JP2002313408A - Battery - Google Patents

Battery

Info

Publication number
JP2002313408A
JP2002313408A JP2001114029A JP2001114029A JP2002313408A JP 2002313408 A JP2002313408 A JP 2002313408A JP 2001114029 A JP2001114029 A JP 2001114029A JP 2001114029 A JP2001114029 A JP 2001114029A JP 2002313408 A JP2002313408 A JP 2002313408A
Authority
JP
Japan
Prior art keywords
partition
positive electrode
battery cell
chemical battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001114029A
Other languages
Japanese (ja)
Inventor
Yasuo Umaji
康男 馬路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001114029A priority Critical patent/JP2002313408A/en
Publication of JP2002313408A publication Critical patent/JP2002313408A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To commercialize a battery using liquid and gas as active materials. SOLUTION: The inside of a closed container 5 is divided into a reservoir 51A for reserving the electrolyte 4A of a chemical battery cell 1A and a reservoir 51B for reserving the positive electrode active material solution 4B of the chemical battery cell 1B through a partition 6. The partition 6 is formed in a double structure comprising partition walls 2A and 2B electrically conducted to each other. The partition walls 2A and 2B are formed of porous catalyst and ions in the electrolyte 4A are temporarily gasified in a battery reaction to allow the ions to pass through the partition walls 2A and 2B so that the ions can be moved from the reservoir 51A to the reservoir 51B. A communication part 62 allowing both reservoirs 51A and 51B to communicate with the inside 61 of the partition is provided over the partition 6 to lead the gas diffused in the electrolyte 4A to the inside 61 of the partition through the communication part 62 without being produced on the partition wall 2A and being passed through the inside of the partition wall 2A so as to prevent the electrolyte 4A from being leaked due to a reduction in pressure on the inside 61 of the partition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電池に関し、特に液
体や気体の活物質を用いた化学電池に関する。
The present invention relates to a battery, and more particularly, to a chemical battery using a liquid or gaseous active material.

【0002】[0002]

【従来の技術】化学電池は電解液に正負一対の活物質を
接触せしめたもので、電池反応は正極および負極の活物
質における酸化還元反応である。化学電池としては、車
載バッテリとして用いられる鉛蓄電池がよく知られてい
る。これは電解液として希硫酸(H2 SO4(aq) )を用
い、正極活物質として二酸化鉛(Pb O2 )を、負極活
物質として鉛(Pb )を用いているが、活物質はいずれ
も固体である。
2. Description of the Related Art A chemical battery is a battery in which a pair of positive and negative active materials are brought into contact with an electrolytic solution, and the battery reaction is an oxidation-reduction reaction of a positive electrode and a negative electrode active material. As a chemical battery, a lead storage battery used as a vehicle-mounted battery is well known. In this method, dilute sulfuric acid (H 2 SO 4 (aq) ) is used as an electrolytic solution, lead dioxide (PbO 2 ) is used as a positive electrode active material, and lead (Pb) is used as a negative electrode active material. Are also solid.

【0003】電池によっては、活物質は固体の他、液体
や気体のものがある。活物質に液体を用いたものではダ
ニエル電池がある。これは電解液として希硫酸(H2
4( aq) )を用い、正極活物質として硫酸銅溶液(Cu
SO4(aq) )を用いている。負極活物質は固体の亜鉛
(Zn )である。
[0003] Depending on the battery, the active material may be liquid or gas in addition to solid. Among those using a liquid as an active material, there is a Daniel battery. This is because dilute sulfuric acid (H 2 S
O 4 ( aq) ) and a copper sulfate solution (Cu
SO 4 (aq) ). The negative electrode active material is solid zinc (Zn).

【0004】活物質に気体を用いたものでは高圧型ニッ
ケル・水素蓄電池がある。これは電解液として水酸化カ
リウム溶液(KOH(aq))を用い、負極活物質である水
素ガス(H2(g))が負極である白金(Pt )触媒電極よ
り吸収されるようになっている。正極活物質は固体であ
るオキシ水酸化ニッケル(Ni OOH)である。
A battery using a gas as an active material includes a high-pressure nickel-metal hydride storage battery. In this method, a potassium hydroxide solution (KOH (aq) ) is used as an electrolyte, and hydrogen gas (H 2 (g) ) as a negative electrode active material is absorbed by a platinum (Pt) catalyst electrode as a negative electrode. I have. The positive electrode active material is solid nickel oxyhydroxide (NiOOH).

【0005】ところで現在広く用いられているのは、上
記鉛蓄電池のように正負両極とも活物質を固体としたも
のである。その理由としては、上記ダニエル電池のよう
に活物質を液体としたものでは、ともに液体である電解
液と活物質とを分離すること、および充放電時に特定の
イオンだけを通すことを目的とするセパレータが設けら
れるが、この目的を十分に果たすものがないためであ
る。例えばダニエル電池のセパレータとして素焼きの陶
器製のものが知られているが、時間とともに電解液(H
2 SO4(aq) )と正極活物質溶液(Cu SO4(aq) )と
が混合し自己放電を起こしてしまうという問題がある。
[0005] By the way, what is widely used at present is one in which the active material is solid in both positive and negative electrodes as in the above-mentioned lead-acid battery. The reason is that, in the case where the active material is a liquid like the above-described Daniel battery, the purpose is to separate the electrolyte and the active material, both of which are liquid, and to pass only specific ions during charge and discharge. Although a separator is provided, there is nothing that sufficiently fulfills this purpose. For example, an unglazed ceramic pottery is known as a separator for a Daniel battery.
2 SO 4 (aq) ) and the positive electrode active material solution (Cu SO 4 (aq) ) are mixed to cause a self-discharge.

【0006】また上記高圧型ニッケル・水素蓄電池のよ
うに活物質を気体としたものでは、活物質となる水素等
のガスを蓄える安全な耐圧容器や水素吸蔵合金等が必要
で、低廉で簡単な構成の電池とするには難があり、汎用
的ではないものが多いことが挙げられる。
In the case where the active material is a gas, such as the above-mentioned high-pressure nickel-hydrogen storage battery, a safe pressure-resistant container or a hydrogen storage alloy for storing a gas such as hydrogen as the active material is required, and it is inexpensive and simple. It is difficult to make a battery having such a configuration, and there are many batteries that are not versatile.

【0007】そこで発明者は、活物質が液体や気体で上
記のような問題点がない電池として次のような電池を提
案した(特許第2956027号)。この電池は2種類
の化学電池セルよりなり、第1の化学電池セルは、その
正極を、電解液中のイオンを還元してガス化する第1の
触媒で構成し、第2の化学電池セルは、その負極を、上
記正極より放出されたガスを吸収して酸化しイオン化せ
しめる第2の触媒で構成して上記ガスを負極活物質とす
るものである。そして、第1の化学電池セルの正極にお
ける上記ガスの放出面と第2の化学電池セルの負極にお
ける上記ガスの吸収面とを壁面の一部とする密閉室を設
けるとともに、第1の化学電池セルの正極と第2の化学
電池セルの負極とを導通せしめて上記両化学電池セルを
直列接続する。第1の化学電池セルの負極と第2の化学
電池セルの正極とが放電用または充電用の電極となる。
このように密閉室を介して第1の化学電池セルの電解液
中の上記イオンが実質的に第2の化学電池セルの電解液
等中に移動することで、ダニエル電池の例にあるように
両方の電解液が混ざり合うという自己放電の回避を実現
している。
Therefore, the inventor has proposed the following battery as a battery in which the active material is a liquid or a gas and does not have the above-mentioned problems (Japanese Patent No. 2956027). This battery is composed of two types of chemical battery cells. The first chemical battery cell has a positive electrode composed of a first catalyst that reduces ions in an electrolytic solution to gasify the second chemical battery cell. Discloses a method in which the negative electrode is composed of a second catalyst that absorbs the gas released from the positive electrode, oxidizes and ionizes the gas, and uses the gas as a negative electrode active material. A closed chamber is provided in which the gas release surface of the positive electrode of the first chemical battery cell and the gas absorbing surface of the negative electrode of the second chemical battery cell are part of the wall surface. The positive electrode of the cell and the negative electrode of the second chemical battery cell are electrically connected to connect the two chemical battery cells in series. The negative electrode of the first chemical battery cell and the positive electrode of the second chemical battery cell are electrodes for discharging or charging.
As described above, the ions in the electrolyte of the first chemical battery cell substantially move into the electrolyte or the like of the second chemical battery cell via the closed chamber, as in the example of the Daniel battery. This avoids self-discharge, in which both electrolytes are mixed.

【0008】より具体的な構造としては、第1の化学電
池セルの正極、第2の化学電池セルの負極となる板状の
多孔性触媒により密閉容器体を左右方向に3室に分割
し、中央の室を上記密閉室とし、両側の室に上記電解液
や負極活物質溶液を満たすとともに正極または負極とな
る活物質を浸漬せしめたものを示している。この構造で
は、第1の化学電池セルの電解液と第2の化学電池セル
の電解液等とを分離する仕切りが、第1の化学電池セル
の正極および第2の化学電池セルの負極とし得るので、
電池形状を占有面積をとらない薄型としながら電解液等
と接触する電極の面積を十分に確保することが可能であ
る。
As a more specific structure, the closed container is divided into three chambers in the left-right direction by a plate-shaped porous catalyst that serves as a positive electrode of the first chemical battery cell and a negative electrode of the second chemical battery cell. The center chamber is the closed chamber, and the chambers on both sides are filled with the electrolytic solution or the negative electrode active material solution and are immersed in an active material to be a positive electrode or a negative electrode. In this structure, the partition for separating the electrolytic solution of the first chemical battery cell and the electrolytic solution of the second chemical battery cell and the like can be the positive electrode of the first chemical battery cell and the negative electrode of the second chemical battery cell. So
It is possible to sufficiently secure the area of the electrode that comes into contact with the electrolytic solution or the like while making the battery shape thin without taking up the occupied area.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、この構
造において、例えば放電の場合で説明すると、第1の化
学電池セルにおいて多孔性触媒である正極で発生するガ
スは、すべてが正極を通り密閉室へと移動するとは限ら
ず、特に電解液と接触する正極の表面で発生するガスは
正極内部に吸収されずに気泡として電解液中に拡散す
る。直列接続された両電池セルは同じ量の電荷の移動が
生じ、この電荷の移動量に対応して第1の化学電池セル
におけるイオンのガス化および第2の化学電池セルにお
けるガスの再イオン化が生じることから、放電が進むに
つれて密閉室がガス供給不足となって圧力が低下すると
ともに、第1の化学電池セルの電解液を満たした室の圧
力が上昇して、電解液が密閉室内に漏出するとともに、
漏出する分、電池の残存容量が目減りするおそれがあ
る。放電時とは逆の反応が進行する充電時には逆に第2
の化学電池セルの電解液等を満たした室から電解液等が
密閉室に漏出することになる。
However, in this structure, for example, in the case of discharge, all gases generated at the positive electrode, which is a porous catalyst in the first chemical battery cell, pass through the positive electrode to the closed chamber. The gas generated on the surface of the positive electrode that comes into contact with the electrolyte is diffused into the electrolyte as bubbles without being absorbed inside the positive electrode. The same amount of charge transfer occurs in both battery cells connected in series, and gasification of ions in the first chemical battery cell and re-ionization of gas in the second chemical battery cell correspond to the amount of charge transfer. As the discharge proceeds, the gas supply in the closed chamber becomes insufficient and the pressure decreases as the discharge proceeds, and the pressure in the chamber filled with the electrolyte of the first chemical battery cell increases, and the electrolyte leaks into the closed chamber. Along with
The remaining capacity of the battery may be reduced by the amount of leakage. During charging, the reverse reaction takes place during discharging.
The electrolyte or the like leaks from the chamber of the chemical battery cell filled with the electrolyte or the like into the closed chamber.

【0010】そこで、本発明は、活物質が液体や気体
で、しかも電解液等の漏出等を防止することのできる電
池を提供することを目的とする。
Accordingly, an object of the present invention is to provide a battery in which the active material is a liquid or a gas and which can prevent leakage of an electrolytic solution or the like.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明で
は、第1および第2の化学電池セルを有する電池であっ
て、絶縁材で形成した密閉容器体の内部を、仕切りによ
り左右に2槽に分割し、該仕切りを、第1の槽側の隔壁
と第2の槽側の隔壁とを有する二重の構造とするととも
に、その上部には両隔壁で挟まれた仕切り内部と両槽内
とを連通する連通部を形成し、第1の化学電池セルは、
液面が上記連通部よりも下方位置となるように第1の槽
に満たした電解液と、上記第1の槽側の隔壁の全部また
は一部であって電解液中のイオンを還元してガス化する
第1の多孔性触媒で構成した正極と、上記電解液中に浸
漬せしめた負極とで構成し、第2の化学電池セルは、液
面が上記連通部よりも下方位置となるように第2の槽に
満たした電解液もしくは正極活物質溶液と、上記第2の
槽側の隔壁の全部または一部であって上記正極より放出
されたガスを吸収して酸化しイオン化せしめる第2の多
孔性触媒で構成した負極と、上記電解液中に浸漬せしめ
た正極とで構成して、上記ガスを負極活物質とし、か
つ、第1の化学電池セルの正極と第2の化学電池セルの
負極とを導通せしめて上記両化学電池セルを直列接続
し、第1の化学電池セルの負極と第2の化学電池セルの
正極とを放電用または充電用の電極とする。
According to the first aspect of the present invention, there is provided a battery having first and second chemical battery cells, wherein the inside of a closed container formed of an insulating material is divided into two sides by a partition. The partition is divided into tanks, and the partition has a double structure having a partition on the first tank side and a partition on the second tank side. Forming a communication portion that communicates with the inside, wherein the first chemical battery cell is
The electrolyte filled in the first tank so that the liquid level is lower than the communication section, and the ions in the electrolyte are reduced by reducing all or a part of the partition on the first tank side. A positive electrode composed of the first porous catalyst to be gasified, and a negative electrode immersed in the electrolytic solution, wherein the second chemical battery cell has a liquid level lower than the communication part. And the second solution, which absorbs and oxidizes and ionizes the electrolyte or positive electrode active material solution filled in the second tank and the gas discharged from the positive electrode, which is all or a part of the partition on the second tank side. And a positive electrode immersed in the electrolytic solution, wherein the gas is used as a negative electrode active material, and the positive electrode of the first chemical battery cell and the second chemical battery cell The first chemical battery cell is connected to the negative electrode of the first The negative electrode and the positive electrode and the discharge or electrodes for charging the second chemical battery cell.

【0012】第1の化学電池セルではその電池反応によ
り正極からガスが発生し、第2の化学電池セルではその
電池反応は上記ガスを負極活物質として使う。本発明の
電池より取り出される起電力は両化学電池セルの起電力
の和として与えられる。
In the first chemical battery cell, a gas is generated from the positive electrode by the battery reaction, and in the second chemical battery cell, the gas uses the gas as a negative electrode active material in the battery reaction. The electromotive force extracted from the battery of the present invention is given as the sum of the electromotive forces of both chemical battery cells.

【0013】電池反応により第1の電気化学セルの電解
液中のイオンが実質的に第1の化学電池セルから第2の
化学電池セルへと移動することになるが、一旦ガス化し
てから第2の化学電池セルの負極へ吸収されるため、第
1の化学電池セルの電解液と、第2の化学電池セルの電
解液もしくは正極活物質溶液とが混合しない。また第2
の化学電池セルは負極活物質となるガスが第1の化学電
池セルより供給されるためガスを蓄える高圧容器が不要
である。
Due to the battery reaction, ions in the electrolyte of the first electrochemical cell substantially move from the first chemical battery cell to the second chemical battery cell. Since the negative electrode of the second chemical battery cell is absorbed by the negative electrode of the second chemical battery cell, the electrolytic solution of the first chemical battery cell does not mix with the electrolytic solution of the second chemical battery cell or the positive electrode active material solution. Also the second
In the above chemical battery cell, a gas serving as a negative electrode active material is supplied from the first chemical battery cell, so that a high-pressure container for storing the gas is not required.

【0014】しかも、放電時に第1の化学電池セルの正
極で発生する上記ガスのうち、例えば電解液と接触する
正極の表面で発生して正極内部に吸収されずに電解液中
に拡散するガスがあっても、気泡として電解液の液面よ
り出、仕切りの連通部を通って仕切り内に移動できるか
ら、第1の化学電池セルから仕切り内部へのガスの供給
量と第2の化学電池セルにおけるガスの消費量とが平衡
する。この結果、仕切り内部圧力の低下による第1の化
学電池セルの電解液の仕切り内への漏出を防止すること
ができる。
In addition, of the gases generated at the positive electrode of the first chemical battery cell at the time of discharge, for example, a gas generated at the surface of the positive electrode in contact with the electrolytic solution and diffused into the electrolytic solution without being absorbed inside the positive electrode Even if there is a gas, the gas can escape from the liquid surface of the electrolyte and move into the partition through the communication part of the partition, so that the gas supply amount from the first chemical battery cell to the inside of the partition and the second chemical battery The gas consumption in the cell is balanced. As a result, it is possible to prevent the electrolyte solution of the first chemical battery cell from leaking into the partition due to a decrease in the partition internal pressure.

【0015】一方、放電時と逆方向の反応が進行する充
電時にも、同様に、第2の化学電池セルの負極で発生し
第2の化学電池セルの電解液もしくは正極活物質中に拡
散するガスがあっても連通部を通って仕切り内部に移動
できるから、仕切り内部において上記ガスが不足を生じ
ることが回避される。そして、仕切り内部圧力の低下に
よる第2の化学電池セルの電解液もしくは正極活物質の
仕切り内部への漏出を防止することができる。
On the other hand, also at the time of charging in which the reaction proceeds in the reverse direction to the time of discharging, similarly, it occurs at the negative electrode of the second chemical battery cell and diffuses into the electrolyte or the positive electrode active material of the second chemical battery cell. Even if gas is present, the gas can be moved to the inside of the partition through the communicating portion, so that shortage of the gas inside the partition is avoided. Further, it is possible to prevent the electrolyte solution or the positive electrode active material of the second chemical battery cell from leaking into the partition due to a decrease in the pressure inside the partition.

【0016】また、かかる漏出が防止されることで、電
池の残存容量が目減りすることもない。
Further, by preventing such leakage, the remaining capacity of the battery is not reduced.

【0017】[0017]

【発明の実施の形態】(第1実施形態)図1に本発明の
電池を示す。この電池は第1の化学電池セル1Aと第2
の化学電池セル1Bとが密閉容器体たる矩形のケーシン
グ5により一体構成となっている。ケーシング5は絶縁
材たる耐酸性および耐アルカリ性の電気絶縁樹脂で構成
されたもので、実質的に密閉構造のものである。ケーシ
ング5内は仕切り6により分割されて、左右に2つの槽
51A,51Bが形成される。
(First Embodiment) FIG. 1 shows a battery of the present invention. This battery comprises a first chemical battery cell 1A and a second
And the chemical battery cell 1B are integrally configured by a rectangular casing 5 serving as a closed container. The casing 5 is made of an acid- and alkali-resistant electric insulating resin as an insulating material, and has a substantially closed structure. The inside of the casing 5 is divided by a partition 6, and two tanks 51A and 51B are formed on the left and right.

【0018】仕切り6は、底壁面501より立設して間
隔をおいて平行に配置された第1の槽51A側の隔壁2
Aと、第2の槽51B側の隔壁2Bとの二重構造で、ケ
ーシング5の内壁面に形成された段部502A,502
Bに沿って、隔壁2Aと隔壁2Bが後述する導電部材7
を密着状態で挟むように配置される。段部502A,5
02Bは、各隔壁2A,2Bの3辺と当接するようにケ
ーシング5の底壁面501および図示しない側壁面にコ
字状に形成されている。
The partition 6 is a partition wall 2 on the side of the first tank 51A which is erected from the bottom wall surface 501 and is arranged in parallel at a distance.
A and step portions 502A, 502 formed on the inner wall surface of the casing 5 in a double structure of A and the partition 2B on the second tank 51B side.
B, the partition 2A and the partition 2B are electrically conductive members 7 to be described later.
Are arranged so as to be sandwiched in close contact with each other. Steps 502A, 5
02B is formed in a U-shape on the bottom wall surface 501 and the side wall surface (not shown) of the casing 5 so as to contact the three sides of the partition walls 2A and 2B.

【0019】各隔壁2A,2Bはケーシング5の天井壁
503の壁面504との間があく高さとなっており、隔
壁2A,2Bとケーシング天井壁壁面504の間の部分
が、仕切り6の内部61と槽51A,51Bとを連通せ
しめる連通部62となっている。
The partition walls 2A and 2B have a clearance between the wall surface 504 of the ceiling wall 503 of the casing 5 and a portion between the partition walls 2A and 2B and the wall surface 504 of the casing ceiling wall. A communication section 62 for communicating the tanks 51A and 51B with each other.

【0020】各隔壁2A,2Bは平板状に形成したニッ
ケル、炭素等の多孔質導電体に白金(Pt )、パラジウ
ム(Pd )、ロジウム(Rh )、ルテニウム(Ru )等
の酸化還元触媒層を形成した多孔性触媒であり、それぞ
れ化学電池セル1A,1Bの一方の電極となる。隔壁2
Aは第1の化学電池セル1Aの正極(以下、適宜、第1
セル正極という)2Aであり、隔壁2Bは第2の化学電
池セル1Bの負極(以下、適宜、第2セル負極という)
2Bである。
Each of the partition walls 2A and 2B has a plate-shaped porous conductor made of nickel, carbon or the like and a redox catalyst layer made of platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) or the like. The formed porous catalyst becomes one electrode of the chemical battery cells 1A and 1B, respectively. Partition wall 2
A is the positive electrode of the first chemical battery cell 1A (hereinafter referred to as the first
The cell 2B is a negative electrode of the second chemical battery cell 1B (hereinafter, appropriately referred to as a second cell negative electrode).
2B.

【0021】槽51A内には第1の化学電池セル1Aの
負極(以下、適宜、第1セル負極という)3Aが正極2
Aと間隔をおいて収容してある。負極3Aは亜鉛(Zn
)製の略平板状部材で、第1の化学電池セル1Aの負
極活物質となる。負極3Aはまた、縦置きされて、平板
部31Aの上端面から上方に向けて棒状部32Aが延
び、ケーシング天井壁503を貫通してケーシング5外
に突出している。棒状部32Aの突出部がこの電池の負
側の端子321Aとなる。
In the tank 51A, a negative electrode 3A of the first chemical battery cell 1A (hereinafter, appropriately referred to as a first cell negative electrode) 3A is
A is stored at an interval from A. The negative electrode 3A is made of zinc (Zn
) Is a negative electrode active material of the first chemical battery cell 1A. The negative electrode 3A is also placed vertically, and the bar-shaped portion 32A extends upward from the upper end surface of the flat plate portion 31A, and penetrates the casing ceiling wall 503 and protrudes outside the casing 5. The protruding portion of the rod portion 32A becomes the negative terminal 321A of this battery.

【0022】槽51B内には第2の化学電池セル1Bの
正極(以下、適宜、第2セル正極という)3Bが負極2
Bと間隔をおいて収容してある。正極3Bは第1セル負
極3Aと略同形の縦置きされた銅(Cu )製部材で、平
板部31Bの上端面から上方に向けて棒状部32Bが延
び、ケーシング天井壁503を貫通してケーシング5外
に突出している。棒状部32Bの突出部がこの電池の正
側の端子321Bとなる。
In the tank 51B, a positive electrode (hereinafter, appropriately referred to as a second cell positive electrode) 3B of the second chemical battery cell 1B is provided with a negative electrode 2B.
B is stored at an interval. The positive electrode 3B is a vertically placed copper (Cu) member having substantially the same shape as the first cell negative electrode 3A, and has a rod-shaped portion 32B extending upward from the upper end surface of the flat plate portion 31B. 5 protrudes outside. The protruding portion of the rod-shaped portion 32B becomes the terminal 321B on the positive side of this battery.

【0023】第1の槽51Aには、図略の電解液注入口
より電解液4Aとして希硫酸(H2SO4(aq) )が注入
される。電解液4Aは、液面401Aが第1セル正極2
Aの上端201Aよりも下方にくるように注入量を設定
する。一方、槽51Bには図略の注入口より正極活物質
溶液4Bとして硫酸銅溶液(Cu SO4(aq) )が注入さ
れる。正極活物質溶液4Bは、液面401Bが第2セル
負極2Bの上端201Bよりも下方にくるように注入量
を設定する。これら電解液4A、正極活物質溶液4Bを
注入する注入口は、図示しない蓋部材により閉鎖可能
で、気密が保持される。
Dilute sulfuric acid (H 2 SO 4 (aq) ) is injected into the first tank 51A as an electrolyte 4A from an electrolyte inlet (not shown) . The electrolytic solution 4A has a liquid surface 401A whose first cell positive electrode 2
The injection amount is set so as to be lower than the upper end 201A of A. On the other hand, a copper sulfate solution (Cu SO 4 (aq) ) is injected into the tank 51B as a positive electrode active material solution 4B from an injection port (not shown) . The injection amount of the positive electrode active material solution 4B is set so that the liquid level 401B is lower than the upper end 201B of the second cell negative electrode 2B. An inlet for injecting the electrolytic solution 4A and the positive electrode active material solution 4B can be closed by a cover member (not shown), and airtightness is maintained.

【0024】第1の槽51Aの電解液液面4Aよりも上
方の空間511Aおよび第2の槽51Bの正極活物質溶
液液面4Bよりも上方の空間511Bは、仕切り内部6
1と常時、連通部62を介して連通し、一続きの略T字
状の空間となる。なお、この空間は、電解液4Aおよび
正極活物質溶液4Bの注入後、水素ガスを満たしたチャ
ンバに入れる等して、空気を水素と置換しておき、水素
を満たしてから上記注入口の蓋をする。
A space 511A above the liquid surface 4A of the electrolyte in the first tank 51A and a space 511B above the liquid surface 4B of the positive electrode active material solution in the second tank 51B are formed inside the partition 6A.
1 is always communicated via the communicating portion 62 to form a continuous substantially T-shaped space. After the electrolyte 4A and the positive electrode active material solution 4B are injected, the space is filled with a hydrogen gas to replace the air with hydrogen. do.

【0025】第1セル正極2A、第2セル負極2Bの間
には、銅(Cu )や鉄(Fe )等の導電性帯状部材をコ
字状に屈曲してなる導電部材7が、ケーシング底壁面5
01および図示しない側壁面に沿って設けてあり、第1
セル正極2Aと第2セル負極2Bとを電気的に導通せし
めている。これにより、両化学電池セル1A,1Bが直
列接続となる。
Between the first cell positive electrode 2A and the second cell negative electrode 2B, a conductive member 7 formed by bending a conductive band-shaped member such as copper (Cu) or iron (Fe) into a U-shape is provided at the bottom of the casing. Wall 5
01 and side walls (not shown).
The cell positive electrode 2A and the second cell negative electrode 2B are electrically connected. Thereby, both chemical battery cells 1A and 1B are connected in series.

【0026】上記電池の作動を説明する。図2は上記電
池における電池反応を説明するための上記電池の概要図
で、第1の化学電池セル1Aはいわゆるボルタ電池と呼
ばれる構成と同じであり、負極3AのZn (s) が負電荷
を放出しZn 2+となって電解液4A中に溶出する。この
ため電解液4A中のH3+ が正極2Aに移動してその
触媒作用で還元しH2(g)となって正極2Aの細孔を通
り、第2セル負極2Bとの対向面202Aから放出され
る。なお、特に正極2Aの電解液4Aと接触する面20
3Aで発生するH2(g)には多孔質構造の正極2A内部に
拡散せずに電解液4A中に拡散するものが存在するが、
これは電解液液面401Aから出、その上方の空間51
1Aから仕切り連通部62を介して仕切り内部61に入
る。この第1の化学電池セル1Aにおける反応は式
(1)により表される(右向き矢印が放電時の反応を、
左向き矢印が充電時の反応を示す。以下、同じ)。この
反応により第1の化学電池セル1Aの正負両極2A,3
A間に発生する起電力は標準電極電位等より知られ、
0.763Vとなる。
The operation of the battery will be described. FIG. 2 is a schematic diagram of the battery for explaining the battery reaction in the battery. The first chemical battery cell 1A has the same configuration as a so-called voltaic battery, and Zn (s) of the negative electrode 3A has a negative charge. It is released and becomes Zn 2+ and elutes in the electrolytic solution 4A. Therefore, H 3 O + in the electrolytic solution 4A moves to the positive electrode 2A and is reduced by the catalytic action to become H 2 (g) , passes through the pores of the positive electrode 2A, and faces the second cell negative electrode 2B at the surface 202A. Released from In particular, the surface 20 of the positive electrode 2A in contact with the electrolyte 4A
Some H 2 (g) generated in 3A does not diffuse into the porous positive electrode 2A but diffuses into the electrolytic solution 4A.
This emerges from the electrolyte level 401A, and the space 51 above it.
From 1A, it enters into the partition interior 61 via the partition communication part 62. The reaction in the first chemical battery cell 1A is represented by equation (1).
The left arrow indicates the reaction during charging. same as below). By this reaction, the positive and negative electrodes 2A, 3 of the first chemical battery cell 1A
The electromotive force generated between A is known from the standard electrode potential, etc.
It becomes 0.763V.

【0027】[0027]

【化1】 Embedded image

【0028】一方、第2の化学電池セル1Bでは、第1
セル正極2Aにおいて発生して仕切り内部61に移動し
たH2(g)が、負極2Bに達し、その細孔表面において酸
化し、再びH3+ となって正極活物質溶液4B(Cu
SO4(aq) )中に溶け込む(H3+ が正極2Aに正の
電荷を放出してH2(g)を発生する反応と、H2(g)が負極
2Bで酸化され(正の電荷をもらい)再びH3+ とな
る反応は、第1セル正極2Aと負極2Bが導電部材7で
電気的に接続されているので、可逆反応となる)。
On the other hand, in the second chemical battery cell 1B, the first
H 2 (g) generated in the cell positive electrode 2A and moved to the inside of the partition 61 reaches the negative electrode 2B, is oxidized on the pore surface thereof, becomes H 3 O + again, and becomes positive electrode active material solution 4B (Cu).
SO 4 blend in (aq)) and the reaction for generating the (H 3 O + is H 2 (g by emitting positive charges in the positive electrode 2A), H 2 (g) is oxidized in the negative electrode 2B (positive The reaction to obtain H 3 O + again is a reversible reaction because the first cell positive electrode 2A and negative electrode 2B are electrically connected by the conductive member 7).

【0029】また、元素Cu は、常温では金属状態の方
が安定している物質であるので、負極2BでH3+
発生することにより、正極活物質溶液4B(Cu SO
4(aq))のCu 2+は、正極3Bで金属Cu として析出す
る。すなわち第2の化学電池セル1Bでは式(2)の反
応が進行する。
Since the element Cu is more stable in the metal state at normal temperature, H 3 O + is generated in the negative electrode 2B, so that the positive electrode active material solution 4B (Cu SO 4
4 (aq) ) Cu 2+ is deposited as metal Cu on the positive electrode 3B. That is, the reaction of the formula (2) proceeds in the second chemical battery cell 1B.

【0030】[0030]

【化2】 Embedded image

【0031】この反応により正負両電極2B,3B間に
発生する起電力は0.347Vである。
The electromotive force generated between the positive and negative electrodes 2B and 3B by this reaction is 0.347V.

【0032】しかして電池全体では、起電力は第1およ
び第2の化学電池セル1A,1Bにより発生する起電力
の和として1.11Vが得られる。
Thus, for the entire battery, 1.11 V is obtained as the sum of the electromotive forces generated by the first and second chemical battery cells 1A and 1B.

【0033】ここで式(1),(2)を整理すると式
(3)となる。
Here, Equations (1) and (2) are rearranged into Equation (3).

【0034】[0034]

【化3】 Embedded image

【0035】これは負極においてZn (s) が溶出し、正
極においてCu (s) が析出する、従来のダニエル電池の
電池反応である。H3+ からH2(g)を発生し再びH3
+に戻す両電極2A,2Bを中心とする構成は、ダニ
エル電池におけるセパレータとして作用している。しか
し素焼き陶器等で作られた従来のダニエル電池のセパレ
ータは、電解液であるH2 SO4(aq) と正極活物質溶液
であるCu SO4(aq)とが混合するのに対し、第1の化
学電池セル1Aの電解液4Aの特定のイオン(H+ (液
中ではH3+ イオン))だけが一旦ガス化して第2の
化学電池セル1Bの正極活物質溶液4BであるCu SO
4(aq) に移動し、従来のダニエル電池のように電解液と
正極活物質溶液との混合により自己放電してしまうとい
う問題がない。
This is a battery reaction of a conventional Daniel battery in which Zn (s) elutes at the negative electrode and Cu (s) precipitates at the positive electrode. H 2 (g) is generated from H 3 O + and again H 3 (g) is generated.
The configuration centered on the two electrodes 2A and 2B for returning to O + functions as a separator in the Daniel battery. However, in the conventional Daniel battery separator made of unglazed pottery or the like, the H 2 SO 4 (aq) as the electrolyte and the Cu SO 4 (aq) as the positive electrode active material solution are mixed, whereas the first is as follows. Only specific ions (H + (H 3 O + ions in the solution)) of the electrolytic solution 4A of the chemical battery cell 1A are gasified once and the Cu 2 SO 4 which is the positive electrode active material solution 4B of the second chemical battery cell 1B
4 (aq) , and there is no problem that self-discharge is caused by mixing of the electrolyte solution and the positive electrode active material solution unlike the conventional Daniel battery.

【0036】なお、充電する場合には、電池の正負の端
子321A,321B間に正端子321B側を正として
1.11V以上の電圧を印加することにより、式
(1),(2)の左向き矢印の反応が進行し、第1およ
び第2の化学電池セル1A,1Bがともに充電される。
この場合は、第2セル負極2Bの、第1セル正極2Aと
の対向面202BがH2(g)の放出面となり、第1セル正
極2Aの、第2セル負極2Bとの対向面202AがH
2(g)の吸収面となる。
When charging, by applying a voltage of 1.11 V or more with the positive terminal 321B being positive between the positive and negative terminals 321A and 321B of the battery, the leftward direction of the equations (1) and (2) can be obtained. The reaction indicated by the arrow proceeds, and the first and second chemical battery cells 1A and 1B are both charged.
In this case, the surface 202B of the second cell negative electrode 2B facing the first cell positive electrode 2A becomes the H 2 (g) emission surface, and the surface 202A of the first cell positive electrode 2A facing the second cell negative electrode 2B is formed. H
2 (g) absorption surface.

【0037】また、電池の形状を衝立状の薄型化する要
請に対しても、薄くする方向を電極2A,2Bの対向方
向にとれば、電極2A,2Bの面積を確保するることが
でき、電解液4A、正極活物質4Bとの接触面積が十分
で高い電流値を得ることができる。
Also, in response to a demand for a thin battery in the shape of a partition, if the direction of thinning is set in the direction opposite to the electrodes 2A and 2B, the area of the electrodes 2A and 2B can be secured. The contact area between the electrolyte 4A and the positive electrode active material 4B is sufficient and a high current value can be obtained.

【0038】しかも、放電時において、第1セル正極2
AではH3+ イオンがガス化してH2(g)が発生する
が、このH2(g)は、必ずしもすべてが第1セル正極2A
内部を透過し、仕切り内部61へと移動する訳ではな
い。上記のごとく、一部は、特に第1セル正極2Aの電
解液4A側の面203Aで発生したH2(g)は電解液4A
中に拡散し、気泡として電解液4A中を上方へと移動
し、電解液液面401Aに達することになる。このH
2(g)がそのまま第1の槽51A内に滞留するとすれば、
次の問題を引き起こす。
Further, at the time of discharging, the first cell positive electrode 2
In A, H 3 O + ions are gasified to generate H 2 (g), but this H 2 (g) is not necessarily completely formed in the first cell positive electrode 2A.
It does not mean that it penetrates the inside and moves to the partition inside 61. As described above, a part of the H 2 (g) generated particularly on the surface 203A of the first cell positive electrode 2A on the side of the electrolytic solution 4A is removed by the electrolytic solution 4A.
It diffuses in, moves upward in the electrolytic solution 4A as bubbles, and reaches the electrolytic solution surface 401A. This H
If 2 (g) stays in the first tank 51A as it is,
Causes the following problems:

【0039】すなわち、両化学電池セル1A,1Bは導
電部材7により直列に接続されており、第1セル正極2
AにおけるH3+ イオンの還元(ガス化)に伴う電子
の受け取り量と、第2セル負極2BにおけるH2(g)の酸
化(イオン化)に伴う電子の放出量とは等しくなければ
ならないから、第1の槽51A内にH2(g)が滞留するこ
とで、その分、仕切り内部61におけるH2(g)が減って
くる。これにより、放電が進行すると、第1の槽51A
内では圧力が上昇し、仕切り内部61では圧力が低下す
る。この結果、第1セル正極2Aの細孔の径等で規定さ
れる許容される浸透圧を越えた圧力差が生じると、第1
の槽51A内の電解液4Aが仕切り内部61に漏出して
しまう。
That is, both the chemical battery cells 1A and 1B are connected in series by the conductive member 7, and the first cell positive electrode 2
Since the amount of electrons received by the reduction (gasification) of H 3 O + ions in A must be equal to the amount of electrons emitted by the oxidation (ionization ) of H 2 (g) in the second cell negative electrode 2B. by H 2 (g) is retained in the first tank 51A, correspondingly, H 2 (g) come decrease in the partition inside 61. Thereby, when the discharge proceeds, the first tank 51A
Inside, the pressure increases, and inside the partition 61, the pressure decreases. As a result, when a pressure difference exceeding the allowable osmotic pressure defined by the diameter of the pores of the first cell positive electrode 2A or the like occurs, the first
The electrolyte 4A in the tank 51A leaks into the partition interior 61.

【0040】これに対して本電池では、第1セル正極2
Aを透過せずに電解液4A中を上方に向けて移動したH
2(g)は、ケーシング天井壁503Aの直下の空間511
Aから仕切り連通部62を通って仕切り内部61に移動
する。これにより、電解液液面401Aに達したH2(g)
が第1の槽51Aに滞留することなく、第2の電池セル
1Bの負極活物質として、第2セル負極2Bに吸収され
る。したがって、仕切り内部61および第1の槽51内
の圧力は略一定値を維持し、電解液4Aが仕切り内部6
1に漏出することを防止することができる。
On the other hand, in the present battery, the first cell positive electrode 2
H that moves upward in the electrolytic solution 4A without passing through A
2 (g) is a space 511 immediately below the casing ceiling wall 503A.
It moves from A to the partition interior 61 through the partition communication part 62. As a result, H 2 (g) reaching electrolyte level 401A
Is absorbed in the second cell negative electrode 2B as the negative electrode active material of the second battery cell 1B without staying in the first tank 51A. Therefore, the pressure inside the partition 61 and the pressure in the first tank 51 maintain a substantially constant value, and the electrolyte 4A
1 can be prevented from leaking.

【0041】一方、充電時には、上記仕切り連通部62
を有しない構造であれば、第2の電池セル1Bの正極活
物質溶液4B中のH3+ イオンが負極2Bでガス化し
た後、一部が負極2Bを透過しないで、正極活物質溶液
4Bと接触する面203Bから正極活物質溶液4B中に
拡散し、第2の槽51B内にH2(g)が滞留する。これに
より、仕切り内部61の圧力が低下するとともに第2の
槽51B内の圧力が上昇することになるので、正極活物
質溶液4Bが仕切り内部61に漏出する。これに対し
て、本電池では仕切り6が連通部62を有しているの
で、正極活物質溶液4Bから正極活物質溶液液面401
Bに達したH2(g)が第2の槽51Bに滞留することな
く、仕切り内部61に移動し、第1セル正極2Aに吸収
される。したがって、仕切り内部61および第2の槽5
1B内の圧力は略一定値を維持し、正極活物質溶液4B
が仕切り内部61に漏出することを防止することができ
る。
On the other hand, at the time of charging, the partition communication portion 62
Does not have the structure, after the H 3 O + ions in the positive electrode active material solution 4B of the second battery cell 1B are gasified at the negative electrode 2B, a part does not pass through the negative electrode 2B and the positive electrode active material solution H2 (g) is diffused into the positive electrode active material solution 4B from the surface 203B in contact with 4B, and stays in the second tank 51B. As a result, the pressure in the partition 61 decreases and the pressure in the second tank 51B increases, so that the positive electrode active material solution 4B leaks into the partition 61. On the other hand, in the present battery, since the partition 6 has the communication portion 62, the positive electrode active material solution 4 </ b> B
The H 2 (g) that has reached B moves into the partition interior 61 without staying in the second tank 51B, and is absorbed by the first cell positive electrode 2A. Therefore, the partition interior 61 and the second tank 5
1B maintains a substantially constant value, and the positive electrode active material solution 4B
Can be prevented from leaking into the partition interior 61.

【0042】このように、電解液4A、正極活物質4B
の漏出が回避されることで、電池の残存容量が目減りす
ることを防止することができる。
As described above, the electrolyte 4A, the positive electrode active material 4B
By preventing the leakage of the battery, it is possible to prevent the remaining capacity of the battery from being reduced.

【0043】なお、仕切り6は、第1セル正極2A、第
2セル負極2Bをケーシング天井壁壁面504に達しな
い高さとすることで、矩形の連通部62を形成している
が、必ずしもこれに限定されるものではなく、第1セル
正極2A、第2セル負極2Bをケーシング天井壁壁面5
04に達する高さにして、ケーシング天井壁壁面504
の直下位置に、貫通孔を形成して連通部としてもよい。
The partition 6 forms the rectangular communicating portion 62 by making the first cell positive electrode 2A and the second cell negative electrode 2B at a height that does not reach the casing ceiling wall wall surface 504. It is not limited, and the first cell positive electrode 2A and the second cell negative electrode 2B are
04, and the casing ceiling wall surface 504
A through-hole may be formed at a position directly below the opening to form a communicating portion.

【0044】また、仕切りの隔壁全体が多孔性触媒によ
り構成されているが、隔壁を、多孔性触媒とは別の材質
の額縁状のフレームの内側に板状の多孔性触媒を嵌設し
たものとするのもよい。この場合、連通部は、フレーム
の上辺部に貫通孔や切り欠きを形成することで実現し得
る。
The partition walls are entirely made of a porous catalyst. The partition walls are formed by fitting a plate-like porous catalyst inside a frame-shaped frame made of a different material from the porous catalyst. It is also good. In this case, the communication part can be realized by forming a through hole or a notch in the upper side of the frame.

【0045】(第2実施形態)図3は本発明の第2の電
池の概要図で、図中、図1、図2と実質的に同じ作用を
するものについては同一の番号を付し、第1実施形態と
の相違点を中心に説明する。この電池は、形状が図1の
ものと同じで、相違点は主に活物質および電解液であ
る。第2の化学電池セル1Cの正極3Cは、オキシ水酸
化ニッケル(NiOOH)の正極活物質である。電解液
4CとしてKOH(aq)が用いられている。したがってケ
ーシング5Cは耐酸性および耐アルカリ性の材質のもの
が用いられる。
(Second Embodiment) FIG. 3 is a schematic view of a second battery according to the present invention. In FIG. 3, those having substantially the same functions as those in FIGS. The following description focuses on the differences from the first embodiment. This battery has the same shape as that of FIG. 1, and differs mainly in the active material and the electrolyte. The positive electrode 3C of the second chemical battery cell 1C is a positive electrode active material of nickel oxyhydroxide (NiOOH). KOH (aq) is used as the electrolyte 4C. Therefore, the casing 5C is made of an acid- and alkali-resistant material.

【0046】この電池では、第2セル正極3Cの正極活
物質であるNi OOHが正電荷を放出して加水反応し電
解液4C中に溶出する。電解液4Cと接触する負極2B
の面203Bでは、第1の化学電池セル1Aにおいて発
生したH2(g)がOH- と反応してH2 Oとなって吸収さ
れ、式(4)の右向き矢印の電池反応が進行する。この
反応により第2の化学電池セル1Cの正負両極2B,3
C間には、約1.35Vの起電力が発生する。
In this battery, Ni OOH, which is the positive electrode active material of the second cell positive electrode 3C, releases a positive charge and undergoes a hydrolysis reaction to elute into the electrolyte 4C. Negative electrode 2B in contact with electrolyte 4C
On the surface 203B, H 2 (g) generated in the first chemical battery cell 1A reacts with OH to become H 2 O and is absorbed, and the battery reaction indicated by the rightward arrow in equation (4) proceeds. By this reaction, the positive and negative electrodes 2B, 3 of the second chemical battery cell 1C
An electromotive force of about 1.35 V is generated between C.

【0047】[0047]

【化4】 Embedded image

【0048】しかして電池全体では、起電力は、第1お
よび第2の化学電池セル1A,1Cにより発生する起電
力の和として2.11Vが得られる。充電する場合に
は、電池の正負極3A,3C間に正極3C側を正として
2.11V以上の電圧を印加することにより、式
(1),(4)の左向き矢印の反応が進行し、第1およ
び第2の化学電池セル1A,1Cがともに充電される。
Thus, in the whole battery, 2.11 V is obtained as the sum of the electromotive forces generated by the first and second chemical battery cells 1A and 1C. In the case of charging, by applying a voltage of 2.11 V or more with the positive electrode 3C being positive between the positive and negative electrodes 3A and 3C of the battery, the reaction of the left-pointing arrows in the equations (1) and (4) proceeds. The first and second chemical battery cells 1A, 1C are both charged.

【0049】ところで第2の化学電池セル1Cはすでに
述べた高圧型ニッケル・水素蓄電池と同様の構成であ
る。本発明の電池では、高圧型ニッケル・水素蓄電池に
おいて負極活物質となるH2(g)は第1の化学電池セル1
Aにおいて電池反応により発生したものであり、しかも
発生したH2(g)と等量のH2(g)が第2の化学電池セル1
Cの負極2Bより吸収されるから、H2(g)を蓄える高圧
容器等の特殊な部材が不要である。すなわち本発明の電
池は、従来のニッケル・水素蓄電池の汎用性を高めた電
池ということができる。
The second chemical battery cell 1C has the same configuration as the high-pressure nickel-metal hydride storage battery described above. In the battery of the present invention, H 2 (g) serving as the negative electrode active material in the high-pressure nickel-metal hydride storage battery is the first chemical battery cell 1.
A, H 2 (g) which is generated by the battery reaction in the second chemical battery cell and is equivalent to the generated H 2 (g) .
Since it is absorbed by the negative electrode 2B of C, a special member such as a high-pressure container for storing H 2 (g) is not required. That is, the battery of the present invention can be said to be a battery in which the versatility of the conventional nickel-metal hydride storage battery is enhanced.

【0050】なお、第1の化学電池セル1Aにおいて負
極3AをZn で構成したが、鉄(Fe )でもよい。この
場合、第1の化学電池セル1Aにおける起電力は0.4
4Vであるから、電池全体としては第2の化学電池セル
1Cと合わせて1.79Vの起電力が得られることにな
る。
Although the negative electrode 3A in the first chemical battery cell 1A is made of Zn, it may be made of iron (Fe). In this case, the electromotive force in the first chemical battery cell 1A is 0.4
Since it is 4 V, an electromotive force of 1.79 V is obtained for the entire battery in combination with the second chemical battery cell 1C.

【0051】(第3実施形態)図4に本発明の第3の電
池の概要図を示す。図中、図1と実質的に同じ作用をす
るものについては同一の番号を付し、第1実施形態との
相違点を中心に説明する。導電部材7の上面に、導電部
材である棒状の電極8が突設され、仕切り内部61を上
方に伸びている。電極8の上端部はケーシング5の天井
壁503を貫通してケーシング5の上方に突出しており
この、突出部が、充電時にのみ用いられる充電用の端
子81となる。
(Third Embodiment) FIG. 4 shows a schematic view of a third battery of the present invention. In the figure, components having substantially the same functions as those in FIG. 1 are denoted by the same reference numerals, and a description will be given focusing on differences from the first embodiment. A rod-shaped electrode 8 serving as a conductive member protrudes from an upper surface of the conductive member 7, and extends upward in the partition 61. The upper end of the electrode 8 penetrates through the ceiling wall 503 of the casing 5 and protrudes above the casing 5. The protruding portion serves as a charging terminal 81 used only during charging.

【0052】前記各実施形態では、既に説明したよう
に、端子321Aと端子321Bとの間に電圧を印加し
て充電を行う。ここで、充電時の印加電圧をV、その時
の電流をI、第1の化学電池セル1Aの両電極2A、3
A間の内部抵抗をr1 、第2の化学電池セル1Bの両電
極2B、3B間の内部抵抗をr2 として、V=(r1 +
r2 )×Iとなる。したがって、充電時に必要な、第1
の化学電池セル1Aの両電極2A、3A間に印加すべき
電圧をV1 、第2の化学電池セル1Bの両電極2B、3
B間に印加すべき電圧をV2 とすれば、 V1 =V×r1 /(r1 +r2 ) V2 =V×r2 /(r1 +r2 ) となる。
In each of the above embodiments, as described above, charging is performed by applying a voltage between the terminal 321A and the terminal 321B. Here, the applied voltage at the time of charging is V, the current at that time is I, the two electrodes 2A, 3A of the first chemical battery cell 1A.
Assuming that the internal resistance between A is r1 and the internal resistance between both electrodes 2B and 3B of the second chemical battery cell 1B is r2, V = (r1 +
r2) × I. Therefore, the first necessary for charging
The voltage to be applied between the electrodes 2A and 3A of the chemical battery cell 1A is V1, the electrodes 2B and 3B of the second chemical battery cell 1B are
Assuming that the voltage to be applied between B is V2, V1 = V × r1 / (r1 + r2) V2 = V × r2 / (r1 + r2)

【0053】内部抵抗r1 、r2 は、化学電池セル1
A,1Bを構成する電池材料(負極活物質、電解液、正
極活物質の種類および量)の組み合わせで決まってしま
う値であるので、内部抵抗r1 または内部抵抗r2 の値
いかんによっては、第2の化学電池セル1Bにおけ電圧
V2 は適正な電圧であっても、第1の化学電池セル1A
においては電圧V1 が充電に必要な電圧に達しない場合
が生じる。逆に第2の化学電池セル1Bにおけ電圧V2
が充電に必要な電圧に達しない場合もあり得る。印加電
圧Vを十分にとるとすれば、今度は逆にいずれかの化学
電池セル1A,1Bにおいて印加電圧V1 ,V2 が高す
ぎ、水素および酸素を発生する電気分解が進行してしま
う。この電気分解は、本発明の電池のように一方の化学
電池セル1A(1B)で発生したガスを他方の化学電池
セル1B(1A)で吸収するというようには働かないの
で、ケーシング5内の圧力が過昇し、ケーシング5を損
傷するおそれがある。
The internal resistances r 1 and r 2 are determined by the chemical battery cell 1
Since the value is determined by the combination of the battery materials (the types and amounts of the negative electrode active material, the electrolytic solution, and the positive electrode active material) constituting A and 1B, the second resistance depends on the value of the internal resistance r1 or the internal resistance r2. Of the first chemical battery cell 1A even though the voltage V2 in the
In some cases, the voltage V1 does not reach the voltage required for charging. Conversely, the voltage V2 in the second chemical battery cell 1B
May not reach the voltage required for charging. Assuming that the applied voltage V is sufficient, the applied voltage V1, V2 is too high in either of the chemical battery cells 1A, 1B, and the electrolysis for generating hydrogen and oxygen proceeds. This electrolysis does not work such that the gas generated in one of the chemical battery cells 1A (1B) is absorbed by the other chemical battery cell 1B (1A) as in the battery of the present invention. The pressure may rise excessively and damage the casing 5.

【0054】本実施形態によれば、充電用端子81を設
けることで、充電時に、端子321Aと充電用端子81
との間、端子321Bと充電用端子81との間に、それ
ぞれ電圧印加を行い得るようになる。したがって、各化
学電池セル1A,1Bのそれぞれに適正な電圧を印加す
ることができる。電池の設計時に、第1および第2の化
学電池セル1A,1Bの適正な充電時印加電圧、内部抵
抗の組み合わせを考慮する必要がなくなるので、化学電
池セル1A,1Bを構成する電池材料(負極活物質、電
解液、正極活物質の種類および量)の組み合わせの自由
度が広がる。
According to the present embodiment, by providing the charging terminal 81, the terminal 321A and the charging terminal 81
, And between the terminal 321B and the charging terminal 81. Therefore, an appropriate voltage can be applied to each of the chemical battery cells 1A and 1B. When designing the battery, it is not necessary to consider the proper combination of the applied voltage and the internal resistance at the time of charging the first and second chemical battery cells 1A and 1B, so that the battery material (the negative electrode) constituting the chemical battery cells 1A and 1B is not required. The degree of freedom of the combination of the active material, the electrolytic solution, and the positive electrode active material is increased.

【0055】なお、本実施形態の充電用の電極8を備え
た構成は、上記特許第2956027号の電池にも適用
することができる。
The configuration provided with the charging electrode 8 of the present embodiment can also be applied to the battery of Japanese Patent No. 2956027.

【0056】なお、化学電池セルの活物質や電解液の組
み合わせは上記各実施形態に記載のものに限られるもの
ではなく、本発明の趣旨に反しない限り任意である。図
5には、水素を発生する第1の化学電池セルの構成例と
その電池反応式および発生電圧を示し、図6には、水素
を発生する第1の化学電池セルと組み合わせ得る、水素
を負極活物質とする第2の化学電池セルの構成例とその
電池反応式および発生電圧を示す。
The combination of the active material and the electrolytic solution of the chemical battery cell is not limited to those described in each of the above embodiments, and may be any combination as long as the purpose of the present invention is not contradicted. FIG. 5 shows a configuration example of a first chemical battery cell that generates hydrogen, a battery reaction formula thereof, and a generated voltage. FIG. 6 shows hydrogen that can be combined with the first chemical battery cell that generates hydrogen. The structural example of the 2nd chemical battery cell used as a negative electrode active material, its battery reaction formula, and generated voltage are shown.

【0057】第1の化学電池セルの正極、第2の化学電
池セルの負極に用いる多孔性触媒は本実施形態のものに
限定されるものではなく本発明の趣旨に反しない限り任
意である。また第1の化学電池セルの触媒と第2の化学
電池セルの触媒とが種類の異なる構成としてもよい。
The porous catalyst used for the positive electrode of the first chemical battery cell and the negative electrode of the second chemical battery cell are not limited to those of the present embodiment, and are optional as long as they do not contradict the spirit of the present invention. Further, the catalyst of the first chemical battery cell and the catalyst of the second chemical battery cell may have different configurations.

【0058】また上記各実施形態の電池は、これを直列
に複数接続して高い電圧を取り出す構成としてもよい。
The batteries of the above embodiments may be configured so that a plurality of the batteries are connected in series to extract a high voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の電池の一部破壊斜視図である。FIG. 1 is a partially broken perspective view of a first battery of the present invention.

【図2】本発明の第1の電池の概要図である。FIG. 2 is a schematic diagram of a first battery of the present invention.

【図3】本発明の第2の電池の概要図である。FIG. 3 is a schematic diagram of a second battery of the present invention.

【図4】本発明の第3の電池の概要図である。FIG. 4 is a schematic diagram of a third battery of the present invention.

【図5】本発明の他の電池の構成の一覧を示す第1の図
である。
FIG. 5 is a first diagram showing a list of configurations of another battery of the present invention.

【図6】本発明の他の電池の構成の一覧を示す第2の図
である。
FIG. 6 is a second diagram showing a list of the configuration of another battery according to the present invention.

【符号の説明】[Explanation of symbols]

1A 第1の化学電池セル 1B,1C 第2の化学電池セル 2A 正極(隔壁) 2B 負極(隔壁) 3B,3C 正極 3A 負極 4A,4C 電解液 4B 正極活物質溶液 5,5C ケーシング(密閉容器体) 51A,51B 槽 6 仕切り 61 内部 62 連通部 7 導電部材 1A First chemical battery cell 1B, 1C Second chemical battery cell 2A Positive electrode (partition wall) 2B Negative electrode (partition wall) 3B, 3C Positive electrode 3A Negative electrode 4A, 4C Electrolytic solution 4B Positive electrode active material solution 5, 5C Casing (closed container body) ) 51A, 51B tank 6 partition 61 inside 62 communicating part 7 conductive member

フロントページの続き Fターム(参考) 5H028 AA06 AA07 AA08 BB15 CC04 CC08 CC26 5H032 AS04 AS12 BB01 BB07 BB08 CC02 HH05 Continued on the front page F term (reference) 5H028 AA06 AA07 AA08 BB15 CC04 CC08 CC26 5H032 AS04 AS12 BB01 BB07 BB08 CC02 HH05

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1および第2の化学電池セルを有する
電池であって、 絶縁材で形成した密閉容器体の内部を、仕切りにより左
右に2槽に分割し、 該仕切りを、第1の槽側の隔壁と第2の槽側の隔壁とを
有する二重の構造とするとともに、その上部には両隔壁
で挟まれた仕切り内部と両槽内とを連通する連通部を形
成し、 第1の化学電池セルは、液面が上記連通部よりも下方位
置となるように第1の槽に満たした電解液と、上記第1
の槽側の隔壁の全部または一部であって電解液中のイオ
ンを還元してガス化する第1の多孔性触媒で構成した正
極と、上記電解液中に浸漬せしめた負極とで構成し、 第2の化学電池セルは、液面が上記連通部よりも下方位
置となるように第2の槽に満たした電解液もしくは正極
活物質溶液と、上記第2の槽側の隔壁の全部または一部
であって上記正極より放出されたガスを吸収して酸化し
イオン化せしめる第2の多孔性触媒で構成した負極と、
上記電解液中に浸漬せしめた正極とで構成して、上記ガ
スを負極活物質とし、 かつ、第1の化学電池セルの正極と第2の化学電池セル
の負極とを導通せしめて上記両化学電池セルを直列接続
し、第1の化学電池セルの負極と第2の化学電池セルの
正極とを放電用または充電用の電極としたことを特徴と
する電池。
1. A battery having first and second chemical battery cells, wherein the inside of a sealed container formed of an insulating material is divided into two tanks on the left and right by a partition, In addition to a double structure having a partition wall on the tank side and a partition wall on the second tank side, a communication part communicating between the inside of the partition sandwiched by both partition walls and the inside of both tanks is formed on the upper part thereof. (1) The electrolytic cell filled in the first tank so that the liquid level is lower than the communication part,
A positive electrode composed of a first porous catalyst that reduces or gasifies ions in the electrolytic solution by being all or a part of the partition wall on the tank side, and a negative electrode immersed in the electrolytic solution. The second chemical battery cell comprises: an electrolytic solution or a positive electrode active material solution filled in a second tank such that the liquid level is lower than the communication portion; and all or a part of the partition on the second tank side. A negative electrode comprising a second porous catalyst, which is part and absorbs and oxidizes and ionizes gas released from the positive electrode,
The gas is used as a negative electrode active material, and the positive electrode of the first chemical battery cell and the negative electrode of the second chemical battery cell are electrically connected to each other. A battery wherein battery cells are connected in series, and a negative electrode of the first chemical battery cell and a positive electrode of the second chemical battery cell are used as electrodes for discharging or charging.
JP2001114029A 2001-04-12 2001-04-12 Battery Pending JP2002313408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001114029A JP2002313408A (en) 2001-04-12 2001-04-12 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001114029A JP2002313408A (en) 2001-04-12 2001-04-12 Battery

Publications (1)

Publication Number Publication Date
JP2002313408A true JP2002313408A (en) 2002-10-25

Family

ID=18965171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001114029A Pending JP2002313408A (en) 2001-04-12 2001-04-12 Battery

Country Status (1)

Country Link
JP (1) JP2002313408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039001A1 (en) * 2010-09-21 2012-03-29 タカノ株式会社 Electric power storage device
WO2013133247A1 (en) * 2012-03-09 2013-09-12 日産自動車株式会社 Air battery cartridge and air battery system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039001A1 (en) * 2010-09-21 2012-03-29 タカノ株式会社 Electric power storage device
JPWO2012039001A1 (en) * 2010-09-21 2014-02-03 中村 八束 Power storage device
JP5721726B2 (en) * 2010-09-21 2015-05-20 中村 八束 Power storage device
WO2013133247A1 (en) * 2012-03-09 2013-09-12 日産自動車株式会社 Air battery cartridge and air battery system
JP2013214504A (en) * 2012-03-09 2013-10-17 Nissan Motor Co Ltd Air battery cartridge and air battery system
TWI473325B (en) * 2012-03-09 2015-02-11 Nissan Motor Air battery pack and air battery system

Similar Documents

Publication Publication Date Title
US3867199A (en) Nickel hydrogen cell
US7344801B2 (en) High-voltage dual electrolyte electrochemical power sources
US3990910A (en) Nickel-hydrogen battery
EP0030954B1 (en) Electrochemical cell and gas diffusion electrode for the same
RU2584153C1 (en) Reversible fuel cell and battery of reversible fuel cells
JP2956027B2 (en) Battery
US4127703A (en) Nickel-hydrogen secondary battery
US4107395A (en) Overchargeable sealed metal oxide/lanthanum nickel hydride battery
US5445901A (en) Zinc-oxygen battery
EP1166383B1 (en) Air-assisted electrochemical cell construction
JP2002501287A (en) Storage-stabilized zinc anode-based electrochemical cell
US20050031911A1 (en) Hybrid fuel cell
WO2005094410A2 (en) Integrated hybrid electrochemical device
US7008706B2 (en) Drive system incorporating a hybrid fuel cell
JPH10106604A (en) Fuel cell
US10090552B2 (en) Liquid fuel battery
JP2002313408A (en) Battery
JP3346449B2 (en) Photohydrogenated air secondary battery
GB1158736A (en) Improvements in &#34;Hybrid Gas-Depolarized Electrical Power Unit&#34;
US3546020A (en) Regenerable fuel cell
US20060078764A1 (en) Dissolved fuel alkaline fuel cell
KR101793907B1 (en) Air-Zinc secondary battery
US4461812A (en) Lightweight storage battery
JP4637460B2 (en) Manufacturing method of fuel cell
US3522096A (en) Long life fuel cell and electrode therefor