
時に、ケ−スがなんらかの原因で傾いたり、転倒した
り、あるいは外部から衝撃が与えられたりすると、この
ガス溜め空間に滞留する過剰な電解液が、開いた安全弁
から漏出あるいは噴出するためである。このような事態
は、安全弁が機能不良となった場合にも生じる。
In a sealed nickel-metal hydride battery having such a safety valve, in order to prevent the electrolyte from leaking out of the safety valve when the safety valve is operated, an excessive amount of the electrolyte is used to prevent the electrolyte from leaking from the upper edge of the electrode plate in use. So that it does not stay in the gas storage space above it. That is, if the case is tilted, falls, or receives an external impact for some reason during the operation of the safety valve, the excessive electrolyte remaining in the gas reservoir space leaks or blows out from the opened safety valve. To do that. Such a situation also occurs when the safety valve malfunctions.

【0004】なお、電解液は、正負の極板間のイオン伝
導を実現するためのものであるから、理論的には、両極
板のうち、どちらか低い方の極板の上縁部まで注入され
ていればよく、実際に毛細管現象が存在するため、注入
された電解液量は多孔性の極板やセパレータの内部の孔
部に充填され得る量に限定されるのが普通である。した
がって、従来は、電池反応に寄与せず、ガス溜め空間の
有効ガス蓄積能力を低下させ、安全弁作動時に液漏れの
危険を生じさせるので、電解液がセパレータや極板内に
保持される分を超過して、円筒型電池の電極アセンブリ
の空芯部や、極板の上縁部の上方のガス溜め空間に滞留
しないようにその注入量をコントロールしていた。
[0004] Since the electrolytic solution is for realizing ionic conduction between the positive and negative electrode plates, it is theoretically injected to the upper edge of the lower one of the two electrode plates. The amount of the injected electrolyte is generally limited to an amount that can be filled in the pores inside the porous electrode plate or the separator, since a capillary phenomenon actually exists. Therefore, conventionally, it does not contribute to the battery reaction, reduces the effective gas accumulation capacity of the gas storage space, and causes a danger of liquid leakage when the safety valve is activated. The injection amount is controlled so as not to excessively stay in the air core portion of the electrode assembly of the cylindrical battery or the gas reservoir space above the upper edge of the electrode plate.

【0005】上記ガス溜め空間の容積は、大きいほど多
量のガス発生に対して電池内圧の増大を抑止できる効果
をもつが、単位体積当たりの容量低下を招くので、従来
においてはその後の使用において予想されるガス発生量
に対してケ−スの耐圧(たとえば5〜10気圧)が許容
する範囲でなるべく縮小される。上記説明にもかかわら
ず、作製した電池は極板の活性化のために数回の初期充
放電サイクル(初期活性化処理)を実施するのが通常で
あり、これによる極板の膨張、収縮によりある程度の電
解液が極板の上縁部より下の容積が増大したり、そこに
残留するガスが電解液により置換される可能性がある。
このため、この初期活性化処理による極板やセパレータ
の電解液吸収可能量の増大に備えて、ある程度の予備の
電解液を極板の上縁部より上側のガス溜め空間に一時的
に保持することが考えられる。
[0005] The larger the volume of the gas reservoir space is, the larger the amount of gas generated can be. The effect of suppressing the increase in the internal pressure of the battery is reduced. The pressure resistance of the case (for example, 5 to 10 atmospheres) is reduced as much as possible within the allowable gas generation amount. In spite of the above description, it is normal for the manufactured battery to carry out several initial charge / discharge cycles (initial activation treatment) for activation of the electrode plate. A certain amount of electrolyte may increase the volume below the upper edge of the electrode plate, or the gas remaining there may be replaced by the electrolyte.
Therefore, in preparation for an increase in the amount of electrolyte that can be absorbed by the electrode plate and the separator due to the initial activation process, a certain amount of spare electrolyte is temporarily held in the gas reservoir space above the upper edge of the electrode plate. It is possible.

【0006】なお、電池を初期活性化処理後に出荷した
場合、この予備の電解液は極板などに完全に吸収される
ため極板の上縁部に滞留しないので、安全弁作動時に外
部に放出されることがない。
[0006] When the battery is shipped after the initial activation process, the spare electrolyte is completely absorbed by the electrode plate and does not stay at the upper edge of the electrode plate. Never.

【0007】[0007]

【発明が解決しようとする課題】電池開発における最も
重要な課題は単位重量当たりの容量の向上及びその経時
的な劣化特性すなわちサイクル寿命の延長の2点であ
る。しばしば、高容量電池はサイクル寿命が短く、長寿
命の電池は容量が小さい。本発明は上記問題に鑑みなさ
れたものであり、複雑な工程や材料を用いることなく、
従来よりサイクル寿命を格段に向上可能な密閉型ニッケ
ル水素電池を提供することをその解決すべき課題として
いる。
The most important issues in battery development are improvement of capacity per unit weight and deterioration of the battery over time, that is, extension of cycle life. Often, high capacity batteries have a short cycle life and long life batteries have a small capacity. The present invention has been made in view of the above problems, without using complicated steps and materials,
An object of the present invention is to provide a sealed nickel-metal hydride battery capable of significantly improving the cycle life as compared with the related art.

【0008】[0008]

【課題を解決するための手段】請求項1記載の構成によ
れば、安全弁からの液漏れを効果的に防止することがで
きる。請求項2記載の構成によれば請求項1記載の密閉
型ニッケル水素電池において更に、電解液として、極板
の上縁部に達しない範囲でケ−ス内に充填される基本液
量に加えて更に超過液量が追加される。この超過液量は
基本液量の5〜40%、かつ、ガス溜め空間容積の30
〜70%に設定される。これにより、サイクル寿命を向
上することができる。液量が上記範囲未満であれば、サ
イクル寿命の延長効果が十分でなく、液量が上記範囲を
超えると電池体積当たりの容量の低下が顕著となる。
According to the first aspect of the present invention, liquid leakage from the safety valve can be effectively prevented. According to the second aspect of the present invention, in the sealed nickel-metal hydride battery according to the first aspect, the electrolyte further includes an amount of the electrolytic solution in addition to the amount of the basic solution filled in the case within a range not reaching the upper edge of the electrode plate. The excess liquid amount is further added. This excess liquid amount is 5 to 40% of the basic liquid amount and 30% of the gas storage space volume.
It is set to ~ 70%. Thereby, the cycle life can be improved. When the amount of the liquid is less than the above range, the effect of extending the cycle life is not sufficient, and when the amount of the liquid exceeds the above range, the capacity per battery volume is remarkably reduced.

【0009】本発明者らは、一見無駄に見える正負の両
極板の対向部分より更に上方に位置する極板が存在しな
いガス溜め空間の一部に電解液を滞留させることによ
り、なんら複雑な工程や材料を用いることなく密閉型ニ
ッケル水素電池のサイクル寿命を予想もできないレベル
に向上できることを見いだした。この理由はいまだ解明
されていないが、本発明者らは以下のように推測をして
いる。
SUMMARY OF THE INVENTION The inventors of the present invention have found that a complicated process can be performed by accumulating an electrolytic solution in a part of a gas storage space in which there is no electrode plate located above the opposing portions of the positive and negative electrode plates which seem to be useless. It has been found that the cycle life of a sealed nickel-metal hydride battery can be improved to an unpredictable level without using any material. Although the reason has not been elucidated yet, the present inventors speculate as follows.

【0010】一つの理由は、密閉型ニッケル水素電池に
おいて、充放電サイクルを繰り返していくと、電極アセ
ンブリが膨張してケ−スを主に横へ拡げる。これを数十
回以上繰り返すうちに、ケ−スの塑性変形して、極板上
縁部より下のスペースが増大し、必要電解液量が増大す
ることが考えられる。他の一つの理由は、水素吸蔵合金
負極を構成する水素吸蔵合金粉末が充放電サイクルの多
数回の繰り返しにより微粉化し、その分だけ水素吸蔵合
金負極の吸収可能電解液量(多孔率)が増大して、必要
電解液量が増大することが考えられる。
One reason is that in a sealed nickel-metal hydride battery, as the charge / discharge cycle is repeated, the electrode assembly expands and the case spreads mainly horizontally. While repeating this process several tens of times or more, the case is plastically deformed, so that the space below the upper edge of the electrode plate is increased, and the required amount of electrolyte may be increased. Another reason is that the hydrogen storage alloy powder constituting the negative electrode of the hydrogen storage alloy is pulverized by repetition of charge / discharge cycles many times, and the absorbable electrolyte amount (porosity) of the negative electrode of the hydrogen storage alloy increases accordingly. Thus, it is conceivable that the required amount of electrolyte solution increases.

【0011】その他、電解液が充放電サイクルの実施と
ともに汚染されたり、イオン置換や酸化などで活性度が
低下するため、電解液が多いほうがこの問題の影響が少
ないということも考えられる。いずれの理由が相当する
かは現状では不明であるが、初期活性化処理実施後でも
ガス溜め空間に滞留するレベルまで電解液を注入してお
くことによって、密閉型ニッケル水素電池のサイクル寿
命を格段に延長できる。
In addition, since the electrolyte is contaminated during the charge / discharge cycle or the activity is reduced due to ion substitution or oxidation, it is conceivable that the larger the amount of the electrolyte, the smaller the effect of this problem. It is unknown at this time which reason is appropriate, but the cycle life of the sealed nickel-metal hydride battery is significantly improved by injecting the electrolyte until it stays in the gas storage space even after the initial activation treatment. Can be extended to

【0012】[0012]

【発明の実施の形態】電池としては、円筒密閉型電池の
他、積層型電池を採用することができる。水素吸蔵合金
粉末としては、希土類系合金、チタン系合金、ジルコニ
ウム系合金などを採用することができ、増粘材として
は、メーチルセルロース、カルボキシルメチルセルロー
スなどを採用することができ、結着材としては、ポリテ
トラフルオロエチレン(PTFE)、スチレンブタジエ
ン共重合体などを採用することができ、水素吸蔵合金電
極を用いた電池の電解液としては、KOH水溶液、KO
H、LiOH混合水溶液、KOH、LiOH、NaOH
混合水溶液などを採用することができ、集電体として
は、発泡ニッケル、パンチングメタルなどを採用するこ
とができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a battery, a stacked battery can be employed in addition to a cylindrical sealed battery. Rare earth alloys, titanium alloys, zirconium alloys, etc. can be used as the hydrogen storage alloy powder.Methyl cellulose, carboxymethyl cellulose, etc. can be used as the thickener, and as the binder Can be made of polytetrafluoroethylene (PTFE), styrene-butadiene copolymer, or the like. As the electrolyte for a battery using a hydrogen storage alloy electrode, a KOH aqueous solution, KO
H, LiOH mixed aqueous solution, KOH, LiOH, NaOH
A mixed aqueous solution or the like can be used, and as the current collector, foamed nickel, punching metal, or the like can be used.

【0013】[0013]

【実施例】以下、本発明を適用した円筒密閉型ニッケル
水素化物電池を以下に説明する。図1はこの実施例の円
筒密閉型ニッケル水素化物電池の正極側の半部の軸方向
部分断面図を示す。1は円筒状のケ−スであり、その一
端開口は電気絶縁用の樹脂リング2を介して円盤状の蓋
板3で密閉されている。蓋板3には開口3aが形成され
るとともに、電池内圧が上昇した場合の圧力を抜くため
の安全弁4が設けられている。安全弁4は、蓋板3の上
面に固着されたキャップ状の+タ−ミナル8の内側のば
ね8aにより蓋板3の開口3aへ付勢されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed cylindrical nickel hydride battery to which the present invention is applied will be described below. FIG. 1 shows an axial partial cross-sectional view of a half portion on the positive electrode side of a cylindrical sealed nickel hydride battery of this embodiment. Reference numeral 1 denotes a cylindrical case whose one end opening is closed by a disc-shaped cover plate 3 via a resin ring 2 for electrical insulation. An opening 3a is formed in the cover plate 3, and a safety valve 4 for releasing pressure when the battery internal pressure rises is provided. The safety valve 4 is urged toward the opening 3a of the cover plate 3 by a spring 8a inside a cap-shaped + terminal 8 fixed to the upper surface of the cover plate 3.

【0014】5は電極アセンブリであり、図示しないセ
パレ−タを介して正極板6と負極板7とを重ねて渦巻状
に巻装して円筒状に形成されている。ただし、図1にお
いて、電極アセンブリ5は模式的に図示されている。6
1は正極板6の上縁部を示し、71は負極板7の下縁部
を示す。+タ−ミナル8は、蓋板3とリ−ド9aを介し
て電極アセンブリ5の正極板6の上側の端縁部61に抵
抗溶接された円盤状の集電板9と電気的に接合されてい
る。
Reference numeral 5 denotes an electrode assembly, which is formed in a cylindrical shape by stacking a positive electrode plate 6 and a negative electrode plate 7 via a separator (not shown) and spirally winding them. However, in FIG. 1, the electrode assembly 5 is schematically illustrated. 6
Reference numeral 1 denotes the upper edge of the positive electrode plate 6, and 71 denotes the lower edge of the negative electrode plate 7. The + terminal 8 is electrically connected to the disk-shaped current collector plate 9 which is resistance-welded to the upper edge 61 of the positive electrode plate 6 of the electrode assembly 5 via the lid plate 3 and the leads 9a. ing.

【0015】同様に、集電板10の上端面は負極板7の
下側の端縁部71に抵抗溶接されている。更に説明する
と、集電板9の下端面及び集電板10の上端面には放射
状の突条が設けられており、この突条が極板6、7に抵
抗溶接されている。12は、電解液保持用多孔体であっ
て、蓋板3の開口3aを覆うようにガス溜め空間14側
に支持部材15によって固定されている。支持部材15
にはガス抜き用の開口15aが形成されている。開口1
5aの位置や支持部材15の形状は図示のものと異なっ
ても良い。電解液保持用多孔体12は耐アルカリ性の多
孔物質(たとえばポリプロピレン不織布等)からなり、
電池が横向きに置かれたりした場合やガス抜きの際、電
解液を保持する機能を有する。
Similarly, the upper end surface of the current collector 10 is resistance-welded to the lower edge 71 of the negative electrode plate 7. More specifically, radial projections are provided on the lower end surface of the current collector plate 9 and the upper end surface of the current collector plate 10, and the projections are resistance-welded to the electrode plates 6 and 7. Reference numeral 12 denotes a porous body for holding an electrolyte, which is fixed to the gas storage space 14 side by a support member 15 so as to cover the opening 3a of the cover plate 3. Support member 15
Has an opening 15a for venting gas. Opening 1
The position of 5a and the shape of the support member 15 may be different from those shown. The electrolyte holding porous body 12 is made of an alkali-resistant porous material (for example, a polypropylene nonwoven fabric).
It has a function of holding the electrolyte when the battery is placed sideways or when venting gas.

【0016】この電池の組み立て方法を以下に説明す
る。まず、電極アセンブリ5を形成し、負極板7の下縁
部に集電板10を抵抗溶接し、ケ−ス1に収容し集電板
10をケ−ス1の缶底に溶接する。次に、正極板6の上
縁部61に+タ−ミナル8と一体の集電板9を抵抗溶接
する。次に、集電板9と蓋板3とをリ−ド9aで接続す
る。
A method for assembling this battery will be described below. First, the electrode assembly 5 is formed, and the current collector 10 is resistance-welded to the lower edge of the negative electrode plate 7, accommodated in the case 1, and welded to the bottom of the case 1. Next, the current collector plate 9 integral with the + terminal 8 is resistance-welded to the upper edge portion 61 of the positive electrode plate 6. Next, the current collecting plate 9 and the cover plate 3 are connected by a lead 9a.

【0017】このようにして形成した半完成の電池に5
〜50mHgまで真空引きした空間にて電解液を注入す
る。その後、樹脂リング2を介して蓋板3をケ−ス1の
一端でかしめ、蓋板3を固定する。上述の実施例によれ
ば、安全弁4のケ−ス1内側の開口部が電解液保持用多
孔体12により覆われているので、ケ−ス内圧が上昇し
てガス抜きのための安全弁4が開いた場合でも、電解液
が電解液保持用多孔体12に保持されるため安全弁4か
らの液漏れを防止することができる。このように、安全
弁4からの液漏れが防止できる構造であるため、極板等
に吸収保持される電解液の液量(基本液量)を超過して
多量の超過液量をケ−ス1内に充填することが可能とな
り、サイクル寿命を従来より格段に向上することができ
る。 (実験)組成がMmNi3.6Co0.7Al0.4Mn0.3(L
a/Mm=0.6)である水素吸蔵合金を機械粉砕して
100メッシュ以下とした水素吸蔵合金粉末にニッケル
パウダを水素吸蔵合金粉末にその5wt%混合し、結着
材としてMC(メチルセルロース)2wt%水溶液を上
記水素吸蔵合金粉末に対してその20wt%加えて攪拌
してペーストを形成した。
The semi-finished battery formed in this way has 5
The electrolyte is injected into the space evacuated to 50 mHg. Thereafter, the cover plate 3 is caulked at one end of the case 1 via the resin ring 2 and the cover plate 3 is fixed. According to the above-described embodiment, since the opening inside the case 1 of the safety valve 4 is covered with the porous body 12 for holding the electrolytic solution, the internal pressure of the case increases and the safety valve 4 for venting gas is used. Even when it is opened, the electrolyte is held by the electrolyte holding porous body 12, so that liquid leakage from the safety valve 4 can be prevented. As described above, since the structure is such that liquid leakage from the safety valve 4 can be prevented, a large amount of excess liquid exceeds the amount (basic liquid amount) of the electrolytic solution absorbed and held by the electrode plate or the like. And the cycle life can be significantly improved as compared with the prior art. (Experiment) The composition was MmNi 3.6 Co 0.7 Al 0.4 Mn 0.3 (L
a / Mm = 0.6) mechanically pulverized hydrogen storage alloy powder having a mesh size of 100 mesh or less, nickel powder was mixed with the hydrogen storage alloy powder in an amount of 5 wt%, and MC (methyl cellulose) was used as a binder. A 2 wt% aqueous solution was added to the hydrogen storage alloy powder at 20 wt% and stirred to form a paste.

【0018】次に、このペーストを厚さ70μmのパン
チングメタルに被着し、水素吸蔵合金負極7を作製し
た。水素吸蔵合金負極7の寸法は全長246mm、幅3
4mm、厚さ0.46mmである。また、正極板6は全
長186mm、幅34mm、厚さ0.71mmのCo−
Zn系の水酸化ニッケル板である。セパレータはポリプ
ロピレン膜であり、1平方m当たり70gのものを採用
した。
Next, this paste was applied on a punching metal having a thickness of 70 μm to produce a hydrogen storage alloy negative electrode 7. The dimensions of the hydrogen storage alloy negative electrode 7 are 246 mm in total length and 3 in width.
4 mm, thickness 0.46 mm. The positive electrode plate 6 has a total length of 186 mm, a width of 34 mm, and a thickness of 0.71 mm.
It is a Zn-based nickel hydroxide plate. The separator used was a polypropylene membrane having a weight of 70 g per square meter.

【0019】電解液は6.8NのKOHと0.8NのL
iOHとを含み、試料1では4.36g、試料2では
4.82g、試料3では5.23g、試料4では5.6
0g、試料5では6.12gとした。負極は正極の1.
7倍の容量に設計した。これらの電池の容量は、0.2
C充放電を32サイクル実施する初期活性化処理の後、
充電を1C(2.4A)で定格容量2.4Ahの110
%まで実施し、30分休止後、1C(2.4A)で開放
端子電圧が0.85Vになるまで行い、30分休止する
充放電サイクルを200〜1500回実施した。なお、
各試料1〜5はそれぞれ10個作製し、上記初期活性化
処理後、開口して電解液の液位を調べた.試料4、5で
は電解液は、正極板6の上縁部61を超えていた。
The electrolyte is 6.8N KOH and 0.8N L
4.36 g for sample 1, 4.82 g for sample 2, 5.23 g for sample 3, and 5.6 for sample 4.
0 g, and for Sample 5, 6.12 g. The negative electrode is 1.
It was designed to be seven times the capacity. The capacity of these batteries is 0.2
After the initial activation process of performing C charge / discharge 32 cycles,
Charging is 1C (2.4A) and rated capacity is 2.4Ah 110
%, And after a 30-minute pause, the operation was performed at 1 C (2.4 A) until the open terminal voltage reached 0.85 V, and a charge / discharge cycle of a 30-minute pause was performed 200 to 1500 times. In addition,
Ten samples of each of the samples 1 to 5 were prepared, and after the initial activation treatment, the sample was opened and the liquid level of the electrolyte was examined. In samples 4 and 5, the electrolytic solution exceeded the upper edge 61 of the positive electrode plate 6.

【0020】その結果を図2に示す。図2から、電解液
が初期活性化処理後、正極板6の上縁部61を超えてい
ない場合、サイクル寿命は平均600回であったが、試
料4では平均800回を超え、試料5では平均1300
回を超えるという実用上、極めて有効な結果を得た。 (変形態様)上記実施例では、電解液保持用多孔体12
として、合成樹脂不織布マットを用いたが、以外の他の
液保持性材料を用いることができる。
FIG. 2 shows the results. From FIG. 2, when the electrolyte solution did not exceed the upper edge 61 of the positive electrode plate 6 after the initial activation treatment, the cycle life was 600 times on average, but the sample 4 exceeded 800 times on average and the sample 5 Average 1300
Practically, a very effective result was obtained. (Modification) In the above embodiment, the porous body 12 for holding the electrolytic solution was used.
Although a synthetic resin nonwoven fabric mat was used, other liquid holding materials other than the above can be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の電池の構成を示す断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of a battery according to an example.

【図2】実施例の電池で電解液の注入量を種々変更した
場合の充放電の繰り返し試験の結果を示す特性図であ
る。
FIG. 2 is a characteristic diagram showing the results of a charge / discharge repetition test when the amount of injected electrolyte is variously changed in the batteries of Examples.

【符号の説明】[Explanation of symbols]

1はケ−ス、 3は蓋板(ケ−スの上部)、 5は電極アセンブリ、 6は正極板、 7は負極板、 8は+タ−ミナル、 9は集電板、 10は集電板、 12は電解液保持用多孔体、 61は正極板6の上縁部。 1 is a case, 3 is a cover plate (upper part of the case), 5 is an electrode assembly, 6 is a positive electrode plate, 7 is a negative electrode plate, 8 is a + terminal, 9 is a current collecting plate, and 10 is a current collecting plate. 12, a porous body for holding an electrolytic solution; 61, an upper edge portion of the positive electrode plate 6;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】上端部に安全弁を有するケ−スと、セパレ
ータを挟んで巻装ないし積層されて前記ケ−スに収容さ
れる正負一対の極板と、前記極板の上縁部に達しない範
囲で前記ケ−ス内に充填される電解液とを備え、前記極
板の上端面と前記ケ−スの天板部下面との間にガス溜め
空間が形成される密閉型ニッケル水素電池において、 前記安全弁の弁口を覆って前記ケ−スのガス溜め空間内
に配設される電解液保持用多孔体を有することを特徴と
する密閉型ニッケル水素電池。
1. A case having a safety valve at an upper end, a pair of positive and negative electrode plates wound or laminated with a separator interposed therebetween and housed in the case, and reaching an upper edge of the electrode plate. A sealed nickel-metal hydride battery having an electrolytic solution filled in the case within a range not to be deviated, wherein a gas reservoir space is formed between an upper end surface of the electrode plate and a lower surface of a top plate portion of the case. 3. The sealed nickel-metal hydride battery according to claim 1, further comprising a porous body for retaining an electrolyte, which is disposed in a gas storage space of the case so as to cover a valve port of the safety valve.
【請求項2】請求項1記載の密閉型ニッケル水素電池に
おいて、 前記電解液の液量は、液面が前記極板の上縁部を超過し
ない範囲で前記ケ−ス内に充填される液量である基本液
量と、前記基本液量を超過する超過液量とからなり、 前記超過液量は、前記電解液の基本液量の5〜40%
で、かつ、前記ガス溜め空間容積の30〜70%に設定
されることを特徴とする密閉型ニッケル水素電池。
2. The sealed nickel-metal hydride battery according to claim 1, wherein the amount of the electrolytic solution is such that the liquid level does not exceed the upper edge of the electrode plate. The amount of the base solution is an amount of the base solution and the amount of the excess solution exceeding the base solution amount. The excess solution amount is 5 to 40% of the base solution amount of the electrolytic solution.
Characterized in that the volume is set to 30 to 70% of the volume of the gas reservoir space.
JP9237468A 1997-09-02 1997-09-02 Sealed nickel hydrogen battery Pending JPH1186897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9237468A JPH1186897A (en) 1997-09-02 1997-09-02 Sealed nickel hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9237468A JPH1186897A (en) 1997-09-02 1997-09-02 Sealed nickel hydrogen battery

Publications (1)

Publication Number Publication Date
JPH1186897A true JPH1186897A (en) 1999-03-30

Family

ID=17015785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9237468A Pending JPH1186897A (en) 1997-09-02 1997-09-02 Sealed nickel hydrogen battery

Country Status (1)

Country Link
JP (1) JPH1186897A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303224A (en) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp Electric double layer capacitor
JP2011044746A (en) * 2010-11-29 2011-03-03 Mitsubishi Electric Corp Electric double-layer capacitor
WO2012039001A1 (en) * 2010-09-21 2012-03-29 タカノ株式会社 Electric power storage device
JP2014203822A (en) * 2013-04-08 2014-10-27 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303224A (en) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp Electric double layer capacitor
WO2012039001A1 (en) * 2010-09-21 2012-03-29 タカノ株式会社 Electric power storage device
JPWO2012039001A1 (en) * 2010-09-21 2014-02-03 中村 八束 Power storage device
JP5721726B2 (en) * 2010-09-21 2015-05-20 中村 八束 Power storage device
JP2011044746A (en) * 2010-11-29 2011-03-03 Mitsubishi Electric Corp Electric double-layer capacitor
JP2014203822A (en) * 2013-04-08 2014-10-27 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Secondary battery

Similar Documents

Publication Publication Date Title
JPH03184275A (en) Rectangular sealed alkaline battery with negative electrode of hydrogen storage alloy
WO2007004703A1 (en) Nickel-hydrogen battery
KR100189808B1 (en) Wound electrode plate
JP2017183193A (en) Nickel-metal hydride storage battery
JPH1186897A (en) Sealed nickel hydrogen battery
KR100210502B1 (en) Separator for spiral electrode
US5131920A (en) Method of manufacturing sealed rechargeable batteries
JP4126684B2 (en) Nickel metal hydride secondary battery
JP2003045480A (en) ThIN NICKEL - HYDROGEN SECONDARY BATTERY, HYBRID CAR AND ELECTRIC VEHICLE
JP3567021B2 (en) Alkaline secondary battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP3168623B2 (en) Prismatic metal hydride storage battery
JP2013122862A (en) Cylindrical alkaline storage battery
JP3742149B2 (en) Alkaline secondary battery
JP3670357B2 (en) Cylindrical battery
JPH11162447A (en) Cylindrical battery with spiral electrode body and its manufacture
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP2002015732A (en) Secondary cell
JPH0963635A (en) Alkaline secondary battery
JPH09213363A (en) Manufacture of alkali storage battery
JP2002280057A (en) Alkaline secondary battery
JP3504350B2 (en) Manufacturing method of alkaline secondary battery
JPH1196999A (en) Sealed nickel-hydrogen secondary battery
JP2000299123A (en) Nickel-hydrogen secondary battery
JPH10172575A (en) Hydride secondary battery