WO2012039001A1 - Electric power storage device - Google Patents

Electric power storage device Download PDF

Info

Publication number
WO2012039001A1
WO2012039001A1 PCT/JP2010/005721 JP2010005721W WO2012039001A1 WO 2012039001 A1 WO2012039001 A1 WO 2012039001A1 JP 2010005721 W JP2010005721 W JP 2010005721W WO 2012039001 A1 WO2012039001 A1 WO 2012039001A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode block
positive electrode
negative electrode
power storage
storage device
Prior art date
Application number
PCT/JP2010/005721
Other languages
French (fr)
Japanese (ja)
Inventor
中村八束
Original Assignee
タカノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカノ株式会社 filed Critical タカノ株式会社
Priority to JP2012534827A priority Critical patent/JP5721726B2/en
Priority to PCT/JP2010/005721 priority patent/WO2012039001A1/en
Publication of WO2012039001A1 publication Critical patent/WO2012039001A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/138Primary casings, jackets or wrappings of a single cell or a single battery adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/1535Lids or covers characterised by their shape adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a power storage device that can be charged by applying a voltage between a positive electrode and a negative electrode immersed in an electrolytic solution or can be taken out based on a discharge between the positive electrode and the negative electrode.
  • a positive electrode and a negative electrode immersed in an electrolytic solution in a container are provided, and charging can be performed by applying a voltage between the positive electrode and the negative electrode or taking out a voltage based on a discharge between the positive electrode and the negative electrode.
  • a power storage device battery is known.
  • Patent Document 1 forms a cell container for a large number of mutually connected positive and negative electrodes whose casings are connected by the same electrolyte, and has good heat at a fixed interval between adjacent electrodes.
  • a metal oxide-hydrogen battery having a casing intermediate wall made of a conductive material, the intermediate wall being electrically insulated from the electrode, but permeable to electrolyte.
  • an electrode body in which a positive electrode capable of occluding and releasing anions and a negative electrode capable of occluding and releasing lithium ions are opposed to each other through a separator is housed in a sealed container together with a non-aqueous electrolyte.
  • a storage device comprising a plurality of connected storage cells connected in series, each cell having a third electrode having a lithium metal disposed in a non-aqueous electrolyte, and a potential difference between the third electrode and the positive electrode is predetermined.
  • a power storage device is disclosed in which the potential of the positive electrode is controlled with respect to the third electrode by conducting a conductive connection between the third electrode and the positive electrode.
  • Patent Document 3 includes an electrode material and an electrolyte.
  • a power storage device is disclosed that includes a fibrous carbon catalyst in which an electrode material includes carbon particles having a nanoshell structure.
  • Patent Document 4 discloses an electrolyte solution obtained by dissolving an electrolyte panadium salt in pure water.
  • An oxidation-reduction type power storage device is disclosed, in which a device for generating electromagnetic waves in the far-infrared region is provided in a circulation piping system for an electrolyte solution.
  • An object of the present invention is to provide a power storage device that solves the problems in the background art.
  • the power storage device 1 includes a positive electrode 2 and a negative electrode 3 immersed in an electrolytic solution in a container, and is charged by applying a voltage between the positive electrode 2 and the negative electrode 3.
  • a conductive porous material Rc is used for the electrolyte Le contained in the sealed container 4.
  • the positive electrode block 2x to be the positive electrode 2 and the negative electrode block 3x to be the negative electrode 3 respectively formed are immersed, and the internal pressure Pi of the sealed container 4 is set to a predetermined magnitude or more.
  • the porous material Rc can contain at least a carbonaceous material Bc obtained by carbonizing wood
  • the electrolytic solution Le includes an aqueous solution or hot spring component using at least a food component.
  • An aqueous solution using can be included.
  • the positive electrode block 2x and the negative electrode block 3x can be formed such that one of the positive electrode block 2x and the negative electrode block 3x is formed in a cylindrical shape, and the other is formed in a cylindrical shape that can be accommodated in one internal space.
  • Each of the electrode block 2x and the negative electrode block 3x can be integrally formed or configured by a combination of a plurality of divided blocks Mp.
  • the positive electrode block 2x and the negative electrode block 3x can be provided with electrode terminals 2xp and 3xp, which are formed of graphite C and protrude to expose the tips 2xps and 3xps to the outside of the electrolytic solution Le. Furthermore, between the positive electrode block 2x and the negative electrode block 3x, the positive electrode block 2x and the negative electrode block 3x generate and prevent diffusion of gas components leaking outside from the surfaces of the positive electrode block 2x and the negative electrode block 3x.
  • the partition wall 5 can be disposed, and the partition wall 5 is formed to have a size facing the partial surface or the entire surface of the surfaces 2xf and 3xf where the positive electrode block 2x and the negative electrode block 3x face each other. Can do.
  • the power storage device 1 according to the present invention having such a configuration has the following remarkable effects.
  • the porous material Rc is made of, for example, wood which is a familiar material that can be easily obtained at low cost. Carbonized carbon material Bc or the like can be used. Therefore, it is possible to use wood scraps and waste materials, and it is possible to reduce the cost of products by reducing costs, and it is advantageous in terms of resources, unlike rare metals, etc. It is most suitable for power storage facilities in solar power generation (solar panel) systems.
  • a familiar food material such as a saline solution or a bathing agent that is not harmful is used. Because it can, it can be freely drained into sewage, etc., and is harmless to the human body including the skin. Therefore, environmental protection and safety can be ensured even when liquid leakage occurs due to damage, etc., and handling when performing disposal processing and recycling processing even when it becomes unusable due to its lifetime etc. Becomes easy.
  • one of the positive electrode block 2x and the negative electrode block 3x when forming the positive electrode block 2x and the negative electrode block 3x, one of the positive electrode block 2x and the negative electrode block 3x can be formed in a cylindrical shape and the other can be accommodated in one internal space. If it is formed into a cylindrical shape, a sufficient volume in the positive electrode block 2x and the negative electrode block 3x and a sufficient area in the opposing surfaces 2xf and 3xf of the positive electrode block 2x and the negative electrode block 3x can be secured. Loss can be reduced by reducing the electrical resistance between the electrode block 2x and the negative electrode block 3x.
  • the positive electrode block 2x and the negative electrode block 3x are configured by a combination of a plurality of divided blocks Mp..., A smaller block (such as a piece of wood) can be used. Further effective use of materials and the like can be achieved.
  • electrode terminals 2xp and 3xp are formed on the positive electrode block 2x and the negative electrode block 3x by graphite C and protruded so that the tips 2xps and 3xps are exposed to the outside of the electrolyte Le. If this is the case, there is no problem that the metal part is immersed in the electrolytic solution Le, so that it is possible to eliminate loss and adverse effects due to unnecessary chemical reactions in the electrolytic solution Le.
  • the partition wall 5 can be formed to have a size facing a part or the entire surface of the opposing surfaces 2xf and 3xf of the positive electrode block 2x and the negative electrode block 3x, so that diffusion of gas components It is possible to select an optimal form and size from the viewpoint of achieving both prevention and ensuring conductivity.
  • Sectional front view of a power storage device A plan view of a positive electrode block and a negative electrode block in the power storage device, External plan view of the power storage device, An exploded perspective view of the main part of the power storage device, A flowchart for explaining a method of manufacturing the same power storage device, Operation explanatory diagram of the power storage device, A plan view showing a modification example of one electrode block of the power storage device, Sectional front view including a partially extracted enlarged view showing a modification of the partition wall of the power storage device, The typical block diagram of the electrical storage apparatus which concerns on 1st modified embodiment (a) and 2nd modified embodiment (b) of this invention,
  • the power storage device 1 includes a sealed container 4, a positive electrode block 2x, a negative electrode block 3x, a partition wall 5, and an electrolytic solution Le as a configuration of main parts.
  • the sealed container 4 is constituted by a combination of a container body 4m (see FIG. 4) formed of a transparent (semi-transparent) plastic material and a container cover 4c, for example.
  • the illustrated container body 4m is formed as a circular container and has a body flange 4mf integrally formed at the upper end. Moreover, it has the cover flange 4cf integrally formed also in the outer peripheral part of the container cover 4c, and the main body flange 4mf and the cover flange 4cf can be fixed with multiple sets (eight examples are illustrated) of screws and nuts 10.
  • a seal ring 11 such as an O-ring is interposed between the main body flange 4mf and the container cover 4c to ensure sufficient sealing performance.
  • the container cover 4 c is provided with a pair of connection terminal portions 2 j and 3 j and a liquid injection port portion 12 for injecting the electrolytic solution Le into the sealed container 4.
  • the liquid injection port 12 incorporates a check valve.
  • the negative electrode block 3x is formed of a porous material Rc having conductivity. As the porous material Rc, it is desirable to use a carbon material Bc obtained by carbonizing wood.
  • the negative electrode block 3x is formed in a cylindrical shape as shown in FIG. As shown in FIG. 2 and FIG. 2, the negative electrode block 3x may be integrally formed from a single piece of wood, or, as shown in FIG. 7, six pieces divided into six at regular intervals in the circumferential direction.
  • the divided blocks Mp... May be manufactured, the divided blocks Mp... May be arranged in a cylindrical shape, and the outer peripheral surface may be fixed by a non-metallic fastening band 32.
  • a smaller piece of wood can be used, so that there is an advantage that further effective utilization of waste materials and scrap materials can be achieved.
  • segmentation number can be implemented by arbitrary numbers.
  • an attachment hole 13 for inserting and attaching the electrode terminal 3xp is provided in the axial direction on one end face of the negative electrode block 3x.
  • the electrode terminal 3xp is formed into a round bar shape from graphite C, and is integrated with the negative electrode block 3x by being inserted into the mounting hole 13. At this time, it is considered that the electrical resistance at the time of connection between the electrode terminal 3xp and the negative electrode block 3x is as small as possible and the mechanical coupling strength is as large as possible.
  • the electrode terminal 3xp protrudes from the end face of the negative electrode block 3x by a predetermined length, and this protrusion length is considered so that the tip 3xps of the electrode terminal 3xp is exposed to the outside of the electrolyte Le.
  • the tip 3xps side of the electrode terminal 3xp can be connected (coupled) to the inner end side of the connection terminal portion 3j.
  • the positive electrode block 2x is also formed using a porous material Rc having conductivity, that is, a carbon material Bc obtained by carbonizing wood.
  • the positive electrode block 2x is formed in a cylindrical shape (see FIG. 4) that can be accommodated in the inner space of the negative electrode block 3x, and an attachment hole 14 for inserting and attaching the electrode terminal 2xp is provided at the center position of one end face. Provide in the axial direction.
  • the electrode terminal 2xp is formed into a round bar shape from graphite C, and is integrated into the positive electrode block 2x by being inserted into the mounting hole 14.
  • the electrical resistance at the time of connection between the electrode terminal 2xp and the positive electrode block 2x is made as small as possible and the mechanical coupling strength is made as large as possible.
  • the electrode terminal 2xp protrudes from the end face of the positive electrode block 2x by a predetermined length, and this protrusion length is considered so that the tip 2xps of the electrode terminal 2xp is exposed to the outside of the electrolyte Le.
  • the tip 2xps side of the electrode terminal 2xp can be connected (coupled) to the inner end side of the connection terminal portion 2j described above.
  • the positive electrode block 2x may also be configured by a combination of a plurality of divided blocks in the same manner as the negative electrode block 3x shown in FIG.
  • one of the positive electrode block 2x and the negative electrode block 3x is formed into a cylindrical shape, and the other is formed into a cylindrical shape that can be accommodated in one internal space. If formed, a sufficient volume in the positive electrode block 2x and the negative electrode block 3x and a sufficient area in the opposing surfaces 2xf and 3xf of the positive electrode block 2x and the negative electrode block 3x can be secured. Loss can be reduced by reducing the electrical resistance between the negative electrode blocks 3x.
  • the electrode terminals 2xp and 3xp which are formed of graphite C and protruded from the positive electrode block 2x and the negative electrode block 3x and the tips 2xps and 3xps are exposed to the outside of the electrolytic solution Le, are combined, the metal portion is formed. Since the problem of being immersed in the electrolytic solution Le does not occur, it is possible to eliminate a loss or an adverse effect based on an unnecessary chemical reaction in the electrolytic solution Le.
  • Vs ⁇ ⁇ rs ⁇ h
  • the partition wall 5 is formed in a cylindrical shape from a plastic material or the like, and its upper end is fixed to a mounting groove provided on the inner surface of the container cover 4c.
  • the partition wall 5 is disposed at the center position of the gap between the positive electrode block 2x and the negative electrode block 3x.
  • the partition wall 5 has a function of preventing diffusion of gas components that are generated in the positive electrode block 2x and the negative electrode block 3x and leak to the outside from the surfaces of the positive electrode block 2x and the negative electrode block 3x.
  • the partition wall 5 impairs the conductivity between the positive electrode block 2x and the negative electrode block 3x. Therefore, as shown in FIG. 1, the lower end of the partition wall 5 is negative with the positive electrode block 2x.
  • the axial length of the electrode block 3x is selected so as to be positioned at an intermediate position in the axial direction (vertical direction) of the electrode block 3x. Thereby, only the partial surfaces (upper half) of the opposing surfaces 2xf and 3xf in the positive electrode block 2x and the negative electrode block 3x are partitioned, so that conductivity is ensured by the space between the remaining surfaces (lower half). Is done. On the other hand, as shown in FIG.
  • the partition wall 5 may have a shape that partitions the entire surfaces 2xf and 3xf facing each other.
  • a large number of small holes 5ha... 5hb... May be provided in the partition wall 5 as in the enlarged extraction cross section shown in FIG.
  • (a) shows the example which provided the straight small hole 5ha ... which becomes a right angle with respect to the surface of the partition wall 5,
  • (b) forms the hole inclined from both surfaces of the partition wall 5, and communicates in the center.
  • the V-shaped small holes 5 hb In the case of (b), the gas component can be made more difficult to pass.
  • the partition wall 5 can be implemented in various forms.
  • an optimum form can be selected from the viewpoint of achieving both prevention of diffusion of gas components and ensuring of conductivity.
  • electrolyte solutions can be used for the electrolyte solution Le.
  • a neutral aqueous solution a saline solution, a calcium chloride (CaCl 2 ) aqueous solution, a sodium sulfate (Na 2 SO 4 ) aqueous solution, or the like can be used.
  • a sodium hydroxide (NaOH) aqueous solution, a potassium hydroxide (KOH) aqueous solution, a calcium hydroxide (Ca (OH) 2 ) aqueous solution, or the like can be used.
  • a hydrochloric acid (HCl) aqueous solution a dilute sulfuric acid aqueous solution, or the like
  • a weak alkaline aqueous solution and the weak acidic aqueous solution a sodium bicarbonate (NaHCO 3 ) aqueous solution, an acetic acid (CH 3 COOH) aqueous solution, or the like can be used.
  • aqueous solution using a food component that is, in the above-described example, a saline solution, an aqueous sodium bicarbonate solution, an aqueous acetic acid solution, or the like.
  • aqueous solutions using hot spring components that is, the above-described sodium sulfate aqueous solution, calcium sulfate (CaSO 4 ) aqueous solution, potassium sulfate (K 2 SO 4 ) aqueous solution, magnesium sulfate (MgSO 4 )
  • An aqueous solution or the like is also suitable.
  • an aqueous solution using a food ingredient or an aqueous solution using a bath ingredient (hot spring ingredient) is used as the electrolyte solution Le
  • familiar food materials such as salt water or a bath additive etc. that are not harmful can be used.
  • it is also harmless to the human body including the skin. Therefore, environmental protection and safety can be ensured even when liquid leakage occurs due to damage, etc., and handling when performing disposal processing and recycling processing even when it becomes unusable due to its lifetime etc. There is an advantage that becomes easy.
  • the power storage device 1 illustrated uses a carbonaceous material Bc obtained by carbonizing wood for the positive electrode block 2x and the negative electrode block 3x, and a saline solution for the electrolyte Le.
  • various parts that is, parts such as a container body 4m, a container cover 4c, connection terminal portions 2j and 3j, and a partition wall 5 are manufactured and prepared in advance (step S1).
  • the salt solution used as electrolyte solution Le is prepared and prepared (step S2).
  • the concentration of the saline solution is desirably about 10 to 30%.
  • a cylindrical wooden block serving as a base material for the negative electrode block 3x and a cylindrical wooden block serving as a base material for the positive electrode block 2x shown in FIG. 4 are obtained by cutting wood (for example, chestnut tree). Is manufactured (step S3).
  • each manufactured cylindrical block is put in a charcoal baking pot (not shown) and subjected to charcoal processing (carbonization processing) by burning (step S4).
  • the carbonaceous material Bc which carbonized wood, ie, the positive electrode block 2x and the negative electrode block 3x, can be obtained.
  • the electrode terminal 2xp is inserted into the attachment hole 14 of the positive electrode block 2x and attached, and the electrode terminal 3xp is inserted and attached to the attachment hole 13 of the negative electrode block 3x (step S5).
  • step S6 parts are assembled (step S6). As shown in FIG. 1, the assembly is mainly performed on the container cover 4c. First, the upper end of the partition wall 5 formed in a cylindrical shape is fixed to the lower surface (inner surface) of the container cover 4c. Thereby, the partition wall 5 protrudes downward from the lower surface of the container cover 4c. Further, the connection terminal portions 2j and 3j are attached to the container cover 4c. In this case, the connection terminal portions 2j and 3j protrude upward from the upper surface (outer surface) of the container cover 4c, and external wiring cables 21p and 21n (see FIG. 6) can be connected to the connection terminal portions 2j and 3j. it can.
  • connection terminal portion 2j facing the lower surface (inner surface) side of the container cover 4c is inserted and fixed to the electrode terminal 2xp attached to the positive electrode block 2x from the tip 2xps, and the lower surface (inner surface) side of the container cover 4c.
  • An electrode terminal 3xp attached to the negative electrode block 3x is inserted and fixed from the tip 3xps to the connection terminal portion 3j facing the surface.
  • the liquid inlet part 12 incorporating the check valve is attached to the container cover 4c at the position shown in FIG.
  • the negative electrode block 3x and the positive electrode block 2x assembled to the container cover 4c are accommodated in the container main body 4m, and the container cover 4c is attached to the container main body 4m.
  • a seal ring 11 such as an O-ring is interposed between the container body 4m and the container cover 4c.
  • the main body flange 4mf of the container main body 4m and the cover flange 4cf of the container cover 4c are overlapped, and are fastened and fixed by screws and nuts 10 (step S7).
  • a saline solution (electrolytic solution Le) is injected into the sealed container 4 from the liquid injection port 12 (step S8).
  • the saline solution stored in an electrolyte solution storage tank (not shown) is sent by a pressure pump and injected through a supply pipe connected to the liquid injection port portion 12.
  • the internal pressure Pi of the sealed container 4 gradually increases. Therefore, when the salt solution reaches a specified amount (almost full), the internal pressure Pi is a predetermined magnitude. As described above, preferably, it is confirmed that the pressure has reached 1 [MPa] or more, and the injection of the saline solution is terminated (step S9).
  • step S10 the power storage device 1 is completed through a necessary finishing process (step S10) and an inspection process (step S11) (step S12).
  • the positive electrode block 2x and the negative electrode block 3x formed of the conductive porous material Rc are made of materials that are readily available at low cost.
  • a carbon material Bc obtained by carbonizing a certain wood can be used. Therefore, it is possible to use wood scraps and waste materials, and it is possible to reduce the cost of products by reducing costs, and it is advantageous in terms of resources, unlike rare metals, etc. It is most suitable for power storage equipment in solar power generation (solar panel) systems.
  • FIG. 6 is a principle diagram showing a chemical reaction during charging (during storage).
  • the positive electrode side of the charger 21 (DC5 [V] for illustration) is connected to the positive electrode terminal 2xp, and the negative electrode of the charger 21 is connected to the negative electrode terminal 3xp. Connect the sides. Thereby, a current flows from the positive electrode block 2x to the negative electrode block 3x.
  • electrolysis of the saline solution electrolytic solution Le
  • chlorine gas (Cl 2 ) is generated in the positive electrode block 2x
  • hydrogen gas (H 2 ) is generated in the negative electrode block 3x.
  • the generated chlorine gas is held inside the positive electrode block 2x, and the generated hydrogen gas is It is held inside the negative electrode block 3x. That is, chlorine gas and hydrogen gas are confined as they are in the fibrous space of the carbonaceous material Bc as the porous material Rc.
  • the partition wall 5 prevents diffusion of the gas component. Since the positive electrode block 2x and the negative electrode block 3x are secured (held) on the respective electrode sides, unnecessary chemical reaction can be prevented and charging efficiency (charging ability) can be improved.
  • the generation of chlorine gas and hydrogen gas generates sodium hydroxide (NaOH) in the positive electrode block 2x. This sodium hydroxide (NaOH) is also held inside the positive electrode block 2x. The above is the chemical action during charging.
  • a predetermined voltage for example, about DC 2 [V]
  • the discharge between the positive electrode block 2x and the negative electrode block 3x causes hydrogen gas to decrease and generate electrons on the negative electrode block 3x side, and on the positive electrode block 2x side, salt is generated by chlorine gas and sodium hydroxide. Water is regenerated, which reduces chlorine gas and absorbs electrons. Thereby, a current flows from the negative electrode block 3x to the positive electrode block 2x.
  • a predetermined voltage for example, about DC 2 [V]
  • FIGS. 9 (a) and 9 (b) the power storage device 1 according to the modified embodiment of the present invention will be described with reference to FIGS. 9 (a) and 9 (b).
  • 9A and 9B the same parts (same function parts) as those in FIGS. 1 to 4 are given the same reference numerals to clarify the configuration.
  • the power storage device 1 according to the first modified embodiment shown in FIG. 9A shows an example in which the number of electrode blocks is changed.
  • the power storage device 1 according to the basic embodiment shown in FIGS. 1 to 4 uses two electrode blocks, a positive electrode block 2x and a negative electrode block 3x, but the power storage device 1 shown in FIG.
  • a positive electrode block 41 to which an electrode terminal 41p is further attached is added to the outside of the negative electrode block 3x, and is constituted by three electrode blocks.
  • the negative electrode block and the positive electrode block may be alternately arranged outside the positive electrode block 41, and any number of electrode blocks can be implemented.
  • the power storage device 1 according to the second modified embodiment shown in FIG. 9B shows an example in which the shape of the electrode block is changed.
  • the positive electrode block 2x is formed in a cylindrical shape and the negative electrode block 3x is formed in a cylindrical shape, but as shown in FIG. 9B.
  • the positive electrode block 2x and the negative electrode block 3x may each be formed in a rectangular parallelepiped shape.
  • the electrode block can be implemented in any shape.
  • the carbonaceous material Bc which carbonized wood was used as the porous material Rc which has electroconductivity was shown, other various raw materials can be applied if it is the porous material Rc which has electroconductivity.
  • the example which formed the positive electrode block 2x in the column shape and formed the negative electrode block 3x in the column shape which can be accommodated in the said cylindrical internal space was shown, the negative electrode block 3x was formed in the column shape, You may form the positive electrode block 2x in the column shape which can be accommodated in the said cylindrical internal space.
  • the electrode terminals 2xp and 3xp have been shown as being formed of graphite C, it does not exclude the case where they are formed of other materials. However, in this case, a metal material is not desirable.
  • the power storage device according to the present invention can be basically used as a power storage device in various applications that require power storage, including power storage equipment in a photovoltaic power generation (solar panel) system of a general house.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

The present invention relates to an electric power storage device provided with a positive electrode and a negative electrode immersed in an electrolyte within a container. The electric power storage device can be charged by applying a voltage across this positive electrode and negative electrode, and a voltage can be extracted based on discharge across the positive electrode and negative electrode. In a conventional electric power storage device, materials that are inexpensive and easily acquired are not used in the electrodes immersed in the electrolyte, and in most electrolytes, hazardous chemical substances are used. Therefore, there are the problems of increased costs for the material costs and the like being invited and not being desirable from the standpoints of environmental protection and assuring safety. In this electric power storage device, the present invention solves the problems above by immersing a positive electrode block (2x) and a negative electrode block (3x), which are each formed using a conductive porous material, in an electrolyte (Le) stored in a sealed container and also setting the internal pressure of that sealed container to a prescribed level or higher. The solution to the problems also involves using a carbon material, which is a carbonized wood material, for the porous material, using a food product component or water soluble liquid of a hot-spring component in the electrolyte, and the like.

Description

蓄電装置Power storage device
 本発明は、電解液に浸した正電極と負電極間に電圧を印加して充電し又は正電極と負電極間の放電に基づいて電圧を取出すことができる蓄電装置に関する。 The present invention relates to a power storage device that can be charged by applying a voltage between a positive electrode and a negative electrode immersed in an electrolytic solution or can be taken out based on a discharge between the positive electrode and the negative electrode.
 従来、容器内の電解液に浸した正電極と負電極を備え、正電極と負電極間に電圧を印加して充電し又は正電極と負電極間の放電に基づいて電圧を取出すことができる蓄電装置(バッテリ)は知られている。 Conventionally, a positive electrode and a negative electrode immersed in an electrolytic solution in a container are provided, and charging can be performed by applying a voltage between the positive electrode and the negative electrode or taking out a voltage based on a discharge between the positive electrode and the negative electrode. A power storage device (battery) is known.
 例えば、特許文献1には、ケーシングが同じ電解液で接続された多数の相互に並列接続された正と負の電極のためのセル容器を形成し、かつ隣接した電極間の固定間隔で良熱伝導性材料からなるケーシング中間壁が配置されており、該中間壁が電極に対して電気的に絶縁するが、電解液に対しては透過性がある金属酸化物-水素バッテリが開示され、また、特許文献2には、アニオンの吸蔵・放出が可能な正極とリチウムイオンの吸蔵・放出が可能な負極とがセパレータを介して対向させられた電極体が、非水電解液とともに密閉容器に収容された蓄電セルを複数個直列接続してなる蓄電装置であって、各セルはそれぞれリチウム金属を有する第3電極が非水電解液中に配置され、その第3電極と正極間の電位差が所定値以上になったときに第3電極と正極間を導通接続させることにより、正極の電位を第3電極に対し、制御するようにした蓄電装置が開示され、さらに、特許文献3には、電極材と電解質とを備えた蓄電装置であって、電極材がナノシェル構造の炭素粒子を含む繊維状の炭素触媒を備える蓄電装置が開示され、さらに、特許文献4には、電解質のパナジューム塩を純水に溶解し電解液とする酸化還元型蓄電装置であって、電解液の循環配管系統に、遠赤外線領域の電磁波を発生する装置を設けた酸化還元型蓄電装置が開示されている。 For example, Patent Document 1 forms a cell container for a large number of mutually connected positive and negative electrodes whose casings are connected by the same electrolyte, and has good heat at a fixed interval between adjacent electrodes. Disclosed is a metal oxide-hydrogen battery having a casing intermediate wall made of a conductive material, the intermediate wall being electrically insulated from the electrode, but permeable to electrolyte. In Patent Document 2, an electrode body in which a positive electrode capable of occluding and releasing anions and a negative electrode capable of occluding and releasing lithium ions are opposed to each other through a separator is housed in a sealed container together with a non-aqueous electrolyte. A storage device comprising a plurality of connected storage cells connected in series, each cell having a third electrode having a lithium metal disposed in a non-aqueous electrolyte, and a potential difference between the third electrode and the positive electrode is predetermined. When the value is exceeded A power storage device is disclosed in which the potential of the positive electrode is controlled with respect to the third electrode by conducting a conductive connection between the third electrode and the positive electrode. Further, Patent Document 3 includes an electrode material and an electrolyte. A power storage device is disclosed that includes a fibrous carbon catalyst in which an electrode material includes carbon particles having a nanoshell structure. Further, Patent Document 4 discloses an electrolyte solution obtained by dissolving an electrolyte panadium salt in pure water. An oxidation-reduction type power storage device is disclosed, in which a device for generating electromagnetic waves in the far-infrared region is provided in a circulation piping system for an electrolyte solution.
特開平6-215805号公報JP-A-6-215805 特開2007-305475号公報JP 2007-305475 A 特開2009-208061号公報JP 2009-208061 A 特開2009-283425号公報JP 2009-283425 A
 しかし、上述した各文献に開示される蓄電装置をはじめ、従来の蓄電装置はいずれも次のような共通の問題点があった。 However, all the conventional power storage devices including the power storage devices disclosed in the above-mentioned documents have the following common problems.
 第一に、いずれの蓄電装置も、レアメタル等を含む様々な材料により構成され、また、全体の部品点数が多くなる傾向があるとともに、電解液に浸す電極には、身近な材料、即ち、安価で容易に手に入る材料を使用しているとは言い難い。このため、材料(部品)コスト、更には製造(組立)コストを含む全体のコストアップを招き、製品の低廉化を図るには限界があった。しかも、材料は資源的にも限界があるなど、コスト面及び供給面から更なる改善の余地があった。 First, all power storage devices are made of various materials including rare metals, etc., and the total number of parts tends to increase, and the electrodes immersed in the electrolyte solution are familiar materials, that is, inexpensive. It is hard to say that they are using materials that are readily available. For this reason, there has been a limit in reducing the cost of the product due to an increase in the overall cost including the material (parts) cost and the manufacturing (assembly) cost. In addition, there is room for further improvement in terms of cost and supply, for example, the materials are limited in terms of resources.
 第二に、使用する電解液においても、身近な材料を使用しているとは言い難く、ほとんどの場合、有害性のある化学物質が使用されている。したがって、破損等により液漏れが発生した場合、有害性の高い化学物質が外部に漏れ出すことになり、環境保護及び安全性確保の観点から望ましくないとともに、寿命等により使用できなくなった場合、廃棄処理及びリサイクル処理を行う際の取り扱いが大変となる。 Second, it is difficult to say that familiar materials are used in the electrolyte used, and in most cases harmful chemical substances are used. Therefore, if a liquid leak occurs due to damage, etc., highly hazardous chemical substances will leak to the outside, which is not desirable from the viewpoint of environmental protection and safety, and when it cannot be used due to its life, etc., it will be discarded. Handling when processing and recycling is difficult.
 本発明は、このような背景技術に存在する課題を解決した蓄電装置の提供を目的とするものである。 An object of the present invention is to provide a power storage device that solves the problems in the background art.
 本発明に係る蓄電装置1は、上述した課題を解決するため、容器内の電解液に浸した正電極2と負電極3を備え、正電極2と負電極3間に電圧を印加して充電し又は正電極2と負電極3間の放電に基づいて電圧を取出すことができる蓄電装置を構成するに際して、密閉容器4に収容した電解液Leに、導電性を有する多孔質材Rcを用いてそれぞれ形成した正電極2となる正電極ブロック2xと負電極3となる負電極ブロック3xを浸すとともに、密閉容器4の内部圧Piを所定の大きさ以上に設定してなることを特徴とする。 In order to solve the above-described problem, the power storage device 1 according to the present invention includes a positive electrode 2 and a negative electrode 3 immersed in an electrolytic solution in a container, and is charged by applying a voltage between the positive electrode 2 and the negative electrode 3. However, when configuring a power storage device that can extract voltage based on the discharge between the positive electrode 2 and the negative electrode 3, a conductive porous material Rc is used for the electrolyte Le contained in the sealed container 4. The positive electrode block 2x to be the positive electrode 2 and the negative electrode block 3x to be the negative electrode 3 respectively formed are immersed, and the internal pressure Pi of the sealed container 4 is set to a predetermined magnitude or more.
 この場合、発明の好適な態様により、多孔質材Rcには、少なくとも木材を炭化させた炭材Bcを含ませることができるとともに、電解液Leには、少なくとも食品成分を用いた水溶液又は温泉成分を用いた水溶液を含ませることができる。一方、正電極ブロック2xと負電極ブロック3xは、正電極ブロック2xと負電極ブロック3xの一方を円筒形に形成し、かつ他方を一方の内部空間に収容可能な円柱形に形成できるとともに、正電極ブロック2xと負電極ブロック3xは、それぞれ、一体形成し、又は複数の分割ブロックMp…の組合わせにより構成することができる。また、正電極ブロック2xと負電極ブロック3xには、黒鉛Cにより形成し、かつ突出することにより先端2xps,3xpsが電解液Leの外部に露出する電極端子2xp,3xpを取付けることができる。さらに、正電極ブロック2xと負電極ブロック3x間には、正電極ブロック2x及び負電極ブロック3xで発生し、正電極ブロック2x及び負電極ブロック3xの表面から外部に漏れ出る気体成分の拡散を防止する仕切壁5を配設することができ、この仕切壁5は、正電極ブロック2xと負電極ブロック3xが相対向する面2xf,3xfの一部面又は全面に対向する大きさに形成することができる。 In this case, according to a preferred aspect of the invention, the porous material Rc can contain at least a carbonaceous material Bc obtained by carbonizing wood, and the electrolytic solution Le includes an aqueous solution or hot spring component using at least a food component. An aqueous solution using can be included. On the other hand, the positive electrode block 2x and the negative electrode block 3x can be formed such that one of the positive electrode block 2x and the negative electrode block 3x is formed in a cylindrical shape, and the other is formed in a cylindrical shape that can be accommodated in one internal space. Each of the electrode block 2x and the negative electrode block 3x can be integrally formed or configured by a combination of a plurality of divided blocks Mp. The positive electrode block 2x and the negative electrode block 3x can be provided with electrode terminals 2xp and 3xp, which are formed of graphite C and protrude to expose the tips 2xps and 3xps to the outside of the electrolytic solution Le. Furthermore, between the positive electrode block 2x and the negative electrode block 3x, the positive electrode block 2x and the negative electrode block 3x generate and prevent diffusion of gas components leaking outside from the surfaces of the positive electrode block 2x and the negative electrode block 3x. The partition wall 5 can be disposed, and the partition wall 5 is formed to have a size facing the partial surface or the entire surface of the surfaces 2xf and 3xf where the positive electrode block 2x and the negative electrode block 3x face each other. Can do.
 このような構成を有する本発明に係る蓄電装置1によれば、次のような顕著な効果を奏する。 The power storage device 1 according to the present invention having such a configuration has the following remarkable effects.
 (1) 導電性を有する多孔質材Rcにより形成した正電極ブロック2xと負電極ブロック3xを用いるため、多孔質材Rcには、例えば、安価で容易に手に入る身近な材料である木材を炭化させた炭材Bc等を利用できる。したがって、木材の端材や廃材も利用可能なり、コストダウンによる製品の低廉化を図れるとともに、レアメタル等と異なり資源的にも有利となるなど、低コスト性及び供給性に優れ、特に、一般住宅の太陽光発電(ソーラーパネル)システムにおける蓄電設備などに最適となる。 (1) Since the positive electrode block 2x and the negative electrode block 3x formed by the conductive porous material Rc are used, the porous material Rc is made of, for example, wood which is a familiar material that can be easily obtained at low cost. Carbonized carbon material Bc or the like can be used. Therefore, it is possible to use wood scraps and waste materials, and it is possible to reduce the cost of products by reducing costs, and it is advantageous in terms of resources, unlike rare metals, etc. It is most suitable for power storage facilities in solar power generation (solar panel) systems.
 (2) 好適な態様により、電解液Leに、少なくとも食品成分を用いた水溶液又は温泉成分を用いた水溶液を含ませれば、有害性のない食塩水等の身近な食品材料や入浴剤等を使用できるため、下水等に自由に流せるとともに、肌を含む人体にも無害となる。したがって、破損等により液漏れが発生した場合であっても環境保護及び安全性確保を図ることができるとともに、寿命等により使用できなくなった場合であっても廃棄処理及びリサイクル処理を行う際の取り扱いが容易となる。 (2) According to a preferred embodiment, if at least an aqueous solution using a food component or an aqueous solution using a hot spring component is included in the electrolyte Le, a familiar food material such as a saline solution or a bathing agent that is not harmful is used. Because it can, it can be freely drained into sewage, etc., and is harmless to the human body including the skin. Therefore, environmental protection and safety can be ensured even when liquid leakage occurs due to damage, etc., and handling when performing disposal processing and recycling processing even when it becomes unusable due to its lifetime etc. Becomes easy.
 (3) 好適な態様により、正電極ブロック2xと負電極ブロック3xを形成するに際し、正電極ブロック2xと負電極ブロック3xの一方を円筒形に形成し、かつ他方を一方の内部空間に収容可能な円柱形に形成すれば、正電極ブロック2xと負電極ブロック3xにおける十分な体積、及び正電極ブロック2xと負電極ブロック3xの相対向する面2xf,3xfにおける十分な面積を確保できるため、正電極ブロック2xと負電極ブロック3x間の電気的抵抗を小さくして損失の低減を図ることができる。 (3) According to a preferred embodiment, when forming the positive electrode block 2x and the negative electrode block 3x, one of the positive electrode block 2x and the negative electrode block 3x can be formed in a cylindrical shape and the other can be accommodated in one internal space. If it is formed into a cylindrical shape, a sufficient volume in the positive electrode block 2x and the negative electrode block 3x and a sufficient area in the opposing surfaces 2xf and 3xf of the positive electrode block 2x and the negative electrode block 3x can be secured. Loss can be reduced by reducing the electrical resistance between the electrode block 2x and the negative electrode block 3x.
 (4) 好適な態様により、正電極ブロック2xと負電極ブロック3xを、複数の分割ブロックMp…の組合わせにより構成すれば、サイズのより小さいブロック(木片等)を使用できるため、廃材や端材等の更なる有効利用を図ることができる。 (4) According to a preferred embodiment, if the positive electrode block 2x and the negative electrode block 3x are configured by a combination of a plurality of divided blocks Mp..., A smaller block (such as a piece of wood) can be used. Further effective use of materials and the like can be achieved.
 (5) 好適な態様により、正電極ブロック2xと負電極ブロック3xに、黒鉛Cにより形成し、かつ突出することにより先端2xps,3xpsが電解液Leの外部に露出する電極端子2xp,3xpを取付ければ、金属部分が電解液Leの中に浸かる不具合が生じないため、電解液Le中の無用な化学反応に基づく損失や悪影響を排除できる。 (5) According to a preferred embodiment, electrode terminals 2xp and 3xp are formed on the positive electrode block 2x and the negative electrode block 3x by graphite C and protruded so that the tips 2xps and 3xps are exposed to the outside of the electrolyte Le. If this is the case, there is no problem that the metal part is immersed in the electrolytic solution Le, so that it is possible to eliminate loss and adverse effects due to unnecessary chemical reactions in the electrolytic solution Le.
 (6) 好適な態様により、正電極ブロック2xと負電極ブロック3x間に、正電極ブロック2x及び負電極ブロック3xで発生し、正電極ブロック2x及び負電極ブロック3xの表面から外部に漏れ出る気体成分の拡散を防止する仕切壁5を配設すれば、気体成分が電解液Le中に放出された場合でも、気体成分を正電極ブロック2xと負電極ブロック3xのそれぞれの電極側に確保することにより気体成分間の無用な化学反応を防止して充電能力を高めることができる。 (6) Gas generated between the positive electrode block 2x and the negative electrode block 3x and leaking outside from the surface of the positive electrode block 2x and the negative electrode block 3x between the positive electrode block 2x and the negative electrode block 3x according to a preferred mode. If the partition wall 5 for preventing the diffusion of the components is provided, the gas components are secured on the respective electrode sides of the positive electrode block 2x and the negative electrode block 3x even when the gas component is released into the electrolyte Le. Therefore, it is possible to prevent unnecessary chemical reaction between gas components and increase the charging capacity.
 (7) 好適な態様により、仕切壁5は、正電極ブロック2xと負電極ブロック3xにおける相対向する面2xf,3xfの一部面又は全面に対向する大きさに形成できるため、気体成分の拡散防止と導電性の確保の両立を図る観点から最適な形態や大きさを選定可能となる。 (7) According to a preferred embodiment, the partition wall 5 can be formed to have a size facing a part or the entire surface of the opposing surfaces 2xf and 3xf of the positive electrode block 2x and the negative electrode block 3x, so that diffusion of gas components It is possible to select an optimal form and size from the viewpoint of achieving both prevention and ensuring conductivity.
本発明の好適実施形態に係る蓄電装置の断面正面図、Sectional front view of a power storage device according to a preferred embodiment of the present invention, 同蓄電装置における正電極ブロックと負電極ブロックの平面図、A plan view of a positive electrode block and a negative electrode block in the power storage device, 同蓄電装置の外観平面図、External plan view of the power storage device, 同蓄電装置の主要部の分解斜視図、An exploded perspective view of the main part of the power storage device, 同蓄電装置の製造方法を説明するためのフローチャート、A flowchart for explaining a method of manufacturing the same power storage device, 同蓄電装置の作用説明図、Operation explanatory diagram of the power storage device, 同蓄電装置の一方の電極ブロックの変更例を示す平面図、A plan view showing a modification example of one electrode block of the power storage device, 同蓄電装置の仕切壁の変更例を示す一部抽出拡大図を含む断面正面図、Sectional front view including a partially extracted enlarged view showing a modification of the partition wall of the power storage device, 本発明の第一変更実施形態(a)及び第二変更実施形態(b)に係る蓄電装置の模式的構成図、The typical block diagram of the electrical storage apparatus which concerns on 1st modified embodiment (a) and 2nd modified embodiment (b) of this invention,
 次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。 Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.
 まず、本実施形態に係る蓄電装置1の構成について、図1~図4を参照して具体的に説明する。 First, the configuration of the power storage device 1 according to the present embodiment will be specifically described with reference to FIGS. 1 to 4.
 蓄電装置1は、主要部の構成として、密閉容器4,正電極ブロック2x,負電極ブロック3x,仕切壁5及び電解液Leを備える。 The power storage device 1 includes a sealed container 4, a positive electrode block 2x, a negative electrode block 3x, a partition wall 5, and an electrolytic solution Le as a configuration of main parts.
 密閉容器4は、例えば透明(半透明)なプラスチック素材により形成した容器本体4m(図4参照)と容器カバー4cの組合わせにより構成する。例示の容器本体4mは円形容器として形成し、上端部に一体形成した本体フランジ4mfを有する。また、容器カバー4cの外周部にも一体形成したカバーフランジ4cfを有し、本体フランジ4mfとカバーフランジ4cfは、複数組(例示は八組)のネジ・ナット10…により固定できる。なお、固定する際には、本体フランジ4mfと容器カバー4c間にOリング等のシールリング11を介在させ、十分な密閉性を確保する。一方、容器カバー4cには、一対の接続端子部2jと3jを設けるとともに、密閉容器4の内部に電解液Leを注入するための液注入口部12を設ける。この液注入口部12は逆止弁を内蔵する。 The sealed container 4 is constituted by a combination of a container body 4m (see FIG. 4) formed of a transparent (semi-transparent) plastic material and a container cover 4c, for example. The illustrated container body 4m is formed as a circular container and has a body flange 4mf integrally formed at the upper end. Moreover, it has the cover flange 4cf integrally formed also in the outer peripheral part of the container cover 4c, and the main body flange 4mf and the cover flange 4cf can be fixed with multiple sets (eight examples are illustrated) of screws and nuts 10. When fixing, a seal ring 11 such as an O-ring is interposed between the main body flange 4mf and the container cover 4c to ensure sufficient sealing performance. On the other hand, the container cover 4 c is provided with a pair of connection terminal portions 2 j and 3 j and a liquid injection port portion 12 for injecting the electrolytic solution Le into the sealed container 4. The liquid injection port 12 incorporates a check valve.
 負電極ブロック3xは、導電性を有する多孔質材Rcにより形成する。この多孔質材Rcには、木材を炭化させた炭材Bcを用いることが望ましい。負電極ブロック3xは、図4に示すように、円筒形に形成する。負電極ブロック3xは、同図及び図2に示すように、単一の木材により一体形成してもよいし、或いは、図7に示すように、周方向へ等間隔で六分割した六個の分割ブロックMp…を製作し、これらの分割ブロックMp…を円筒形に配するとともに、外周面を非金属製の締付バンド32により固定して構成してもよい。分割ブロックMp…を用いた場合には、サイズのより小さい木片を使用できるため、廃材や端材等の更なる有効利用を図れる利点がある。なお、六分割した場合を示したが、このような分割数は任意の数により実施可能である。 The negative electrode block 3x is formed of a porous material Rc having conductivity. As the porous material Rc, it is desirable to use a carbon material Bc obtained by carbonizing wood. The negative electrode block 3x is formed in a cylindrical shape as shown in FIG. As shown in FIG. 2 and FIG. 2, the negative electrode block 3x may be integrally formed from a single piece of wood, or, as shown in FIG. 7, six pieces divided into six at regular intervals in the circumferential direction. The divided blocks Mp... May be manufactured, the divided blocks Mp... May be arranged in a cylindrical shape, and the outer peripheral surface may be fixed by a non-metallic fastening band 32. When the divided blocks Mp... Are used, a smaller piece of wood can be used, so that there is an advantage that further effective utilization of waste materials and scrap materials can be achieved. In addition, although the case where it divided into 6 was shown, such a division | segmentation number can be implemented by arbitrary numbers.
 また、負電極ブロック3xの一方の端面には、電極端子3xpを差し込んで取付けるための取付孔13を軸方向に設ける。電極端子3xpは、黒鉛Cにより丸棒状に形成し、取付孔13に差し込むことにより負電極ブロック3xに一体化させる。この際、電極端子3xpと負電極ブロック3x間は、接続時の電気抵抗ができるだけ小さくなり、かつ機械的な結合強度ができるだけ大きくなるように考慮する。さらに、電極端子3xpは、負電極ブロック3xの端面から所定長さ突出させるとともに、この突出長は、電極端子3xpの先端3xpsが電解液Leの外部に露出するように考慮する。この電極端子3xpの先端3xps側は、前述した接続端子部3jの内端側に接続(結合)することができる。 Also, an attachment hole 13 for inserting and attaching the electrode terminal 3xp is provided in the axial direction on one end face of the negative electrode block 3x. The electrode terminal 3xp is formed into a round bar shape from graphite C, and is integrated with the negative electrode block 3x by being inserted into the mounting hole 13. At this time, it is considered that the electrical resistance at the time of connection between the electrode terminal 3xp and the negative electrode block 3x is as small as possible and the mechanical coupling strength is as large as possible. Further, the electrode terminal 3xp protrudes from the end face of the negative electrode block 3x by a predetermined length, and this protrusion length is considered so that the tip 3xps of the electrode terminal 3xp is exposed to the outside of the electrolyte Le. The tip 3xps side of the electrode terminal 3xp can be connected (coupled) to the inner end side of the connection terminal portion 3j.
 正電極ブロック2xも、負電極ブロック3xと同様に、導電性を有する多孔質材Rc、即ち、木材を炭化させた炭材Bcを用いて形成する。正電極ブロック2xは、負電極ブロック3xの内側空間に収容可能な円柱形(図4参照)に形成し、一方の端面の中心位置には、電極端子2xpを差し込んで取付けるための取付孔14を軸方向に設ける。電極端子2xpは、正電極ブロック2xの形成素材と同様に、黒鉛Cにより丸棒状に形成し、取付孔14に差し込むことにより正電極ブロック2xに一体化させる。この際、負電極ブロック3xと同様に、電極端子2xpと正電極ブロック2x間は、接続時の電気抵抗ができるだけ小さくなり、かつ機械的な結合強度ができるだけ大きくなるように考慮する。また、電極端子2xpは、正電極ブロック2xの端面から所定長さ突出させるとともに、この突出長は、電極端子2xpの先端2xpsが電解液Leの外部に露出するように考慮する。この電極端子2xpの先端2xps側は、前述した接続端子部2jの内端側に接続(結合)することができる。なお、正電極ブロック2xも図7に示す負電極ブロック3xと同様に複数の分割ブロックの組合わせにより構成してもよい。 Similarly to the negative electrode block 3x, the positive electrode block 2x is also formed using a porous material Rc having conductivity, that is, a carbon material Bc obtained by carbonizing wood. The positive electrode block 2x is formed in a cylindrical shape (see FIG. 4) that can be accommodated in the inner space of the negative electrode block 3x, and an attachment hole 14 for inserting and attaching the electrode terminal 2xp is provided at the center position of one end face. Provide in the axial direction. Similarly to the material for forming the positive electrode block 2x, the electrode terminal 2xp is formed into a round bar shape from graphite C, and is integrated into the positive electrode block 2x by being inserted into the mounting hole 14. At this time, similarly to the negative electrode block 3x, the electrical resistance at the time of connection between the electrode terminal 2xp and the positive electrode block 2x is made as small as possible and the mechanical coupling strength is made as large as possible. The electrode terminal 2xp protrudes from the end face of the positive electrode block 2x by a predetermined length, and this protrusion length is considered so that the tip 2xps of the electrode terminal 2xp is exposed to the outside of the electrolyte Le. The tip 2xps side of the electrode terminal 2xp can be connected (coupled) to the inner end side of the connection terminal portion 2j described above. The positive electrode block 2x may also be configured by a combination of a plurality of divided blocks in the same manner as the negative electrode block 3x shown in FIG.
 このように、正電極ブロック2xと負電極ブロック3xを形成するに際し、正電極ブロック2xと負電極ブロック3xの一方を円筒形に形成し、かつ他方を一方の内部空間に収容可能な円柱形に形成すれば、正電極ブロック2xと負電極ブロック3xにおける十分な体積、及び正電極ブロック2xと負電極ブロック3xの相対向する面2xf,3xfにおける十分な面積を確保できるため、正電極ブロック2xと負電極ブロック3x間の電気的抵抗を小さくして損失の低減を図ることができる。また、正電極ブロック2xと負電極ブロック3xに、黒鉛Cにより形成し、かつ突出することにより先端2xps,3xpsが電解液Leの外部に露出する電極端子2xp,3xpを結合すれば、金属部分が電解液Leの中に浸かる不具合が生じないため、電解液Le中の無用な化学反応に基づく損失や悪影響を排除できる。 Thus, when forming the positive electrode block 2x and the negative electrode block 3x, one of the positive electrode block 2x and the negative electrode block 3x is formed into a cylindrical shape, and the other is formed into a cylindrical shape that can be accommodated in one internal space. If formed, a sufficient volume in the positive electrode block 2x and the negative electrode block 3x and a sufficient area in the opposing surfaces 2xf and 3xf of the positive electrode block 2x and the negative electrode block 3x can be secured. Loss can be reduced by reducing the electrical resistance between the negative electrode blocks 3x. Further, if the electrode terminals 2xp and 3xp, which are formed of graphite C and protruded from the positive electrode block 2x and the negative electrode block 3x and the tips 2xps and 3xps are exposed to the outside of the electrolytic solution Le, are combined, the metal portion is formed. Since the problem of being immersed in the electrolytic solution Le does not occur, it is possible to eliminate a loss or an adverse effect based on an unnecessary chemical reaction in the electrolytic solution Le.
 他方、負電極ブロック3xと正電極ブロック2xは、体積関係を次のように設定する。まず、負電極ブロック3xは、内半径をri、外半径をre、高さをhとすれば、体積Vmは、次式で表される。
          Vm=π×(rm2-ri2)×h
On the other hand, the volume relationship between the negative electrode block 3x and the positive electrode block 2x is set as follows. First, in the negative electrode block 3x, if the inner radius is ri, the outer radius is re, and the height is h, the volume Vm is expressed by the following equation.
Vm = π × (rm 2 −ri 2 ) × h
 また、正電極ブロック2xは、半径をrs、高さをhとすれば、体積Vsは、次式で表される。
          Vs=π×rs×h
Further, in the positive electrode block 2x, if the radius is rs and the height is h, the volume Vs is expressed by the following equation.
Vs = π × rs × h
 負電極ブロック3xと正電極ブロック2xを形成する多孔質材Rcは、充電時に発生した気体成分を閉じ込める働きを有するため、負電極ブロック3xと正電極ブロック2xの体積は、各電極ブロック2x,3xにおける気体発生量に比例させる必要がある。例えば、電解液Leとして、食塩水(NaCl)を用いた場合、負電極ブロック3xでは水素ガス(H2)が発生するとともに、正電極ブロック2xでは塩素ガス(Cl2)が発生し、それらの比率は、1:1となるため、負電極ブロック3xと正電極ブロック2xの体積比も、Vm:Vs=1:1に設定する。一方、電解液Leとして、希硫酸(H2SO4)を用いた場合、負電極ブロック3xでは水素ガスが発生するとともに、正電極ブロック2xでは酸素ガスが発生し、それらの比率は、2:1となるため、この場合には、負電極ブロック3xと正電極ブロック2xの体積比を、Vm:Vs=2:1に設定すればよい。 Since the porous material Rc that forms the negative electrode block 3x and the positive electrode block 2x has a function of confining a gas component generated during charging, the volume of the negative electrode block 3x and the positive electrode block 2x is determined by the respective electrode blocks 2x, 3x. It is necessary to make it proportional to the amount of gas generated. For example, when saline (NaCl) is used as the electrolytic solution Le, hydrogen gas (H 2 ) is generated in the negative electrode block 3x, and chlorine gas (Cl 2 ) is generated in the positive electrode block 2x. Since the ratio is 1: 1, the volume ratio between the negative electrode block 3x and the positive electrode block 2x is also set to Vm: Vs = 1: 1. On the other hand, when dilute sulfuric acid (H 2 SO 4 ) is used as the electrolyte Le, hydrogen gas is generated in the negative electrode block 3x and oxygen gas is generated in the positive electrode block 2x, and the ratio thereof is 2: In this case, the volume ratio between the negative electrode block 3x and the positive electrode block 2x may be set to Vm: Vs = 2: 1.
 一方、仕切壁5は、プラスチック素材等により円筒形に形成し、上端を容器カバー4cの内面に設けた取付溝に固定する。この仕切壁5は、正電極ブロック2xと負電極ブロック3x間に生じる隙間間隔の中央位置に配する。この仕切壁5は、正電極ブロック2x及び負電極ブロック3xで発生し、正電極ブロック2x及び負電極ブロック3xの表面から外部に漏れ出る気体成分の拡散を防止する機能を備える。なお、正電極ブロック2x及び負電極ブロック3xの表面から外部に漏れ出る気体成分は、ほとんど無いと思われるが、このような仕切壁5を配設すれば、万が一、気体成分が電解液Le中に放出された場合であっても、仕切壁5により、気体成分は正電極ブロック2xと負電極ブロック3xのそれぞれの電極側に確保されるため、無用な化学反応を防止して充電効率(充電能力)を高められる。 On the other hand, the partition wall 5 is formed in a cylindrical shape from a plastic material or the like, and its upper end is fixed to a mounting groove provided on the inner surface of the container cover 4c. The partition wall 5 is disposed at the center position of the gap between the positive electrode block 2x and the negative electrode block 3x. The partition wall 5 has a function of preventing diffusion of gas components that are generated in the positive electrode block 2x and the negative electrode block 3x and leak to the outside from the surfaces of the positive electrode block 2x and the negative electrode block 3x. In addition, although it seems that there is almost no gas component which leaks outside from the surface of the positive electrode block 2x and the negative electrode block 3x, if such a partition wall 5 is arrange | positioned, a gas component should be in electrolyte solution Le by any chance. Even when the gas is released into the battery, gas components are secured on the respective electrode sides of the positive electrode block 2x and the negative electrode block 3x by the partition wall 5, thereby preventing unnecessary chemical reaction and charging efficiency (charging). Ability).
 しかし、仕切壁5を設けることは、正電極ブロック2xと負電極ブロック3x間の導電性を損なうことになるため、図1に示すように、仕切壁5の下端は、正電極ブロック2xと負電極ブロック3xの軸方向(上下方向)の中間位置に位置するようにその軸方向長さを選定する。これにより、正電極ブロック2xと負電極ブロック3xにおける相対向する面2xfと3xfの一部面(上半分)のみが仕切られるため、導電性は、残りの面(下半分)間の空間により確保される。一方、仕切壁5は、図8に示すように、相対向する面2xf,3xfの全面を仕切る形状であってもよい。この場合には、図8中(a)又は(b)に示す拡大抽出断面のように、仕切壁5に多数の小孔5ha…,5hb…を設ければよい。なお、(a)は仕切壁5の面に対して直角となる直線の小孔5ha…を設けた例を示し、(b)は仕切壁5の両面から傾斜した孔を形成し、中央で連通させたV状の小孔5hb…を設けた例を示す。(b)の場合には、気体成分をより通りにくくすることができる。このように、仕切壁5は様々な形態により実施可能であり、特に、気体成分の拡散防止と導電性の確保の両立を図る観点から最適な形態を選択することができる。なお、正電極ブロック2xの外周面には不織布を装着し、正電極ブロック2xと負電極ブロック3xにおける相対向する面2xfと3xf間に不織布を介在させることが望ましい。 However, the provision of the partition wall 5 impairs the conductivity between the positive electrode block 2x and the negative electrode block 3x. Therefore, as shown in FIG. 1, the lower end of the partition wall 5 is negative with the positive electrode block 2x. The axial length of the electrode block 3x is selected so as to be positioned at an intermediate position in the axial direction (vertical direction) of the electrode block 3x. Thereby, only the partial surfaces (upper half) of the opposing surfaces 2xf and 3xf in the positive electrode block 2x and the negative electrode block 3x are partitioned, so that conductivity is ensured by the space between the remaining surfaces (lower half). Is done. On the other hand, as shown in FIG. 8, the partition wall 5 may have a shape that partitions the entire surfaces 2xf and 3xf facing each other. In this case, a large number of small holes 5ha... 5hb... May be provided in the partition wall 5 as in the enlarged extraction cross section shown in FIG. In addition, (a) shows the example which provided the straight small hole 5ha ... which becomes a right angle with respect to the surface of the partition wall 5, (b) forms the hole inclined from both surfaces of the partition wall 5, and communicates in the center. An example in which the V-shaped small holes 5 hb. In the case of (b), the gas component can be made more difficult to pass. As described above, the partition wall 5 can be implemented in various forms. In particular, an optimum form can be selected from the viewpoint of achieving both prevention of diffusion of gas components and ensuring of conductivity. In addition, it is desirable to attach a nonwoven fabric to the outer peripheral surface of the positive electrode block 2x and to interpose the nonwoven fabric between the opposing surfaces 2xf and 3xf in the positive electrode block 2x and the negative electrode block 3x.
 また、電解液Leには、各種の電解液を用いることができる。例えば、中性水溶液としては、食塩水,塩化カルシウム(CaCl2)水溶液,硫酸ナトリウム(Na2SO4)水溶液等を用いることができる。アルカリ性水溶液としては、水酸化ナトリウム(NaOH)水溶液,水酸化カリウム(KOH)水溶液,水酸化カルシウム(Ca(OH)2)水溶液等を用いることができる。酸性水溶液としては、塩酸(HCl)水溶液,希硫酸水溶液等を用いることができる。さらに、弱アルカリ性水溶液及び弱酸性水溶液としては、重曹(NaHCO3)水溶液,酢酸(CH3COOH)水溶液等を用いることができる。 Moreover, various electrolyte solutions can be used for the electrolyte solution Le. For example, as the neutral aqueous solution, a saline solution, a calcium chloride (CaCl 2 ) aqueous solution, a sodium sulfate (Na 2 SO 4 ) aqueous solution, or the like can be used. As the alkaline aqueous solution, a sodium hydroxide (NaOH) aqueous solution, a potassium hydroxide (KOH) aqueous solution, a calcium hydroxide (Ca (OH) 2 ) aqueous solution, or the like can be used. As the acidic aqueous solution, a hydrochloric acid (HCl) aqueous solution, a dilute sulfuric acid aqueous solution, or the like can be used. Furthermore, as the weak alkaline aqueous solution and the weak acidic aqueous solution, a sodium bicarbonate (NaHCO 3 ) aqueous solution, an acetic acid (CH 3 COOH) aqueous solution, or the like can be used.
 特に、電解液Leとしては、食品成分を用いた水溶液、即ち、上述した例では、食塩水,重曹水溶液,酢酸水溶液等を用いることが望ましい。また、温泉成分(入浴剤成分を含む)を用いた水溶液、即ち、上述した硫酸ナトリウム水溶液をはじめ、硫酸カルシウム(CaSO4)水溶液,硫酸カリウム(K2SO4)水溶液,硫酸マグネシウム(MgSO4)水溶液等も好適である。このように、電解液Leとして食品成分を用いた水溶液や入浴剤成分(温泉成分)を用いた水溶液を用いれば、有害性のない食塩水等の身近な食品材料や入浴剤等を使用できるため、下水等に自由に流せるとともに、肌を含む人体にも無害となる。したがって、破損等により液漏れが発生した場合であっても環境保護及び安全性確保を図ることができるとともに、寿命等により使用できなくなった場合であっても廃棄処理及びリサイクル処理を行う際の取り扱いが容易となる利点がある。 In particular, as the electrolytic solution Le, it is desirable to use an aqueous solution using a food component, that is, in the above-described example, a saline solution, an aqueous sodium bicarbonate solution, an aqueous acetic acid solution, or the like. In addition, aqueous solutions using hot spring components (including bathing agent components), that is, the above-described sodium sulfate aqueous solution, calcium sulfate (CaSO 4 ) aqueous solution, potassium sulfate (K 2 SO 4 ) aqueous solution, magnesium sulfate (MgSO 4 ) An aqueous solution or the like is also suitable. As described above, if an aqueous solution using a food ingredient or an aqueous solution using a bath ingredient (hot spring ingredient) is used as the electrolyte solution Le, familiar food materials such as salt water or a bath additive etc. that are not harmful can be used. In addition to being able to flow freely into sewage, etc., it is also harmless to the human body including the skin. Therefore, environmental protection and safety can be ensured even when liquid leakage occurs due to damage, etc., and handling when performing disposal processing and recycling processing even when it becomes unusable due to its lifetime etc. There is an advantage that becomes easy.
 次に、本実施形態に係る蓄電装置1の製造方法について、図1~図4及び図7を参照しつつ図5に示すフローチャートに従って説明する。 Next, a method for manufacturing the power storage device 1 according to this embodiment will be described according to the flowchart shown in FIG. 5 with reference to FIGS.
 例示する蓄電装置1は、正電極ブロック2x及び負電極ブロック3xに木材を炭化させた炭材Bcを用いるとともに、電解液Leには食塩水を用いている。 The power storage device 1 illustrated uses a carbonaceous material Bc obtained by carbonizing wood for the positive electrode block 2x and the negative electrode block 3x, and a saline solution for the electrolyte Le.
 まず、各種部品類、即ち、容器本体4m,容器カバー4c,接続端子部2j,3j,仕切壁5等の部品類を予め製造して用意する(ステップS1)。また、電解液Leとなる食塩水を調製して用意する(ステップS2)。なお、食塩水の濃度は、10~30〔%〕程度が望ましい。さらに、木材(例えば、栗の木等)を切削加工して、図4に示す正電極ブロック2xの基礎材となる円柱形の木製ブロック及び負電極ブロック3xの基礎材となる円筒形の木製ブロックを製作する(ステップS3)。 First, various parts, that is, parts such as a container body 4m, a container cover 4c, connection terminal portions 2j and 3j, and a partition wall 5 are manufactured and prepared in advance (step S1). Moreover, the salt solution used as electrolyte solution Le is prepared and prepared (step S2). The concentration of the saline solution is desirably about 10 to 30%. Further, a cylindrical wooden block serving as a base material for the negative electrode block 3x and a cylindrical wooden block serving as a base material for the positive electrode block 2x shown in FIG. 4 are obtained by cutting wood (for example, chestnut tree). Is manufactured (step S3).
 一方、製作した各円筒形ブロックは、不図示の炭焼釜の中に入れ、火入れを行うことにより炭焼処理(炭化処理)を行う(ステップS4)。これにより、木材を炭化させた炭材Bc、即ち、正電極ブロック2xと負電極ブロック3xを得ることができる。また、図1及び図4に示すように、正電極ブロック2xの取付孔14に電極端子2xpを差し込んで取付けるとともに、負電極ブロック3xの取付孔13に電極端子3xpを差し込んで取付ける(ステップS5)。 On the other hand, each manufactured cylindrical block is put in a charcoal baking pot (not shown) and subjected to charcoal processing (carbonization processing) by burning (step S4). Thereby, the carbonaceous material Bc which carbonized wood, ie, the positive electrode block 2x and the negative electrode block 3x, can be obtained. As shown in FIGS. 1 and 4, the electrode terminal 2xp is inserted into the attachment hole 14 of the positive electrode block 2x and attached, and the electrode terminal 3xp is inserted and attached to the attachment hole 13 of the negative electrode block 3x (step S5). .
 次いで、部品類の組付けを行う(ステップS6)。組付けは、図1に示すように、主に、容器カバー4cに対して行う。まず、容器カバー4cの下面(内面)には、筒形に形成した仕切壁5の上端を固定する。これにより、仕切壁5は容器カバー4cの下面から下方に突出する。また、容器カバー4cには、接続端子部2jと3jを取付ける。この場合、接続端子部2jと3jは、容器カバー4cの上面(外面)から上方に突出し、各接続端子部2jと3jには外部の配線ケーブル21p,21n(図6参照)を接続することができる。さらに、容器カバー4cの下面(内面)側に臨む接続端子部2jには、正電極ブロック2xに取付けた電極端子2xpを先端2xpsから挿入して固定するとともに、容器カバー4cの下面(内面)側に臨む接続端子部3jには、負電極ブロック3xに取付けた電極端子3xpを先端3xpsから挿入して固定する。また、容器カバー4cには、図3に示す位置に、逆止弁を内蔵した液注入口部12を取付ける。 Next, parts are assembled (step S6). As shown in FIG. 1, the assembly is mainly performed on the container cover 4c. First, the upper end of the partition wall 5 formed in a cylindrical shape is fixed to the lower surface (inner surface) of the container cover 4c. Thereby, the partition wall 5 protrudes downward from the lower surface of the container cover 4c. Further, the connection terminal portions 2j and 3j are attached to the container cover 4c. In this case, the connection terminal portions 2j and 3j protrude upward from the upper surface (outer surface) of the container cover 4c, and external wiring cables 21p and 21n (see FIG. 6) can be connected to the connection terminal portions 2j and 3j. it can. Furthermore, the connection terminal portion 2j facing the lower surface (inner surface) side of the container cover 4c is inserted and fixed to the electrode terminal 2xp attached to the positive electrode block 2x from the tip 2xps, and the lower surface (inner surface) side of the container cover 4c. An electrode terminal 3xp attached to the negative electrode block 3x is inserted and fixed from the tip 3xps to the connection terminal portion 3j facing the surface. Moreover, the liquid inlet part 12 incorporating the check valve is attached to the container cover 4c at the position shown in FIG.
 そして、部品類の組付けが終了したなら、容器本体4mの中に、容器カバー4cに組付けた負電極ブロック3xと正電極ブロック2xを収容するとともに、容器カバー4cを容器本体4mに装着する。この際、図1に示すように、容器本体4mと容器カバー4c間にはOリング等のシールリング11を介在させる。また、容器本体4mの本体フランジ4mfと容器カバー4cのカバーフランジ4cfを重ね、ネジ・ナット10…により締付けて固定する(ステップS7)。 When the assembly of the parts is completed, the negative electrode block 3x and the positive electrode block 2x assembled to the container cover 4c are accommodated in the container main body 4m, and the container cover 4c is attached to the container main body 4m. . At this time, as shown in FIG. 1, a seal ring 11 such as an O-ring is interposed between the container body 4m and the container cover 4c. Further, the main body flange 4mf of the container main body 4m and the cover flange 4cf of the container cover 4c are overlapped, and are fastened and fixed by screws and nuts 10 (step S7).
 次いで、液注入口部12から密閉容器4の内部に食塩水(電解液Le)を注入する(ステップS8)。この場合、不図示の電解液収容タンクに収容した食塩水を圧送ポンプにより送り、液注入口部12に接続した供給配管を介して注入する。密閉された密閉容器4に食塩水が注入されるに従って、密閉容器4の内部圧Piは徐々に高まるため、食塩水が規定量(ほぼ満杯)に達したなら、内部圧Piが所定の大きさ以上、望ましくは、1〔MPa〕以上に達したことを確認し、食塩水の注入を終了させる(ステップS9)。この際、液注入口部12に内蔵した逆止弁により食塩水の逆流(漏出)が阻止される。この後、必要な仕上げ工程(ステップS10)及び検査工程(ステップS11)を経て蓄電装置1が完成する(ステップS12)。 Next, a saline solution (electrolytic solution Le) is injected into the sealed container 4 from the liquid injection port 12 (step S8). In this case, the saline solution stored in an electrolyte solution storage tank (not shown) is sent by a pressure pump and injected through a supply pipe connected to the liquid injection port portion 12. As the saline solution is injected into the sealed container 4, the internal pressure Pi of the sealed container 4 gradually increases. Therefore, when the salt solution reaches a specified amount (almost full), the internal pressure Pi is a predetermined magnitude. As described above, preferably, it is confirmed that the pressure has reached 1 [MPa] or more, and the injection of the saline solution is terminated (step S9). At this time, the reverse flow (leakage) of the saline is prevented by the check valve built in the liquid injection port 12. Thereafter, the power storage device 1 is completed through a necessary finishing process (step S10) and an inspection process (step S11) (step S12).
 このように、本実施形態に係る蓄電装置1によれば、導電性を有する多孔質材Rcにより形成する正電極ブロック2xと負電極ブロック3xには、安価で容易に手に入る身近な材料である木材を炭化させた炭材Bc等を利用できる。したがって、木材の端材や廃材も利用可能なり、コストダウンによる製品の低廉化を図れるとともに、レアメタル等と異なり資源的にも有利となるなど、低コスト性及び供給性に優れ、特に、一般住宅の太陽光発電(ソーラーパネル)システムにおける蓄電設備などに用いて最適となる。 As described above, according to the power storage device 1 according to the present embodiment, the positive electrode block 2x and the negative electrode block 3x formed of the conductive porous material Rc are made of materials that are readily available at low cost. A carbon material Bc obtained by carbonizing a certain wood can be used. Therefore, it is possible to use wood scraps and waste materials, and it is possible to reduce the cost of products by reducing costs, and it is advantageous in terms of resources, unlike rare metals, etc. It is most suitable for power storage equipment in solar power generation (solar panel) systems.
 次に、本実施形態に係る蓄電装置1の作用(使用方法)について、図6を参照して説明する。 Next, the operation (usage method) of the power storage device 1 according to this embodiment will be described with reference to FIG.
 図6は、充電時(蓄電時)における化学反応を原理図で示したものである。まず、充電時には、同図に示すように、正極側の電極端子2xpに充電器21(例示は、DC5〔V〕)の正極側を接続し、負極側の電極端子3xpに充電器21の負極側を接続する。これにより、正電極ブロック2xから負電極ブロック3xに電流が流れる。この際、食塩水(電解液Le)の電気分解が行われ、正電極ブロック2xでは、塩素ガス(Cl2)が発生し、負電極ブロック3xでは、水素ガス(H2)が発生する。また、正電極ブロック2xと負電極ブロック3xには、密閉容器4の内部圧Piが作用しているため、発生した塩素ガスは正電極ブロック2xの内部に保持されるとともに、発生した水素ガスは負電極ブロック3xの内部に保持される。即ち、塩素ガスと水素ガスは、多孔質材Rcとしての炭材Bcの繊維質空間にそのまま閉じ込められる。 FIG. 6 is a principle diagram showing a chemical reaction during charging (during storage). First, at the time of charging, as shown in the figure, the positive electrode side of the charger 21 (DC5 [V] for illustration) is connected to the positive electrode terminal 2xp, and the negative electrode of the charger 21 is connected to the negative electrode terminal 3xp. Connect the sides. Thereby, a current flows from the positive electrode block 2x to the negative electrode block 3x. At this time, electrolysis of the saline solution (electrolytic solution Le) is performed, chlorine gas (Cl 2 ) is generated in the positive electrode block 2x, and hydrogen gas (H 2 ) is generated in the negative electrode block 3x. Further, since the internal pressure Pi of the sealed container 4 acts on the positive electrode block 2x and the negative electrode block 3x, the generated chlorine gas is held inside the positive electrode block 2x, and the generated hydrogen gas is It is held inside the negative electrode block 3x. That is, chlorine gas and hydrogen gas are confined as they are in the fibrous space of the carbonaceous material Bc as the porous material Rc.
 この場合、万が一、正電極ブロック2xと負電極ブロック3xから気体成分(Cl2,H2)が電解液Le中に放出された場合であっても、仕切壁5により、気体成分の拡散が防止され、正電極ブロック2xと負電極ブロック3xのそれぞれの電極側に確保(保持)されるため、無用な化学反応を防止して充電効率(充電能力)を高められる。なお、塩素ガスと水素ガスの発生により、正電極ブロック2xでは、水酸化ナトリウム(NaOH)が発生するが、この水酸化ナトリウム(NaOH)も正電極ブロック2xの内部に保持される。以上が、充電時の化学作用となる。 In this case, even if a gas component (Cl 2 , H 2 ) is released into the electrolyte Le from the positive electrode block 2x and the negative electrode block 3x, the partition wall 5 prevents diffusion of the gas component. Since the positive electrode block 2x and the negative electrode block 3x are secured (held) on the respective electrode sides, unnecessary chemical reaction can be prevented and charging efficiency (charging ability) can be improved. The generation of chlorine gas and hydrogen gas generates sodium hydroxide (NaOH) in the positive electrode block 2x. This sodium hydroxide (NaOH) is also held inside the positive electrode block 2x. The above is the chemical action during charging.
 一方、放電時には、正極側の電極端子2xpと負極側の電極端子3xp間から所定の電圧(例示は、DC2〔V〕程度)を取り出すことができる。即ち、正電極ブロック2xと負電極ブロック3x間の放電により、負電極ブロック3x側では、水素ガスが減少して電子を発生するとともに、正電極ブロック2x側では、塩素ガスと水酸化ナトリウムにより食塩水が再生され、これにより、塩素ガスが減少して電子を吸収する。これにより、負電極ブロック3xから正電極ブロック2xに電流が流れる。以上が、放電時の化学作用となる。 On the other hand, at the time of discharging, a predetermined voltage (for example, about DC 2 [V]) can be taken out between the positive electrode terminal 2xp and the negative electrode terminal 3xp. That is, the discharge between the positive electrode block 2x and the negative electrode block 3x causes hydrogen gas to decrease and generate electrons on the negative electrode block 3x side, and on the positive electrode block 2x side, salt is generated by chlorine gas and sodium hydroxide. Water is regenerated, which reduces chlorine gas and absorbs electrons. Thereby, a current flows from the negative electrode block 3x to the positive electrode block 2x. The above is the chemical action during discharge.
 次に、本発明の変更実施形態に係る蓄電装置1について、図9(a)及び(b)を参照して説明する。なお、図9(a)及び(b)において、図1~図4と同一部分(同一機能部分)については同一符号を付してその構成を明確にした。 Next, the power storage device 1 according to the modified embodiment of the present invention will be described with reference to FIGS. 9 (a) and 9 (b). 9A and 9B, the same parts (same function parts) as those in FIGS. 1 to 4 are given the same reference numerals to clarify the configuration.
 まず、図9(a)に示す第一変更実施形態に係る蓄電装置1は、電極ブロックの数を変更した例を示す。図1~図4に示した基本実施形態に係る蓄電装置1では、正電極ブロック2xと負電極ブロック3xの二個の電極ブロックを用いたが、図9(a)に示す蓄電装置1は、負電極ブロック3xの外側に、さらに、電極端子41pを取付けた正電極ブロック41を追加し、三個の電極ブロックにより構成したものである。同様に、この正電極ブロック41の外側に、負電極ブロック,正電極ブロック,を交互に順次配してもよく、電極ブロックは任意の数により実施可能である。 First, the power storage device 1 according to the first modified embodiment shown in FIG. 9A shows an example in which the number of electrode blocks is changed. The power storage device 1 according to the basic embodiment shown in FIGS. 1 to 4 uses two electrode blocks, a positive electrode block 2x and a negative electrode block 3x, but the power storage device 1 shown in FIG. A positive electrode block 41 to which an electrode terminal 41p is further attached is added to the outside of the negative electrode block 3x, and is constituted by three electrode blocks. Similarly, the negative electrode block and the positive electrode block may be alternately arranged outside the positive electrode block 41, and any number of electrode blocks can be implemented.
 また、図9(b)に示す第二変更実施形態に係る蓄電装置1は、電極ブロックの形状を変更した例を示す。図1~図4に示した基本実施形態に係る蓄電装置1では、正電極ブロック2xを円柱形に形成し、負電極ブロック3xを円筒形に形成したが、図9(b)に示すように、正電極ブロック2xと負電極ブロック3xはそれぞれ直方体形に形成してもよい。このように、電極ブロックは任意の形状により実施可能である。 Moreover, the power storage device 1 according to the second modified embodiment shown in FIG. 9B shows an example in which the shape of the electrode block is changed. In the power storage device 1 according to the basic embodiment shown in FIGS. 1 to 4, the positive electrode block 2x is formed in a cylindrical shape and the negative electrode block 3x is formed in a cylindrical shape, but as shown in FIG. 9B. The positive electrode block 2x and the negative electrode block 3x may each be formed in a rectangular parallelepiped shape. Thus, the electrode block can be implemented in any shape.
 以上、好適実施形態(変更実施形態)について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。 The preferred embodiment (modified embodiment) has been described in detail above, but the present invention is not limited to such an embodiment, and the present invention is not limited to such a configuration, shape, material, quantity, numerical value, and the like. Any change, addition, or deletion can be made without departing from the scope of the above.
 例えば、導電性を有する多孔質材Rcとして、木材を炭化させた炭材Bcを用いた場合を示したが、導電性を有する多孔質材Rcであれば、他の各種素材を適用できる。また、正電極ブロック2xを円柱形に形成し、負電極ブロック3xを当該円筒形の内部空間に収容可能な円柱形に形成した例を示したが、負電極ブロック3xを円柱形に形成し、正電極ブロック2xを当該円筒形の内部空間に収容可能な円柱形に形成してもよい。さらに、電極端子2xp,3xpは、黒鉛Cにより形成した例を示したが、他の素材により形成する場合を排除するものではない。ただし、この場合、金属素材は望ましくない。 For example, although the case where the carbonaceous material Bc which carbonized wood was used as the porous material Rc which has electroconductivity was shown, other various raw materials can be applied if it is the porous material Rc which has electroconductivity. Moreover, although the example which formed the positive electrode block 2x in the column shape and formed the negative electrode block 3x in the column shape which can be accommodated in the said cylindrical internal space was shown, the negative electrode block 3x was formed in the column shape, You may form the positive electrode block 2x in the column shape which can be accommodated in the said cylindrical internal space. Furthermore, although the electrode terminals 2xp and 3xp have been shown as being formed of graphite C, it does not exclude the case where they are formed of other materials. However, in this case, a metal material is not desirable.
 本発明に係る蓄電装置は、一般住宅の太陽光発電(ソーラーパネル)システムにおける蓄電設備をはじめ、基本的には、蓄電を必要とする各種用途における蓄電装置として利用することができる。 The power storage device according to the present invention can be basically used as a power storage device in various applications that require power storage, including power storage equipment in a photovoltaic power generation (solar panel) system of a general house.
 1:蓄電装置,2:正電極,2x:正電極ブロック,2xf:相対向する面,2xp:電極端子,2xps:電極端子の先端,3:負電極,3x:負電極ブロック,3xf:相対向する面,3xp:電極端子,3xps:電極端子の先端,4:密閉容器,5:仕切壁,Le:電解液,Rc:多孔質材,Pi:内部圧,Bc:炭材,C:黒鉛 1: power storage device, 2: positive electrode, 2x: positive electrode block, 2xf: opposite surface, 2xp: electrode terminal, 2xps: tip of electrode terminal, 3: negative electrode, 3x: negative electrode block, 3xf: opposite 3xp: electrode terminal, 3xps: tip of electrode terminal, 4: closed container, 5: partition wall, Le: electrolyte, Rc: porous material, Pi: internal pressure, Bc: carbon material, C: graphite

Claims (8)

  1.  容器内の電解液に浸した正電極と負電極を備え、前記正電極と前記負電極間に電圧を印加して充電し又は前記正電極と前記負電極間の放電に基づいて電圧を取出すことができる蓄電装置において、密閉容器に収容した電解液に、導電性を有する多孔質材を用いてそれぞれ形成した前記正電極となる正電極ブロックと前記負電極となる負電極ブロックを浸すとともに、前記密閉容器の内部圧を所定の大きさ以上に設定してなることを特徴とする蓄電装置。 A positive electrode and a negative electrode immersed in an electrolytic solution in a container are provided, and charging is performed by applying a voltage between the positive electrode and the negative electrode, or a voltage is taken out based on a discharge between the positive electrode and the negative electrode. In the power storage device capable of immersing the positive electrode block serving as the positive electrode and the negative electrode block serving as the negative electrode, which are formed using a conductive porous material, respectively, in an electrolyte solution contained in a sealed container, A power storage device, wherein the internal pressure of the sealed container is set to a predetermined level or more.
  2.  前記多孔質材には、少なくとも木材を炭化させた炭材を含むことを特徴とする請求項1記載の蓄電装置。 The power storage device according to claim 1, wherein the porous material includes at least a carbonized material obtained by carbonizing wood.
  3.  前記電解液には、少なくとも食品成分を用いた水溶液又は温泉成分を用いた水溶液を含むことを特徴とする請求項1又は2記載の蓄電装置。 The power storage device according to claim 1 or 2, wherein the electrolytic solution includes at least an aqueous solution using a food component or an aqueous solution using a hot spring component.
  4.  前記正電極ブロックと前記負電極ブロックは、前記正電極ブロックと前記負電極ブロックの一方を円筒形に形成し、かつ他方を前記一方の内部空間に収容可能な円柱形に形成することを特徴とする請求項1,2又は3記載の蓄電装置。 The positive electrode block and the negative electrode block are formed such that one of the positive electrode block and the negative electrode block is formed in a cylindrical shape and the other is formed in a cylindrical shape that can be accommodated in the one internal space. The power storage device according to claim 1, 2, or 3.
  5.  前記正電極ブロックと前記負電極ブロックは、それぞれ、一体形成し、又は複数の分割ブロックの組合わせにより構成することを特徴とする請求項1~4のいずれかに記載の蓄電装置。 The power storage device according to any one of claims 1 to 4, wherein the positive electrode block and the negative electrode block are each integrally formed or configured by combining a plurality of divided blocks.
  6.  前記正電極ブロックと前記負電極ブロックには、黒鉛により形成し、かつ突出することにより先端が前記電解液の外部に露出する電極端子を取付けてなることを特徴とする請求項1~5のいずれかに記載の蓄電装置。 6. The positive electrode block and the negative electrode block are formed of graphite and attached with electrode terminals whose tips are exposed to the outside of the electrolytic solution by protruding. A power storage device according to any one of the above.
  7.  前記正電極ブロックと前記負電極ブロック間には、前記正電極ブロック及び前記負電極ブロックで発生し、前記正電極ブロック及び前記負電極ブロックの表面から外部に漏れ出る気体成分の拡散を防止する仕切壁を配設することを特徴とする請求項1~6のいずれかに記載の蓄電装置。 A partition between the positive electrode block and the negative electrode block that prevents diffusion of gas components generated in the positive electrode block and the negative electrode block and leaking outside from the surface of the positive electrode block and the negative electrode block. The power storage device according to any one of claims 1 to 6, wherein a wall is provided.
  8.  前記仕切壁は、前記正電極ブロックと前記負電極ブロックが相対向する面の一部面又は全面に対向する大きさに形成することを特徴とする請求項7記載の蓄電装置。 The power storage device according to claim 7, wherein the partition wall is formed to have a size facing a part or the entire surface of the surfaces where the positive electrode block and the negative electrode block face each other.
PCT/JP2010/005721 2010-09-21 2010-09-21 Electric power storage device WO2012039001A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012534827A JP5721726B2 (en) 2010-09-21 2010-09-21 Power storage device
PCT/JP2010/005721 WO2012039001A1 (en) 2010-09-21 2010-09-21 Electric power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005721 WO2012039001A1 (en) 2010-09-21 2010-09-21 Electric power storage device

Publications (1)

Publication Number Publication Date
WO2012039001A1 true WO2012039001A1 (en) 2012-03-29

Family

ID=45873522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005721 WO2012039001A1 (en) 2010-09-21 2010-09-21 Electric power storage device

Country Status (2)

Country Link
JP (1) JP5721726B2 (en)
WO (1) WO2012039001A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860814A4 (en) * 2012-06-06 2015-10-28 Dmitry Milanovich Tereshchenko Electrical energy accumulation device based on a gas-electric battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149114A (en) * 1984-01-13 1985-08-06 松下電器産業株式会社 Method of producing capacitor or battery electrode
JPH03203168A (en) * 1989-12-28 1991-09-04 Japan Storage Battery Co Ltd Charging method for storage battery equipped with electrolyte stirring unit
WO1997022466A1 (en) * 1995-12-20 1997-06-26 Power Paper Ltd. Flexible thin layer open electrochemical cell
JPH09241014A (en) * 1996-03-08 1997-09-16 Agency Of Ind Science & Technol Production of activated carbon
JPH1186897A (en) * 1997-09-02 1999-03-30 Toyota Autom Loom Works Ltd Sealed nickel hydrogen battery
JPH11343502A (en) * 1998-04-03 1999-12-14 Shin Etsu Chem Co Ltd Hydrogen storage alloy sintered body and hydrogen storage alloy sintered body porous negative electrode
JP2002313408A (en) * 2001-04-12 2002-10-25 Yasuo Umaji Battery
JP2006165197A (en) * 2004-12-06 2006-06-22 Nec Tokin Corp Electrochemical element
JP2008097940A (en) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd Bipolar type secondary battery
JP2009023889A (en) * 2007-07-23 2009-02-05 Issin Co Ltd Hollow activated carbon and its production process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149114A (en) * 1984-01-13 1985-08-06 松下電器産業株式会社 Method of producing capacitor or battery electrode
JPH03203168A (en) * 1989-12-28 1991-09-04 Japan Storage Battery Co Ltd Charging method for storage battery equipped with electrolyte stirring unit
WO1997022466A1 (en) * 1995-12-20 1997-06-26 Power Paper Ltd. Flexible thin layer open electrochemical cell
JPH09241014A (en) * 1996-03-08 1997-09-16 Agency Of Ind Science & Technol Production of activated carbon
JPH1186897A (en) * 1997-09-02 1999-03-30 Toyota Autom Loom Works Ltd Sealed nickel hydrogen battery
JPH11343502A (en) * 1998-04-03 1999-12-14 Shin Etsu Chem Co Ltd Hydrogen storage alloy sintered body and hydrogen storage alloy sintered body porous negative electrode
JP2002313408A (en) * 2001-04-12 2002-10-25 Yasuo Umaji Battery
JP2006165197A (en) * 2004-12-06 2006-06-22 Nec Tokin Corp Electrochemical element
JP2008097940A (en) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd Bipolar type secondary battery
JP2009023889A (en) * 2007-07-23 2009-02-05 Issin Co Ltd Hollow activated carbon and its production process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2860814A4 (en) * 2012-06-06 2015-10-28 Dmitry Milanovich Tereshchenko Electrical energy accumulation device based on a gas-electric battery

Also Published As

Publication number Publication date
JPWO2012039001A1 (en) 2014-02-03
JP5721726B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5143089B2 (en) Organic battery that can be used after absorbing moisture
US10608243B2 (en) Batteries with replaceable zinc cartridges
WO2010143636A1 (en) Water battery
US9972874B2 (en) Battery with extractible air electrode
CN104106177B (en) air battery and battery pack using the same
KR101123636B1 (en) Cartridge seperate type metal-air battery
JP3154488U (en) Water battery
CN102306712A (en) Cylinder battery
JP5721726B2 (en) Power storage device
JP2010062074A (en) Battery using acid electrolyte
KR20050107500A (en) High current capacity battery
CN101438438A (en) Electrolytic apparatus with polymeric electrode and methods of preparation and use
CN214428663U (en) Non-leakage pile box with internal hydrogen elimination structure for metal-air battery
CN203683181U (en) Novel electrolysis water channel
JP5859920B2 (en) Water battery
CN208315691U (en) A kind of pole piece of lithium battery
CN208385473U (en) A kind of novel lithium battery aluminum hull
CN214782176U (en) Novel hypochlorous acid antiseptic solution takes place device
KR20080025276A (en) Electrolyzer of water gas generator
CN218101460U (en) Bin-divided electric pile element and bin-divided electric pile assembly for metal-air battery
CN214428664U (en) Non-leakage pile box with internal oxygen generation structure for metal-air battery
JP2014146479A (en) Air magnesium battery
CN112680743A (en) High-efficiency hypochlorous acid generator electrolytic tank
CN101803083A (en) Alkali battery
CN208272057U (en) A kind of sodium ion water system battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534827

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857499

Country of ref document: EP

Kind code of ref document: A1