JP3374462B2 - Sealed lead storage battery - Google Patents

Sealed lead storage battery

Info

Publication number
JP3374462B2
JP3374462B2 JP24109293A JP24109293A JP3374462B2 JP 3374462 B2 JP3374462 B2 JP 3374462B2 JP 24109293 A JP24109293 A JP 24109293A JP 24109293 A JP24109293 A JP 24109293A JP 3374462 B2 JP3374462 B2 JP 3374462B2
Authority
JP
Japan
Prior art keywords
battery
amount
separator
sulfuric acid
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24109293A
Other languages
Japanese (ja)
Other versions
JPH0794205A (en
Inventor
正人 石渡
安平 坂田
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17069173&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3374462(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24109293A priority Critical patent/JP3374462B2/en
Publication of JPH0794205A publication Critical patent/JPH0794205A/en
Application granted granted Critical
Publication of JP3374462B2 publication Critical patent/JP3374462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、シール形鉛蓄電池に関
するものである。 【0002】 【従来の技術】従来、シール形鉛蓄電池はメンテナンス
フリーで補水する必要もなく便利な設計になっている
が、サイクル用途で使用する場合に定電流で充電すると
電解液が急激に減少するためサイクル寿命を短くする。
また、定電圧充電においては充電不足になりやすくサイ
クル寿命が短くなっている。 【0003】 【発明が解決しようとする課題】本発明は、シール形鉛
蓄電池についてサイクル寿命の向上を図るものであり、
電池系内の絶対硫酸量を一定範囲内に制限し正極活物質
の軟化を抑制するとともに、セパレータ中に含まれる電
解液量を一定範囲内に設定することにより電池系内で起
こるガス吸収反応を効率よく利用し、定電圧充電の受入
れ性、ひいてはサイクル寿命特性の向上を図るものであ
る。 【0004】 【課題を解決するための手段】この目的を達成するため
に本発明のシール形鉛蓄電池は、電池系内の絶対硫酸量
を完全充電状態の正極活物質1g当たり0.30〜0.
45gの範囲内に設定するとともに、セパレータ中に含
まれる電解液量をセパレータ1g当たり3.5〜4.5
ccの範囲内に設定するものである。 【0005】 【作用】絶対硫酸量を制限し、完全放電時の正極板の利
用率を規制することで正極活物質の軟化を抑制するとと
もに、セパレータ内に含まれる電解液量を制限すること
によりセパレータを介在したガス吸収反応を利用して正
極板を強制的に充電させ充電受入れ性の向上を図り、定
電圧充電時の受入れ性、ひいてはサイクル寿命特性の改
善を図るものである。 【0006】 【実施例】以下本発明の実施例について説明する。 【0007】表1に示す条件で、電圧12V及び容量3
8Ah(20HR)タイプの10種類の電池A〜Jを試
作し、これら試作電池について初期容量試験とサイクル
寿命試験を実施した。尚、各試作電池は正極板3枚/負
極板4枚構成としガラスマットセパレータを用い、負/
正極活物質比率等、他の条件は全て同一とした。 【0008】 【表1】 【0009】図1は、25℃において放電条件を0.0
5CA放電とした場合の、試作電池の初期容量試験結果
と電池系内の絶対硫酸量との関係を示したものである。 【0010】図1より、初期容量試験(20HR放電)
において20時間以上の放電時間を有する試作電池はB
〜Jであり、絶対硫酸量を正極活物質1g当たり0.3
0g以上に設定した電池であることがわかる。尚、試作
電池Aのようにサイクル特性を良くするために、絶対硫
酸量を正極活物質1g当たり0.30g未満に設定した
電池では初期容量が十分に得られない。 【0011】図2は、25℃において充電条件を最大
0.4CA充電、14.7V×12Hとし、放電条件を
終止電圧10.5V、0.25CA放電とした場合の、
試作電池のサイクル寿命試験結果と電池系内の絶対硫酸
量との関係を示したものである。尚、寿命判断は、初期
容量の70%で判定した。 【0012】図2より、サイクル寿命特性に優れている
試作電池はA〜E、G及びHであり、絶対硫酸量を正極
活物質1g当たり0.45g以下に設定した電池である
ことがわかる。サイクル特性の差は、絶対硫酸量の違い
により正極板の利用率(放電深度)が変わることに起因
する。 【0013】図1及び図2の結果より、初期容量試験
20HR放電)において20時間以上の放電時間を有
し、かつサイクル寿命特性に優れている絶対硫酸量の範
囲は正極活物質1g当たり0.30〜0.45gである
ことがわかる。 【0014】また図3は、25℃において放電条件を終
止電圧9.6V、1CA放電とした場合の、試作電池の
初期容量試験結果と電池の内部抵抗値との関係を示した
ものである。 【0015】図3より、試作電池C及びGのように絶対
硫酸量が正極活物質1g当たり0.30〜0.45gの
範囲内に設定されていても、セパレータ中の電解液量が
3.5cc未満になると内部抵抗値が上昇し初期容量が
低下してしまうことがわかる。 【0016】図4は、25℃において充電条件を最大
0.4CA充電、14.7V×12Hとし、放電条件を
終止電圧9.6V、1CA放電とした場合の、試作電池
のセパレータ中に含まれる電解液量とサイクル寿命特性
の関係を示したものである。尚、寿命判断は、初期容量
の70%で判定した。 【0017】図4より、試作電池F及びIのように絶対
硫酸量が正極活物質1g当たり0.30〜0.45gの
範囲内に設定されていても、セパレータ中の電解液量が
4.5gより多くなるとサイクル寿命が低下してしまう
ことがわかる。これは、充電末期にセパレータ中の電解
液が多いとセパレータを介在した負極板でのガス吸収反
応が液層に疎外されることに起因する電流値減少のため
と考えられる。 【0018】図3及び図4の結果より、十分な初期容量
を有し、かつサイクル寿命特性に優れている試作電池の
セパレータ中の電解液量の範囲は3.5〜4.5ccで
あることがわかる。 【0019】以上の結果から、電池系内の絶対硫酸量を
完全充電状態の正極活物質1g当たり0.30〜0.4
5gの範囲内に設定し、かつセパレータ中に含まれる電
解液量をセパレータ1g当たり3.5〜4.5ccの範
囲内に設定することによって初期容量は維持しつつ、サ
イクル特性が向上することがわかる。 【0020】 【発明の効果】以上のように本発明によれば、適正な初
期容量を維持しつつ実際の市場における使用条件により
近い状態においてサイクル寿命特性の向上を図れる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery. 2. Description of the Related Art Conventionally, sealed lead-acid batteries have been designed to be maintenance-free and have a convenient design without the need for water replenishment. However, when they are used for cycle applications, the electrolyte rapidly decreases when charged with a constant current. To shorten the cycle life.
In addition, in the case of constant voltage charging, the battery is likely to be undercharged, and the cycle life is shortened. [0003] The present invention aims to improve the cycle life of a sealed lead-acid battery.
By limiting the amount of sulfuric acid in the battery system to a certain range to suppress the softening of the positive electrode active material, and by setting the amount of electrolyte contained in the separator to a certain range, the gas absorption reaction occurring in the battery system can be reduced. It is intended to efficiently utilize, improve the acceptability of constant voltage charging, and improve the cycle life characteristics. In order to achieve this object, a sealed lead-acid battery according to the present invention is characterized in that the absolute sulfuric acid content in a battery system is reduced to 0.30-0 / g of a fully charged positive electrode active material. .
The amount is set within the range of 45 g, and the amount of electrolyte contained in the separator is adjusted to 3.5 to 4.5 per gram of the separator.
It is set within the range of cc. [0005] By limiting the absolute sulfuric acid amount and regulating the utilization rate of the positive electrode plate at the time of complete discharge, softening of the positive electrode active material is suppressed, and the amount of electrolyte contained in the separator is restricted. The positive electrode plate is forcibly charged by utilizing a gas absorption reaction with a separator interposed therebetween to improve charge acceptability, thereby improving acceptability at the time of constant voltage charging, and further improving cycle life characteristics. An embodiment of the present invention will be described below. Under the conditions shown in Table 1, a voltage of 12 V and a capacitance of 3
Ten types of batteries A to J of 8 Ah (20 HR) type were prototyped, and an initial capacity test and a cycle life test were performed on these prototype batteries. Each prototype battery had a configuration of three positive plates / four negative plates, and used a glass mat separator.
All other conditions such as the positive electrode active material ratio were the same. [Table 1] FIG. 1 shows that at 25 ° C. the discharge condition was 0.0
5 shows a relationship between the initial capacity test result of the prototype battery and the absolute sulfuric acid amount in the battery system when 5CA discharge is performed. From FIG. 1, the initial capacity test ( 20 HR discharge)
The prototype battery having a discharge time of 20 hours or more
~ J, and the absolute sulfuric acid content was 0.3 g / g of the positive electrode active material.
It can be seen that the battery was set to 0 g or more. In addition, in order to improve the cycle characteristics as in the prototype battery A, a battery whose absolute sulfuric acid amount is set to less than 0.30 g per 1 g of the positive electrode active material cannot obtain a sufficient initial capacity. FIG. 2 shows the case where the charging conditions are a maximum of 0.4 CA charging and 14.7 V × 12 H at 25 ° C., and the discharging conditions are a final voltage of 10.5 V and 0.25 CA discharging.
It shows the relationship between the cycle life test result of the prototype battery and the absolute sulfuric acid amount in the battery system. The life was judged at 70% of the initial capacity. FIG. 2 shows that the prototype batteries having excellent cycle life characteristics are A to E, G and H, and the batteries in which the absolute sulfuric acid amount is set to 0.45 g or less per 1 g of the positive electrode active material. The difference in the cycle characteristics is caused by the change in the utilization rate (discharge depth) of the positive electrode plate due to the difference in the absolute sulfuric acid amount. From the results of FIGS. 1 and 2, the range of the absolute sulfuric acid amount having a discharge time of 20 hours or more in the initial capacity test ( 20 HR discharge) and having excellent cycle life characteristics is 1 g of the positive electrode active material. It turns out that it is 0.30-0.45g. FIG. 3 shows the relationship between the initial capacity test result of the prototype battery and the internal resistance value of the battery when the discharge condition is 9.6 V final voltage and 1 CA discharge at 25 ° C. FIG. 3 shows that even if the absolute sulfuric acid amount is set within the range of 0.30 to 0.45 g per 1 g of the positive electrode active material as in the prototype batteries C and G, the amount of the electrolyte in the separator is 3. It can be seen that if it is less than 5 cc, the internal resistance value increases and the initial capacity decreases. FIG. 4 shows that the battery is included in the separator of the prototype battery when the charging condition is a maximum of 0.4 CA charging, 14.7 V × 12 H at 25 ° C., and the discharging conditions are a final voltage of 9.6 V and 1 CA discharging. 3 shows the relationship between the amount of electrolyte and cycle life characteristics. The life was judged at 70% of the initial capacity. FIG. 4 shows that even if the absolute sulfuric acid amount is set within the range of 0.30 to 0.45 g per 1 g of the positive electrode active material as in the prototype batteries F and I, the amount of the electrolytic solution in the separator is 4. It is understood that when the amount is more than 5 g, the cycle life is reduced. This is considered to be due to the fact that if the amount of electrolyte in the separator is large at the end of charging, the gas absorption reaction in the negative electrode plate with the separator interposed is separated from the liquid layer, and the current value decreases. From the results shown in FIGS. 3 and 4, the range of the electrolyte amount in the separator of the prototype battery having a sufficient initial capacity and excellent cycle life characteristics is 3.5 to 4.5 cc. I understand. From the above results, the absolute amount of sulfuric acid in the battery system was determined to be 0.30 to 0.4 per gram of the fully charged positive electrode active material.
By setting the amount within a range of 5 g and the amount of the electrolyte contained in the separator within the range of 3.5 to 4.5 cc per 1 g of the separator, the cycle characteristics can be improved while maintaining the initial capacity. Understand. As described above, according to the present invention, the cycle life characteristics can be improved in a state closer to actual use conditions in the market while maintaining an appropriate initial capacity.

【図面の簡単な説明】 【図1】電池の初期容量試験結果と電池系内の絶対硫酸
量との関係を示す特性図 【図2】電池のサイクル寿命試験結果と電池系内の絶対
硫酸量との関係を示す特性図 【図3】電池の初期容量試験結果と電池の内部抵抗値と
の関係を示す特性図 【図4】セパレータ中に含まれる電解液量とサイクル寿
命特性の関係を示す特性図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a characteristic diagram showing a relationship between a battery initial capacity test result and an absolute sulfuric acid amount in a battery system. FIG. 2 is a battery cycle life test result and an absolute sulfuric acid amount in a battery system. FIG. 3 is a characteristic diagram showing the relationship between the initial capacity test result of the battery and the internal resistance of the battery. FIG. 4 is a graph showing the relationship between the amount of electrolyte contained in the separator and the cycle life characteristics. Characteristic diagram

フロントページの続き (56)参考文献 特開 平2−168574(JP,A) 特開 昭60−243976(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/08 Continuation of the front page (56) References JP-A-2-168574 (JP, A) JP-A-60-243976 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10 / 08

Claims (1)

(57)【特許請求の範囲】 【請求項1】 電池系内の絶対硫酸量を完全充電状態の
正極活物質1g当たり0.30〜0.45gの範囲内に
設定するとともに、セパレータ中に含まれる電解液量を
セパレータ1g当たり3.5〜4.5ccの範囲内に設
定したシール形鉛蓄電池。
(57) [Claims 1] The absolute sulfuric acid amount in the battery system is set in the range of 0.30 to 0.45 g per 1 g of the fully charged positive electrode active material, and is included in the separator. A sealed lead-acid battery in which the amount of electrolytic solution to be used is set within the range of 3.5 to 4.5 cc per 1 g of separator.
JP24109293A 1993-09-28 1993-09-28 Sealed lead storage battery Expired - Lifetime JP3374462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24109293A JP3374462B2 (en) 1993-09-28 1993-09-28 Sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24109293A JP3374462B2 (en) 1993-09-28 1993-09-28 Sealed lead storage battery

Publications (2)

Publication Number Publication Date
JPH0794205A JPH0794205A (en) 1995-04-07
JP3374462B2 true JP3374462B2 (en) 2003-02-04

Family

ID=17069173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24109293A Expired - Lifetime JP3374462B2 (en) 1993-09-28 1993-09-28 Sealed lead storage battery

Country Status (1)

Country Link
JP (1) JP3374462B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045475A (en) * 2001-07-26 2003-02-14 Japan Storage Battery Co Ltd Sealed lead-acid battery and its use
TWI333290B (en) 2004-06-16 2010-11-11 Panasonic Corp Lead-acid battery
WO2014097522A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JPH0794205A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
JP3374462B2 (en) Sealed lead storage battery
JP2003338312A (en) Control valve type lead-acid battery
JPS5894770A (en) Leakage-less closed type lead battery
JP2720689B2 (en) Lead storage battery
JP3546420B2 (en) Activation charging method for sealed lead-acid batteries
JPS61165956A (en) Sealed type lead acid battery
JP3094423B2 (en) Lead storage battery
JPH02168574A (en) Sealed type lead storage battery
JPH0794204A (en) Sealed type lead-acid battery
JP3108187B2 (en) Lithium secondary battery
JP3221154B2 (en) Sealed lead-acid battery
JPH076767A (en) Negative electrode plate for sealed lead-acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP3102000B2 (en) Lead storage battery
JP2003100289A (en) Sealed lead acid battery and method of using the same
JPS62154579A (en) Lead-acid battery
JP2553598B2 (en) Sealed lead acid battery
JP3577709B2 (en) Sealed lead-acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JP2808685B2 (en) Lead storage battery
JPH0745301A (en) Sealed lead-acid battery
JPS62188169A (en) Sealed lead-acid battery
JPS6322428B2 (en)
JPH07111164A (en) Life increasing method for lead-acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091129

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

EXPY Cancellation because of completion of term