WO2012153464A1 - Lead-acid battery anode and lead-acid battery - Google Patents

Lead-acid battery anode and lead-acid battery Download PDF

Info

Publication number
WO2012153464A1
WO2012153464A1 PCT/JP2012/002621 JP2012002621W WO2012153464A1 WO 2012153464 A1 WO2012153464 A1 WO 2012153464A1 JP 2012002621 W JP2012002621 W JP 2012002621W WO 2012153464 A1 WO2012153464 A1 WO 2012153464A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lead
alloy layer
grid
active material
Prior art date
Application number
PCT/JP2012/002621
Other languages
French (fr)
Japanese (ja)
Inventor
岬 原田
杉江 一宏
下田 一彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280010924.9A priority Critical patent/CN103403933B/en
Priority to DE112012002048.0T priority patent/DE112012002048T5/en
Priority to JP2013513910A priority patent/JPWO2012153464A1/en
Publication of WO2012153464A1 publication Critical patent/WO2012153464A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lead-acid battery having an alloy layer containing antimony on a part of the surface of the negative electrode grid.
  • the first concern is that the positive electrode active material promotes to drop out of the positive electrode.
  • PbO 2 of the positive electrode active material and Pb of the negative electrode active material exchange electrons with H 2 SO 4 of the electrolytic solution by redox reaction.
  • the active material becomes PbSO 4 for both the positive electrode and the negative electrode, but when these are charged, they return to PbO 2 (positive electrode) and Pb (negative electrode) again. Therefore, the crystal structure of the active material of the positive electrode and the negative electrode changes each time charge and discharge are repeated, and in particular, when charge and discharge are repeated, the bonding strength between the active materials decreases to cause softening (softening).
  • the positive electrode active material When the softening of the positive electrode active material progresses, the positive electrode active material is gradually dropped from the positive electrode, so the capacity of the battery is reduced. This phenomenon is more likely to progress as the DOD increases. However, since the internal resistance gradually increases in this phenomenon, it is possible for the user to infer the end of the life due to this phenomenon from the transition of the internal resistance.
  • the second concern is the sudden death due to the breakage of the negative electrode ear (tab-like part for current collection). Sudden death is a phenomenon in which charging and discharging can not be performed suddenly without any foreknowledge.
  • a phenomenon (sulfation) in which a large PbSO 4 crystal is generated to easily inactivate (sulfation) tends to progress.
  • this site is remarkably inactive, and when charging is started in this state, the negative electrode ear with small polarization becomes thin by becoming an active material. Repeating this causes the negative electrode ear to break suddenly and lose its function as a battery. Since this phenomenon can not be suddenly discharged, it is impossible for the user to guess the end of the life from the transition of the internal resistance.
  • Patent Document 1 a technique as disclosed in Patent Document 1 has been proposed.
  • the present invention is intended to solve this problem, and it is an object of the present invention to provide a lead-acid battery negative electrode and a lead-acid battery suitable for idling-stop vehicles, which do not suddenly die even when exposed to a region where DOD is significantly large. .
  • the negative electrode for a lead-acid battery of the present invention is a negative electrode for a lead-acid battery comprising a lattice made of a lead alloy not containing antimony and an active material paste filled in the lattice, One end of the grid is provided with a tab for electrically connecting to another negative electrode, and a part of the surface of the grid is provided with an alloy layer containing antimony, and the grid On the side of the end opposite to one end, the alloy layer is covered with the active material paste and has a non-exposed configuration.
  • the antimony concentration in the alloy layer is preferably 0.1% by mass to 10% by mass, and the antimony concentration in the alloy layer is more preferably 1% by mass to 5% by mass.
  • the thickness of the alloy layer is preferably 0.1 ⁇ m to 500 ⁇ m, and more preferably 0.1 ⁇ m to 100 ⁇ m.
  • a positive electrode formed by filling an active material paste in a grid made of lead alloy and the above-mentioned negative electrode for lead-acid battery are made to face each other through a separator to form an electrode plate group. It has the composition stored in the tank.
  • an alloy layer containing antimony may be provided on the surface of the grid of the positive electrode.
  • the lead storage battery of the present invention When the lead storage battery of the present invention is used, it is caused by the winding up and adhesion of the dropped positive electrode active material, even when the discharge reaching the region where the DOD is significantly large is frequently repeated as in an idling stop car with controlled charging opportunities. It becomes possible to extend the life by preventing the internal short circuit.
  • the inventors of the present invention have found that a local battery is formed at the interface between the alloy layer containing antimony and the lattice to generate gas with convection, so the dropout of the positive electrode active material is We found that it was easy to deposit on the top. Based on this finding, the alloy layer containing antimony which is essential for prolonging the life of the negative electrode prevents the interface between the alloy layer and the negative electrode grid itself from being exposed to the electrolyte at the lowermost portion as in Patent Document 1 I decided. Specifically, in the lower part of the negative electrode grid, the boundary between the alloy layer and the negative electrode grid itself is covered with the negative electrode active material so as not to be exposed, or the alloy layer is not provided at the lowermost part.
  • FIG. 1 is a schematic view showing an example of a grid used for the lead-acid battery negative electrode of the embodiment
  • FIG. 2 is a schematic view showing the lead-acid battery negative electrode of the embodiment.
  • the lattice shown in FIG. 1 is a reciprocal expanded lattice (made of lead alloy), and can contain calcium, tin and the like in addition to lead.
  • the lead alloy constituting the grid does not contain antimony.
  • it is the skeleton of the lattice that does not contain antimony, and an alloy layer containing antimony is formed on part of the surface of the lattice as described later.
  • a mesh portion 3 having a substantially rhombus shape is connected under the upper frame portion 1 having the ear portion (tab portion) 2.
  • a lower frame part is connected below the mesh part 3 further.
  • the alloy layer 4 containing antimony is provided on the surface of the lattice 20 excluding the lowermost portion, and the alloy layer 4 is not exposed at the lowermost portion.
  • FIG. 3 is a view showing a schematic configuration inside a lead storage battery according to a comparative embodiment.
  • the electrolyte is not shown and not shown for the sake of clarity.
  • the alloy layer 4 containing antimony is provided up to the lowermost part of the negative electrode grid 20 in the negative electrode 9 b located on the left side of FIG. 3, and the negative electrode grid 20 containing no antimony and the alloy layer containing antimony at the lowermost part Both 4 and 4 are exposed, and the boundary between the two is also exposed in the electrolyte.
  • the positive electrode 9a is located on the right side of FIG.
  • the positive electrode 9 a is formed by filling the positive electrode grid 30 with the positive electrode active material 6.
  • a separator 9c is placed between the positive electrode 9a and the negative electrode 9b.
  • the softened positive electrode active material 6 falls off from the positive electrode 9a relatively early and deposits.
  • the alloy layer 4 containing antimony is provided on the surface down to the lowermost part of the negative electrode grid 20, as shown in FIG.
  • An interface between the alloy layer 4 and the negative electrode grid 20 exists at the lowermost part of the near negative electrode 9 b (A in the figure). The part of this interface becomes a local battery. The gas generated by this local cell causes convection as shown by the solid arrow.
  • the dropout 6a of the positive electrode active material 6 is carried to the upper part of the positive electrode 9a and the negative electrode 9b and deposited on the positive electrode 9a and the negative electrode 9b.
  • the dropout 6a is deposited on the positive electrode 9a and the negative electrode 9b, the interelectrode distance between the positive electrode 9a and the negative electrode 9b is locally reduced.
  • Dropouts 6a of the positive electrode active material 6 deposited on top of the positive electrode 9a and the negative electrode 9b are reduced to PbO 2 (positive electrode) and Pb (negative electrode) by charging. As a result, an internal short circuit occurs at a point where the distance between the electrodes is locally reduced.
  • the alloy layer 4 is not provided to the lowermost part of the negative electrode grid 20 as in the comparative embodiment, but is provided excluding the lowermost part as shown in FIG.
  • the interface between the alloy layer 4 and the negative electrode grid 20 is covered with the negative electrode active material 5 so as not to be exposed (B in the figure).
  • no gas is generated at the lowermost portion of the negative electrode 9b, and the opportunity for the dropouts 6a of the positive electrode active material 6 to be transported to the upper portions of the positive electrode 9a and the negative electrode 9b by convection is reduced significantly.
  • the antimony concentration in the alloy layer 4 By setting the antimony concentration in the alloy layer 4 to 0.1% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 5% by mass or less, the effects of the present embodiment become remarkable.
  • the antimony concentration of the alloy layer 4 may be 0.1 mass% or more, but when the antimony concentration of the alloy layer 4 is 10 mass% or more As the charging current significantly increases, the gas generation amount also increases, and it is easy to roll up the dropouts 6a of the positive electrode active material deposited on the bottom, and the effect of the present embodiment is reduced.
  • the thickness of the alloy layer 4 may be 0.1 ⁇ m or more in order to improve the charge acceptance and prolong the life of the negative electrode, but when the thickness of the alloy layer 4 is 500 ⁇ m or more, the charging current significantly increases. As a result, the amount of gas generation increases, and it becomes easy to roll up the dropout 6a of the positive electrode active material deposited on the bottom, and the effect of the present embodiment is reduced.
  • the alloy layer 4 may contain tin, silver or the like in addition to antimony and lead.
  • the aspect (lower frame portion shown in FIG. 4) that “at the lowermost portion of the negative electrode grid 20, the alloy layer 4 containing antimony is covered with the negative electrode active material paste 5 and not exposed” which is the feature of this embodiment
  • the active material paste 5 is not limited to the lower frame portion).
  • the alloy layer 4 may be provided on the upper portion of the lower frame portion, or the alloy layer 4 may not be provided on the lower portion of the mesh portion 3. That is, the alloy layer 4 is not exposed at the lowermost part of the lattice 20 so that the convection shown in FIG. 3 does not occur, and as a result, neither the adjacent lattice 20 nor the alloy layer 4 is exposed together. It is the gist of this embodiment to do so.
  • FIG. 5 is a schematic view showing an example of the lead storage battery of the present embodiment.
  • the battery case 7 is an integral resin molded product formed of a partition 7a for dividing the inside into a plurality of cell chambers 8, a short side 7b, a long side 7c, and a bottom surface (not shown).
  • a partition 7a for dividing the inside into a plurality of cell chambers 8, a short side 7b, a long side 7c, and a bottom surface (not shown).
  • an electrode plate group 9 in which the positive electrode 9a and the negative electrode 9b of the present embodiment are opposed to each other via the separator 9c is accommodated and an electrolytic solution (not shown).
  • the ear parts (2 in the case of the negative electrode) of the electrode plates (positive electrode 9a and negative electrode 9b) of the same polarity in each electrode plate group 9 are connected to one connection component 10, and further through the through holes provided in the partition 7a.
  • the connection parts 10 of different polarity of the adjacent electrode plate group 9 are brought into contact with each other, and this contact portion is resistance-welded under predetermined conditions.
  • the ear of the positive electrode 9a of the cell chamber 8 at one end is connected to a positive pole (not shown) and the ear 2 of the negative electrode 9b of the cell chamber 8 at the other end is a negative pole (not shown) Connection).
  • the respective pole columns are connected to the bushing (not shown) integrated with the lid 11 to form the terminals 12, the lead storage battery of this embodiment Is configured.
  • the lead storage battery of this embodiment The performance is further improved.
  • Lead oxide powder is kneaded with sulfuric acid and purified water to make a positive electrode active material paste, and a rolled sheet (the composition is a lead-calcium alloy) with a lead-tin-antimony alloy layer provided on the surface is expanded by a reciprocating method
  • the active material paste was filled in a positive electrode grid 30 obtained by development, to produce a positive electrode 9a.
  • an additive made of lead-tin-antimony is prepared by kneading an additive prepared by adding an organic additive, barium sulfate, carbon or the like to lead oxide powder according to a conventional method with sulfuric acid and purified water to prepare a negative electrode active material paste.
  • the active material paste is filled in a negative electrode grid 20 obtained by expanding and expanding a rolled sheet (composition is a lead-tin-calcium alloy) provided with a layer 4 on the surface under various conditions (details will be described later).
  • the negative electrode 9 b (length 115 mm) was produced.
  • the rolled sheet does not contain antimony.
  • the positive electrode 9a is wrapped with a bag-like separator 9c made of polyethylene, alternately stacked with the negative electrode 9b, and the respective ear parts are welded to the connection component 10 Group 9 was made. Then, the electrode plate group 9 is inserted into each cell chamber 8 of the battery case 7 consisting of six cell chambers 8, and the connection component 10 is welded through the hole provided in the partition 7a, and the electrode plate group 9 is in series. It was made to be connected.
  • the lid 11 was attached to the battery case 7 by welding, and the terminal 12 was formed by welding the bushing and the pole post.
  • an electrolytic solution consisting of dilute sulfuric acid is put in all the cell chambers 8, and by performing battery cell formation, the specific gravity of the electrolytic solution is adjusted to be 1.280 g / cm 3 (20 ° C. conversion value), and 12V48 Ah Lead-acid batteries were manufactured.
  • the examination was divided into three stages. First, in order to examine the compatible range of the present embodiment, the antimony concentration of the alloy layer 4 was 2% by mass, the thickness was constant at 10 ⁇ m, and it was examined on which surface of the lattice 20 the alloy layer 4 was provided.
  • the conditions are shown in (Table 1).
  • “upper part”, “lower part” and “intermediate part” of the grid indicate respective parts obtained by vertically dividing the grid into five as shown in FIG. That is, “upper part” indicates the top 1/5, “lower” indicates the area obtained by subtracting "lower part” described later from the lowermost 1/5, and “middle part” indicates the middle 3/5. And “the lowermost part” points out the field to 5 mm above from the lower end of a lattice.
  • the portion where the alloy layer 4 is provided on the surface of the lattice 20 is "any portion except for the lowermost portion", and the thickness of the alloy layer 4 is constant 10 ⁇ m. Changes the antimony concentration of The conditions are shown in (Table 2).
  • the location where the alloy layer 4 is provided on the surface of the lattice is "any place except the lowermost part", and the antimony concentration of the alloy layer 4 is constant at 2% by mass.
  • the thickness of layer 4 was varied. The conditions are shown in (Table 3).
  • a life test of an idling stop specification in which an opportunity for charging was controlled was performed. Specifically, as described below, a pattern improved based on the battery industry standard (SBA S 0101) was used. Specifically, assuming that the tank temperature is 25 ° C ⁇ 2 ° C (the wind speed near the lead storage battery is 2.0 m / s or less), perform the following “A ⁇ B” once and then “C ⁇ D” 4 The pattern to be repeated was one cycle, and E was performed once every 50 cycles.
  • is an actual measurement value (%) of DOD calculated from the total amount of discharge (total amount of discharged electricity) in A and C in one cycle and the rated capacity of the lead storage battery.
  • the "lowermost portion” is a region 5 mm above the lowermost end of the lattice (1/23 of the lowermost at a total length of 115 mm), but with the alloy layer 4 at the lowermost end of the lattice It is needless to say that it can be defined as the "lowermost part" in the present embodiment, as long as there is no interface. For example, sample no. From the fact that 1 and 2 show sufficient characteristics, it can be understood that when the grid is divided into five in the vertical direction, the region from the lowermost end of the grid to 1 ⁇ 5 is suitable as the lowermost region.
  • the mesh shape of the negative electrode grid is not limited to the rhombus, and may be rectangular or circular.
  • Materials, compositions and the like of the negative electrode grid, the positive electrode grid, the negative electrode active material, and the positive electrode active material may be any known materials and compositions.
  • the sizes of the negative electrode and the positive electrode are not limited to the sizes of the embodiments.
  • the lead-acid battery of the present invention is capable of suppressing internal short circuit and obtaining good life characteristics in an environment where frequent deep discharges such as idling stop are performed while controlling the charge opportunity, and it is industrially It is extremely useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

This lead-acid battery anode comprises a lattice of a lead alloy which does not include antimony, and an active material paste which is infused into the lattice. A tab part for electrically connecting to another anode is disposed on one end of the lattice. An alloy layer including antimony is disposed on a portion of a surface of the lattice. The alloy layer is covered by the active material paste and not exposed on the side of the end of the lattice on the opposite side from the one end thereof.

Description

鉛蓄電池用負極および鉛蓄電池Negative electrode for lead acid battery and lead acid battery
 本発明は、負極の格子の表面の一部にアンチモンを含む合金層を有する鉛蓄電池に関するものである。 The present invention relates to a lead-acid battery having an alloy layer containing antimony on a part of the surface of the negative electrode grid.
 近年、自動車の燃費向上を目的として、停車中に自動でエンジンを停止するアイドリングストップ技術が注目されている。アイドリングストップ車に搭載された鉛蓄電池は走行中のみしか充電されないため、DOD(放電深度)が大きくなりやすい。DODが大きい領域で鉛蓄電池を用いることには、2つの大きな懸念がある。 BACKGROUND ART In recent years, in order to improve the fuel efficiency of automobiles, an idling stop technology of automatically stopping an engine while the vehicle is stopped has attracted attention. Lead-acid batteries installed in idling-stop vehicles are charged only while driving, so DOD (discharge depth) tends to be large. There are two major concerns with using lead acid batteries in areas where the DOD is large.
 第1の懸念は、正極活物質が正極から脱落することを促進してしまうことである。鉛蓄電池は充放電の際、正極活物質のPbO2と負極活物質のPbが電解液のH2SO4と酸化還元反応をすることで電子の授受を行う。例えば放電すると活物質は正極、負極ともにPbSO4になるが、これらは充電することで再びPbO2(正極)とPb(負極)とに戻る。そのため、正極および負極の活物質は充放電を繰り返すたびに結晶構造が変化し、特に正極活物質は充放電を繰り返すと活物質どうしの結合力が低下して柔らかくなる現象(軟化)が起きる。正極活物質の軟化が進行すると徐々に正極から正極活物質が脱落してしまうため、電池の容量が低下する。この現象はDODが大きいほど進行しやすい。しかしこの現象は漸次的に内部抵抗が上昇するため、使用者は内部抵抗の推移からこの現象による寿命の到達を推察することが可能である。 The first concern is that the positive electrode active material promotes to drop out of the positive electrode. In charge and discharge of lead-acid batteries, PbO 2 of the positive electrode active material and Pb of the negative electrode active material exchange electrons with H 2 SO 4 of the electrolytic solution by redox reaction. For example, when discharged, the active material becomes PbSO 4 for both the positive electrode and the negative electrode, but when these are charged, they return to PbO 2 (positive electrode) and Pb (negative electrode) again. Therefore, the crystal structure of the active material of the positive electrode and the negative electrode changes each time charge and discharge are repeated, and in particular, when charge and discharge are repeated, the bonding strength between the active materials decreases to cause softening (softening). When the softening of the positive electrode active material progresses, the positive electrode active material is gradually dropped from the positive electrode, so the capacity of the battery is reduced. This phenomenon is more likely to progress as the DOD increases. However, since the internal resistance gradually increases in this phenomenon, it is possible for the user to infer the end of the life due to this phenomenon from the transition of the internal resistance.
 第2の懸念は、負極耳部(集電のためのタブ状部分)の破断による突然死である。突然死とは、前触れがなんら無いままに充放電が突然できなくなってしまう現象である。負極における耳部(集電機構)から遠い部位は、大きなPbSO4の結晶が生成することで不活性化する現象(サルフェーション)が進行しやすい。特にDODが大きい状態においてこの部位は顕著に不活性であり、この状態で充電を開始すると、分極の小さい負極耳部が活物質化することでやせ細る。これを繰り返すことで、負極耳部が突然破断し、電池としての機能を失う。この現象は突然に放電できなくなくなるので、使用者は内部抵抗の推移から寿命の到達を推察することが不可能である。 The second concern is the sudden death due to the breakage of the negative electrode ear (tab-like part for current collection). Sudden death is a phenomenon in which charging and discharging can not be performed suddenly without any foreknowledge. At a site far from the ear portion (current collecting mechanism) in the negative electrode, a phenomenon (sulfation) in which a large PbSO 4 crystal is generated to easily inactivate (sulfation) tends to progress. In particular, in the state where the DOD is large, this site is remarkably inactive, and when charging is started in this state, the negative electrode ear with small polarization becomes thin by becoming an active material. Repeating this causes the negative electrode ear to break suddenly and lose its function as a battery. Since this phenomenon can not be suddenly discharged, it is impossible for the user to guess the end of the life from the transition of the internal resistance.
 そこで、上述した突然死が起きてしまう第2の懸念を払拭し、使用者にとって寿命の到達を推測しやすいものにするため、特許文献1のような技術が提案されている。 Therefore, in order to eliminate the second concern that the above-described sudden death occurs and to make it easy for the user to estimate the end of the life, a technique as disclosed in Patent Document 1 has been proposed.
特開2009-266514号公報JP, 2009-266514, A
 特許文献1によってアイドリングストップ車にある程度適した鉛蓄電池は作製できるものの、燃費向上の要望がさらに高まる中、オルタネータによる発電を自動車の減速時に集中させ、鉛蓄電池をさらにDODが大きい領域に晒すようになった場合、再び突然死が発生することがわかってきた。この突然死は上記の第2の懸念として記載したメカニズムで発生するのではなく、これまで知られていなかった機構による突然死であった。 Although the lead storage battery suitable for idling stop vehicles can be made to some extent according to Patent Document 1, while the demand for improvement of fuel consumption is further increased, the power generation by the alternator is concentrated at the time of deceleration of the car to expose the lead storage battery to a larger area of DOD. It turned out that sudden death would occur again if it became. This sudden death did not occur with the mechanism described above as the second concern, but with a mechanism that was previously unknown.
 本発明はこの課題を解決するためのものであって、DODが顕著に大きい領域に晒しても突然死しない、アイドリングストップ車に適した鉛蓄電池用負極及び鉛蓄電池を提供することを目的とする。 The present invention is intended to solve this problem, and it is an object of the present invention to provide a lead-acid battery negative electrode and a lead-acid battery suitable for idling-stop vehicles, which do not suddenly die even when exposed to a region where DOD is significantly large. .
 前述した課題を解決するために、本願の鉛蓄電池用負極は、アンチモンを含まない鉛合金からなる格子と、前記格子に充填された活物質ペーストとを備えた鉛蓄電池用負極であって、前記格子の一方の端には別の負極と電気的に接続するためのタブ部が設けられており、前記格子の表面の一部にはアンチモンを含む合金層が設けられており、前記格子の前記一方の端とは反対側の端の側では、前記合金層は前記活物質ペーストに覆われていて露出していない構成を有している。 In order to solve the problems described above, the negative electrode for a lead-acid battery of the present invention is a negative electrode for a lead-acid battery comprising a lattice made of a lead alloy not containing antimony and an active material paste filled in the lattice, One end of the grid is provided with a tab for electrically connecting to another negative electrode, and a part of the surface of the grid is provided with an alloy layer containing antimony, and the grid On the side of the end opposite to one end, the alloy layer is covered with the active material paste and has a non-exposed configuration.
 また、合金層におけるアンチモン濃度を0.1質量%以上10質量%以下とすることが好ましく、合金層におけるアンチモン濃度を1質量%以上5質量%以下とすることがより好ましい。 Further, the antimony concentration in the alloy layer is preferably 0.1% by mass to 10% by mass, and the antimony concentration in the alloy layer is more preferably 1% by mass to 5% by mass.
 また、合金層の厚みを0.1μm以上500μm以下とすることが好ましく、合金層の厚みを0.1μm以上100μm以下とすることがより好ましい。 The thickness of the alloy layer is preferably 0.1 μm to 500 μm, and more preferably 0.1 μm to 100 μm.
 本願の鉛蓄電池は、鉛合金製の格子に活物質ペーストを充填してなる正極と、上述の鉛蓄電池用負極とを、セパレータを介して対峙させて極板群を構成し、電解液とともに電槽に収納している構成を有している。 In the lead-acid battery of the present application, a positive electrode formed by filling an active material paste in a grid made of lead alloy and the above-mentioned negative electrode for lead-acid battery are made to face each other through a separator to form an electrode plate group. It has the composition stored in the tank.
 また、正極の格子の表面にアンチモンを含む合金層を設けてもよい。 Alternatively, an alloy layer containing antimony may be provided on the surface of the grid of the positive electrode.
 本発明の鉛蓄電池を用いれば、充電の機会が制御されたアイドリングストップ車のようにDODが顕著に大きい領域に達する放電を頻繁に繰り返す場合でも、脱落した正極活物質の巻き上げと付着に起因する内部短絡を防いで長寿命化できるようになる。 When the lead storage battery of the present invention is used, it is caused by the winding up and adhesion of the dropped positive electrode active material, even when the discharge reaching the region where the DOD is significantly large is frequently repeated as in an idling stop car with controlled charging opportunities. It becomes possible to extend the life by preventing the internal short circuit.
実施形態の鉛蓄電池用負極に用いる格子の一例を示す概略図Schematic which shows an example of the grid | lattice used for the negative electrode for lead acid batteries of embodiment 実施形態の鉛蓄電池用負極を示す概略図Schematic which shows the negative electrode for lead acid batteries of embodiment 比較の形態の構成における課題を示す模式断面図A schematic cross-sectional view showing the problem in the configuration of the comparative form 実施形態の構成による効果を示す模式断面図A schematic sectional view showing the effect of the configuration of the embodiment 実施形態の鉛蓄電池を示す概略図Schematic which shows the lead storage battery of embodiment 実施形態の効果を示す実験結果を表す図Diagram showing experimental results showing the effects of the embodiment 実施形態の好ましい態様が示す実験結果を表す図Figure showing a result of experiment showing a preferable aspect of the embodiment 実施形態の好ましい態様が示す実験結果を表す図Figure showing a result of experiment showing a preferable aspect of the embodiment
 本願の実施形態に関して述べる前に、本願発明に至った経緯について説明を行う。 Before describing the embodiments of the present application, the background of the present invention will be described.
 DODが比較的大きい領域(例えば3%以上)で鉛蓄電池を使用すると、早期に正極から軟化した活物質が脱落する。そして正極活物質の脱落物は電槽の底に堆積する。一方で負極の格子(鉛合金製)の表面に、特許文献1に開示されているようにアンチモンを含む合金層を設けた場合、正極活物質の脱落物は電解液中を舞って、その一部は極板群の上部に堆積してしまうことが判明した。極板群の上部に堆積した脱落物は、充電によってPbO2(正極)とPb(負極)とに還元される。そうすると正極と負極が接続されて内部短絡が発生してしまう。この内部短絡により突然死が生じてしまうことを発明者らは初めて見出した。 When a lead-acid battery is used in a region where the DOD is relatively large (for example, 3% or more), the active material softened from the positive electrode drops out early. And the dropouts of a positive electrode active material accumulate on the bottom of a battery case. On the other hand, when the alloy layer containing antimony is provided on the surface of the lattice (made of lead alloy) of the negative electrode as disclosed in Patent Document 1, the dropouts of the positive electrode active material fly in the electrolyte and It was found that the part deposited on the top of the plate group. Dropouts deposited on the top of the electrode group are reduced to PbO 2 (positive electrode) and Pb (negative electrode) by charging. Then, the positive electrode and the negative electrode are connected to cause an internal short circuit. The inventors have found for the first time that this internal short circuit causes sudden death.
 発明者らは、種々検討の結果、アンチモンを含む合金層と格子との界面で局部電池が構成されることにより対流を伴ってガスが発生するため、正極活物質の脱落物が極板群の上部に堆積しやすくなることを見出した。この知見に基づき、負極の長寿命化に欠かせないアンチモンを含む合金層が、特許文献1のように最下部において合金層と負極格子そのものとの界面が電解液に対して露出しないようにすることとした。具体的には、負極格子の下部において合金層と負極格子そのものとの境界部分を負極活物質で覆って露出しないようにしたり、合金層を最下部には設けないようにした。これによって、正極活物質の脱落物に最も近い負極の最下部において合金層と格子との界面が露出しなくなり、そのためガスが発生しなくなって、正極活物質の脱落物を極板群の上部まで巻き上げる機会が激減した。その結果、上述した予期せぬ突然死の発生を抑制することができるようになった。 As a result of various studies, the inventors of the present invention have found that a local battery is formed at the interface between the alloy layer containing antimony and the lattice to generate gas with convection, so the dropout of the positive electrode active material is We found that it was easy to deposit on the top. Based on this finding, the alloy layer containing antimony which is essential for prolonging the life of the negative electrode prevents the interface between the alloy layer and the negative electrode grid itself from being exposed to the electrolyte at the lowermost portion as in Patent Document 1 I decided. Specifically, in the lower part of the negative electrode grid, the boundary between the alloy layer and the negative electrode grid itself is covered with the negative electrode active material so as not to be exposed, or the alloy layer is not provided at the lowermost part. As a result, the interface between the alloy layer and the lattice is not exposed at the lowermost part of the negative electrode closest to the dropout of the positive electrode active material, so that no gas is generated and the dropout of the positive electrode active material extends to the top of the electrode plate group The opportunity to roll it up was sharply reduced. As a result, it became possible to suppress the occurrence of the above-mentioned unexpected sudden death.
 以下、本発明の実施の形態を、図を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は実施形態の鉛蓄電池用負極に用いる格子の一例を示す概略図であり、図2は実施形態の鉛蓄電池用負極を示す概略図である。図1に示す格子はレシプロ方式のエキスパンド格子(鉛合金製)であって、鉛の他にカルシウムや錫などを含ませることができる。なお、格子を構成している鉛合金にはアンチモンは含まれていない。ここでアンチモンが含まれていないのは、格子の骨格部分であり、後述するように格子の表面の一部にはアンチモンを含む合金層が形成されている。 FIG. 1 is a schematic view showing an example of a grid used for the lead-acid battery negative electrode of the embodiment, and FIG. 2 is a schematic view showing the lead-acid battery negative electrode of the embodiment. The lattice shown in FIG. 1 is a reciprocal expanded lattice (made of lead alloy), and can contain calcium, tin and the like in addition to lead. The lead alloy constituting the grid does not contain antimony. Here, it is the skeleton of the lattice that does not contain antimony, and an alloy layer containing antimony is formed on part of the surface of the lattice as described later.
 そして耳部(タブ部)2を有する上枠部1の下に、略菱目状の網目部3が連接されている。なおロータリー方式のエキスパンド格子の場合、網目部3のさらに下に下枠部が連接されることになる。この格子(特に網目部3)に活物質ペースト5を充填することで、鉛蓄電池用負極が構成される。複数の負極同士は、耳部2の部分で互いに電気的に接続される。 Under the upper frame portion 1 having the ear portion (tab portion) 2, a mesh portion 3 having a substantially rhombus shape is connected. In addition, in the case of the expanded grid of a rotary system, a lower frame part is connected below the mesh part 3 further. By filling the active material paste 5 in the lattice (in particular, the mesh portion 3), a negative electrode for a lead storage battery is formed. The plurality of negative electrodes are electrically connected to each other at the portion of the ear 2.
 本実施形態の鉛蓄電池用負極は、最下部を除いた格子20の表面に、アンチモンを含む合金層4を設けており、最下部では合金層4は露出していない。 In the negative electrode for a lead storage battery of this embodiment, the alloy layer 4 containing antimony is provided on the surface of the lattice 20 excluding the lowermost portion, and the alloy layer 4 is not exposed at the lowermost portion.
 図3は、比較の形態に係る鉛蓄電池内部の模式的な構成を示した図である。見やすくするために電解液は省略して図示していない。比較の形態では図3の左側に位置する負極9bにおいて負極格子20の最下部にまでアンチモンを含む合金層4が設けられており、最下部においてアンチモンを含まない負極格子20とアンチモンを含む合金層4との両方が露出しており、両者の境界も電解液中に露出している。そして図3の右側には正極9aが位置している。正極9aは正極格子30に正極活物質6を充填して作成されている。正極9aと負極9bとの間にはセパレータ9cが置かれている。 FIG. 3 is a view showing a schematic configuration inside a lead storage battery according to a comparative embodiment. The electrolyte is not shown and not shown for the sake of clarity. In the comparative embodiment, the alloy layer 4 containing antimony is provided up to the lowermost part of the negative electrode grid 20 in the negative electrode 9 b located on the left side of FIG. 3, and the negative electrode grid 20 containing no antimony and the alloy layer containing antimony at the lowermost part Both 4 and 4 are exposed, and the boundary between the two is also exposed in the electrolyte. The positive electrode 9a is located on the right side of FIG. The positive electrode 9 a is formed by filling the positive electrode grid 30 with the positive electrode active material 6. A separator 9c is placed between the positive electrode 9a and the negative electrode 9b.
 DODが顕著に大きい領域(例えば3%以上)で鉛蓄電池を使用すると、比較的早期に正極9aから軟化した正極活物質6が脱落し、堆積する。一方で比較の形態に示すように、負極格子20の最下部にまで表面にアンチモンを含む合金層4を設けた場合、図3に示すように、堆積した正極活物質6の脱落物6aに最も近い負極9bの最下部において合金層4と負極格子20との界面が存在する(図中A)。この界面の部分が局部電池となる。この局部電池により発生したガスが、実線矢印で示す対流を引き起こす。この対流によって正極活物質6の脱落物6aは正極9a及び負極9bの上部にまで運ばれて正極9a及び負極9bの上に堆積してしまう。脱落物6aが正極9a及び負極9bに堆積すると、正極9aと負極9bとの極間距離は局所的に小さくなる。正極9a及び負極9bの上部に堆積した正極活物質6の脱落物6aは、充電によってPbO2(正極)とPb(負極)とに還元される。そうすると局所的に極間距離が小さくなった箇所では、内部短絡が発生してしまう。 When the lead storage battery is used in a region (for example, 3% or more) in which the DOD is significantly large, the softened positive electrode active material 6 falls off from the positive electrode 9a relatively early and deposits. On the other hand, as shown in the comparative embodiment, when the alloy layer 4 containing antimony is provided on the surface down to the lowermost part of the negative electrode grid 20, as shown in FIG. An interface between the alloy layer 4 and the negative electrode grid 20 exists at the lowermost part of the near negative electrode 9 b (A in the figure). The part of this interface becomes a local battery. The gas generated by this local cell causes convection as shown by the solid arrow. Due to the convection, the dropout 6a of the positive electrode active material 6 is carried to the upper part of the positive electrode 9a and the negative electrode 9b and deposited on the positive electrode 9a and the negative electrode 9b. When the dropout 6a is deposited on the positive electrode 9a and the negative electrode 9b, the interelectrode distance between the positive electrode 9a and the negative electrode 9b is locally reduced. Dropouts 6a of the positive electrode active material 6 deposited on top of the positive electrode 9a and the negative electrode 9b are reduced to PbO 2 (positive electrode) and Pb (negative electrode) by charging. As a result, an internal short circuit occurs at a point where the distance between the electrodes is locally reduced.
 本実施形態では、比較の形態のように合金層4を負極格子20の最下部にまで設けず、図4のように最下部を除いて設けることで、正極活物質6の脱落物6aに最も近い負極の最下部において合金層4と負極格子20との界面を負極活物質5で覆って露出しないようにしている(図中B)。これにより負極9bの最下部でガスが発生しなくなり、正極活物質6の脱落物6aが対流によって正極9a及び負極9bの上部まで運ばれる機会が激減し、内部短絡による突然死を抑制できるようになる。 In the present embodiment, the alloy layer 4 is not provided to the lowermost part of the negative electrode grid 20 as in the comparative embodiment, but is provided excluding the lowermost part as shown in FIG. At the lowermost portion of the near negative electrode, the interface between the alloy layer 4 and the negative electrode grid 20 is covered with the negative electrode active material 5 so as not to be exposed (B in the figure). As a result, no gas is generated at the lowermost portion of the negative electrode 9b, and the opportunity for the dropouts 6a of the positive electrode active material 6 to be transported to the upper portions of the positive electrode 9a and the negative electrode 9b by convection is reduced significantly. Become.
 ここで合金層4におけるアンチモン濃度を0.1質量%以上10質量%以下、より好ましくは1質量%以上5質量%以下とすることで、本実施形態の効果は顕著になる。充電受入性を向上して負極の長寿命化を顕著にするには合金層4のアンチモン濃度を0.1質量%以上にすればよいが、合金層4のアンチモン濃度が10質量%以上になると充電電流が顕著に増加することでガス発生量も多くなり、底部に堆積した正極活物質の脱落物6aを巻き上げやすくなって本実施形態の効果が薄れる。 By setting the antimony concentration in the alloy layer 4 to 0.1% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 5% by mass or less, the effects of the present embodiment become remarkable. In order to improve charge acceptance and prolong the life of the negative electrode, the antimony concentration of the alloy layer 4 may be 0.1 mass% or more, but when the antimony concentration of the alloy layer 4 is 10 mass% or more As the charging current significantly increases, the gas generation amount also increases, and it is easy to roll up the dropouts 6a of the positive electrode active material deposited on the bottom, and the effect of the present embodiment is reduced.
 また合金層4の厚みを0.1μm以上500μm以下、より好ましくは0.1μm以上100μm以下とすることで、本実施形態の効果はさらに顕著になる。充電受入性を向上して負極の長寿命化を顕著にするには合金層4の厚みを0.1μm以上にすればよいが、合金層4の厚みが500μm以上になると充電電流が顕著に増加することでガス発生量も多くなり、底部に堆積した正極活物質の脱落物6aを巻き上げやすくなって本実施形態の効果が薄れる。 Further, by setting the thickness of the alloy layer 4 to 0.1 μm or more and 500 μm or less, more preferably 0.1 μm or more and 100 μm or less, the effect of the present embodiment becomes more remarkable. The thickness of the alloy layer 4 may be 0.1 μm or more in order to improve the charge acceptance and prolong the life of the negative electrode, but when the thickness of the alloy layer 4 is 500 μm or more, the charging current significantly increases. As a result, the amount of gas generation increases, and it becomes easy to roll up the dropout 6a of the positive electrode active material deposited on the bottom, and the effect of the present embodiment is reduced.
 なお合金層4には、アンチモンや鉛の他に、スズや銀などを含ませても良い。 The alloy layer 4 may contain tin, silver or the like in addition to antimony and lead.
 また本実施形態の特徴である「負極格子20の最下部では、アンチモンを含む合金層4は負極活物質ペースト5に覆われて露出していない」とは、図4に示す態様(下枠部のみに合金層4を設けず、活物質ペースト5は下枠部にまで設ける)に限らない。具体的には、下枠部の上部に合金層4が設けられた態様でも良く、網目部3の下部に合金層4が設けられていない態様でも良い。すなわち図3に示す対流が起こらないように、格子20の最下部において合金層4が露出しておらず、結果として隣接している格子20と合金層4とが両方一緒に露出することがないようにすることが、本実施形態の要点である。 Also, the aspect (lower frame portion shown in FIG. 4) that “at the lowermost portion of the negative electrode grid 20, the alloy layer 4 containing antimony is covered with the negative electrode active material paste 5 and not exposed” which is the feature of this embodiment The active material paste 5 is not limited to the lower frame portion). Specifically, the alloy layer 4 may be provided on the upper portion of the lower frame portion, or the alloy layer 4 may not be provided on the lower portion of the mesh portion 3. That is, the alloy layer 4 is not exposed at the lowermost part of the lattice 20 so that the convection shown in FIG. 3 does not occur, and as a result, neither the adjacent lattice 20 nor the alloy layer 4 is exposed together. It is the gist of this embodiment to do so.
 図5は本実施形態の鉛蓄電池の一例を示す概略図である。電槽7は、その内部を複数のセル室8に区切るための隔壁7aと、短側面7bと、長側面7cと、底面(図示せず)で構成された一体の樹脂成型品である。このセル室8のそれぞれに、セパレータ9cを介して正極9aと本実施形態の負極9bとを対峙させた極板群9と電解液(図示せず)を収納する。そしてそれぞれの極板群9における同じ極性の極板(正極9aおよび負極9b)の耳部(負極の場合は2)を1つの接続部品10に接続し、さらに隔壁7aに設けた貫通孔を介して、隣り合った極板群9の異なる極性の接続部品10どうしを接触させ、この接触させた部位を所定の条件で抵抗溶接する。一方で一端のセル室8の正極9aの耳部は正極性の極柱(図示せず)に接続し、他端のセル室8の負極9bの耳部2は負極性の極柱(図示せず)に接続する。そして電槽7の開口部を蓋11で封止しつつ、蓋11と一体化したブッシング(図示せず)にそれぞれの極柱を接続して端子12とすることで、本実施形態の鉛蓄電池が構成される。 FIG. 5 is a schematic view showing an example of the lead storage battery of the present embodiment. The battery case 7 is an integral resin molded product formed of a partition 7a for dividing the inside into a plurality of cell chambers 8, a short side 7b, a long side 7c, and a bottom surface (not shown). In each of the cell chambers 8, an electrode plate group 9 in which the positive electrode 9a and the negative electrode 9b of the present embodiment are opposed to each other via the separator 9c is accommodated and an electrolytic solution (not shown). Then, the ear parts (2 in the case of the negative electrode) of the electrode plates (positive electrode 9a and negative electrode 9b) of the same polarity in each electrode plate group 9 are connected to one connection component 10, and further through the through holes provided in the partition 7a. Then, the connection parts 10 of different polarity of the adjacent electrode plate group 9 are brought into contact with each other, and this contact portion is resistance-welded under predetermined conditions. On the other hand, the ear of the positive electrode 9a of the cell chamber 8 at one end is connected to a positive pole (not shown) and the ear 2 of the negative electrode 9b of the cell chamber 8 at the other end is a negative pole (not shown) Connection). Then, while sealing the opening of the battery case 7 with the lid 11, the respective pole columns are connected to the bushing (not shown) integrated with the lid 11 to form the terminals 12, the lead storage battery of this embodiment Is configured.
 ここで、正極9aにおいて格子と正極活物質6との界面の導電性を向上させることを目的として格子30の表面にアンチモンを含む合金層を設けた正極を用いれば、本実施形態の鉛蓄電池はさらに高性能化される。 Here, if a positive electrode provided with an alloy layer containing antimony on the surface of the grid 30 is used for the purpose of improving the conductivity of the interface between the grid and the positive electrode active material 6 in the positive electrode 9a, the lead storage battery of this embodiment The performance is further improved.
 以下、実施例により、本実施形態の効果を説明する。 The effects of the present embodiment will be described below by way of examples.
 酸化鉛粉を硫酸と精製水とで混練して正極活物質ペーストを作製し、鉛-錫-アンチモンからなる合金層を表面に設けた圧延シート(組成は鉛-カルシウム合金)をレシプロ方式でエキスパンド展開して得た正極格子30にこの活物質ペーストを充填し、正極9aを作製した。 Lead oxide powder is kneaded with sulfuric acid and purified water to make a positive electrode active material paste, and a rolled sheet (the composition is a lead-calcium alloy) with a lead-tin-antimony alloy layer provided on the surface is expanded by a reciprocating method The active material paste was filled in a positive electrode grid 30 obtained by development, to produce a positive electrode 9a.
 一方、酸化鉛粉に対して有機添加剤や硫酸バリウム、カーボンなどを常法により添加したものを硫酸と精製水とで混練して負極活物質ペーストを作製し、鉛-錫-アンチモンからなる合金層4を種々の条件(詳細は後述)で表面に設けた圧延シート(組成は鉛-錫-カルシウム合金)をレシプロ方式でエキスパンド展開して得た負極格子20にこの活物質ペーストを充填し、負極9b(長さ115mm)を作製した。圧延シートにはアンチモンが含まれていない。 On the other hand, an additive made of lead-tin-antimony is prepared by kneading an additive prepared by adding an organic additive, barium sulfate, carbon or the like to lead oxide powder according to a conventional method with sulfuric acid and purified water to prepare a negative electrode active material paste. The active material paste is filled in a negative electrode grid 20 obtained by expanding and expanding a rolled sheet (composition is a lead-tin-calcium alloy) provided with a layer 4 on the surface under various conditions (details will be described later). The negative electrode 9 b (length 115 mm) was produced. The rolled sheet does not contain antimony.
 上述した正極9aおよび負極9bを熟成乾燥させた後、正極9aをポリエチレンからなる袋状のセパレータ9cで包み、負極9bと交互に重ね、それぞれの耳部を接続部品10と溶接することで極板群9を作製した。そして6つのセル室8からなる電槽7のそれぞれのセル室8に極板群9を挿入し、隔壁7aに設けられた孔を介して接続部品10を溶接し、極板群9が直列に接続されるようにした。 After ripening and drying the positive electrode 9a and the negative electrode 9b described above, the positive electrode 9a is wrapped with a bag-like separator 9c made of polyethylene, alternately stacked with the negative electrode 9b, and the respective ear parts are welded to the connection component 10 Group 9 was made. Then, the electrode plate group 9 is inserted into each cell chamber 8 of the battery case 7 consisting of six cell chambers 8, and the connection component 10 is welded through the hole provided in the partition 7a, and the electrode plate group 9 is in series. It was made to be connected.
 さらに電槽7に蓋11を溶着して取り付け、ブッシングと極柱とを溶接して端子12を構成した。最後にセル室8の全てに希硫酸からなる電解液を入れ、電槽化成を行うことで電解液の比重が1.280g/cm3(20℃換算値)になるように調整して、12V48Ahの鉛蓄電池を作製した。 Furthermore, the lid 11 was attached to the battery case 7 by welding, and the terminal 12 was formed by welding the bushing and the pole post. Finally, an electrolytic solution consisting of dilute sulfuric acid is put in all the cell chambers 8, and by performing battery cell formation, the specific gravity of the electrolytic solution is adjusted to be 1.280 g / cm 3 (20 ° C. conversion value), and 12V48 Ah Lead-acid batteries were manufactured.
 検討は3段階に分けて行った。第1に、本実施形態の適合範囲を検討するため、合金層4のアンチモン濃度を2質量%、厚みを10μm一定とし、合金層4を格子20のどの部位の表面に設けるかを検討した。条件を(表1)に示す。なおここで格子の「上部」「下部」「中間部」とは、図1にあるように、格子を上下方向に5等分した各部位を示している。すなわち「上部」とは最も上の1/5、「下部」とは最も下の1/5から後述する「最下部」を差し引いた領域、「中間部」とは中間の3/5を指す。そして「最下部」とは、格子の最下端から5mm上までの領域を指す。 The examination was divided into three stages. First, in order to examine the compatible range of the present embodiment, the antimony concentration of the alloy layer 4 was 2% by mass, the thickness was constant at 10 μm, and it was examined on which surface of the lattice 20 the alloy layer 4 was provided. The conditions are shown in (Table 1). Here, “upper part”, “lower part” and “intermediate part” of the grid indicate respective parts obtained by vertically dividing the grid into five as shown in FIG. That is, "upper part" indicates the top 1/5, "lower" indicates the area obtained by subtracting "lower part" described later from the lowermost 1/5, and "middle part" indicates the middle 3/5. And "the lowermost part" points out the field to 5 mm above from the lower end of a lattice.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第2に、本実施形態の最適範囲を検討するため、格子20の表面に合金層4を設ける箇所を「最下部を除く任意の箇所」、合金層4の厚みを10μm一定とし、合金層4のアンチモン濃度を変化させた。条件を(表2)に示す。 Second, in order to examine the optimum range of the present embodiment, the portion where the alloy layer 4 is provided on the surface of the lattice 20 is "any portion except for the lowermost portion", and the thickness of the alloy layer 4 is constant 10 μm. Changes the antimony concentration of The conditions are shown in (Table 2).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 第3に、本実施形態の最適範囲を検討するため、格子の表面に合金層4を設ける箇所を「最下部を除く任意の箇所」、合金層4のアンチモン濃度を2質量%一定とし、合金層4の厚みを変化させた。条件を(表3)に示す。 Thirdly, in order to examine the optimum range of the present embodiment, the location where the alloy layer 4 is provided on the surface of the lattice is "any place except the lowermost part", and the antimony concentration of the alloy layer 4 is constant at 2% by mass. The thickness of layer 4 was varied. The conditions are shown in (Table 3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (表1)~(表3)に示したそれぞれの電池について、充電の機会を制御したアイドリングストップ仕様の寿命試験を行った。具体的には下記のように、電池工業会規格(SBA S 0101)を基に改良したパターンを用いた。具体的には、気槽温度を25℃±2℃(鉛蓄電池近傍の風速は2.0m/秒以下)として、下記の「A→B」を1回行った後「C→D」を4回行うパターンを1サイクルとし、50サイクル毎にEを1回実施した。ここでαとは、1サイクル中のA及びCにおける放電の総量(総放電電気量)と鉛蓄電池の定格容量とから算出したDODの実測値(%)である。 For each of the batteries shown in (Table 1) to (Table 3), a life test of an idling stop specification in which an opportunity for charging was controlled was performed. Specifically, as described below, a pattern improved based on the battery industry standard (SBA S 0101) was used. Specifically, assuming that the tank temperature is 25 ° C ± 2 ° C (the wind speed near the lead storage battery is 2.0 m / s or less), perform the following “A → B” once and then “C → D” 4 The pattern to be repeated was one cycle, and E was performed once every 50 cycles. Here, α is an actual measurement value (%) of DOD calculated from the total amount of discharge (total amount of discharged electricity) in A and C in one cycle and the rated capacity of the lead storage battery.
  A.放電、48Aで(24×α)秒
  B.放電、300Aで1秒
  C.放電、48Aで(3×α)秒
  D.充電(14.5V定電圧)、制限電流72Aで(6×α)秒
  E.充電(14.5V定電圧)、制限電流72Aで5Aに減衰するまで
 なお3600サイクル毎に40~48時間の放置を設けた。そしてBにおける放電電圧が7.2V未満になった時点のサイクル数を寿命の尺度とした。サンプルNo.1~5の電池を用いて種々のDODにおける寿命を検討したものを図6、サンプルNo.6~14および15~23の電池を用いてDOD=3%における寿命を検討したものを図7および8に、それぞれ示す。
A. Discharge, 48 A for (24 × α) seconds Discharge, 1 second at 300 A C.I. Discharge, at 48 A (3 x α) seconds Charging (14.5 V constant voltage), limiting current 72 A for (6 × α) seconds E. Until charging (14.5 V constant voltage) and damping current to 5 A with limiting current 72 A, leaving for 40 to 48 hours was provided every 3600 cycles. The number of cycles when the discharge voltage at B was less than 7.2 V was taken as a measure of the life. Sample No. The results of examining the life at various DODs using the 1 to 5 batteries are shown in FIG. 7 and 8 show the examination of the lifetime at DOD = 3% using the batteries of 6-14 and 15-23, respectively.
 図6からわかるように、格子の最下部を除く表面にアンチモンを含む合金層4を設けたNo.1~4の鉛蓄電池は、格子の最下部の表面にも合金層4を設けたNo.5~6の鉛蓄電池と比べて、充電の機会が制御されてDODが3%と大きくなった場合にも、優れた寿命特性を示すことがわかる。またDOD=3%一定として、合金層4の構成を比較した結果、アンチモン濃度を0.1質量%以上10質量%以下(より好ましくは1質量%以上5質量%以下)、もしくは厚みを0.1μm以上500μm以下(より好ましくは0.1μm以上100μm以下)とした場合に、本発明の効果がより顕著になってさらに長寿命化することがわかる。 As can be seen from FIG. 6, No. 1 in which the alloy layer 4 containing antimony is provided on the surface excluding the lowermost part of the lattice. No. 1 to 4 lead storage batteries were provided with an alloy layer 4 on the surface of the lowermost part of the grid. It can be seen that excellent life characteristics are exhibited even when the DOD is increased to 3% when the charge opportunity is controlled as compared with the lead storage battery of 5 to 6. Moreover, as a result of comparing the structure of the alloy layer 4 as DOD = 3% fixed, antimony concentration is 0.1 mass% or more and 10 mass% or less (more preferably 1 mass% or more and 5 mass% or less). In the case of 1 μm or more and 500 μm or less (more preferably 0.1 μm or more and 100 μm or less), it is understood that the effect of the present invention becomes more remarkable and the life is further prolonged.
 なお本実施例では、「最下部」を格子の最下端から5mm上まで(全長115mmにおける最も下の1/23)の領域とした一例を示したが、格子の最下端において合金層4との界面が存在しない形態であれば、本実施例における「最下部」と定義できることは言うまでもない。例えば、サンプルNo.1および2が十分な特性を示すことから、格子を上下方向に5等分した場合に格子の最下端から1/5までであれば、最下部の領域として好適であることがわかる。 In the present embodiment, an example is shown in which the "lowermost portion" is a region 5 mm above the lowermost end of the lattice (1/23 of the lowermost at a total length of 115 mm), but with the alloy layer 4 at the lowermost end of the lattice It is needless to say that it can be defined as the "lowermost part" in the present embodiment, as long as there is no interface. For example, sample no. From the fact that 1 and 2 show sufficient characteristics, it can be understood that when the grid is divided into five in the vertical direction, the region from the lowermost end of the grid to 1⁄5 is suitable as the lowermost region.
 (その他の実施形態)
 上述の実施形態は本願発明の例示であって、本願発明はこれらの例に限定されず、これらの例に周知技術や慣用技術、公知技術を組み合わせたり、一部置き換えたりしてもよい。また当業者であれば容易に思いつく改変発明も本願発明に含まれる。
(Other embodiments)
The embodiments described above are exemplifications of the present invention, and the present invention is not limited to these examples, and the examples may be combined or partially replaced with known techniques, conventional techniques, known techniques. In addition, modified inventions that can be easily conceived by those skilled in the art are also included in the present invention.
 負極格子の網目形状は菱形に限定されず、矩形や円形であってもよい。負極格子、正極格子、負極活物質、正極活物質の材料や組成などは公知の材料や組成であればどのようなものであってもよい。負極や正極の大きさも実施例の大きさに限定されない。 The mesh shape of the negative electrode grid is not limited to the rhombus, and may be rectangular or circular. Materials, compositions and the like of the negative electrode grid, the positive electrode grid, the negative electrode active material, and the positive electrode active material may be any known materials and compositions. The sizes of the negative electrode and the positive electrode are not limited to the sizes of the embodiments.
 本発明の鉛蓄電池は、充電の機会を制御しつつアイドリングストップを行うような深い放電を頻繁に繰り返す環境において、内部短絡を抑制して良好な寿命特性を得ることが可能であり、工業上、極めて有用である。 The lead-acid battery of the present invention is capable of suppressing internal short circuit and obtaining good life characteristics in an environment where frequent deep discharges such as idling stop are performed while controlling the charge opportunity, and it is industrially It is extremely useful.
  1  上枠部
  2  耳部(タブ部)
  3  網目部
  4  合金層
  5  負極活物質ペースト
  6  正極活物質
  6a 正極活物質の脱落物
  7  電槽
  7a 隔壁
  7b 短側面
  7c 長側面
  8  セル室
  9  極板群
  9a 正極
  9b 負極
  9c セパレータ
 10  接続部品
 11  蓋
 12  端子
 20  負極格子
 30  正極格子
1 upper frame 2 ear (tab)
DESCRIPTION OF SYMBOLS 3 mesh part 4 alloy layer 5 negative electrode active material paste 6 positive electrode active material 6 a dropout of positive electrode active material 7 battery tank 7 a partition wall 7 b short side 7 c long side 8 cell side 9 cell group 9 electrode group 9 a positive electrode 9 b negative electrode 9 c separator 10 connection part 11 Lid 12 terminal 20 negative grid 30 positive grid

Claims (7)

  1.  アンチモンを含まない鉛合金からなる格子と、前記格子に充填された活物質ペーストとを備えた鉛蓄電池用負極であって、
     前記格子の一方の端には別の負極と電気的に接続するためのタブ部が設けられており、
     前記格子の表面の一部にはアンチモンを含む合金層が設けられており、
     前記格子の前記一方の端とは反対側の端の側では、前記合金層は前記活物質ペーストに覆われていて露出していない、鉛蓄電池用負極。
    A negative electrode for a lead storage battery comprising: a grid made of a lead alloy not containing antimony; and an active material paste filled in the grid,
    One end of the grid is provided with a tab for electrically connecting to another negative electrode,
    An alloy layer containing antimony is provided on part of the surface of the grid,
    The negative electrode for lead acid battery, wherein the alloy layer is covered with the active material paste and not exposed on the side opposite to the one end of the lattice.
  2.  前記合金層におけるアンチモン濃度を0.1質量%以上10質量%以下としたことを特徴とする、請求項1記載の鉛蓄電池用負極。 The negative electrode for a lead acid battery according to claim 1, wherein the concentration of antimony in the alloy layer is 0.1% by mass or more and 10% by mass or less.
  3.  前記合金層におけるアンチモン濃度を1質量%以上5質量%以下としたことを特徴とする、請求項2記載の鉛蓄電池用負極。 The negative electrode for a lead acid battery according to claim 2, wherein the antimony concentration in the alloy layer is 1% by mass or more and 5% by mass or less.
  4.  前記合金層の厚みを0.1μm以上500μm以下としたことを特徴とする、請求項1記載の鉛蓄電池用負極。 The thickness of the said alloy layer was 0.1 micrometer or more and 500 micrometers or less, The negative electrode for lead acid batteries of Claim 1 characterized by the above-mentioned.
  5.  前記合金層の厚みを0.1μm以上100μm以下としたことを特徴とする、請求項4記載の鉛蓄電池用負極。 The thickness of the said alloy layer was 0.1 micrometer or more and 100 micrometers or less, The negative electrode for lead acid batteries of Claim 4 characterized by the above-mentioned.
  6.  鉛合金からなる格子に活物質ペーストを充填してなる正極と、請求項1ないし5のいずれかに記載の鉛蓄電池用負極とを、セパレータを介して対峙させて極板群を構成し、電解液とともに電槽に収納した鉛蓄電池。 A positive electrode formed by filling an active material paste in a grid made of a lead alloy and a negative electrode for a lead storage battery according to any one of claims 1 to 5 are opposed to each other via a separator to form an electrode plate group, and electrolysis Lead-acid battery stored in battery case with liquid.
  7.  前記正極の格子の表面にアンチモンを含む合金層を設けたことを特徴とする、請求項6記載の鉛蓄電池。
     
    The lead storage battery according to claim 6, wherein an alloy layer containing antimony is provided on the surface of the grid of the positive electrode.
PCT/JP2012/002621 2011-05-12 2012-04-16 Lead-acid battery anode and lead-acid battery WO2012153464A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280010924.9A CN103403933B (en) 2011-05-12 2012-04-16 Lead-acid battery anode and lead battery
DE112012002048.0T DE112012002048T5 (en) 2011-05-12 2012-04-16 Negative electrode for a lead-acid battery and lead-acid battery
JP2013513910A JPWO2012153464A1 (en) 2011-05-12 2012-04-16 Negative electrode for lead acid battery and lead acid battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011106847 2011-05-12
JP2011-106847 2011-05-12

Publications (1)

Publication Number Publication Date
WO2012153464A1 true WO2012153464A1 (en) 2012-11-15

Family

ID=47138957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002621 WO2012153464A1 (en) 2011-05-12 2012-04-16 Lead-acid battery anode and lead-acid battery

Country Status (4)

Country Link
JP (1) JPWO2012153464A1 (en)
CN (1) CN103403933B (en)
DE (1) DE112012002048T5 (en)
WO (1) WO2012153464A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087565A1 (en) * 2012-12-03 2014-06-12 パナソニック株式会社 Lead-acid storage battery grid and lead-acid storage battery
WO2014097522A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead-acid battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
JP2017067596A (en) * 2015-09-30 2017-04-06 株式会社Gsユアサ Oxygen sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108780874B (en) * 2016-03-15 2021-04-13 株式会社杰士汤浅国际 Lead-acid battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346762A (en) * 1989-07-13 1991-02-28 Matsushita Electric Ind Co Ltd Electrode plate for lead storage battery
JP2005302395A (en) * 2004-04-08 2005-10-27 Matsushita Electric Ind Co Ltd Lead storage battery
JP2006156371A (en) * 2004-11-08 2006-06-15 Gs Yuasa Corporation:Kk Negative electrode collector for lead-acid battery
JP2009266514A (en) * 2008-04-24 2009-11-12 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2010113933A (en) * 2008-11-06 2010-05-20 Panasonic Corp Paste type lead-acid storage battery
JP2010192162A (en) * 2009-02-16 2010-09-02 Gs Yuasa Corp Lead-acid storage battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101048900B (en) * 2004-11-08 2010-06-16 株式会社杰士汤浅 Negative electrode collector for lead-acid battery
JP5168893B2 (en) * 2006-12-01 2013-03-27 パナソニック株式会社 Lead acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346762A (en) * 1989-07-13 1991-02-28 Matsushita Electric Ind Co Ltd Electrode plate for lead storage battery
JP2005302395A (en) * 2004-04-08 2005-10-27 Matsushita Electric Ind Co Ltd Lead storage battery
JP2006156371A (en) * 2004-11-08 2006-06-15 Gs Yuasa Corporation:Kk Negative electrode collector for lead-acid battery
JP2009266514A (en) * 2008-04-24 2009-11-12 Shin Kobe Electric Mach Co Ltd Lead-acid battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2010113933A (en) * 2008-11-06 2010-05-20 Panasonic Corp Paste type lead-acid storage battery
JP2010192162A (en) * 2009-02-16 2010-09-02 Gs Yuasa Corp Lead-acid storage battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014087565A1 (en) * 2012-12-03 2014-06-12 パナソニック株式会社 Lead-acid storage battery grid and lead-acid storage battery
WO2014097522A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead-acid battery
JP5587523B1 (en) * 2012-12-21 2014-09-10 パナソニック株式会社 Lead acid battery
CN104471781A (en) * 2012-12-21 2015-03-25 松下知识产权经营株式会社 Lead-Acid Battery
CN104471781B (en) * 2012-12-21 2016-04-06 松下知识产权经营株式会社 Lead accumulator
CN105514504A (en) * 2012-12-21 2016-04-20 松下知识产权经营株式会社 A lead-acid battery
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
JP2017067596A (en) * 2015-09-30 2017-04-06 株式会社Gsユアサ Oxygen sensor

Also Published As

Publication number Publication date
CN103403933A (en) 2013-11-20
CN103403933B (en) 2016-07-06
JPWO2012153464A1 (en) 2014-07-31
DE112012002048T5 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5587523B1 (en) Lead acid battery
JP5016306B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP6660072B2 (en) Positive electrode plate for lead-acid battery, lead-acid battery using the positive electrode plate, and method of manufacturing positive electrode plate for lead-acid battery
JP2017063001A (en) Lead storage battery
JP6045329B2 (en) Lead acid battery
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP6388094B1 (en) Lead acid battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP6198046B2 (en) Liquid lead-acid battery
JP2008243480A (en) Lead storage battery
JP6398111B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP2014203678A (en) Lead storage battery
JP2019079778A (en) Lead acid battery
CN211320252U (en) Lead-acid battery
JP2002198085A (en) Lead storage battery
JP4069743B2 (en) Lead acid battery
JP4556250B2 (en) Lead acid battery
JP2006066254A (en) Lead-acid storage battery
JP2018170303A (en) Lead-acid battery
JP2005268061A (en) Lead storage cell
JPH11144719A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781600

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513910

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120020480

Country of ref document: DE

Ref document number: 112012002048

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12781600

Country of ref document: EP

Kind code of ref document: A1