JPH06295739A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH06295739A
JPH06295739A JP5107549A JP10754993A JPH06295739A JP H06295739 A JPH06295739 A JP H06295739A JP 5107549 A JP5107549 A JP 5107549A JP 10754993 A JP10754993 A JP 10754993A JP H06295739 A JPH06295739 A JP H06295739A
Authority
JP
Japan
Prior art keywords
positive electrode
antimony
lead
battery
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5107549A
Other languages
Japanese (ja)
Inventor
Kazuhiko Onishi
和彦 大西
Takao Omae
孝夫 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP5107549A priority Critical patent/JPH06295739A/en
Publication of JPH06295739A publication Critical patent/JPH06295739A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide an inexpensive sealed lead-acid battery having excellent battery performance by using a positive electrode grid composed of lead- antimony type alloy, and using silica fine powder and microporous acidproof synthetic fiber. CONSTITUTION:Lead-antimony type allay is used in a positive electrode grid, and a corrosion layer created on an interface between the positive electrode grid and an active material is made porous, and bonding between particles is strengthened, and early capacity deterioration or falling of the active material can be prevented, and a short circuit caused by elongation of the grid can be also reduced. Silica fine powder arranged in a clearance between a positive electrode plate and a negative electrode plate and microporous acidproof synthetic fiber adsorb antimony, and prevents the movement of the antimony to a negative electrode from a positive electrode. As a result, since a drop in hydrogen overvoltage by the antimony is eliminated, water decomposition is not increased, so that characteristics such as maintenance free and water non- supply being the largest characteristic of a sealed lead-acid battery is not spoiled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉式鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved sealed lead acid battery.

【0002】[0002]

【従来の技術とその課題】現在、電池の充電中に発生す
る酸素ガスを負極で吸収させるタイプの密閉式鉛蓄電池
にはリテーナ式とゲル式の2種類がある。リテーナ式は
正極板と負極板との間に微細ガラス繊維を素材とするマ
ット状セパレータ(ガラスセパレータ)を挿入し、これ
によって放電に必要な硫酸電解液の保持と両極の隔離を
行なっており、無保守、無漏液、ポジションフリーなど
の特徴を生かして、近年、ポータブル機器やコンピュー
タのバックアップ電源として広く用いられるようになっ
てきた。
2. Description of the Related Art At present, there are two types of sealed lead-acid batteries, a retainer type and a gel type, in which a negative electrode absorbs oxygen gas generated during battery charging. The retainer type inserts a mat-shaped separator (glass separator) made of fine glass fibers between the positive electrode plate and the negative electrode plate, thereby holding the sulfuric acid electrolyte necessary for discharging and separating the two electrodes, In recent years, it has come to be widely used as a backup power source for portable devices and computers by taking advantage of features such as no maintenance, no leakage, and position-free.

【0003】しかし、反面ガラスセパレータが高価なこ
とや極板群を強く圧迫する必要から電槽の強度も大きく
しなければならないなど電池の製造コストが高くなる要
因が多く、さらに流動液が過剰にある電池(以下、液式
電池という。)に比べて低率放電性能が劣るなどの欠点
があって、この種の密閉電池の普及に障害となってい
る。一方、ゲル式はリテーナ式よりも安価であるが、電
池性能が液式やリテーナ式に劣るという欠点を有してい
る。
On the other hand, on the other hand, there are many factors that increase the manufacturing cost of the battery, such as the expensive glass separator and the need to strongly press the electrode plate group, so that the manufacturing cost of the battery is high, and the fluid is excessive. There is a defect that the low rate discharge performance is inferior to a certain battery (hereinafter referred to as a liquid battery), which is an obstacle to the widespread use of this type of sealed battery. On the other hand, the gel type is less expensive than the retainer type, but has a drawback that the battery performance is inferior to the liquid type and the retainer type.

【0004】また、リテーナ、ゲル式密閉式鉛蓄電池の
いずれにおいてもその大半が格子体にアンチモンを含ま
ない鉛合金を用いている。これらの電池で鉛−アンチモ
ン系合金を使用した場合、アンチモンが格子−活物質界
面に生成する腐食層を多孔性にし、また二酸化鉛粒子間
の結合力を強固にするために早期容量低下や活物質の脱
落はなく、さらに格子の伸びによるショートも起こりに
くいが、アンチモンが充放電中に正極格子体より溶出
し、負極板上に析出して水素過電圧を低下させるために
水分解による水素発生量が増加し、その結果密閉式鉛蓄
電池では致命的なドライアップが起こって寿命となって
しまう。
Most of the retainer and the gel-type sealed lead-acid battery use a lead alloy containing no antimony in the lattice. When a lead-antimony alloy is used in these batteries, antimony makes the corrosion layer generated at the lattice-active material interface porous, and in order to strengthen the bonding force between the lead dioxide particles, early capacity reduction and activity decrease. The substance does not fall off, and short-circuiting due to lattice expansion does not occur easily, but antimony elutes from the positive electrode lattice during charge and discharge and deposits on the negative electrode plate to reduce hydrogen overvoltage, so the amount of hydrogen generated by water decomposition is reduced. As a result, in a sealed lead-acid battery, fatal dry-up occurs and the battery life is reached.

【0005】このような理由でリテーナ、ゲル式密閉式
鉛蓄電池では、アンチモンを含まない合金として例えば
鉛−カルシウム系合金を用いている。しかし、鉛−カル
シウム系合金は深い放電を含む充放電サイクルを行なっ
た場合、放電時に格子−活物質界面に緻密な不導体であ
る硫酸鉛が生成して早期に容量が低下したり、活物質で
ある二酸化鉛粒子間の結合が弱まり活物質が脱落しやす
くなるという欠点を有している。
For this reason, in the retainer and the gel type lead-acid battery, for example, a lead-calcium alloy is used as an alloy containing no antimony. However, when a lead-calcium alloy is subjected to a charge / discharge cycle including deep discharge, lead sulfate, which is a dense non-conductor, is generated at the lattice-active material interface at the time of discharge and the capacity is reduced early, or the active material is reduced. That is, the bond between the lead dioxide particles is weakened, and the active material easily falls off.

【0006】また、鉛−カルシウム系合金は鉛−アンチ
モン系合金に比べて非常に軟らかいために格子の伸びに
よるショートが発生し易いという欠点も有している。こ
れらの事から現在の密閉式鉛蓄電池においては、コスト
ダウンと同時に電池寿命性能を改善することが最大の課
題であった。
Further, the lead-calcium alloy is much softer than the lead-antimony alloy, and therefore has a drawback that a short circuit is apt to occur due to the elongation of the lattice. From these things, in the current sealed lead-acid battery, reducing the cost and improving the battery life performance have been the biggest problems.

【0007】[0007]

【課題を解決するための手段】我々は、上述した従来の
密閉式鉛蓄電池の欠点を除去するためには、正極格子に
鉛−アンチモン系合金を使用可能にすることが最良と考
えた。しかし、このためには正極から負極へのアンチモ
ンの移動を防ぐことが大きな問題点となるが、研究を重
ねた結果、シリカ微粉体及び微細孔を有する耐酸性合成
繊維がアンチモンを吸着することを見いだし、その結果
シリカ微粉体及び微細孔を有する耐酸性合成繊維を用い
て、優れた電池性能を有する安価な密閉式鉛蓄電池を開
発することができた。なお、アンチモンの吸着力はシリ
カ微粉体よりも、微細孔を有する耐酸性合成繊維のほう
が強い。
In order to eliminate the above-mentioned drawbacks of the conventional sealed lead-acid battery, it was considered that it is best to use a lead-antimony alloy in the positive electrode grid. However, preventing the transfer of antimony from the positive electrode to the negative electrode is a major problem for this purpose, but as a result of repeated research, it was found that the silica fine powder and the acid-resistant synthetic fiber having fine pores adsorb antimony. As a result, it has been possible to develop an inexpensive sealed lead acid battery having excellent battery performance by using fine silica powder and acid-resistant synthetic fiber having fine pores. The antimony adsorption power is stronger in the acid-resistant synthetic fiber having fine pores than in the silica fine powder.

【0008】その骨子とするところは鉛−アンチモン系
合金より成る正極格子を用い、かつ少なくとも正極板と
負極板との間隙に、シリカ微粉体と微細孔を有する耐酸
性合成繊維とを充填、配置し、充放電に必要な量の硫酸
電解液を該微粉体、該耐酸性合成繊維及び正負極板に含
浸、保持させたところにある。
A skeleton is made of a positive electrode grid made of a lead-antimony alloy, and silica fine powder and acid-resistant synthetic fiber having fine pores are filled and arranged in at least a gap between the positive electrode plate and the negative electrode plate. Then, the fine powder, the acid-resistant synthetic fiber, and the positive and negative electrode plates are impregnated and held with the sulfuric acid electrolytic solution in an amount necessary for charging and discharging.

【0009】なお、微細孔を有する耐酸性合成繊維は電
解液とのなじみがあまり良くないため、スルホン化処
理、プラズマ処理等の親水化処理をほどこすことが好ま
しい。また、微細孔を有する耐酸性合成繊維は充填しや
すくするために細かく切断して使用することが好まし
い。
Since the acid-resistant synthetic fiber having fine pores is not so well compatible with the electrolytic solution, it is preferably subjected to a hydrophilizing treatment such as sulfonation treatment or plasma treatment. Further, the acid-resistant synthetic fiber having fine pores is preferably used after being cut into fine pieces in order to facilitate filling.

【0010】[0010]

【作用】正極格子に鉛−アンチモン系合金を用いること
でアンチモンが正極格子−活物質界面に生成する腐食層
を多孔性にし、粒子間の結合を強固にするために、早期
容量低下や活物質の脱落を防ぐことができ、さらに格子
の伸びによるショートも減らすことができる。
[Operation] By using a lead-antimony alloy for the positive electrode lattice, the corrosion layer generated by antimony at the positive electrode lattice-active material interface becomes porous, and the binding between particles is strengthened. Can be prevented from falling off, and short circuits due to lattice expansion can be reduced.

【0011】また、正極板と負極板との間隙に配置した
シリカ微粉体及び微細孔を有する耐酸性合成繊維がアン
チモンを吸着し、正極から負極へのアンチモンの移動を
阻止する。その結果、アンチモンによる水素過電圧の低
下がなくなるために水分解は増加せず、密閉式鉛蓄電池
の最大の特徴である無保守、無補水という特徴が損なわ
れることはない。
Further, the silica fine powder and the acid-resistant synthetic fiber having fine pores, which are arranged in the gap between the positive electrode plate and the negative electrode plate, adsorb antimony and prevent migration of antimony from the positive electrode to the negative electrode. As a result, the reduction of hydrogen overvoltage due to antimony is eliminated, so that water decomposition does not increase, and the main features of the sealed lead-acid battery, ie, no maintenance and no rehydration, are not impaired.

【0012】さらにシリカ微粉体は非常に安価な工業材
料であって、また硫酸の保持能力も優れているためにリ
テーナ、ゲル式に代わる密閉式鉛蓄電池を安価に作製す
ることができる。
Further, since silica fine powder is a very inexpensive industrial material and has an excellent ability to retain sulfuric acid, it is possible to inexpensively manufacture a sealed lead-acid battery that replaces the retainer or gel type.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいて説明する。
実際に電池を作製し、試験を行なった。
EXAMPLES The present invention will be described below based on examples.
A battery was actually manufactured and tested.

【0014】比較を行なうために、表1に示すように正
極格子合金として鉛−アンチモン系合金および鉛−カル
シウム系合金、電解液保持体としては一次粒子が10〜
40ミリミクロン、表面積が約120m2 /gのシリカ
微粉体及び従来の直径約0.8ミクロンのガラス繊維を
混抄したガラスセパレータ及び親水化処理した微細孔を
有する直径約25ミクロンのポリエチレン繊維を約5m
mに切断したものをそれぞれ用いた。なお、このポリエ
チレン繊維は0.03〜1ミクロン程度の微細な空孔を
有し、この繊維の空孔率は約45%、比表面積は約40
2 /gであった。
For comparison, as shown in Table 1, a lead-antimony alloy and a lead-calcium alloy are used as the positive electrode grid alloy, and 10 to 10 primary particles are used as the electrolyte holder.
About 40 millimicron, a glass separator mixed with silica fine powder having a surface area of about 120 m 2 / g and a conventional glass fiber having a diameter of about 0.8 micron, and a polyethylene fiber having a diameter of about 25 micron having hydrophilized fine pores are used. 5m
Those cut into m were used. The polyethylene fiber has fine pores of about 0.03 to 1 micron, and the porosity of the fiber is about 45% and the specific surface area is about 40.
It was m 2 / g.

【0015】[0015]

【表1】 [Table 1]

【0016】また、負極格子には、鉛−カルシウム系合
金を用いた。正負極活物質などは標準的なものを用い、
電解液には比重1.30の希硫酸を用い、5時間率で約28
Ahの容量を持つ自動車用密閉式鉛蓄電池を組み立て
た。これらの電池を用いてJISD−5301の寿命試
験を行ない、放電容量の推移および減液量を調べた。放
電容量は、試験前の容量を100%として比較したも
の、減液量は試験前を0%として液減少量を重量%で示
したものである。結果を図1に示す。
A lead-calcium alloy is used for the negative electrode grid. Standard positive and negative electrode active materials are used,
Dilute sulfuric acid with a specific gravity of 1.30 was used as the electrolyte, and the
A sealed lead-acid battery for an automobile having a capacity of Ah was assembled. A life test of JIS D-5301 was performed using these batteries, and the transition of discharge capacity and the amount of liquid reduction were examined. The discharge capacity is compared with the capacity before the test as 100%, and the liquid reduction amount is the liquid reduction amount in weight% with 0% before the test. The results are shown in Fig. 1.

【0017】No.3の電池は、寿命が最も短く、減液
量も多かった。これは正極格子より溶出したアンチモン
が負極板上に析出して水分解が増加し、電解液量が減少
したことがその原因である。No.4,5の電池では減
液量は少ないもののNo.1,2の電池に比べ寿命が短
かった。これは、アンチモンを含まないために正極活物
質の劣化が発生し易かったことおよび鉛−カルシウム系
合金は鉛−アンチモン系合金に比べて軟らかいために格
子が伸びてショートが起こったことなどが寿命原因とな
っている。
No. The battery of No. 3 had the shortest life and had a large amount of liquid reduction. This is because antimony eluted from the positive electrode grid is deposited on the negative electrode plate to increase water decomposition and reduce the amount of the electrolytic solution. No. The batteries of Nos. 4 and 5 have a small amount of liquid reduction, but No. The life was shorter than the batteries 1 and 2. This is because deterioration of the positive electrode active material was likely to occur because it did not contain antimony, and the fact that the lead-calcium alloy was softer than the lead-antimony alloy and the lattice stretched to cause a short circuit. It is the cause.

【0018】また、No.2の電池はNo.1の電池に
比べやや寿命が短かった。これは、シリカ微粉体が微細
孔を有するポリエチレン繊維よりもアンチモンの吸着力
が弱いためである。
No. No. 2 battery is No. The battery had a slightly shorter life than the No. 1 battery. This is because the fine silica powder has a weaker antimony adsorption force than the polyethylene fiber having fine pores.

【0019】これらに対して、本発明品であるNo.1
の正極格子に鉛−アンチモン系合金、電解液保持体にシ
リカ微粉体及び微細孔を有するポリエチレン繊維を用い
た電池では、寿命回数が最も長く減液量も非常に少ない
という結果が得られた。これは、正極格子に鉛−アンチ
モン系合金を用いているために正極活物質の劣化や格子
の伸びが少なかったこと、またシリカ微粉体及び微細孔
を有するポリエチレン繊維がアンチモンの正極から負極
への移動を阻止したために減液量が少なくなったことな
どがその理由である。
On the other hand, in contrast to these, No. 1
In the battery using the lead-antimony alloy for the positive electrode grid and the fine silica powder and the polyethylene fibers having fine pores for the electrolyte holder, the result was that the number of lifespan was long and the amount of liquid reduction was very small. This is because deterioration of the positive electrode active material and elongation of the lattice were small because a lead-antimony alloy was used for the positive electrode lattice, and silica fine powder and polyethylene fibers having fine pores were used for the antimony positive electrode to the negative electrode. The reason is that the amount of liquid reduction has decreased due to the prevention of movement.

【0020】今回の実施例では、シリカ微粉体として一
次粒子が10〜40ミリミクロン、表面積が約120m
2 /gのものを用いたが、表面積が20m2 /g以上の
シリカ微粉体であれば同様の効果を得ることができる。
In this example, the silica fine powder has primary particles of 10 to 40 mm and a surface area of about 120 m.
Although the silica fine powder having a surface area of 20 m 2 / g or more was used, the same effect can be obtained.

【0021】また、今回は微細孔を有する耐酸性合成繊
維のシリカ微粉体に対する割合を20%としたが、5〜
70%の範囲で効果が顕著であった。
Further, this time, the ratio of the acid-resistant synthetic fiber having fine pores to the silica fine powder is set to 20%.
The effect was remarkable in the range of 70%.

【0022】さらに、正極格子に鉛−アンチモン系合
金、電解液保持体に上記のシリカ微粉体及び微細孔を有
する耐酸性合成繊維を用いたクラッド式密閉鉛蓄電池に
ついても本実施例と同じ効果、すなわち減液量が少なく
長寿命という性能が期待できる。
Further, the same effect as in the present embodiment can be obtained for a clad type sealed lead-acid battery using a lead-antimony alloy for the positive electrode grid, the above silica fine powder and an acid-resistant synthetic fiber having fine pores for the electrolyte holder. That is, the amount of reduced liquid is small and a long life can be expected.

【0023】[0023]

【発明の効果】上述の実施例からも明らかなように、本
発明による密閉式鉛蓄電池は鉛−アンチモン系合金より
成る正極格子を用い、かつ少なくとも正極板と負極板と
の間隙にシリカ微粉体と微細孔を有する耐酸性合成繊維
とを充填、配置し、充放電に必要な量の硫酸電解液を該
微粉体、耐酸性合成繊維及び正負極板に含浸、保持させ
るという方法で従来の密閉式鉛蓄電池の短所を克服する
ことができ、その工業的価値は甚だ大なるものである。
As is apparent from the above-described embodiments, the sealed lead-acid battery according to the present invention uses the positive electrode grid made of the lead-antimony alloy and has the silica fine powder in at least the gap between the positive electrode plate and the negative electrode plate. And acid-resistant synthetic fibers having fine pores are filled and arranged, and the fine powder, the acid-resistant synthetic fibers and the positive and negative electrode plates are impregnated and held with the sulfuric acid electrolytic solution in an amount necessary for charging and discharging, which is a conventional hermetic seal. The disadvantages of the lead-acid battery can be overcome and its industrial value is enormous.

【図面の簡単な説明】[Brief description of drawings]

【図1】サイクル寿命試験中の容量推移および減液量を
示した図
FIG. 1 is a diagram showing a change in capacity and a liquid reduction amount during a cycle life test.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電池の充電中に発生する酸素ガスを負極
で吸収させる密閉式鉛蓄電池において、鉛−アンチモン
系合金より成る正極格子を用い、かつ少なくとも正極板
と負極板との間隙に、シリカ微粉体と微細孔繊維を有す
る耐酸性合成繊維とを充填、配置し、充放電に必要な量
の硫酸電解液を該微粉体、耐酸性合成繊維及び正負極板
に含浸、保持させたことを特徴とする密閉式鉛蓄電池。
1. A sealed lead acid battery in which oxygen gas generated during charging of the battery is absorbed by a negative electrode, a positive electrode grid made of a lead-antimony alloy is used, and silica is provided at least in a gap between the positive electrode plate and the negative electrode plate. Fine powder and acid-resistant synthetic fiber having micropore fibers were filled and placed, and the sulfuric acid electrolytic solution in an amount necessary for charging and discharging was impregnated and held in the fine powder, acid-resistant synthetic fiber and positive and negative electrode plates. Characteristic sealed lead acid battery.
JP5107549A 1993-04-08 1993-04-08 Sealed lead-acid battery Pending JPH06295739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5107549A JPH06295739A (en) 1993-04-08 1993-04-08 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5107549A JPH06295739A (en) 1993-04-08 1993-04-08 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH06295739A true JPH06295739A (en) 1994-10-21

Family

ID=14462007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5107549A Pending JPH06295739A (en) 1993-04-08 1993-04-08 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH06295739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626693A (en) * 2022-12-22 2023-01-20 深圳永清水务有限责任公司北京分公司 Lead-antimony coating titanium anode plate with intermediate layer and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626693A (en) * 2022-12-22 2023-01-20 深圳永清水务有限责任公司北京分公司 Lead-antimony coating titanium anode plate with intermediate layer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5047300A (en) Ultra-thin plate electrochemical cell
JP3952483B2 (en) Sealed lead acid battery
JP2003077445A (en) Lead acid storage battery
JPH06295739A (en) Sealed lead-acid battery
JP3555177B2 (en) Sealed lead-acid battery
JPH042060A (en) Sealed type lead acid battery
JPS61165956A (en) Sealed type lead acid battery
JP2995780B2 (en) Sealed lead-acid battery
JP3261417B2 (en) Sealed lead-acid battery
JP3482671B2 (en) Sealed lead-acid battery
JPH06283191A (en) Sealed lead-acid battery
JP2002343412A (en) Seal type lead-acid battery
JPH0693367B2 (en) Sealed lead acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPH06283190A (en) Sealed lead-acid battery
JPH01149376A (en) Sealed lead-acid battery
JPH04337256A (en) Sealed lead-acid battery
JPH0845553A (en) Activation charging method of sealed lead-acid battery
JPH0530291Y2 (en)
JPH08203490A (en) Sealed lead-acid battery
JPH0654680B2 (en) Sealed lead acid battery
JPH0413829B2 (en)
JP2002260717A (en) Valve controlled lead storage battery
JPH0714603A (en) Clad type sealed lead-acid battery
JPH0676854A (en) Sealed lead-acid battery