JP2012089296A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2012089296A
JP2012089296A JP2010233700A JP2010233700A JP2012089296A JP 2012089296 A JP2012089296 A JP 2012089296A JP 2010233700 A JP2010233700 A JP 2010233700A JP 2010233700 A JP2010233700 A JP 2010233700A JP 2012089296 A JP2012089296 A JP 2012089296A
Authority
JP
Japan
Prior art keywords
negative electrode
mass
active material
electrode active
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010233700A
Other languages
Japanese (ja)
Other versions
JP5505248B2 (en
Inventor
Masaru Inagaki
賢 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2010233700A priority Critical patent/JP5505248B2/en
Publication of JP2012089296A publication Critical patent/JP2012089296A/en
Application granted granted Critical
Publication of JP5505248B2 publication Critical patent/JP5505248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lead storage battery that has a remarkably improved life performance and suppresses reduction of an electrolytic solution.SOLUTION: A lead storage battery comprises positive and negative electrode lattices made of a Pb-Ca-Sn-based alloy, and positive and negative electrode connectors made of a lead alloy containing Sb with a concentration of 5000 mass ppm or lower (including substantial 0). Aluminum ions are added to an electrolyte by 0.02 to 0.2 mol/L, and not less than one element or compound thereof selected from the group consisting of Sb, Ni, Ag, Cu, Mo and Te is added to a positive electrode active material, a negative electrode active material, or the electrolyte (the amount of Sb element is 100 to 1000 mass ppm, the amount of Ni element, Ag element, or Mo element is 10 to 100 mass ppm, the amount of Cu element is 20 to 200 mass ppm, or the amount of Te element is 5 to 50 mass ppm, or the total amount of the added elements or compounds is 100 to 1000 mass ppm in terms of Sb when two or more elements or compounds are added, by the mass ratio of the negative electrode active material).

Description

本発明は、鉛蓄電池、特に寿命性能の優れた鉛蓄電池に関するものである。   The present invention relates to a lead storage battery, and particularly to a lead storage battery with excellent life performance.

鉛蓄電池については、近年、メンテナンスフリーおよび無漏液特性が重要視されており、Pb−非Sb系合金がこれらの特性を維持するのに適していることから、正負極格子基材ともにSbを含まない合金がよく利用されるようになってきた。Sbを含まない合金としてはPb-Ca-Sn系合金が最もよく利用されている。   For lead-acid batteries, maintenance-free and no-leakage characteristics have been emphasized in recent years, and Pb-non-Sb alloys are suitable for maintaining these characteristics. Alloys that do not contain are becoming popular. As an alloy not containing Sb, a Pb—Ca—Sn alloy is most often used.

Pb-Ca-Sn系合金とは、Pb、CaおよびSnで構成されている合金であるが、その他の元素を含む場合も、合金の特性に対するCaおよびSnの影響力が大きいことから、これらを含めてPb-Ca-Sn系合金と称している。その他の元素として、Al、Ag、Bi、Ba等が挙げられる。   Pb-Ca-Sn alloy is an alloy composed of Pb, Ca and Sn, but even when other elements are included, Ca and Sn have a great influence on the properties of the alloy. Including it is called Pb-Ca-Sn alloy. Examples of other elements include Al, Ag, Bi, Ba, and the like.

このようなSbを含まない合金を正・負極格子基材に用いた鉛蓄電池は減液量が大幅に少なくなるが、ストラップとストラップから導出された極柱もしくはセル間接続体が一体化した接続部材には依然として2〜5質量%程度のSbを含むPb-Sb系合金が利用されており、主に正極接続部材に含まれるSbが電解液中へ溶出したのち負極に再析出するために減液が進行し、電解液から露出した負極部分の腐食が進行する場合がある。   Lead storage batteries using such Sb-free alloys for the positive and negative grid bases have a significantly reduced amount of liquid reduction, but the connection between the strap and the pole poles derived from the strap or the connection between cells is integrated. Pb-Sb alloys containing 2 to 5% by mass of Sb are still used for the members, and the amount of Sb contained in the positive electrode connection member is reduced because it elutes into the electrolyte and then re-deposits on the negative electrode. The liquid may progress and corrosion of the negative electrode portion exposed from the electrolytic solution may progress.

このような観点から、格子および接続部材の全てに純鉛、もしくはSbを含まない鉛合金を用いることが提案されている。このような構成の電池においては、減液が抑制され、電解液から露出した負極部分の腐食の進行も抑制されるが、負極の充電受入性が低下し、鉛蓄電池の深放電寿命が低下することがわかっている。そこで、正および負極格子、正および負極接続部材はSbを含有しない鉛もしくは鉛合金とし、負極活物質中に減液量に影響しない程度の微量のSb、BiといったPbよりも水素過電圧が低い物質を含ませることで、前記した減液量の抑制および深放電寿命の改善といった相反する課題を解決する発明が提案されている(特許文献1及び2参照)。   From such a viewpoint, it has been proposed to use pure lead or a lead alloy containing no Sb for all of the lattice and the connecting member. In the battery having such a configuration, the liquid reduction is suppressed and the progress of corrosion of the negative electrode portion exposed from the electrolytic solution is also suppressed, but the charge acceptability of the negative electrode is reduced and the deep discharge life of the lead storage battery is reduced. I know that. Therefore, positive and negative electrode grids, positive and negative electrode connecting members are lead or lead alloys that do not contain Sb, and substances with lower hydrogen overvoltage than Pb such as trace amounts of Sb and Bi that do not affect the amount of liquid reduction in the negative electrode active material The invention which solves the conflicting problems such as suppression of the amount of liquid reduction and improvement of the deep discharge life described above has been proposed (see Patent Documents 1 and 2).

また、負極格子および正極格子をいずれもPb-Ca合金とし、接続部材の電解液に接触する部分を、Sbを含まないPbもしくはPb合金とした鉛蓄電池において、特許文献1及び2の発明のように負極活物質中にSbを含ませる代わりに、負極活物質中のカーボン量を、負極活物質中のPb質量の0.3〜1.0%とすることによって、負極の耳における耳細り現象を抑制し、負極充電受入性の低下を抑制した鉛蓄電池を得る発明がある(特許文献3参照)。
これら特許文献1〜3の発明においては、鉛蓄電池のサイクル寿命が改善されるものの、より寿命性能を改善することが望まれていた。
Further, in a lead storage battery in which both the negative electrode lattice and the positive electrode lattice are made of a Pb—Ca alloy and the contact portion of the connecting member is made of Pb or Pb alloy not containing Sb, as in the inventions of Patent Documents 1 and 2. Instead of including Sb in the negative electrode active material, by making the amount of carbon in the negative electrode active material 0.3 to 1.0% of the Pb mass in the negative electrode active material, the ear thinning phenomenon in the negative electrode ear is suppressed, There is an invention for obtaining a lead-acid battery that suppresses a decrease in negative electrode charge acceptance (see Patent Document 3).
In the inventions of these patent documents 1 to 3, although the cycle life of the lead storage battery is improved, it has been desired to further improve the life performance.

また、上記の課題を解決するために、「正および負極格子基材は実質的にSbを含まないPb-Ca-Sn系合金からなり、正および負極接続部材(ストラップ、極柱、およびセル間接続体)は50〜5000質量ppmのSbを含んだ鉛合金からなることを特徴とする鉛蓄電池。」の発明が提案されている(特許文献4参照)。   Further, in order to solve the above-mentioned problem, “the positive and negative electrode lattice base materials are made of a Pb—Ca—Sn-based alloy substantially not containing Sb, and the positive and negative electrode connecting members (between the strap, the pole column, and the cell) A lead storage battery characterized in that the connector is made of a lead alloy containing 50 to 5000 ppm by mass of Sb has been proposed (see Patent Document 4).

この発明の鉛蓄電池によれば、正・負極セル間溶接部の強度が十分に強固で耐振動性に優れ、主に正極接続部材に含まれる微量のSbが電解液中に溶解し、負極表面に再析出することで負極の充電受入性を改善し、同時に減液を従来の2〜5質量%程度のSbを含むPb-Sb系合金からなる正・負極接続部材に比べて大幅に抑制するため、鉛蓄電池の寿命性能を改善することができることが示されている。   According to the lead storage battery of the present invention, the strength of the welded part between the positive and negative electrodes is sufficiently strong and excellent in vibration resistance, and a small amount of Sb mainly contained in the positive electrode connecting member is dissolved in the electrolytic solution, Re-deposited on the negative electrode to improve the charge acceptability of the negative electrode, and at the same time, the liquid reduction is greatly suppressed compared to the conventional positive and negative electrode connecting members made of Pb-Sb alloy containing about 2 to 5% by mass of Sb. Therefore, it has been shown that the life performance of the lead storage battery can be improved.

さらに、この発明の鉛蓄電池において、使用初期から十分な充電受入性を得るために、より好ましくは負極活物質中にSb、Sn、Biのうち少なくとも1つを添加することができ、その際のSb、Sn、Biの添加濃度は、負極活物質量に対して0.2〜500質量ppmとすることも示されているが、「正および負極格子は実質的にSbを含まないPb-Ca-Sn系合金からなり、正および負極接続部材は50〜5000質量ppmのSbを含んだ鉛合金からなる鉛蓄電池」において、負極活物質中にSb等を添加しただけでは、後述するように、寿命性能は改善されるが、減液は抑制されないという問題があった。   Furthermore, in the lead storage battery of the present invention, in order to obtain sufficient charge acceptance from the initial use, it is more preferable that at least one of Sb, Sn, and Bi can be added to the negative electrode active material. Although it is also shown that the addition concentration of Sb, Sn, Bi is 0.2 to 500 ppm by mass with respect to the amount of the negative electrode active material, “the positive and negative electrode lattices are substantially free of Sb Pb—Ca—Sn. In a lead storage battery made of a lead alloy consisting of a lead alloy containing 50 to 5000 mass ppm of Sb, the positive and negative electrode connecting members are simply added with Sb etc. in the negative electrode active material, as described later, the life performance Was improved, but there was a problem that liquid reduction was not suppressed.

また、サルフェーションを抑制し鉛蓄電池の長寿命化を図ることを課題として、「負極は活物質とカーボンの混合物であって、該負極にカーボンが偏在しており、かつ電解液にAlイオン、Seイオン、Tiイオンの少なくとも一種を含むことを特徴とした鉛蓄電池。」の発明が提案されている(特許文献5参照)。
この発明によれば、カーボン増加ペーストを用い、電解液にAlイオンを添加することにより、サイクル寿命および容量回復性に優れている鉛蓄電池が得られるが、電解液にAlイオンを添加しただけでは、サイクル寿命の向上は十分ではなかった。また、特許文献5には、格子体として鉛−カルシウム合金を用いることが記載されているが、正負極接続部材の材質は示されていない。
In addition, with the object of suppressing the sulfation and extending the life of the lead-acid battery, “the negative electrode is a mixture of an active material and carbon, the carbon is unevenly distributed in the negative electrode, and the electrolyte contains Al ions, Se A lead-acid battery characterized by containing at least one of ions and Ti ions "has been proposed (see Patent Document 5).
According to this invention, a lead storage battery having excellent cycle life and capacity recovery can be obtained by adding Al ions to the electrolytic solution using a carbon-increasing paste, but simply adding Al ions to the electrolytic solution The cycle life was not improved sufficiently. Moreover, although patent document 5 describes using a lead-calcium alloy as a lattice body, the material of the positive / negative electrode connection member is not shown.

一方、「負極と正極と電解液を有してなる鉛蓄電池であって、上記負極にHf,Nb,Ta,W,Ag,Zn,Ni,Co,Mo,Cu,V,Mn,Ba,K,Cs,Rb,Sr,Naのうち少なくとも一つの単体,酸化物,硫酸塩,水酸化物又は炭化物をカーボンに担持した担持体を添加することを特徴とする鉛蓄電池。」の発明がある(特許文献6、請求項6参照)が、この発明は、高率充電性能に優れた鉛蓄電池を提供することと、充電受入性に優れた新規なカーボン材料を提供することを課題とするものであり、寿命性能の向上を課題とするものではない。また、特許文献6には、格子体として鉛−カルシウム合金を用いることが記載されているだけで、正負極接続部材の一つであるストラップの記載はあるものの、その材質は示されていない。   On the other hand, “a lead-acid battery comprising a negative electrode, a positive electrode and an electrolyte, wherein the negative electrode is Hf, Nb, Ta, W, Ag, Zn, Ni, Co, Mo, Cu, V, Mn, Ba, K , Cs, Rb, Sr, Na, a lead-acid battery characterized by adding a carrier carrying carbon, oxide, sulfate, hydroxide, or carbide. However, it is an object of the present invention to provide a lead-acid battery excellent in high-rate charging performance and to provide a novel carbon material excellent in charge acceptance. Yes, it is not a matter of improving the life performance. Further, Patent Document 6 only describes the use of a lead-calcium alloy as a lattice body, and although there is a description of a strap which is one of positive and negative electrode connecting members, the material thereof is not shown.

さらに、「負極活物質中にタングステンを含み、負極活物質としてのPb100質量部につき、タングステンを0.00005〜0.008質量部含む鉛蓄電池。」及び「電解液中にタングステンを含み、電解液1L中に含まれるタングステンを0.00002mol〜0.02molとした鉛蓄電池。」の発明があり(特許文献7、請求項1及び3参照)、この発明の鉛蓄電池は、「優れた充電受け入れ性を有し、低SOC−深放電における寿命特性を顕著に改善する。またSb添加で見られたような自己放電特性の低下や負極格子部の腐食を抑制するという顕著な効果を奏する。」(段落[0015])ものであるが、上記の効果を期待して、タングステン以外の元素を用いることを示唆するものではない。また、特許文献7には、正負極格子は実質的にSbを含まないPb-Ca-Sn系合金からなるものが記載されている(段落[0038]及び[0039]参照)が、正負極接続部材の材質については記載がなく、減液の抑制についても示されていない。   Furthermore, “a lead storage battery containing tungsten in the negative electrode active material and 0.00005 to 0.008 parts by mass of tungsten per 100 parts by mass of Pb as the negative electrode active material.” And “a lead storage battery containing tungsten in the electrolytic solution and contained in 1 L of the electrolytic solution. (See Patent Document 7, Claims 1 and 3), the lead storage battery of the present invention has an “excellent charge acceptability and low SOC”. -Significantly improves the life characteristics in deep discharge, and has the remarkable effect of suppressing the deterioration of the self-discharge characteristics and the corrosion of the negative electrode lattice part as seen with the addition of Sb "(paragraph [0015]). However, it does not suggest that an element other than tungsten is used in view of the above effect. Patent Document 7 describes that a positive and negative electrode lattice is made of a Pb—Ca—Sn alloy that does not substantially contain Sb (see paragraphs [0038] and [0039]). There is no description about the material of the member, and no suppression of liquid reduction is shown.

同様の発明として、「負極活物質中にパラジウムを含み、負極活物質としてのPb100質量部につき、パラジウムを0.00003〜0.005質量部含む鉛蓄電池。」及び「電解液中にパラジウムを含み、電解液1L中に含まれるパラジウムを0.02mmol〜1.0mmolとした鉛蓄電池。」があり(特許文献8、請求項1及び3参照)、この発明の鉛蓄電池は、「優れた充電受け入れ性を有し、低SOC−深放電における寿命特性を顕著に改善する。またSb添加で見られたような自己放電特性の低下や負極格子部の腐食を抑制するという顕著な効果を奏する。」(段落[0015])ものであるが、上記の効果を期待して、パラジウム以外の元素を用いることを示唆するものではない。また、特許文献8には、正および負極格子は実質的にSbを含まないPb-Ca-Sn系合金からなるものが記載されている(段落[0038]及び[0039]参照)が、正負極接続部材の材質については記載がなく、減液の抑制についても示されていない。   As a similar invention, “a lead storage battery containing palladium in the negative electrode active material and 0.00003 to 0.005 parts by mass of palladium per 100 parts by mass of Pb as the negative electrode active material.” And “electrolytic solution 1L containing palladium in the electrolytic solution.” There is a lead storage battery in which palladium contained in the lead is 0.02 mmol to 1.0 mmol (see Patent Document 8, Claims 1 and 3), and the lead storage battery of the present invention has an "excellent charge acceptability, low The SOC-deep discharge life characteristics are remarkably improved, and the remarkable effect of suppressing the self-discharge characteristics and the corrosion of the negative electrode lattice part as seen with the addition of Sb is exhibited "(paragraph [0015]). However, it does not suggest that an element other than palladium is used in view of the above effect. Patent Document 8 describes that the positive and negative electrode lattices are made of a Pb—Ca—Sn alloy substantially free of Sb (see paragraphs [0038] and [0039]). There is no description about the material of a connection member, and it does not show suppression of liquid reduction.

特開2006−114416号公報JP 2006-114416 A 特開2006−114417号公報JP 2006-114417 A 特開2008−140645号公報JP 2008-140645 A 特開2008−218258号公報JP 2008-218258 A 特開2008−243493号公報JP 2008-243493 A 特開2002−367613号公報JP 2002-367613 A 特開2007−213896号公報JP 2007-213896 A 特開2007−305369号公報JP 2007-305369 A

本発明は、上記先行技術の課題を解決しようとするものであり、寿命性能が顕著に向上し、減液が抑制された鉛蓄電池を提供することを課題とする。   The present invention is intended to solve the above-described problems of the prior art, and an object of the present invention is to provide a lead storage battery in which the life performance is significantly improved and the liquid reduction is suppressed.

本発明は、上記課題を解決するために、以下の手段を採用する。
(1)正負極格子がPb-Ca-Sn系合金からなり、正負極接続部材がSbが5000質量ppm以下(実質的に0の場合も含む)である鉛合金からなる鉛蓄電池において、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ正極活物質、負極活物質ないしは電解液中にSbまたはその化合物を、Sb元素の量が負極活物質質量比で100〜1000質量ppmとなるように添加したことを特徴とする鉛蓄電池。
(2)前記Sbまたはその化合物に替えてNiまたはその化合物を、Ni元素の量が負極活物質質量比で10〜100質量ppmとなるように添加したことを特徴とする前記(1)の鉛蓄電池。
(3)前記Sbまたはその化合物に替えてAgまたはその化合物を、Ag元素の量が負極活物質質量比で10〜100質量ppmとなるように添加したことを特徴とする前記(1)の鉛蓄電池。
(4)前記Sbまたはその化合物に替えてCuまたはその化合物を、Cu元素の量が負極活物質質量比で20〜200質量ppmとなるように添加したことを特徴とする前記(1)の鉛蓄電池。
(5)前記Sbまたはその化合物に替えてMoまたはその化合物を、Mo元素の量が負極活物質質量比で10〜100質量ppmとなるように添加したことを特徴とする前記(1)の鉛蓄電池。
(6)前記Sbまたはその化合物に替えてTeまたはその化合物を、Te元素の量が負極活物質質量比で5〜50質量ppmとなるように添加したことを特徴とする前記(1)の鉛蓄電池。
(7)前記Sbまたはその化合物に替えて、Sb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる2つ以上の元素またはその化合物を添加したものであって、Ni、Ag、Moである場合はその添加量の10倍を、Cuである場合はその添加量の5倍を、Teである場合はその添加量の20倍を、相当するSbの添加量としてそれぞれ換算し、それらの合計が負極活物質質量比で100〜1000質量ppmの範囲となるように任意の組み合わせで添加したことを特徴とする前記(1)の鉛蓄電池。
ここで、正負極接続部材は、セル間接続部、ストラップ、極柱を意味する。
The present invention employs the following means in order to solve the above problems.
(1) In a lead storage battery in which the positive and negative electrode lattice is made of a Pb—Ca—Sn alloy, and the positive and negative electrode connecting member is made of a lead alloy having Sb of 5000 ppm by mass or less (including substantially 0). In addition, 0.02 to 0.2 mol / L of aluminum ions is added, and Sb or a compound thereof is added to the positive electrode active material, the negative electrode active material or the electrolyte, and the amount of Sb element is 100 to 1000 ppm by mass in the negative electrode active material mass ratio. A lead-acid battery characterized by being added.
(2) The lead of (1) above, wherein Ni or a compound thereof is added in place of Sb or a compound thereof so that the amount of Ni element is 10 to 100 ppm by mass in terms of the negative electrode active material mass ratio Storage battery.
(3) The lead of (1) above, wherein Ag or a compound thereof is added instead of Sb or a compound thereof so that the amount of Ag element is 10 to 100 ppm by mass in terms of the negative electrode active material mass ratio Storage battery.
(4) The lead as described in (1) above, wherein Cu or a compound thereof is added in place of the Sb or the compound so that the amount of Cu element is 20 to 200 ppm by mass in the negative electrode active material mass ratio. Storage battery.
(5) The lead of (1) above, wherein Mo or a compound thereof is added in place of Sb or a compound thereof so that the amount of Mo element is 10 to 100 mass ppm in terms of the negative electrode active material mass ratio. Storage battery.
(6) Lead according to (1) above, wherein Te or a compound thereof is added in place of Sb or a compound thereof so that the amount of Te element is 5 to 50 mass ppm in terms of the negative electrode active material mass ratio. Storage battery.
(7) In place of Sb or a compound thereof, two or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te or a compound thereof are added, and Ni, Ag, Mo In the case of Cu, the amount added is 10 times, in the case of Cu, the amount added is 5 times, and in the case of Te, the amount added is 20 times the equivalent amount of Sb. The lead acid battery according to (1) above, which is added in any combination such that the total amount of the negative electrode active material is in the range of 100 to 1000 mass ppm in terms of the mass ratio of the negative electrode active material.
Here, the positive and negative electrode connecting members mean inter-cell connecting portions, straps, and poles.

本発明によれば、正負極格子が実質的にSbを含まないPb-Ca-Sn系合金からなり、正負極接続部材がSbが5000質量ppm以下である鉛合金からなる鉛蓄電池において、電解液中にアルミニウムイオンを添加し、かつ正極活物質、負極活物質ないしは電解液中にSb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる1つ以上の元素またはその化合物を添加したことにより、少量の添加で、寿命性能が顕著に向上し、減液が抑制された鉛蓄電池が得られるという効果を奏する。   According to the present invention, in a lead storage battery in which the positive and negative electrode lattices are made of a Pb—Ca—Sn alloy that does not substantially contain Sb, and the positive and negative electrode connecting members are made of a lead alloy having Sb of 5000 mass ppm or less, Aluminum ions are added to the cathode, and one or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te or compounds thereof are added to the cathode active material, the anode active material, or the electrolytic solution. Thus, with the addition of a small amount, there is an effect that the life performance is remarkably improved and a lead storage battery in which liquid reduction is suppressed is obtained.

以下、本発明の実施形態について説明する。
本発明において、正および負極格子、正および負極接続部材は、特許文献4に記載された発明と同様の方法で作製する。
Hereinafter, embodiments of the present invention will be described.
In the present invention, the positive and negative electrode lattices and the positive and negative electrode connecting members are produced by the same method as the invention described in Patent Document 4.

本発明においては、正極格子および負極格子の基材として実質的にSbを含まないPb-Ca-Sn系合金を使用する。ただし、不可避不純物として微量のSbが含まれている場合があるが、Sb量が5質量ppm未満であれば本発明の効果が損なわれることはない。Caの含有量は、0.05〜0.1質量%、Snの含有量は、0.3〜3.0質量%とすることが好ましい。さらに、従来から活物質との密着性を改善するなどの目的で、正極格子表面にSb等を含んだ鉛合金からなる表面層を設けられることがあり、この技術を本発明に適用した場合においても、Sb量が正極格子重量に対して1000質量ppm未満であれば、本発明の効果が損なわれることはない。   In the present invention, a Pb—Ca—Sn alloy containing substantially no Sb is used as a base material for the positive electrode lattice and the negative electrode lattice. However, although a trace amount of Sb may be included as an inevitable impurity, the effect of the present invention is not impaired if the amount of Sb is less than 5 ppm by mass. The Ca content is preferably 0.05 to 0.1% by mass, and the Sn content is preferably 0.3 to 3.0% by mass. Furthermore, a surface layer made of a lead alloy containing Sb or the like may be provided on the surface of the positive electrode lattice for the purpose of improving the adhesion with the active material, and when this technology is applied to the present invention. However, if the amount of Sb is less than 1000 mass ppm with respect to the positive electrode lattice weight, the effect of the present invention is not impaired.

負極板は、網目状に展開された、上記のような実質的にSbを含まないPb-Ca-Sn系合金からなる負極格子に負極活物質を充填した構成である。正極板も、同様の正極格子に正極活物質を充填した構成である。
負極活物質ペーストは鉛粉に硫酸バリウム、リグニンおよびカーボンを必要に応じて適量加え、これらを水および希硫酸で混練することで作製し、負極格子に充填した後、熟成・乾燥を行うことで負極板を得る。正極活物質ペーストは鉛粉を水および希硫酸で混練することで作製し、前記正極格子に充填した後、熟成・乾燥を行うことで正極板を得る。
The negative electrode plate has a structure in which a negative electrode lattice made of a Pb—Ca—Sn-based alloy substantially free of Sb and expanded as a net is filled with a negative electrode active material. The positive electrode plate also has a structure in which a positive electrode active material is filled in a similar positive electrode grid.
The negative electrode active material paste is prepared by adding appropriate amounts of barium sulfate, lignin and carbon to lead powder as necessary, kneading them with water and dilute sulfuric acid, filling the negative electrode lattice, and then aging and drying. A negative electrode plate is obtained. The positive electrode active material paste is prepared by kneading lead powder with water and dilute sulfuric acid, filling the positive electrode lattice, and then aging and drying to obtain a positive electrode plate.

上記のようにして作製した負極板と正極板を、従来と同様に、セパレータを介して交互に積層し、同極性の極板同士を、ストラップで連結させて極板群とする。この極板群を電槽内に配置して未化成電池を作製する。上記未化成電池に希硫酸を入れ、化成した後に、希硫酸を一度抜き、その後、硫酸(電解液)を入れて、本発明の鉛蓄電池とする。   The negative electrode plate and the positive electrode plate produced as described above are alternately stacked via separators in the same manner as in the prior art, and the electrode plates having the same polarity are connected with a strap to form an electrode plate group. This electrode group is arranged in a battery case to produce an unformed battery. After the dilute sulfuric acid is put into the non-chemical cell and formed, the dilute sulfuric acid is once taken out, and then sulfuric acid (electrolytic solution) is put into the lead storage battery of the present invention.

本発明において、正極板および負極板から導出された正極ストラップおよび負極ストラップは、Sb濃度を5000質量ppm以下の鉛または鉛合金とすることにより、後述するように、電解液中にアルミニウムイオンを添加し、かつ正極活物質、負極活物質ないしは電解液中にSb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる1つ以上の元素またはその化合物を添加した場合に、これら特定の元素を添加しない場合と比較して、寿命性能が顕著に向上する。Sb濃度が5000質量ppmを超えるとサイクル寿命が短くなり、減液量が増加するので、寿命性能を向上させ、減液を抑制するためには、正極および負極ストラップを構成する鉛合金中のSb濃度を5000質量ppm以下とする。
また、前記鉛合金の強度を高めるために、1.0〜3.0質量%のSn、0.1質量%程度のCaを添加してもよいが、Caを添加する場合は、腐食の原因となるCa3Sb2を生成するため、この場合のSbの濃度は100質量ppm以下にしておくことが好ましい。
In the present invention, the positive electrode strap and the negative electrode strap derived from the positive electrode plate and the negative electrode plate are made of lead or a lead alloy having an Sb concentration of 5000 mass ppm or less, so that aluminum ions are added to the electrolyte as described later. In addition, when one or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te or compounds thereof are added to the positive electrode active material, the negative electrode active material, or the electrolyte, these specific elements Compared with the case where no is added, the life performance is remarkably improved. If the Sb concentration exceeds 5000 ppm by mass, the cycle life is shortened and the amount of liquid reduction increases, so in order to improve the life performance and suppress liquid reduction, Sb in the lead alloy constituting the positive and negative straps The concentration is 5000 mass ppm or less.
Further, in order to increase the strength of the lead alloy, 1.0 to 3.0% by mass of Sn and about 0.1% by mass of Ca may be added. However, when Ca is added, Ca 3 Sb 2 that causes corrosion is added. In this case, the Sb concentration is preferably 100 ppm by mass or less.

ストラップは、バーナー溶接法またはキャスト・オン・ストラップ(Cast on Strap、略してCOS)法により溶接する。バーナー溶接法は、極板群の極板耳部を櫛状治具に挿入し、ガスバーナーやプラズマなどの炎で、極板耳部や足鉛を溶融、凝固させることで一体化し、ストラップを形成するものである。COS法は、鋳型内に置かれた溶融鉛に、極板耳部を浸漬し、その後凝固させることで一体化して、ストラップとするものである。   The strap is welded by a burner welding method or a cast on strap (COS for short) method. In the burner welding method, the electrode plate ears of the electrode plate group are inserted into a comb-shaped jig, and the electrodes are integrated by melting and solidifying the electrode plate ears and the lead with a flame such as a gas burner or plasma. To form. In the COS method, the electrode plate ears are immersed in molten lead placed in a mold and then solidified to form a strap.

ストラップから導出される極柱もしくはセル間接続体は、バーナー法では足鉛を用いてストラップを作製する際に、極柱もしくはセル間接続体を溶接することでストラップと一体化される。COS法ではあらかじめ設けられた鋳型に溶融鉛を注ぐことでこれらが一体化した接続部材が形成される。本発明において、極柱もしくはセル間接続体は、Sbが5000質量ppm以下の鉛または鉛合金とし、前記ストラップと同様の鉛合金で構成することが好ましい。   In the burner method, the pole column or inter-cell connecting body led out from the strap is integrated with the strap by welding the pole column or inter-cell connecting body when using the lead. In the COS method, a molten lead is poured into a mold provided in advance to form a connecting member in which these are integrated. In the present invention, it is preferable that the pole column or the inter-cell connection body is made of lead or a lead alloy having Sb of 5000 ppm by mass or less and made of the same lead alloy as that of the strap.

本発明においては、寿命性能を顕著に向上させ、減液を抑制するために正負極接続部材としてSbが5000質量ppm以下(実質的に0の場合も含む)である鉛合金を使用すると共に、電解液中にアルミニウムイオンを添加し、かつ正極活物質、負極活物質ないしは電解液中にSb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる1つ以上の元素またはその化合物を添加することが重要である。
電解液中にアルミニウムイオンを添加するだけでは、減液は抑制されるが、寿命性能は改善されない。正極活物質、負極活物質ないしは電解液中にSb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる1つ以上の元素またはその化合物を添加するだけでは、寿命性能は改善されるが、減液は抑制されない。両者を共に添加することによって、寿命性能が顕著に向上し、減液が顕著に抑制される。
In the present invention, a lead alloy having Sb of 5000 ppm by mass or less (including substantially 0) is used as a positive and negative electrode connecting member in order to remarkably improve the life performance and suppress liquid reduction, Aluminum ions are added to the electrolyte, and one or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te or compounds thereof are added to the positive electrode active material, the negative electrode active material, or the electrolyte. It is important to.
By simply adding aluminum ions to the electrolytic solution, liquid reduction is suppressed, but life performance is not improved. Life performance can be improved by simply adding one or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te to the positive electrode active material, negative electrode active material, or electrolyte. Liquid reduction is not suppressed. By adding both of them, the life performance is remarkably improved and the liquid reduction is remarkably suppressed.

電解液中へのアルミニウムイオンの添加量は0.02〜0.2mol/Lとする。アルミニウムイオンの添加量が0.02mol/L未満では、減液の抑制が十分ではなく、0.2mol/Lを超えると、寿命性能が低下するので、上記の範囲とする。   The amount of aluminum ion added to the electrolyte is 0.02 to 0.2 mol / L. If the added amount of aluminum ions is less than 0.02 mol / L, the reduction of liquid is not sufficiently suppressed, and if it exceeds 0.2 mol / L, the life performance is lowered.

正極活物質、負極活物質ないしは電解液中へのSbまたはその化合物の添加量は、Sb元素の量が負極活物質質量比で100〜1000質量ppmとなるようにする。Sbまたはその化合物の添加量が100質量ppm未満では、寿命性能の改善が十分ではなく、1000質量ppmを超えると、減液速度が大きくなるので、上記の範囲とする。   The amount of Sb or a compound thereof added to the positive electrode active material, the negative electrode active material, or the electrolytic solution is set so that the amount of Sb element is 100 to 1000 ppm by mass in terms of the negative electrode active material mass ratio. If the amount of Sb or its compound added is less than 100 ppm by mass, the life performance is not sufficiently improved. If it exceeds 1000 ppm by mass, the liquid reduction rate increases, so the above range is set.

正極活物質、負極活物質ないしは電解液中へのNiまたはその化合物の添加量は、Ni元素の量が負極活物質質量比で10〜100質量ppmとなるようにする。Niまたはその化合物の添加量が10質量ppm未満では、寿命性能の改善が十分ではなく、100質量ppmを超えると、減液速度が大きくなるので、上記の範囲とする。   The amount of Ni or a compound thereof added to the positive electrode active material, the negative electrode active material, or the electrolyte is set so that the amount of Ni element is 10 to 100 ppm by mass in terms of the negative electrode active material mass ratio. If the addition amount of Ni or a compound thereof is less than 10 ppm by mass, the life performance is not improved sufficiently. If the amount exceeds 100 ppm by mass, the rate of liquid reduction increases.

正極活物質、負極活物質ないしは電解液中へのAgまたはその化合物の添加量は、Ag元素の量が負極活物質質量比で10〜100質量ppmとなるようにする。Agまたはその化合物の添加量が10質量ppm未満では、寿命性能の改善が十分ではなく、100質量ppmを超えると、減液速度が大きくなるので、上記の範囲とする。   The amount of Ag or a compound thereof added to the positive electrode active material, the negative electrode active material, or the electrolyte is set so that the amount of Ag element is 10 to 100 mass ppm in terms of the mass ratio of the negative electrode active material. If the addition amount of Ag or a compound thereof is less than 10 ppm by mass, the life performance is not sufficiently improved. If the addition amount exceeds 100 ppm by mass, the rate of liquid reduction increases.

正極活物質、負極活物質ないしは電解液中へのCuまたはその化合物の添加量は、Cu元素の量が負極活物質質量比で20〜200質量ppmとなるようにする。Cuまたはその化合物の添加量が20質量ppm未満では、寿命性能の改善が十分ではなく、200質量ppmを超えると、減液速度が大きくなるので、上記の範囲とする。   The amount of Cu or a compound thereof added to the positive electrode active material, the negative electrode active material, or the electrolytic solution is set so that the amount of Cu element is 20 to 200 ppm by mass in terms of the negative electrode active material mass ratio. If the addition amount of Cu or a compound thereof is less than 20 ppm by mass, the life performance is not sufficiently improved. If the amount exceeds 200 ppm by mass, the liquid reduction rate increases.

正極活物質、負極活物質ないしは電解液中へのMoまたはその化合物の添加量は、Mo元素の量が負極活物質質量比で10〜100質量ppmとなるようにする。Moまたはその化合物の添加量が10質量ppm未満では、寿命性能の改善が十分ではなく、100質量ppmを超えると、減液速度が大きくなるので、上記の範囲とする。   The amount of Mo or a compound thereof added to the positive electrode active material, the negative electrode active material, or the electrolytic solution is set so that the amount of Mo element is 10 to 100 mass ppm in terms of the mass ratio of the negative electrode active material. If the amount of Mo or its compound added is less than 10 ppm by mass, the life performance is not sufficiently improved. If the amount exceeds 100 ppm by mass, the rate of liquid reduction increases.

正極活物質、負極活物質ないしは電解液中へのTeまたはその化合物の添加量は、Te元素の量が負極活物質質量比で5〜50質量ppmとなるようにする。Teまたはその化合物の添加量が5質量ppm未満では、寿命性能の改善が十分ではなく、50質量ppmを超えると、減液速度が大きくなるので、上記の範囲とする。   The amount of Te or a compound thereof added to the positive electrode active material, the negative electrode active material, or the electrolytic solution is set so that the amount of Te element is 5 to 50 mass ppm in terms of the negative electrode active material mass ratio. If the addition amount of Te or a compound thereof is less than 5 ppm by mass, the life performance is not sufficiently improved. If the addition amount exceeds 50 ppm by mass, the rate of liquid reduction increases.

上記のように、Sb、Ni、Ag、Cu、Mo、Teは単独で正極活物質、負極活物質ないしは電解液中に添加することにより、寿命性能向上、減液抑制の効果を奏するが、Sb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる2つ以上の元素またはその化合物を同様に添加しても効果を奏する。2つ以上の元素またはその化合物が、Ni、Ag、Moである場合はその添加量の10倍を、Cuである場合はその添加量の5倍を、Teである場合はその添加量の20倍を、相当するSbの添加量としてそれぞれ換算し、それらの合計が負極活物質質量比で100〜1000質量ppmの範囲となるように任意の組み合わせで添加する。合計の添加量が100質量ppm未満では、寿命性能の改善が十分ではなく、1000質量ppmを超えると、減液速度が大きくなるので、上記の範囲とする。   As described above, Sb, Ni, Ag, Cu, Mo, and Te are added to the positive electrode active material, the negative electrode active material, or the electrolytic solution alone, thereby improving the life performance and suppressing the decrease in liquidity. Even when two or more elements selected from the group consisting of Ni, Ag, Cu, Mo, and Te or a compound thereof are added in the same manner, the effect can be obtained. When two or more elements or compounds thereof are Ni, Ag, and Mo, 10 times the amount added, when Cu is 5 times the amount added, and when Te is 20 times the amount added. Each is doubled as the corresponding addition amount of Sb, and added in an arbitrary combination so that the total amount is in the range of 100 to 1000 ppm by mass in terms of the negative electrode active material mass ratio. If the total addition amount is less than 100 ppm by mass, the life performance is not sufficiently improved. If the total addition amount exceeds 1000 ppm by mass, the liquid reduction rate increases, so the above range is set.

〔実施例1(A)〕
(正負極格子の作製)
本実施例の鉛蓄電池の正負極格子基材にはPb-Ca-Sn系合金を用いた。合金組成は正極格子基材がPb-0.06質量%Ca-1.5質量%Sn、負極格子基材がPb-0.05質量%Ca-0.5質量%Snである。上記の合金からなる正極格子基材を圧延した後にエキスパンド加工を行うことで、長さ115mm×幅137mm×厚さ1.6mmの正極格子を作製した。また、上記の合金からなる負極格子基材を圧延した後にエキスパンド加工を行うことで、長さ115mm×幅137mm×厚さ1.4mmの負極格子を作製した。
[Example 1 (A)]
(Preparation of positive and negative grids)
A Pb—Ca—Sn alloy was used for the positive and negative electrode lattice base material of the lead storage battery of this example. The alloy composition is Pb-0.06 mass% Ca-1.5 mass% Sn for the positive electrode lattice base material and Pb-0.05 mass% Ca-0.5 mass% Sn for the negative electrode lattice base material. A positive electrode grid having a length of 115 mm, a width of 137 mm, and a thickness of 1.6 mm was produced by rolling the positive electrode grid substrate made of the above alloy and then performing an expanding process. In addition, a negative electrode lattice having a length of 115 mm × width of 137 mm × thickness of 1.4 mm was produced by rolling an anode lattice substrate made of the above alloy and then performing an expanding process.

(正極板の作製)
正極板の作製においては、まず、鉛粉に対して13質量%の水と10質量%の希硫酸(比重1.40,20℃)を加え、これを混練して正極活物質ペーストを作製した。この正極活物質ペースト94gを、上記のようにして作製した正極格子に充填して、温度40°C、湿度50RH%の雰囲気下で24時間放置して熟成した後に、温度50°Cで24時間放置して乾燥させ、未化成の正極板を作製した。
(Preparation of positive electrode plate)
In the production of the positive electrode plate, first, 13% by mass of water and 10% by mass of dilute sulfuric acid (specific gravity 1.40, 20 ° C.) were added to the lead powder and kneaded to prepare a positive electrode active material paste. 94 g of this positive electrode active material paste was filled in the positive electrode grid prepared as described above, and left to mature for 24 hours in an atmosphere of a temperature of 40 ° C. and a humidity of 50 RH%, and then at a temperature of 50 ° C. for 24 hours. It was left to dry and an unchemically formed positive electrode plate was produced.

(負極板の作製)
負極板の作製においては、まず、鉛粉に対して、0.2質量%のリグニンと0.6質量%の硫酸バリウムを添加し、さらに、化成後の負極活物質の質量に対してSbが0、100質量ppm、500質量ppm、1000質量ppm、2000質量ppmの量となるように、Sbを添加(それぞれ、0、98.5質量ppm、493質量ppm、985質量ppm、1970質量ppm添加に相当)し、混練機で混練して混合物を準備した。次に、この混合物に、鉛粉に対して13質量%の水を加えて混合し、さらに鉛粉に対して7質量%の希硫酸(比重1.40,20℃)を加えて負極活物質ペーストを作製した。この負極活物質ペースト90gを、上記のようにして作製した負極格子に充填して、自然環境下で24時間放置して熟成した後に、温度50℃で24時間放置して乾燥させ、未化成の負極板を作製した。
(Preparation of negative electrode plate)
In the production of the negative electrode plate, first, 0.2% by mass of lignin and 0.6% by mass of barium sulfate are added to the lead powder, and Sb is 0, 100% with respect to the mass of the negative electrode active material after chemical conversion. Add Sb (equivalent to 0, 98.5 mass ppm, 493 mass ppm, 985 mass ppm, 1970 mass ppm addition), and knead so that it becomes the amount of ppm, 500 mass ppm, 1000 mass ppm, 2000 mass ppm The mixture was prepared by kneading with a machine. Next, 13% by mass of water with respect to the lead powder is added to this mixture and mixed, and further 7% by mass of dilute sulfuric acid (specific gravity 1.40, 20 ° C.) is added to the lead powder to obtain the negative electrode active material paste. Produced. 90 g of this negative electrode active material paste was filled in the negative electrode grid prepared as described above, and left to mature in a natural environment for 24 hours, and then left to dry at a temperature of 50 ° C. for 24 hours. A negative electrode plate was produced.

(電池の作製および化成)
上記のようにして作製した負極板を、厚さ0.65mmの微孔性ポリエチレン製の袋状セパレータによって包み、その負極板6枚と上記正極板5枚を、両端に負極板がくるように交互に配置し、同極性の格子耳をCOS法により集合溶接し、極板群とすることにより、未化成電池を作製した。
(Production and conversion of batteries)
The negative electrode plate produced as described above is wrapped in a microporous polyethylene bag-shaped separator having a thickness of 0.65 mm, and the six negative electrode plates and the five positive electrode plates are alternately arranged so that the negative electrode plates are at both ends. The unpolarized battery was fabricated by arranging and welding the lattice lugs of the same polarity by the COS method to form an electrode plate group.

集合溶接の際に一体化して作製された正負極接続部材(セル間接続部、ストラップ、極柱)は、Pb-Sn-Sb合金からなり、本実施例においてはPb-1.5質量%Sn合金にSbが0(検出限界である0.1質量ppm未満)、500質量ppm、5000質量ppm、10000質量ppm、25000質量ppm含まれる組成とした。   The positive and negative electrode connection members (cell connection part, strap, pole pole) produced integrally during the collective welding are made of Pb-Sn-Sb alloy. In this example, the Pb-1.5 mass% Sn alloy is used. The composition was such that Sb was 0 (less than the detection limit of 0.1 ppm by mass), 500 ppm by mass, 5000 ppm by mass, 10000 ppm by mass, and 25000 ppm by mass.

上記未化成電池に比重1.23(20℃)の希硫酸を入れ、18Aで20時間化成した後に、希硫酸を一度抜き、その後、比重1.28(20℃)の硫酸(電解液)を入れて、No.A1〜A41の鉛蓄電池を完成させた。その際、電解液中に、アルミニウムイオンを0、0.02mol/L、0.1mol/L、0.2mol/L、0.3mol/L添加した。このようにして得られた鉛蓄電池は、JIS D 5301に規定される55D23形(公称電圧12V、定格5時間率容量48Ah)である。   Dilute sulfuric acid with a specific gravity of 1.23 (20 ° C) is put into the above-mentioned non-formed battery, and after 20 hours of chemical conversion at 18A, the dilute sulfuric acid is extracted once, and then sulfuric acid (electrolyte) with a specific gravity of 1.28 (20 ° C) is added. A1 to A41 lead acid batteries were completed. At that time, 0, 0.02 mol / L, 0.1 mol / L, 0.2 mol / L, and 0.3 mol / L of aluminum ions were added to the electrolytic solution. The lead-acid battery thus obtained is of the 55D23 type (nominal voltage 12V, rated 5 hour rate capacity 48Ah) defined in JIS D 5301.

(鉛蓄電池の評価)
上記のようにして作製したNo.A1〜A41の鉛蓄電池について、寿命サイクル数、減液速度を測定した。測定結果(試験結果)を表1に示す。
鉛蓄電池の寿命試験の条件は以下のとおりである。
放電:50A×1min
充電:14.0V(max50A)×1min
上記充放電サイクル中の放電電圧が7.2Vを下回ったときを寿命とした。
また、減液速度は、寿命時の減液量を寿命サイクル数で除したものである。
なお、表1には、No.A1の鉛蓄電池(接続部材中のSb:25000質量ppm、Sb添加量:0、アルミニウムイオンの添加量:0)の寿命サイクル数、減液速度を100とし、No.A2〜A41の鉛蓄電池についての測定結果は、すべてNo.A1に対する%で表示した。以下の実施例(表2〜10)においても同様である。
(Evaluation of lead-acid battery)
About the lead storage battery of No. A1-A41 produced as mentioned above, the life cycle number and the liquid reduction rate were measured. The measurement results (test results) are shown in Table 1.
The conditions of the life test of the lead storage battery are as follows.
Discharge: 50A x 1min
Charging: 14.0V (max50A) x 1min
The life was defined as the discharge voltage during the charge / discharge cycle was below 7.2V.
The liquid reduction rate is obtained by dividing the amount of liquid reduction at the end of life by the number of life cycles.
In Table 1, the life cycle number and liquid reduction rate of No. A1 lead acid battery (Sb in connection member: 25000 mass ppm, Sb addition amount: 0, aluminum ion addition amount: 0) are set as 100, All the measurement results for the lead storage batteries No. A2 to A41 were expressed in% relative to No. A1. The same applies to the following examples (Tables 2 to 10).

Figure 2012089296
Figure 2012089296

表1より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ負極活物質中にSbを負極活物質質量比で100〜1000質量ppmとなるように添加したNo.A2〜A21の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
これに対して、アルミニウムイオンを添加しないで、負極活物質中にSbを添加するだけでは、寿命性能は改善されるが、減液速度がNo.A1よりも大きくなる(No.A22〜A27)。
Sbを添加しないで、電解液中にアルミニウムイオンを添加するだけでは、減液速度は小さくなるが、寿命性能は低下する(No.A28〜A31)。
電解液中のアルミニウムイオンが0.2mol/Lを超えると、減液速度は小さくなるが、寿命性能は改善されない(No.A32,A33)。
負極活物質中のSbが1000質量ppmを超えると、寿命性能が低下し始め、アルミニウムイオンによっても減液抑制が不十分となる(No.A34〜A37)。
ストラップ(正負極接続部材)のSbが5000質量ppmを超えると、負極耳がやせ細り、破断するため、寿命性能が低下する(No.A38〜A41)。
From Table 1, Sb of the positive and negative electrode connecting members is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolytic solution, and Sb is added to the negative electrode active material in a negative electrode active material mass ratio of 100 to 1000. It can be seen that the lead storage batteries of Nos. A2 to A21 added so as to have a mass of ppm have a significantly improved life performance and a low liquid reduction rate compared to the lead storage battery of No. A1.
On the other hand, life performance is improved only by adding Sb to the negative electrode active material without adding aluminum ions, but the liquid reduction rate becomes larger than No. A1 (No. A22 to A27). .
If only aluminum ions are added to the electrolyte without adding Sb, the rate of liquid reduction decreases, but the life performance decreases (No. A28 to A31).
If the aluminum ion in the electrolyte exceeds 0.2 mol / L, the rate of liquid reduction decreases, but the life performance is not improved (No. A32, A33).
When Sb in the negative electrode active material exceeds 1000 ppm by mass, the life performance starts to deteriorate, and the suppression of liquid reduction becomes insufficient even with aluminum ions (No. A34 to A37).
When Sb of the strap (positive / negative electrode connecting member) exceeds 5000 ppm by mass, the negative electrode ear becomes thin and breaks, so that the life performance decreases (No. A38 to A41).

〔実施例1(B)〕
Sbを、負極活物質中に添加する代わりに、正極板を作製する際に、正極活物質ペースト中に、化成後の負極活物質の質量に対してSbが0、100質量ppm、500質量ppm、1000質量ppm、2000質量ppmの量となるように、Sbを添加したこと以外は、実施例1(A)と同様にして、No.B1〜B34の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表2に示す。
(Example 1 (B))
Instead of adding Sb to the negative electrode active material, when producing the positive electrode plate, the positive electrode active material paste contains Sb of 0, 100 ppm by mass, 500 ppm by mass with respect to the mass of the negative electrode active material after conversion. A lead storage battery of No. B1 to B34 was prepared in the same manner as in Example 1 (A) except that Sb was added so that the amounts were 1000 mass ppm and 2000 mass ppm. The liquid reduction rate was measured. The measurement results are shown in Table 2.

Figure 2012089296
Figure 2012089296

表2より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ正極活物質中にSbを負極活物質質量比で100〜1000質量ppmとなるように添加したNo.B1〜B20の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
正極活物質中にSbを添加した場合でも、サイクル中に、正極活物質中のSbが負極に析出するため、負極活物質中にSbを添加した場合と同様の効果を奏することが確認された。
From Table 2, Sb of the positive and negative electrode connecting member is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolyte, and Sb is added to the positive electrode active material in a mass ratio of 100 to 1000 in the negative electrode active material. It can be seen that the lead storage batteries of No. B1 to B20 added so as to have a mass of ppm have a significantly improved life performance and a low liquid reduction rate as compared with the lead storage battery of No. A1.
Even when Sb was added to the positive electrode active material, Sb in the positive electrode active material was deposited on the negative electrode during the cycle, so that it was confirmed that the same effect as when Sb was added to the negative electrode active material was obtained. .

〔実施例1(C)〕
Sbを、負極活物質中に添加する代わりに、電解液中に、化成後の負極活物質の質量に対してSbが0、100質量ppm、500質量ppm、1000質量ppm、2000質量ppmの量となるように、Sbを添加したこと以外は、実施例1(A)と同様にして、No.C1〜C34の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表3に示す。
[Example 1 (C)]
Instead of adding Sb to the negative electrode active material, the amount of Sb in the electrolyte is 0, 100 mass ppm, 500 mass ppm, 1000 mass ppm, 2000 mass ppm relative to the mass of the negative electrode active material after conversion. As in Example 1 (A) except that Sb was added, lead storage batteries No. C1 to C34 were prepared and the number of life cycles and the liquid reduction rate were measured. Table 3 shows the measurement results.

Figure 2012089296
Figure 2012089296

表3より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ電解液中にSbを負極活物質質量比で100〜1000質量ppmとなるように添加したNo.C1〜C20の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
電解液中にSbを添加した場合でも、サイクル中に、電解液中のSbが負極に析出するため、負極活物質中にSbを添加した場合と同様の効果を奏することが確認された。
From Table 3, Sb of the positive and negative electrode connecting members is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolytic solution, and Sb is added to the electrolytic solution in a negative electrode active material mass ratio of 100 to 1000 mass. It can be seen that the lead storage batteries of No. C1 to C20 added so as to have ppm have a significantly improved life performance and a low liquid reduction rate compared to the lead storage battery of No. A1.
Even when Sb was added to the electrolytic solution, Sb in the electrolytic solution was deposited on the negative electrode during the cycle, so that it was confirmed that the same effects as those obtained when Sb was added to the negative electrode active material were obtained.

〔実施例2〕
負極活物質中に、Sbを添加する代わりに、化成後の負極活物質の質量に対してNiが0、10質量ppm、50質量ppm、100質量ppm、200質量ppmの量となるように、Niを添加(それぞれ、0、9.85質量ppm、49.3質量ppm、98.5質量ppm、197質量ppm添加に相当)したこと以外は、実施例1(A)と同様にして、No.D1〜D34の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表4に示す。
[Example 2]
In the negative electrode active material, instead of adding Sb, Ni is 0, 10 mass ppm, 50 mass ppm, 100 mass ppm, 200 mass ppm relative to the mass of the negative electrode active material after chemical conversion, No. D1 to D34 lead as in Example 1 (A), except that Ni was added (equivalent to 0, 9.85 mass ppm, 49.3 mass ppm, 98.5 mass ppm, and 197 mass ppm, respectively). A storage battery was prepared and the number of life cycles and the liquid reduction rate were measured. Table 4 shows the measurement results.

Figure 2012089296
Figure 2012089296

表4より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ負極活物質中にNiを負極活物質質量比で10〜100質量ppmとなるように添加したNo.D1〜D20の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
これに対して、アルミニウムイオンを添加しないで、負極活物質中にNiを添加するだけでは、寿命性能は改善されるが、減液速度がNo.A1よりも大きくなる(No.D21〜D24)。
負極活物質中のNiが100質量ppmを超えると、寿命性能が低下し始め、アルミニウムイオンによっても減液抑制が不十分となる(No.D27〜D30)。
なお、正極活物質または電解液中にNiを添加した場合でも、サイクル中に、正極活物質または電解液中のNiが負極に析出するため、負極活物質中にNiを添加した場合と同様の効果を奏する。
From Table 4, Sb of the positive and negative electrode connecting members is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolytic solution, and Ni is added to the negative electrode active material in a negative electrode active material mass ratio of 10 to 100. It can be seen that the lead storage batteries No. D1 to D20 added so as to have a mass of ppm have a significantly improved life performance and a low liquid reduction rate compared to the lead storage battery No. A1.
On the other hand, life performance is improved only by adding Ni to the negative electrode active material without adding aluminum ions, but the liquid reduction rate is larger than No. A1 (No. D21 to D24). .
When Ni in the negative electrode active material exceeds 100 ppm by mass, the life performance starts to deteriorate, and the suppression of liquid reduction becomes insufficient even with aluminum ions (No. D27 to D30).
Even when Ni is added to the positive electrode active material or the electrolytic solution, since Ni in the positive electrode active material or the electrolytic solution is deposited on the negative electrode during the cycle, it is the same as when Ni is added to the negative electrode active material. There is an effect.

〔実施例3〕
負極活物質中に、Sbを添加する代わりに、化成後の負極活物質の質量に対してAgが0、10質量ppm、50質量ppm、100質量ppm、200質量ppmの量となるように、Agを添加(それぞれ、0、9.85質量ppm、49.3質量ppm、98.5質量ppm、197質量ppm添加に相当)したこと以外は、実施例1(A)と同様にして、No.E1〜E34の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表5に示す。
Example 3
In the negative electrode active material, instead of adding Sb, Ag is 0, 10 mass ppm, 50 mass ppm, 100 mass ppm, 200 mass ppm with respect to the mass of the negative electrode active material after chemical conversion, No. E1 to E34 lead as in Example 1 (A), except that Ag was added (equivalent to 0, 9.85 mass ppm, 49.3 mass ppm, 98.5 mass ppm, and 197 mass ppm addition, respectively) A storage battery was prepared and the number of life cycles and the liquid reduction rate were measured. Table 5 shows the measurement results.

Figure 2012089296
Figure 2012089296

表5より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ負極活物質中にAgを負極活物質質量比で10〜100質量ppmとなるように添加したNo.E1〜E20の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
これに対して、アルミニウムイオンを添加しないで、負極活物質中にAgを添加するだけでは、寿命性能は改善されるが、減液速度がNo.A1よりも大きくなる(No.E21〜E24)。
負極活物質中のAgが100質量ppmを超えると、寿命性能が低下し始め、アルミニウムイオンによっても減液抑制が不十分となる(No.E27〜E30)。
なお、正極活物質または電解液中にAgを添加した場合でも、サイクル中に、正極活物質または電解液中のAgが負極に析出するため、負極活物質中にAgを添加した場合と同様の効果を奏する。
From Table 5, Sb of the positive and negative electrode connecting members is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolytic solution, and Ag is added to the negative electrode active material in a negative electrode active material mass ratio of 10 to 100. It can be seen that the lead storage batteries of Nos. E1 to E20 added so as to have ppm by mass have a significantly improved life performance and a low liquid reduction rate compared to the lead storage battery of No. A1.
On the other hand, life performance is improved only by adding Ag to the negative electrode active material without adding aluminum ions, but the liquid reduction rate is larger than No. A1 (No. E21 to E24) .
When Ag in the negative electrode active material exceeds 100 ppm by mass, the life performance starts to deteriorate, and the suppression of liquid reduction becomes insufficient even with aluminum ions (No. E27 to E30).
Even when Ag is added to the positive electrode active material or the electrolytic solution, Ag in the positive electrode active material or the electrolytic solution is deposited on the negative electrode during the cycle, so that it is the same as when Ag is added to the negative electrode active material. There is an effect.

〔実施例4〕
負極活物質中に、Sbを添加する代わりに、化成後の負極活物質の質量に対してCuが0、20質量ppm、100質量ppm、200質量ppm、400質量ppmの量となるように、Cuを添加(それぞれ、0、19.7質量ppm、98.5質量ppm、197質量ppm、394質量ppm添加に相当)したこと以外は、実施例1(A)と同様にして、No.F1〜F34の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表6に示す。
Example 4
In the negative electrode active material, instead of adding Sb, Cu is 0, 20 mass ppm, 100 mass ppm, 200 mass ppm, 400 mass ppm with respect to the mass of the negative electrode active material after chemical conversion, No. F1-F34 lead as in Example 1 (A) except that Cu was added (equivalent to 0, 19.7 mass ppm, 98.5 mass ppm, 197 mass ppm, and 394 mass ppm, respectively). A storage battery was prepared and the number of life cycles and the liquid reduction rate were measured. Table 6 shows the measurement results.

Figure 2012089296
Figure 2012089296

表6より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ負極活物質中にCuを負極活物質質量比で20〜200質量ppmとなるように添加したNo.F1〜F20の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
これに対して、アルミニウムイオンを添加しないで、負極活物質中にCuを添加するだけでは、寿命性能は改善されるが、減液速度がNo.A1よりも大きくなる(No.F21〜F24)。
負極活物質中のCuが200質量ppmを超えると、寿命性能が低下し始め、アルミニウムイオンによっても減液抑制が不十分となる(No.F27〜F30)。
なお、正極活物質または電解液中にCuを添加した場合でも、サイクル中に、正極活物質または電解液中のCuが負極に析出するため、負極活物質中にCuを添加した場合と同様の効果を奏する。
From Table 6, Sb of the positive and negative electrode connecting members is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolytic solution, and Cu is added to the negative electrode active material in a negative electrode active material mass ratio of 20 to 200. It can be seen that the lead storage batteries of No. F1 to F20 added so as to have a mass of ppm have a significantly improved life performance and a low liquid reduction rate compared to the lead storage battery of No. A1.
On the other hand, life performance is improved only by adding Cu to the negative electrode active material without adding aluminum ions, but the liquid reduction rate becomes larger than No.A1 (No.F21 to F24) .
When Cu in the negative electrode active material exceeds 200 mass ppm, the life performance starts to deteriorate, and the suppression of liquid reduction is insufficient even with aluminum ions (No. F27 to F30).
Even when Cu is added to the positive electrode active material or the electrolytic solution, Cu in the positive electrode active material or the electrolytic solution is deposited on the negative electrode during the cycle, so that it is the same as when Cu is added to the negative electrode active material. There is an effect.

〔実施例5〕
負極活物質中に、Sbを添加する代わりに、化成後の負極活物質の質量に対してMoが0、10質量ppm、50質量ppm、100質量ppm、200質量ppmの量となるように、Moを添加(それぞれ、0、9.85質量ppm、49.3質量ppm、98.5質量ppm、197質量ppm添加に相当)したこと以外は、実施例1(A)と同様にして、No.G1〜G34の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表7に示す。
Example 5
In the negative electrode active material, instead of adding Sb, Mo is 0, 10 mass ppm, 50 mass ppm, 100 mass ppm, 200 mass ppm with respect to the mass of the negative electrode active material after chemical conversion, No.G1-G34 lead as in Example 1 (A), except that Mo was added (equivalent to 0, 9.85 mass ppm, 49.3 mass ppm, 98.5 mass ppm, and 197 mass ppm respectively). A storage battery was prepared and the number of life cycles and the liquid reduction rate were measured. Table 7 shows the measurement results.

Figure 2012089296
Figure 2012089296

表7より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ負極活物質中にMoを負極活物質質量比で10〜100質量ppmとなるように添加したNo.G1〜G20の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
これに対して、アルミニウムイオンを添加しないで、負極活物質中にMoを添加するだけでは、寿命性能は改善されるが、減液速度がNo.A1よりも大きくなる(No.G21〜G24)。
負極活物質中のMoが100質量ppmを超えると、寿命性能が低下し始め、アルミニウムイオンによっても減液抑制が不十分となる(No.G27〜G30)。
なお、正極活物質または電解液中にMoを添加した場合でも、サイクル中に、正極活物質または電解液中のMoが負極に析出するため、負極活物質中にMoを添加した場合と同様の効果を奏する。
From Table 7, Sb of the positive and negative electrode connecting members is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolytic solution, and Mo is added to the negative electrode active material in a mass ratio of negative electrode active material of 10 to 100. It can be seen that the lead storage batteries of No. G1 to G20 added so as to have a mass of ppm have a significantly improved life performance and a small liquid reduction rate compared to the lead storage battery of No. A1.
On the other hand, life performance is improved only by adding Mo to the negative electrode active material without adding aluminum ions, but the liquid reduction rate is larger than No. A1 (No. G21 to G24). .
When Mo in the negative electrode active material exceeds 100 ppm by mass, the life performance starts to deteriorate, and the suppression of liquid reduction is insufficient even with aluminum ions (No. G27 to G30).
Even when Mo is added to the positive electrode active material or the electrolytic solution, Mo in the positive electrode active material or the electrolytic solution is deposited on the negative electrode during the cycle, so that it is the same as when Mo is added to the negative electrode active material. There is an effect.

〔実施例6〕
負極活物質中に、Sbを添加する代わりに、化成後の負極活物質の質量に対してTeが0、5質量ppm、25質量ppm、50質量ppm、100質量ppmの量となるように、Teを添加(それぞれ、0、4.93質量ppm、24.6質量ppm 、49.3質量ppm、98.5質量ppm添加に相当)したこと以外は、実施例1(A)と同様にして、No.H1〜H34の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表8に示す。
Example 6
In the negative electrode active material, instead of adding Sb, Te is 0, 5 mass ppm, 25 mass ppm, 50 mass ppm, 100 mass ppm with respect to the mass of the negative electrode active material after chemical conversion, No. H1-H34 lead as in Example 1 (A) except that Te was added (equivalent to 0, 4.93 mass ppm, 24.6 mass ppm, 49.3 mass ppm, and 98.5 mass ppm added respectively). A storage battery was prepared and the number of life cycles and the liquid reduction rate were measured. Table 8 shows the measurement results.

Figure 2012089296
Figure 2012089296

表8より、正負極接続部材のSbを5000質量ppm以下とし、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ負極活物質にTeを負極活物質質量比で5〜50質量ppmとなるように添加したNo.H1〜H20の鉛蓄電池は、No.A1の鉛蓄電池と比較して、寿命性能が顕著に向上し、減液速度が小さいことが分かる。
これに対して、アルミニウムイオンを添加しないで、負極活物質中にTeを添加するだけでは、寿命性能は改善されるが、減液速度がNo.A1よりも大きくなる(No.H21〜H24)。
負極活物質中のTeが50質量ppmを超えると、寿命性能が低下し始め、アルミニウムイオンによっても減液抑制が不十分となる(No.H27〜H30)。
なお、正極活物質または電解液中にTeを添加した場合でも、サイクル中に、正極活物質または電解液中のTeが負極に析出するため、負極活物質中にTeを添加した場合と同様の効果を奏する。
From Table 8, Sb of the positive and negative electrode connecting members is set to 5000 mass ppm or less, 0.02 to 0.2 mol / L of aluminum ions is added to the electrolytic solution, and Te is added to the negative electrode active material in a mass ratio of the negative electrode active material of 5 to 50 mass. It can be seen that the lead storage batteries No. H1 to H20 added so as to have ppm have a significantly improved life performance and a low liquid reduction rate compared to the lead storage battery No. A1.
On the other hand, life performance is improved only by adding Te to the negative electrode active material without adding aluminum ions, but the liquid reduction rate is larger than No. A1 (No. H21 to H24) .
When Te in the negative electrode active material exceeds 50 mass ppm, the life performance begins to deteriorate, and the suppression of liquid reduction is insufficient even with aluminum ions (No. H27 to H30).
Even when Te is added to the positive electrode active material or the electrolytic solution, Te in the positive electrode active material or the electrolytic solution is deposited on the negative electrode during the cycle, so that it is the same as when Te is added to the negative electrode active material. There is an effect.

〔実施例7〕
正負極接続部材(セル間接続部、ストラップ、極柱)を、Pb-1.5質量%Sn合金にSbが0(検出限界である0.1質量ppm未満)、5000質量ppm含まれる組成としたこと、負極活物質中に、Sbを添加する代わりに、表9に示すSb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる2つ以上の元素を、化成後の負極活物質の質量に対してSb換算添加量で100質量ppm、1000質量ppmとなるように添加したこと、電解液中に、アルミニウムイオンを0.02mol/L、0.2mol/L添加したこと以外は、実施例1(A)と同様にして、No.J1〜J32の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表9に示す。
Example 7
The positive and negative electrode connection members (cell-to-cell connection parts, straps, and poles) have a composition in which Sb is 0 (less than 0.1 mass ppm, the detection limit) and 5000 mass ppm in the Pb-1.5 mass% Sn alloy. Instead of adding Sb to the active material, two or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te shown in Table 9 are added to the mass of the negative electrode active material after chemical conversion. Example 1 (A), except that the addition amount was 100 mass ppm and 1000 mass ppm in terms of Sb equivalent, and that aluminum ions were added to the electrolyte in an amount of 0.02 mol / L and 0.2 mol / L. In the same manner, lead storage batteries No. J1 to J32 were produced, and the number of life cycles and the liquid reduction rate were measured. Table 9 shows the measurement results.

Figure 2012089296
Figure 2012089296

表9より、Sb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる2つ以上の元素を添加した場合も、Sb、Ni、Ag、Cu、Mo、Teを単独で添加した場合と同様に、寿命性能の向上、減液抑制の効果を奏することが分かる。   From Table 9, when adding two or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te, and when adding Sb, Ni, Ag, Cu, Mo, and Te alone Similarly, it can be seen that there is an effect of improving the life performance and suppressing liquid reduction.

〔実施例8〕
正負極接続部材(セル間接続部、ストラップ、極柱)を、Pb-0.1質量%Ca合金にSbが100質量ppm、Pb-1.5質量%Sn合金にSbが100質量ppm含まれる組成としたこと、負極活物質中に、Sb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる元素を、化成後の負極活物質の質量に対して表10に示す量となるように添加したこと、電解液中に、アルミニウムイオンを0.1mol/L添加したこと以外は、実施例1(A)と同様にして、No.K1〜K12の鉛蓄電池を作製し、寿命サイクル数、減液速度を測定した。測定結果を表10に示す。
Example 8
Positive and negative electrode connection members (cell-to-cell connection parts, straps, pole columns) have a composition in which Sb is contained in Pb-0.1 mass% Ca alloy and Sb is contained in 100 mass ppm in Pb-1.5 mass% Sn alloy. An element selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te was added to the negative electrode active material so as to have an amount shown in Table 10 with respect to the mass of the negative electrode active material after chemical conversion. A lead storage battery of No. K1 to K12 was prepared in the same manner as in Example 1 (A) except that 0.1 mol / L of aluminum ions was added to the electrolyte, and the number of life cycles and liquid reduction rate were adjusted. It was measured. Table 10 shows the measurement results.

Figure 2012089296
Figure 2012089296

表10より、正負極接続部材がPb-Sn系合金でも、Pb-Ca系合金でも、同等の効果を奏することが分かる。   From Table 10, it can be seen that the positive and negative electrode connecting members have the same effects regardless of whether they are Pb—Sn alloys or Pb—Ca alloys.

本発明の鉛蓄電池は、減液が抑制され、ストラップ露出時の負極耳の腐食を抑制しつつ、寿命性能が顕著に向上するから、メンテナンスフリー性が高く、かつ、アイドリングストップ寿命性能に優れた自動車用電池として有用である。   The lead storage battery according to the present invention has reduced maintenance, and the life performance is remarkably improved while suppressing corrosion of the negative electrode ear when the strap is exposed. Therefore, the maintenance performance is high and the idling stop life performance is excellent. It is useful as a battery for automobiles.

Claims (7)

正負極格子がPb-Ca-Sn系合金からなり、正負極接続部材がSbが5000質量ppm以下(実質的に0の場合も含む)である鉛合金からなる鉛蓄電池において、電解液中にアルミニウムイオンを0.02〜0.2mol/L添加し、かつ正極活物質、負極活物質ないしは電解液中にSbまたはその化合物を、Sb元素の量が負極活物質質量比で100〜1000質量ppmとなるように添加したことを特徴とする鉛蓄電池。   In a lead storage battery in which the positive and negative electrode lattice is made of a Pb—Ca—Sn alloy and the positive and negative electrode connecting member is made of a lead alloy having Sb of 5000 mass ppm or less (including substantially 0), aluminum is contained in the electrolyte. Add 0.02 to 0.2 mol / L of ions, and add Sb or its compound in the positive electrode active material, negative electrode active material or electrolyte so that the amount of Sb element is 100 to 1000 ppm by mass in the negative electrode active material mass ratio. A lead-acid battery characterized by being added. 前記Sbまたはその化合物に替えてNiまたはその化合物を、Ni元素の量が負極活物質質量比で10〜100質量ppmとなるように添加したことを特徴とする請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein Ni or a compound thereof is added in place of the Sb or the compound thereof so that the amount of Ni element is 10 to 100 mass ppm in terms of the mass ratio of the negative electrode active material. 前記Sbまたはその化合物に替えてAgまたはその化合物を、Ag元素の量が負極活物質質量比で10〜100質量ppmとなるように添加したことを特徴とする請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein Ag or a compound thereof is added in place of the Sb or the compound so that the amount of Ag element is 10 to 100 ppm by mass in terms of the negative electrode active material mass ratio. 前記Sbまたはその化合物に替えてCuまたはその化合物を、Cu元素の量が負極活物質質量比で20〜200質量ppmとなるように添加したことを特徴とする請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein Cu or a compound thereof is added in place of the Sb or the compound so that the amount of Cu element is 20 to 200 ppm by mass in terms of the negative electrode active material mass ratio. 前記Sbまたはその化合物に替えてMoまたはその化合物を、Mo元素の量が負極活物質質量比で10〜100質量ppmとなるように添加したことを特徴とする請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein Mo or a compound thereof is added in place of the Sb or the compound thereof so that the amount of Mo element is 10 to 100 mass ppm in terms of the mass ratio of the negative electrode active material. 前記Sbまたはその化合物に替えてTeまたはその化合物を、Te元素の量が負極活物質質量比で5〜50質量ppmとなるように添加したことを特徴とする請求項1に記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein Te or a compound thereof is added in place of the Sb or the compound so that the amount of Te element is 5 to 50 mass ppm in terms of the mass ratio of the negative electrode active material. 前記Sbまたはその化合物に替えて、Sb、Ni、Ag、Cu、Mo、Teからなる群より選ばれる2つ以上の元素またはその化合物を添加したものであって、Ni、Ag、Moである場合はその添加量の10倍を、Cuである場合はその添加量の5倍を、Teである場合はその添加量の20倍を、相当するSbの添加量としてそれぞれ換算し、それらの合計が負極活物質質量比で100〜1000質量ppmの範囲となるように任意の組み合わせで添加したことを特徴とする請求項1に記載の鉛蓄電池。   In the case where two or more elements selected from the group consisting of Sb, Ni, Ag, Cu, Mo, and Te or compounds thereof are added instead of Sb or a compound thereof, and are Ni, Ag, or Mo Is converted to 10 times the addition amount, 5 times the addition amount in the case of Cu, and 20 times the addition amount in the case of Te as the corresponding Sb addition amount. The lead acid battery according to claim 1, wherein the lead acid battery is added in any combination such that the negative electrode active material mass ratio is in a range of 100 to 1000 mass ppm.
JP2010233700A 2010-10-18 2010-10-18 Lead acid battery Active JP5505248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233700A JP5505248B2 (en) 2010-10-18 2010-10-18 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233700A JP5505248B2 (en) 2010-10-18 2010-10-18 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2012089296A true JP2012089296A (en) 2012-05-10
JP5505248B2 JP5505248B2 (en) 2014-05-28

Family

ID=46260731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233700A Active JP5505248B2 (en) 2010-10-18 2010-10-18 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5505248B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085922A1 (en) * 2015-11-17 2017-05-26 株式会社Gsユアサ Lead storage battery and method for producing same
CN110289401A (en) * 2019-05-28 2019-09-27 超威电源有限公司 A kind of lead storage battery cathode carbon composite and cathode lead plaster, lead storage battery
CN113629243A (en) * 2021-07-09 2021-11-09 北京科技大学 Electrochemical preparation method of selenium carbon microspheres and aluminum-selenium battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329948A (en) * 1995-06-01 1996-12-13 Japan Storage Battery Co Ltd Lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery
JP2008235055A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Lead acid storage cell
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2010277941A (en) * 2009-06-01 2010-12-09 Gs Yuasa Corp Lead-acid battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329948A (en) * 1995-06-01 1996-12-13 Japan Storage Battery Co Ltd Lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery
JP2008235055A (en) * 2007-03-22 2008-10-02 Matsushita Electric Ind Co Ltd Lead acid storage cell
JP2008243606A (en) * 2007-03-27 2008-10-09 Furukawa Battery Co Ltd:The Lead acid storage battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2010277941A (en) * 2009-06-01 2010-12-09 Gs Yuasa Corp Lead-acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085922A1 (en) * 2015-11-17 2017-05-26 株式会社Gsユアサ Lead storage battery and method for producing same
CN110289401A (en) * 2019-05-28 2019-09-27 超威电源有限公司 A kind of lead storage battery cathode carbon composite and cathode lead plaster, lead storage battery
CN113629243A (en) * 2021-07-09 2021-11-09 北京科技大学 Electrochemical preparation method of selenium carbon microspheres and aluminum-selenium battery
CN113629243B (en) * 2021-07-09 2022-07-01 北京科技大学 Electrochemical preparation method of selenium-carbon microspheres and aluminum-selenium battery

Also Published As

Publication number Publication date
JP5505248B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5712927B2 (en) Lead acid battery
CN102569757B (en) Process for preparing materials of negative electrodes of copper-silicon-aluminum nano-porous lithium-ion batteries
JP5016306B2 (en) Lead acid battery
TW201001782A (en) Flooded lead-acid battery and method of making the same
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP2013218894A (en) Lead acid battery
JP5061451B2 (en) Anode current collector for lead acid battery
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP5505248B2 (en) Lead acid battery
JP5656068B2 (en) Liquid lead-acid battery
JP2016177909A (en) Control valve type lead-acid battery
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JP5637503B2 (en) Lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP2010277941A (en) Lead-acid battery
CN112038686A (en) Lithium ion battery with potential difference double cathodes
JP5673194B2 (en) Positive electrode lattice substrate, electrode plate using the positive electrode lattice substrate, and lead-acid battery using the electrode plate
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP5569164B2 (en) Lead acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP5088679B2 (en) Lead acid battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP2913482B2 (en) Lead storage battery
JP2019204790A (en) Control valve type lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150