JP2009070668A - Method of manufacturing positive electrode plate for control valve type lead-acid storage battery - Google Patents

Method of manufacturing positive electrode plate for control valve type lead-acid storage battery Download PDF

Info

Publication number
JP2009070668A
JP2009070668A JP2007237408A JP2007237408A JP2009070668A JP 2009070668 A JP2009070668 A JP 2009070668A JP 2007237408 A JP2007237408 A JP 2007237408A JP 2007237408 A JP2007237408 A JP 2007237408A JP 2009070668 A JP2009070668 A JP 2009070668A
Authority
JP
Japan
Prior art keywords
electrode plate
lead
active material
control valve
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007237408A
Other languages
Japanese (ja)
Inventor
Hideaki Yoshida
英明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007237408A priority Critical patent/JP2009070668A/en
Publication of JP2009070668A publication Critical patent/JP2009070668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve type lead acid storage battery, wherein a thin and large electrode plate hard to deflect can be manufactured, large capacitance is ensured and drop in capacitance at an early stage is prevented. <P>SOLUTION: In the manufacturing method of a positive electrode plate for a control valve type lead acid storage battery, a base plate of lead alloy whose main component is lead is filled with a paste-like active material, for digestion/drying thereafter. The paste-like active material is added with graphite by 0.3-0.95 wt.% based on lead powder during digestion/drying, and quadribasic sulfate is generated by 75-95 wt.%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高容量、工程流動改善を図った制御弁式鉛蓄電池用正極板の製造方法に関するものである。   The present invention relates to a method for producing a positive electrode plate for a control valve type lead-acid battery that has improved capacity and process flow.

制御弁式鉛蓄電池は、基板に活物質ペーストが充填された 正極板と負極板を微細ガラス繊維を主体としたマット状セパレータを介して交互に積層し極板群とした後、同極性同士の極板の耳部を溶接によって接続することにより極板群とし、これを電槽に収納し、この電槽に注液や排気用の開口部を有する蓋を溶着あるいは接着剤で接着し、この開口部から電解液を電解液量が極板群に含浸する程度として、電槽内に注入し、注液や排気用の開口部にゴム弁(制御弁)を覆い被せ製造されるものである。 A control valve type lead-acid battery is composed of a positive electrode plate and a negative electrode plate, which are filled with an active material paste on a substrate, alternately stacked via a mat-like separator mainly composed of fine glass fibers, By connecting the ears of the electrode plate by welding to form an electrode plate group, the electrode plate group is housed in a battery case, and a lid having an opening for pouring and exhausting is adhered to the battery case with welding or an adhesive. It is manufactured by injecting the electrolyte solution from the opening into the battery case so that the amount of the electrolyte is impregnated into the electrode plate group, and covering the rubber valve (control valve) over the opening for injection or exhaust. .

近年、制御弁式鉛蓄電池は通信・電力・防災等のバックアップ電源用や電力貯蔵用をはじめ様々な分野で使用されている。これら制御弁式鉛蓄電池においては10年を超える長寿命性能や容積エネルギー密度、利用率の向上などが要求されている。 In recent years, valve-regulated lead-acid batteries have been used in various fields including backup power supplies for communication, electric power, disaster prevention, and power storage. These control valve type lead-acid batteries are required to have long life performance exceeding 10 years, volumetric energy density, improvement of utilization rate, and the like.

容積エネルギー密度、利用率を向上させるために、活物質に造孔材(例えば、グラファイト等)を入れて活物質中の多孔度を上げたり、極板厚みを薄くし、極板群構成を多枚数化して正負極活物質の利用率を上げたりする方法が知られているが、グラファイトを入れると活物質の体積変化により鉛合金からなる基板から活物質が剥離し、密着性が悪化し容量低下する問題点があった。 In order to improve the volumetric energy density and utilization rate, a porous material (eg, graphite) is added to the active material to increase the porosity in the active material, or the electrode plate thickness is reduced to increase the number of electrode plate groups. There is a known method of increasing the utilization rate of positive and negative electrode active materials by increasing the number of sheets. However, when graphite is added, the active material is peeled off from the lead alloy substrate due to the volume change of the active material, and the adhesiveness deteriorates and the capacity decreases. There was a problem of decreasing.

そこで、密閉形鉛蓄電池を長寿命化や利用率向上する方法の1つとして、鉛粉、炭素粉末、希硫酸、水、樹脂繊維を含むペースト状活物質を作製し、該ペースト状活物質を鉛合金製の集電体に塗着した後に、熟成・乾燥して四塩基性硫酸鉛を50〜70質量%含む活物質層を有する正極板を作成し、該正極板を化成して用いる密閉形鉛蓄電池の製造方法において、前記鉛粉に対して1.0〜3.0質量%の炭素粉末を含有させること(特許文献1)が知られている。 Therefore, as one of the methods for extending the life and improving the utilization rate of sealed lead-acid batteries, a paste-like active material containing lead powder, carbon powder, dilute sulfuric acid, water, and resin fibers is prepared, and the paste-like active material is After being applied to a lead alloy current collector, a positive electrode plate having an active material layer containing 50 to 70% by mass of tetrabasic lead sulfate is prepared by aging and drying, and the positive electrode plate is formed and sealed. In the manufacturing method of a lead-acid battery, it is known to contain 1.0-3.0 mass% carbon powder with respect to the said lead powder (patent document 1).

特開2001−229920号公報JP 2001-229920 A

特許文献1に記載の方法は、四塩基性硫酸鉛を50〜70質量%含む活物質層を有する正極板を作製し、鉛粉に対して1.0〜3.0質量%の炭素粉末を含有させることで密閉形鉛蓄電池の長寿命化をはかるとともに、炭素粉末を含有させて活物質の利用率を向上させるものである。
しかしながら、特許文献1に記載の方法で得た極板は、工程流動時に極板が撓み、極板が懸垂台から落下したり、搬送ロボットの吸着部分に吸着しなかったりという不都合があるため、ある程度厚みのある極板で強度を持たせ構成されているのが現状である。
この現象は、基板の厚みにもよるが、厚さ1〜3mm程度の場合はその長さが300mm以上となる大型の極板格子を用いた場合に顕著となる。
また、グラファイトの添加量によっては、4塩基性硫酸鉛による基板−活物質の密着性強化効果よりも、グラファイトの膨張による基板−活物質の密着性悪化効果が上回り、早期容量低下を引き起こすことが確認された。
そこで、本発明者らは種々検討を行い、4塩基性硫酸鉛の生成量及びグラファイトの添加量を所望の範囲とすることで、撓み難い極板の作製が可能であり、また、高容量で且つ、早期容量低下を起こし難い極板を提供することができることを見出した。
In the method described in Patent Document 1, a positive electrode plate having an active material layer containing 50 to 70% by mass of tetrabasic lead sulfate is prepared, and 1.0 to 3.0% by mass of carbon powder is added to the lead powder. By containing, the life of the sealed lead-acid battery is extended, and the utilization rate of the active material is improved by containing carbon powder.
However, the electrode plate obtained by the method described in Patent Document 1 has a disadvantage that the electrode plate bends during the process flow, the electrode plate falls from the suspension base, and does not adsorb to the adsorption part of the transfer robot. The current situation is that the electrode plate has a certain thickness and is given strength.
Although this phenomenon depends on the thickness of the substrate, when the thickness is about 1 to 3 mm, the phenomenon becomes prominent when a large plate grid having a length of 300 mm or more is used.
Also, depending on the amount of graphite added, the substrate-active material adhesion enhancement effect due to the expansion of the graphite may be greater than the substrate-active material adhesion enhancement effect due to tetrabasic lead sulfate, leading to early capacity reduction. confirmed.
Therefore, the present inventors have made various studies, and by making the amount of 4-basic lead sulfate produced and the amount of graphite added within a desired range, it is possible to produce an electrode plate that is difficult to bend, and with a high capacity. And it discovered that the electrode plate which is hard to raise | generate an early capacity | capacitance fall could be provided.

本発明は、鉛を主成分とする鉛合金の基板にペースト状活物質を充填し、その後、熟成・乾燥して作製される制御弁式鉛蓄電池用正極板の製造方法において、該ペースト状活物質に鉛粉量に対してグラファイトを0.3〜0.95質量%添加すると共に、熟成・乾燥時に4塩基性硫酸鉛を75〜95質量%生成させることを特徴とするものである。 The present invention relates to a method for producing a positive electrode plate for a control valve type lead-acid battery in which a lead-alloy substrate containing lead as a main component is filled with a paste-like active material and then aged and dried. While adding 0.3 to 0.95 mass% of graphite to the amount of lead powder to the substance, 75 to 95 mass% of 4-basic lead sulfate is produced at the time of aging and drying.

制御弁式鉛蓄電池の正極板において、鉛合金からなる基板に鉛粉量に対してグラファイトを0.3〜0.95質量%添加したペーストを充填した後、熟成・乾燥工程において4塩基性硫酸鉛を75〜95質量%生成させることにより、高容量で且つ、大型極板でも撓み難いため、工程流動しやすく、早期容量低下を起こし難い特徴を有する。 In a positive electrode plate of a valve-regulated lead-acid battery, a base made of a lead alloy is filled with a paste in which 0.3 to 0.95% by mass of graphite is added to the amount of lead powder, and then in a ripening / drying process, 4-basic sulfuric acid By producing 75 to 95% by mass of lead, it has a high capacity and is difficult to bend even with a large electrode plate.

本発明の制御弁式鉛蓄電池は、ペースト状活物質に鉛粉量に対してグラファイトを0.3〜0.95質量%添加すると共に、熟成・乾燥時に4塩基性硫酸鉛を75〜95質量%生成させることで、高容量化を図り極板の撓みを防止して工程流動性を改善し、更に、早期容量低下を起こし難い制御弁式鉛蓄電池である。 The control valve type lead-acid battery of the present invention adds 0.3 to 0.95 mass% of graphite to the amount of lead powder in the paste-like active material, and 75 to 95 mass of 4-basic lead sulfate during aging and drying. % Is a control valve type lead-acid battery that increases the capacity, prevents the bending of the electrode plate, improves the process fluidity, and does not easily cause an early capacity decrease.

本発明において、大型基板に正極活物質ペーストを充填後、熟成・乾燥工程において4塩基性硫酸鉛の生成量を75〜95質量%とするのは、大型極板では4塩基性硫酸鉛を多く生成させることにより極板の撓み強度が上昇し、工程流動改善に繋がり、また、正極基板と活物質の密着性を良好とするためである。正極極板強度上昇や4塩基性硫酸鉛の基板−活物質間密着性改善の理由として、四塩基性硫酸鉛は三塩基性硫酸鉛と同様に、化成すると二酸化鉛化するが、四塩基性硫酸鉛は三塩基性硫酸鉛に比べて化成時における体積膨張率が小さいため、化成によっても格子−活物質間の密着性がほとんど損なわれることがないため、基板−活物質間や活物質同士間の密着性が良好である。
しかし、4塩基性硫酸鉛の生成量が75質量%未満の極板は、基板−活物質間や活物質同士間の密着性が不十分なため、グラファイトの体積膨張により基板−活物質間や活物質同士間にクラックが入り、早期容量低下を起こす。また、4塩基性硫酸鉛の生成量が95質量%超の極板は、熟成・乾燥後の活物質には純鉛や一酸化鉛、3塩基性硫酸鉛などが少なくとも5%程度含まれているため、いかなる熟成・乾燥条件でも極板を作製することは困難である。
更に、熟成・乾燥後の極板中の活物質形態が主として3塩基性硫酸鉛の場合、該3塩基性硫酸鉛自体の体積膨張率が大きく、それに加え、グラファイトの体積膨張により、基板−活物質間や活物質同士間の密着性が損なわれ、早期容量低下となる。
よって、4塩基性硫酸鉛の生成量は75〜95質量%が好ましい。
In the present invention, after filling the large substrate with the positive electrode active material paste, the amount of tetrabasic lead sulfate produced in the aging / drying process is 75 to 95% by mass. This is because the flexural strength of the electrode plate is increased by the generation of the electrode plate, which leads to improvement of process flow and good adhesion between the positive electrode substrate and the active material. Tetrabasic lead sulfate, like tribasic lead sulfate, converts to lead dioxide as the reason for increasing the positive electrode plate strength and improving the adhesion between the substrate and active material of 4-basic lead sulfate. Since lead sulfate has a smaller volume expansion rate during chemical conversion than tribasic lead sulfate, the adhesion between the lattice and the active material is hardly impaired by chemical conversion. The adhesiveness between them is good.
However, an electrode plate with a production amount of 4-basic lead sulfate of less than 75% by mass has insufficient adhesion between the substrate and the active material or between the active materials. Cracks occur between the active materials, causing an early capacity drop. In addition, the electrode plate in which the production amount of tetrabasic lead sulfate exceeds 95% by mass includes at least about 5% of pure lead, lead monoxide, tribasic lead sulfate, etc. in the active material after aging and drying. Therefore, it is difficult to produce an electrode plate under any aging and drying conditions.
Furthermore, when the active material form in the electrode plate after aging and drying is mainly tribasic lead sulfate, the volumetric expansion coefficient of the tribasic lead sulfate itself is large, and in addition, the volume expansion of graphite results in the substrate-active Adhesion between materials and between active materials is impaired, resulting in an early capacity drop.
Therefore, the production amount of tetrabasic lead sulfate is preferably 75 to 95% by mass.

また、本発明においてペースト状活物質にグラファイトを鉛粉量に対して0.3〜0.95質量%添加するのは、活物質内の多孔度が増加すると共に、制御弁式鉛蓄電池の反応電解液である硫酸の拡散が促進され、活物質の利用率が増加し、制御弁式鉛蓄電池の高容量化に繋がるためである。
しかし、グラファイトの添加量が0.3質量%未満では、グラファイトを添加しない場合と比べ活物質内の多孔度があまり変わらず、高容量化にならない。また、グラファイトの添加量が0.95質量%超過では、大きな体積膨張により、活物質内で大きなクラックが発生し、早期容量低下を起こす。
よって、正極活物質中のグラファイトの添加量は0.3〜0.95質量%が好ましい。
In addition, in the present invention, adding 0.3 to 0.95 mass% of graphite to the amount of lead powder in the paste-like active material increases the porosity in the active material and the reaction of the control valve type lead acid battery. This is because the diffusion of sulfuric acid, which is an electrolytic solution, is promoted, the utilization factor of the active material is increased, and the capacity of the control valve type lead storage battery is increased.
However, when the amount of graphite added is less than 0.3% by mass, the porosity in the active material does not change much compared to the case where graphite is not added, and the capacity is not increased. On the other hand, if the amount of graphite added exceeds 0.95% by mass, a large volume expansion causes a large crack in the active material, causing an early capacity drop.
Therefore, the addition amount of graphite in the positive electrode active material is preferably 0.3 to 0.95 mass%.

なお、制御弁式鉛蓄電池の極板群は、正極板と負極板をセパレータを介して交互に積層して構成し、通常は両端に負極板を配置して負極板が1枚多い構成になっている。負極板の多枚数化に伴い必然的に正極板も薄肉化されて多枚数化される。   In addition, the electrode plate group of the control valve type lead-acid battery is configured by alternately stacking positive and negative electrode plates with separators interposed between them, and usually has a configuration in which one negative electrode plate is provided by disposing negative electrode plates at both ends. ing. Along with the increase in the number of negative electrode plates, the positive electrode plates are inevitably thinned to increase the number of sheets.

Ca系鉛合金の正極基板(寸法は縦400mm×横150mm×厚み2.1mm)に鉛粉量に対してグラファイトを0.5質量%添加した活物質ペーストを充填したのち、熟成・乾燥を行って未化成の正極板を得た。次に、作製した複数枚の未化成のペースト式正極板と公知の方法で作製した複数枚の未化成のペースト式負極板とをガラス長繊維を抄造してなるガラスマットを介して交互に積層し、この積層体の同極板同士をバーナー方式で溶接して極板群を得た。次いで、前記極板群の所要数をポリプロピレン製の電槽内に挿入し、前記電槽に蓋をヒートシールし、前記蓋の液口から電槽内に比重1.21(20℃)の希硫酸(電解液)を極板群に含浸する程度注入し、所定の条件で電槽化成を行って1300Ahの制御弁式鉛蓄電池を製造した(本発明1)。
なお、前記熟成・乾燥は、熟成を温度65℃、湿度95%の雰囲気で24時間行い、その後、乾燥を温度60℃、湿度10%の雰囲気で行った。
After filling the positive electrode substrate of Ca-based lead alloy (dimensions 400 mm long × 150 mm wide × 2.1 mm thick) with an active material paste containing 0.5% by weight of graphite with respect to the amount of lead powder, aging and drying are performed. Thus, an unchemically formed positive electrode plate was obtained. Next, a plurality of unformed paste type positive electrode plates and a plurality of unformed paste type negative electrode plates produced by a known method are alternately laminated through a glass mat made of long glass fibers. And the same-polarity board of this laminated body was welded by the burner system, and the electrode group was obtained. Next, the required number of the electrode plate groups is inserted into a polypropylene battery case, a lid is heat sealed to the battery case, and a rare gravity of 1.21 (20 ° C.) is placed in the battery case from the liquid port of the lid. Sulfuric acid (electrolytic solution) was injected to such an extent that the electrode plate group was impregnated, and a battery case was formed under predetermined conditions to produce a 1300 Ah control valve type lead storage battery (Invention 1).
The aging / drying was carried out in an atmosphere at a temperature of 65 ° C. and a humidity of 95% for 24 hours, and then drying was carried out in an atmosphere at a temperature of 60 ° C. and a humidity of 10%.

熟成温度を70℃とした以外は実施例1と同様に1300Ahの制御弁式鉛蓄電池を製造した(本発明2)。 A 1300 Ah controlled valve lead-acid battery was produced in the same manner as in Example 1 except that the aging temperature was set to 70 ° C. (Invention 2).

熟成温度を80℃とした以外は実施例1と同様に1300Ahの制御弁式鉛蓄電池を製造した(本発明3)。 A 1300 Ah controlled valve lead-acid battery was produced in the same manner as in Example 1 except that the aging temperature was set to 80 ° C. (Invention 3).

(比較例1)
熟成温度を40℃とした以外は実施例1と同様に1300Ahの制御弁式鉛蓄電池を製造した(本発明3)。
(比較例2)
熟成温度を50℃とした以外は実施例1と同様に1300Ahの制御弁式鉛蓄電池を製造した(本発明3)。
なお、本発明において4塩基性硫酸鉛の生成量は熟成温度を変化させることでおこなったが、熟成時の湿度や時間を変化させても良く、また、極板の厚みによって熱伝達速度が異なるため、極板の厚みを変化させても良く、更にこれらを適宜変化させ4塩基性硫酸鉛の生成量を制御しても良い。
例えば、同一の基板を用いて熟成時の湿度や時間を同一とした場合、熟成温度を高くした方が4塩基性硫酸鉛の生成量を多くできることは周知であり、また、基板厚みが薄いものと厚いものとでは、厚い極板より薄い極板の方が熱伝達速度が速いため、熟成条件(熟成温度、湿度、時間)を同一とした場合、4塩基性硫酸鉛の生成量を多くできることは明白である。
(Comparative Example 1)
A 1300 Ah control valve lead-acid battery was produced in the same manner as in Example 1 except that the aging temperature was 40 ° C. (Invention 3).
(Comparative Example 2)
A 1300 Ah controlled valve lead-acid battery was produced in the same manner as in Example 1 except that the aging temperature was 50 ° C. (Invention 3).
In the present invention, the amount of tetrabasic lead sulfate produced was changed by changing the aging temperature. However, the humidity and time during aging may be changed, and the heat transfer rate varies depending on the thickness of the electrode plate. Therefore, the thickness of the electrode plate may be changed, and these may be changed as appropriate to control the amount of tetrabasic lead sulfate produced.
For example, it is well known that when the same substrate is used and the humidity and time during aging are the same, increasing the aging temperature can increase the amount of tetrabasic lead sulfate produced, and the substrate is thin. For thicker and thicker plates, the heat transfer rate of the thin plate is faster than that of the thick plate, so if the aging conditions (aging temperature, humidity, time) are the same, the amount of 4-basic lead sulfate produced can be increased. Is obvious.

得られた各々の制御弁式鉛蓄電池(本発明1〜3、比較例1〜2)について4塩基硫酸量、極板撓み、工程流動性および容量低下サイクル数を調べた。
4塩基性硫酸鉛量は、夫々作製した正極板をX線回折法によって測定した。
極板撓みは、1枚の極板の長手方向の中心部を支点として固定し、両サイドが自重によりどれだけ下にたわむか変位を測定した。
工程流動性は、ペースト状活物質を充填した基板を懸垂台に乗せて熟成・乾燥した後、懸垂台から落下せず、かつ移送ロボットによる把持が良好に行えたものは工程流動性が優れる(○)と評価した。懸垂台からの落下やロボットによる把持不良が300枚中1枚でもあれば工程流動性が劣る(×)と評価した。なお、ペースト活物質を充填し、熟成・乾燥終了までは、極板数十枚毎に押え板を入れているため、極板が撓み難くなっている。
容量低下サイクル数は、初期容量の90%まで容量が低下したときのサイクル数を示したものである。サイクル試験条件は、放電電流130A(0.1CA)で、終止電圧1.8Vまで放電し、その後、回復充電では放電容量に対して110%充電を行った。放電容量の90%までは130A(0.1CA)で定電流充電し、放電容量の90%〜110%までは65A(0.05CA)で定電流充電を行った。
About each obtained control valve type lead acid battery (Invention 1-3, Comparative Examples 1-2), the amount of 4-basic sulfuric acid, electrode board bending, process fluidity, and capacity reduction cycle number were investigated.
The amount of 4-basic lead sulfate was measured by the X-ray diffraction method for each positive electrode plate produced.
The electrode plate was fixed by using the center part in the longitudinal direction of one electrode plate as a fulcrum, and the displacement was measured by how much both sides bend due to its own weight.
The process fluidity is excellent when the substrate filled with the paste-like active material is placed on the suspension base, aged and dried, then dropped from the suspension base and can be gripped by the transfer robot well. ○). It was evaluated that the process fluidity was inferior (×) if the drop from the suspension base or the gripping failure by the robot was at least one out of 300. In addition, since the holding plate is inserted every several dozens of plates until the paste active material is filled and ripening / drying is completed, the plates are difficult to bend.
The capacity reduction cycle number indicates the cycle number when the capacity is reduced to 90% of the initial capacity. The cycle test conditions were a discharge current of 130 A (0.1 CA), a discharge to a final voltage of 1.8 V, and then a 110% charge with respect to the discharge capacity in the recovery charge. Up to 90% of the discharge capacity was constant current charged at 130 A (0.1 CA), and from 90% to 110% of the discharge capacity was constant current charged at 65 A (0.05 CA).

表1に示すように、極板中の4塩基性硫酸鉛の生成量を75質量%以上とした本発明1〜3は、極板撓み変位が少なく、工程流動性に優れていることが分かる。それに比し、極板中の4塩基性硫酸鉛の生成量を75質量%未満とした比較例1〜2は、極板撓み変位が多く、工程流動性に適さないことが分る。
また、極板中の4塩基性硫酸鉛の生成量を75質量%以上とした本発明1〜3は、基板−活物質間や活物質同士間の密着性が良好であり、容量低下サイクル数もすぐれていることが分る。それに比し、極板中の4塩基性硫酸鉛の生成量を75質量%未満とした比較例1〜2は、基板−活物質間や活物質同士間の密着性が不十分なため、グラファイトの体積膨張により基板−活物質間や活物質同士間にクラックが入り、早期容量低下を起こした。
As shown in Table 1, the present invention 1 to 3 in which the amount of 4-basic lead sulfate in the electrode plate is 75% by mass or more has little electrode plate deflection displacement and is excellent in process fluidity. . Compared with it, it turns out that Comparative Examples 1-2 which made the production amount of 4-basic lead sulfate in an electrode plate less than 75 mass% has much electrode plate bending displacement, and is not suitable for process fluidity | liquidity.
Moreover, this invention 1-3 which made the production | generation amount of the 4-basic lead sulfate in an electrode plate 75 mass% or more has favorable adhesiveness between board | substrate-active materials or between active materials, and the number of capacity reduction cycles You can see that it is excellent. In comparison, Comparative Examples 1 and 2 in which the amount of 4-basic lead sulfate in the electrode plate is less than 75% by mass has insufficient adhesion between the substrate and the active material or between the active materials. Due to the volume expansion, cracks occurred between the substrate and the active material or between the active materials, causing an early capacity drop.

次に、活物質ペーストに添加するグラファイトの量を、表2に示すように鉛粉量に対し0〜1.0質量%とし、その後の熟成温度を70℃とし夫々の正極板を作製し、実施例1と同様に1300Ahの制御弁式鉛蓄電池を製造した(本発明2、4〜5、比較例3〜6)。なお、この時の正極未化成時の4塩基性硫酸鉛の生成量は全て85%であった。 Next, the amount of graphite added to the active material paste is 0 to 1.0% by mass with respect to the amount of lead powder as shown in Table 2, the subsequent aging temperature is 70 ° C., and each positive electrode plate is produced. In the same manner as in Example 1, a 1300 Ah control valve type lead storage battery was manufactured (Invention 2, 4 to 5, Comparative Examples 3 to 6). At this time, the amount of 4-basic lead sulfate produced when the positive electrode was not formed was 85%.

得られた各々の制御弁式鉛蓄電池(本発明2、4〜5、比較例3〜6)について初期容量比、容量低下サイクル数を調べた。
初期容量比は、放電電流130Aで、終止電圧1.8Vまで放電した時の容量を実施例2の容量を100とした時の容量比率で表したものである。
容量低下サイクル数は、初期容量の90%まで容量が低下したときのサイクル数を示す。サイクル試験条件は放電電流130A(0.1CA)で、終止電圧1.8Vまで放電し、その後、回復充電では放電容量に対して110%充電を行った。放電容量の90%までは130A(0.1CA)で定電流充電し、放電容量の90%〜110%までは65A(0.05CA)で定電流充電を行った。
With respect to each of the obtained control valve type lead-acid batteries (Invention 2, 4 to 5, Comparative Examples 3 to 6), the initial capacity ratio and the capacity reduction cycle number were examined.
The initial capacity ratio is the capacity ratio when the capacity of Example 2 is 100 when the capacity is discharged to a final voltage of 1.8 V with a discharge current of 130 A.
The capacity reduction cycle number indicates the cycle number when the capacity is reduced to 90% of the initial capacity. The cycle test conditions were a discharge current of 130 A (0.1 CA), and the battery was discharged to a final voltage of 1.8 V. Thereafter, in recovery charge, 110% charge was performed with respect to the discharge capacity. Up to 90% of the discharge capacity was constant current charged at 130 A (0.1 CA), and from 90% to 110% of the discharge capacity was constant current charged at 65 A (0.05 CA).

表2に示すように、本発明2、4〜5は正極活物質中のグラファイトの添加量を0.3〜0.95質量%とすることで初期容量及び容量低下サイクル数共に優れるものであった。それに比し、比較例3〜4は正極活物質中のグラファイトを添加しない、又は添加量が少ないため、活物質内の多孔度が殆ど変わらず初期容量が出難いものであり、その反面、容量低下サイクル数は優れるものであった。また、比較例5〜6は、グラファイトの添加量が0.95質量%超過では、初期容量比は優れるものの、基板−活物質間や活物質同士間の密着性が、大きな体積膨張による大きなクラック発生で損なわれ、早期容量低下を起こし容量低下サイクル数が劣るものであった。 As shown in Table 2, the present inventions 2 and 4 to 5 are excellent in both initial capacity and capacity reduction cycle number by setting the amount of graphite added in the positive electrode active material to 0.3 to 0.95 mass%. It was. In contrast, Comparative Examples 3 to 4 do not add graphite in the positive electrode active material, or the addition amount is small, so that the porosity in the active material is hardly changed and the initial capacity is difficult to be obtained. The number of reduction cycles was excellent. In Comparative Examples 5 to 6, when the amount of graphite added exceeds 0.95 mass%, the initial capacity ratio is excellent, but the adhesion between the substrate and the active material or between the active materials is large due to large volume expansion. It was spoiled by generation | occurrence | production, the early capacity | capacitance fall was caused, and the capacity fall cycle number was inferior.

Claims (1)

鉛を主成分とする鉛合金の基板にペースト状活物質を充填し、その後、熟成・乾燥して作製される制御弁式鉛蓄電池用正極板の製造方法において、該ペースト状活物質に鉛粉量に対してグラファイトを0.3〜0.95質量%添加すると共に、熟成・乾燥時に4塩基性硫酸鉛を75〜95質量%生成させることを特徴とする制御弁式鉛蓄電池用正極板の製造方法。   In a method of manufacturing a positive electrode plate for a control valve type lead storage battery, in which a paste alloy material containing lead as a main component is filled with a paste active material and then aged and dried, lead powder is added to the paste active material. A control valve type lead-acid battery positive electrode plate characterized by adding 0.3 to 0.95 mass% of graphite with respect to the amount and generating 75 to 95 mass% of 4-basic lead sulfate during aging and drying. Production method.
JP2007237408A 2007-09-13 2007-09-13 Method of manufacturing positive electrode plate for control valve type lead-acid storage battery Pending JP2009070668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237408A JP2009070668A (en) 2007-09-13 2007-09-13 Method of manufacturing positive electrode plate for control valve type lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237408A JP2009070668A (en) 2007-09-13 2007-09-13 Method of manufacturing positive electrode plate for control valve type lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2009070668A true JP2009070668A (en) 2009-04-02

Family

ID=40606711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237408A Pending JP2009070668A (en) 2007-09-13 2007-09-13 Method of manufacturing positive electrode plate for control valve type lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2009070668A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723538A (en) * 2012-07-03 2012-10-10 山东瑞宇蓄电池有限公司 Waste diachylon processing method, lead powder for lead-acid storage battery, waste diachylon processing device, pole plate and lead-acid storage battery
JP2014179229A (en) * 2013-03-14 2014-09-25 Shin Kobe Electric Mach Co Ltd Positive electrode plate for lead storage batteries, and control valve type lead storage battery arranged by use thereof
CN106129342A (en) * 2016-08-25 2016-11-16 陕西凌云蓄电池有限公司 A kind of preparation method of long service life head-acid accumulator positive plate
CN107244692A (en) * 2017-05-22 2017-10-13 朱可可 It is a kind of to extend the device that yellow lead energy-saving production technology prepares four basic lead sulphates
CN111081985A (en) * 2020-01-03 2020-04-28 天能电池集团股份有限公司 Lead storage battery positive plate suitable for large-current work and lead storage battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260426A (en) * 1999-03-10 2000-09-22 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and its manufacture
JP2002231234A (en) * 2001-01-30 2002-08-16 Shin Kobe Electric Mach Co Ltd Method of preparing paste active material for use in positive electrode
JP2004055309A (en) * 2002-07-19 2004-02-19 Shin Kobe Electric Mach Co Ltd Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2004055417A (en) * 2002-07-23 2004-02-19 Shin Kobe Electric Mach Co Ltd Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JP2007220644A (en) * 2006-01-17 2007-08-30 Furukawa Battery Co Ltd:The Method of manufacturing lead acid battery electrode plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260426A (en) * 1999-03-10 2000-09-22 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and its manufacture
JP2002231234A (en) * 2001-01-30 2002-08-16 Shin Kobe Electric Mach Co Ltd Method of preparing paste active material for use in positive electrode
JP2004055309A (en) * 2002-07-19 2004-02-19 Shin Kobe Electric Mach Co Ltd Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP2004055417A (en) * 2002-07-23 2004-02-19 Shin Kobe Electric Mach Co Ltd Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JP2007220644A (en) * 2006-01-17 2007-08-30 Furukawa Battery Co Ltd:The Method of manufacturing lead acid battery electrode plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723538A (en) * 2012-07-03 2012-10-10 山东瑞宇蓄电池有限公司 Waste diachylon processing method, lead powder for lead-acid storage battery, waste diachylon processing device, pole plate and lead-acid storage battery
JP2014179229A (en) * 2013-03-14 2014-09-25 Shin Kobe Electric Mach Co Ltd Positive electrode plate for lead storage batteries, and control valve type lead storage battery arranged by use thereof
CN106129342A (en) * 2016-08-25 2016-11-16 陕西凌云蓄电池有限公司 A kind of preparation method of long service life head-acid accumulator positive plate
CN106129342B (en) * 2016-08-25 2019-01-04 陕西凌云蓄电池有限公司 A kind of preparation method of long service life head-acid accumulator positive plate
CN107244692A (en) * 2017-05-22 2017-10-13 朱可可 It is a kind of to extend the device that yellow lead energy-saving production technology prepares four basic lead sulphates
CN107244692B (en) * 2017-05-22 2018-09-18 安徽徽能化工科技有限公司 A kind of device for extending yellow lead energy-saving production technology and preparing four basic lead sulphates
CN111081985A (en) * 2020-01-03 2020-04-28 天能电池集团股份有限公司 Lead storage battery positive plate suitable for large-current work and lead storage battery
CN111081985B (en) * 2020-01-03 2021-01-08 天能电池集团股份有限公司 Lead storage battery positive plate suitable for large-current work and lead storage battery

Similar Documents

Publication Publication Date Title
JP5138391B2 (en) Control valve type lead acid battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
WO2005107004A1 (en) Lead acid battery
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP2009070668A (en) Method of manufacturing positive electrode plate for control valve type lead-acid storage battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JPWO2013122132A1 (en) Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP2014207198A (en) Control valve type lead-acid battery
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP5505248B2 (en) Lead acid battery
JP2008041326A (en) Manufacturing method for lead-acid storage battery plate
JP2003338310A (en) Lead storage battery
JP2004119061A (en) Lead acid storage battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JP5569164B2 (en) Lead acid battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JP2002313333A (en) Positive electrode plate for use in lead-acid battery and method for manufacturing it
JP2003317711A (en) Formation method of lead-acid battery
JPH11312533A (en) Manufacture of sealed lead-acid battery
JP4984786B2 (en) Lead acid battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP6825270B2 (en) Manufacturing method of positive electrode plate for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219