JP2008243480A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2008243480A
JP2008243480A JP2007080106A JP2007080106A JP2008243480A JP 2008243480 A JP2008243480 A JP 2008243480A JP 2007080106 A JP2007080106 A JP 2007080106A JP 2007080106 A JP2007080106 A JP 2007080106A JP 2008243480 A JP2008243480 A JP 2008243480A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
mass
lead
expanded graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007080106A
Other languages
Japanese (ja)
Other versions
JP5116331B2 (en
Inventor
Toshimichi Takada
利通 高田
Atsushi Furukawa
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2007080106A priority Critical patent/JP5116331B2/en
Publication of JP2008243480A publication Critical patent/JP2008243480A/en
Application granted granted Critical
Publication of JP5116331B2 publication Critical patent/JP5116331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead storage battery with both improvement in utilization efficiency and elongation of life of its cathode, in a liquid-type and sealed-type for use for bicycles, four-wheeled automobiles and industries. <P>SOLUTION: For the lead storage battery with expanded graphite and bismuth added to a cathode active material in a cathode made by filling a substrate with a cathode active material, a desirable addition amount of the expanded graphite is to be 0.1% by mass or more and 2.0% by mass or less of the cathode active material, and that of a pure metal portion of the bismuth is to be 0.01% by mass or more and 0.5% by mass or less of the cathode active material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

二輪、四輪自動車及び産業用の液式及び密閉式鉛蓄電池の正極の利用率向上と寿命延長が両立された鉛蓄電池に関するものである。 The present invention relates to a lead-acid battery in which the positive electrode utilization rate and the life extension of two-wheeled, four-wheeled vehicles, and industrial liquid and sealed lead-acid batteries are compatible.

従来、自動車用鉛蓄電池はSLIバッテリーと呼ばれるように、始動時のスタータ起動、照明、イグニションをはじめ、高級車では100個以上搭載されていると言うモーターの電源として使用されて来たが、始動時のスタータ起動以外はエンジンが発電機を駆動して電力を供給するため、鉛蓄電池はさほど深い放電が行われることはなかった。また、発電機からの充電により、多くの場合は満充電状態に置かれるため、過充電に強いことが求められていた。この鉛蓄電池は同時に過充電時のガス発生による電解液の減少を抑制し、補水の手間をなくすメンテナンスフリー性が求められ、正極基板を構成する合金はPb−Sb系合金からPb−Ca系合金に変更された。 Traditionally, lead-acid batteries for automobiles, called SLI batteries, have been used as a power source for motors that have been installed in more than 100 high-end cars, including starter start-up, lighting, and ignition at start-up. Since the engine drives the generator to supply electric power except for starting the starter at that time, the lead-acid battery was not discharged so deeply. Moreover, since charging from a generator often places the battery in a fully charged state, it has been required to be resistant to overcharging. This lead-acid battery is required to maintain the electrolyte-free decrease due to gas generation during overcharge and eliminate the need for replenishment, and the alloy constituting the positive electrode substrate is changed from Pb-Sb alloy to Pb-Ca alloy. Changed to

その結果、従来の使用条件では、鉛電池は正極格子グロスや正極格子腐食、エンジンルーム内の高温による負極活物質の収縮、そして高温・過充電による電解液の減少等により寿命となった。 As a result, under the conventional use conditions, the lead battery has reached the end of its life due to the positive electrode lattice gloss and the positive electrode lattice corrosion, the contraction of the negative electrode active material due to the high temperature in the engine room, and the decrease in the electrolyte due to high temperature and overcharge.

この原因の一つは正極基板合金がPb−Sb系からPb-Ca系に変わったことによるものである。Pb-Sb系合金では基板の酸化で生成した5価のSbイオンは格子−活物質界面の密着性を高めたり活物質に作用してその一部をゲル化し、活物質粒子同士の結合性を強化していると言われる。その結果、深い充放電を繰り返しても格子と活物質の剥離や活物質の軟化が抑制されていた。一方、Pb-Ca系合金ではSbで見られたような作用が弱く、深い充放電を繰り返すと活物質が早期に格子から剥離したり軟化して寿命となった。 One of the causes is that the positive electrode substrate alloy is changed from the Pb—Sb system to the Pb—Ca system. In a Pb-Sb alloy, pentavalent Sb ions generated by oxidation of the substrate increase the adhesion at the interface between the lattice and the active material or act on the active material to gel a part thereof, thereby binding the active material particles to each other. It is said that it is strengthening. As a result, peeling of the lattice and the active material and softening of the active material were suppressed even after repeated deep charge / discharge. On the other hand, in the Pb—Ca alloy, the action as seen in Sb is weak, and when deep charge and discharge are repeated, the active material peels off from the lattice or softens and reaches the end of its life.

そこで、これらを防止し、更に正極利用率を向上するために電解液である硫酸水溶液の拡散を良好にすることが試みられる。そこで一般には正極活物質の密度を低くする方法が採られ、黒鉛に硫酸イオンをインターカレートし、後処理によって予め膨張させた膨張化黒鉛を正極活物質に添加することが提案されている(特許文献1)。 Therefore, in order to prevent these problems and further improve the utilization ratio of the positive electrode, an attempt is made to improve the diffusion of the sulfuric acid aqueous solution as the electrolytic solution. Therefore, in general, a method of lowering the density of the positive electrode active material has been adopted, and it has been proposed that sulfate ions be intercalated into graphite and expanded graphite previously expanded by post-processing is added to the positive electrode active material ( Patent Document 1).

更に、Pb−Ca系合金を正極格子に用いた場合の活物質の剥離や軟化脱落を抑制する手段として、正極にSbを付与することが提案されている(特許文献2)。 Furthermore, it has been proposed that Sb is imparted to the positive electrode as a means for suppressing the separation and softening of the active material when a Pb—Ca-based alloy is used for the positive electrode lattice (Patent Document 2).

特開2004−55309号公報JP 2004-55309 A 特開昭49−71429号公報JP-A-49-71429

しかしながら、特許文献1に提案される様な膨張化黒鉛を正極活物質に添加した場合は、活物質の破壊はないが、充電中に酸化消失して形成された空孔の影響でやはり活物質が格子から剥離し易く、また軟化脱落して短寿命となる。 However, when expanded graphite as proposed in Patent Document 1 is added to the positive electrode active material, there is no destruction of the active material, but the active material is still affected by the vacancies formed by oxidation and disappearance during charging. Is easy to peel off from the lattice, and softens and falls, resulting in a short life.

更に、特許文献2に提案される様に、正極にSbを付与した場合は、微量であるとは言えSbの付与は負極の水素過電圧を低下させ、充電時にガス発生による電解液の減少を招き、短寿命であると共にメンテナンスフリー性を損なう結果となった。 Further, as proposed in Patent Document 2, when Sb is applied to the positive electrode, the application of Sb reduces the hydrogen overvoltage of the negative electrode even if the amount is small, and causes a decrease in electrolyte due to gas generation during charging. As a result, the service life is short and maintenance-free is impaired.

上記課題を解決するために、本発明者らは鋭意研究を行い、正極活物質に膨張化黒鉛及びビスマス(Bi)を添加することにより、正極の利用率向上並びに活物質の格子からの剥離と軟化抑制を両立できることを見出した。これらの効果をもたらす理由は明らかではないが以下のように考える。 In order to solve the above-mentioned problems, the present inventors have intensively studied, and by adding expanded graphite and bismuth (Bi) to the positive electrode active material, the utilization rate of the positive electrode is improved and the active material is separated from the lattice. It has been found that both softening suppression can be achieved. The reason for these effects is not clear, but is considered as follows.

膨張化黒鉛を添加した正極では充電時にこれが酸化消失して活物質内部に空孔が形成され、この空孔内部も電解液に対して活性な表面として作用し、高い利用率を発揮する。その結果、軟化の進行が促進されることになる。一方、活物質にBiを添加するとBiが正極活物質であるβ−PbO中にドープされると結晶中の水分子を安定化し、局部的に水酸化鉛に変性し、活物質粒子間で糊の役割を果たして軟化を抑制することが知られている。即ち、膨張化黒鉛によって形成された空孔内部では更に電解液の環境がアルカリ性にシフトする傾向があると考えられ、Biのみ添加した場合以上に軟化抑制効果を発揮するものと考えられる。 In the positive electrode to which expanded graphite is added, this is oxidized and disappears during charging, and vacancies are formed inside the active material. The vacancies also act as an active surface with respect to the electrolyte, and exhibit high utilization. As a result, the progress of softening is promoted. On the other hand, when Bi is added to the active material, when Bi is doped into β-PbO 2 which is the positive electrode active material, the water molecules in the crystal are stabilized and locally modified to lead hydroxide, and between the active material particles. It is known to play a role of glue and suppress softening. That is, it is considered that the environment of the electrolyte solution tends to shift to alkalinity further inside the pores formed by the expanded graphite, and it is considered that the softening suppressing effect is exhibited more than when only Bi is added.

膨張黒鉛の添加量は正極活物質の0.1質量%以上2質量%以下が良い。0.1質量%未満では添加効果が期待できず、2質量%を越えると添加効果が飽和するとともに、ペーストの調製が困難となる。 The amount of expanded graphite added is preferably 0.1% by mass or more and 2% by mass or less of the positive electrode active material. If the amount is less than 0.1% by mass, the effect of addition cannot be expected, and if it exceeds 2% by mass, the effect of addition becomes saturated and the preparation of the paste becomes difficult.

Biの添加量は金属純分として正極活物質の0.01質量%以上0.5質量%以下が良い。0.01質量%未満では添加効果が期待できず、0.5質量%を越えると放電特性が低下する傾向が認められる。特に好ましいのは0.01質量%から0.1質量%である。 The addition amount of Bi is preferably 0.01% by mass or more and 0.5% by mass or less of the positive electrode active material as a pure metal component. If the amount is less than 0.01% by mass, the effect of addition cannot be expected. If the amount exceeds 0.5% by mass, the discharge characteristics tend to deteriorate. Particularly preferred is 0.01% by mass to 0.1% by mass.

正極活物質の密度は活物質の物理的結合により軟化を抑制し正極格子の露出による腐食を抑制するという観点から、水置換法で測定した値が3.6g/cc〜4.5g/ccが好適である。3.6g/cc未満では密度が低く軟化が進行し易い。4.5g/ccを越えると密度が高過ぎて利用率が低下し、容量が確保できない。 The density of the positive electrode active material is 3.6 g / cc to 4.5 g / cc measured by a water displacement method from the viewpoint of suppressing softening by physical bonding of the active material and suppressing corrosion due to exposure of the positive electrode lattice. Is preferred. If it is less than 3.6 g / cc, the density is low and softening tends to proceed. If it exceeds 4.5 g / cc, the density is too high, the utilization rate is lowered, and the capacity cannot be secured.

本発明は、正極の利用率向上と寿命延長が図れ、21世紀において益々重要となる地球環境問題から不可避的に要求される省エネ、自然エネルギーなどの新エネ利用、特に化石燃料消費の多くを占める自動車等の輸送機器の燃費改善に応える、経済的で長期間安定的に作動する鉛蓄電池の改善を提供するものであり、その工業的価値は大きい。 The present invention can improve the utilization rate and extend the life of the positive electrode, and occupies much of fossil fuel consumption, especially the use of new energy such as energy saving and natural energy, which are inevitably required due to global environmental problems that are becoming increasingly important in the 21st century. The present invention provides an improved lead-acid battery that operates economically and stably for a long period of time in response to the improvement in fuel efficiency of transportation equipment such as automobiles, and its industrial value is great.

(1)未化成の正極板の製造
酸化鉛100重量部にイオン交換水10重量部、続いて比重1.27の希硫酸10重量部、膨張化黒鉛(粒径100μm〜500μm)を酸化鉛に対し0.5質量%、酸化ビスマスを金属のビスマス(金属純分)として0.05質量%となる様に加えながら混練して正極用ペーストを製造した。ペーストのカップ密度は約144g/2in3に調整した。このペーストをPb−Ca系鉛合金からなる鋳造格子基板に塗布充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成板とした。
(1) Production of unformed positive electrode plate 100 parts by weight of lead oxide with 10 parts by weight of ion exchange water, followed by 10 parts by weight of dilute sulfuric acid with a specific gravity of 1.27, and expanded graphite (particle size 100 μm to 500 μm) as lead oxide The mixture was kneaded while adding 0.5% by mass and bismuth oxide as metal bismuth (pure metal content) to 0.05% by mass to produce a positive electrode paste. The cup density of the paste was adjusted to about 144 g / 2 in 3 . This paste was applied and filled onto a cast lattice substrate made of a Pb—Ca-based lead alloy, aged for 24 hours in an atmosphere of 40 ° C. and 95% humidity, and then dried to obtain an unformed sheet.

(2)未化成の負極板の製造
ボールミル法で製造した酸化鉛に、カーボン粉末として比表面積70m/gのアセチレンブラックと硫酸バリウム粉末を添加して乾式混合した。これにリグニンを水溶液として加え、続いてイオン交換水を加えながら混練して水ペーストを調製し、更に比重1.36の希硫酸を加えながら混練して負極活物質ペーストとした。この時に使用したイオン交換水の量は酸化鉛100重量部に対しておよそ10重量部、希硫酸の量は10重量部であった。尚、出来上がったペーストのカップ密度が約140g/2inとなる様にイオン交換水の量を調整した。このペーストをPb−Ca系鉛合金からなる鋳造格子基板に充填し、40℃、湿度95%の雰囲気で24時間熟成し、その後乾燥して未化成板とした。
(2) Production of unformed negative electrode plate Acetylene black having a specific surface area of 70 m 2 / g and barium sulfate powder were added as dry powder to lead oxide produced by the ball mill method. Lignin was added thereto as an aqueous solution, followed by kneading while adding ion exchange water to prepare a water paste, and further kneading while adding dilute sulfuric acid having a specific gravity of 1.36 to obtain a negative electrode active material paste. The amount of ion-exchanged water used at this time was about 10 parts by weight with respect to 100 parts by weight of lead oxide, and the amount of dilute sulfuric acid was 10 parts by weight. The amount of ion-exchanged water was adjusted so that the cup density of the finished paste was about 140 g / 2 in 3 . This paste was filled in a cast lattice substrate made of a Pb—Ca-based lead alloy, aged in an atmosphere of 40 ° C. and 95% humidity for 24 hours, and then dried to obtain an unformed sheet.

(3)電池組立、電解液の調製と化成
これらの正極と負極の未化成板を、微細孔セパレータを介して交互に組み合わせ、COS方式で同極性極板同士を溶接して極板群とした。これをポリプロピレン製の電槽に入れ、ヒートシールによってポリプロピレン製の蓋をした。そして、アルミニウムイオンを硫酸塩で0.1mol/l添加した希硫酸電解液を、遊離する電解液が多量存するように注入して電槽化成を行いD23サイズ、50Ah相当の12V鉛蓄電池を作製した。この電池の電解液比重は1.28であった。
(3) Battery assembly, preparation and formation of electrolyte solution These positive electrode and negative electrode unformed plates are alternately combined through a microporous separator, and the same polarity plates are welded together by the COS method to form a plate group. . This was put into a polypropylene battery case and a polypropylene lid was applied by heat sealing. Then, a dilute sulfuric acid electrolytic solution in which 0.1 mol / l of aluminum ions was added as a sulfate was injected so that a large amount of the free electrolytic solution existed, and a battery case was formed to produce a 12V lead storage battery corresponding to D23 size and 50 Ah. . The electrolyte had a specific gravity of 1.28.

(4)容量試験
得られた鉛蓄電池を25℃、5時間率電流で完全充電した後、5時間率電流で放電し容量を測定した。結果を表1に示す。
(4) Capacity test The obtained lead storage battery was fully charged at 25 ° C. with a 5-hour rate current, then discharged with a 5-hour rate current, and the capacity was measured. The results are shown in Table 1.

(5)JIS重負荷寿命試験
得られた鉛蓄電池を25℃、5時間率電流で完全充電した。次に、40℃で20A、1時間定電流放電と5A、5時間定電流充電のJISD5301に準じる重負荷寿命試験を行った。そして、寿命に至るサイクル数を測定した。サイクル数としては150サイクル以上が望ましい。結果を表1に示す。
(5) JIS heavy load life test The obtained lead storage battery was fully charged at a current of 25 ° C. for 5 hours. Next, the heavy load life test according to JISD5301 of 40A, 20A, 1 hour constant current discharge and 5A, 5 hours constant current charge was performed. And the number of cycles leading to the lifetime was measured. The number of cycles is preferably 150 cycles or more. The results are shown in Table 1.

(6)アイドルストップ寿命試験
得られた鉛蓄電池を25℃、5時間率電流で完全充電した。次に、40℃で50A、59秒間及び300A、1秒間の定電流放電と100A、60秒間、上限電圧14.0Vの定電流・定電圧充電の組合せを1サイクルとするアイドルストップ寿命試験を行った。そして、放電時電圧が7.2V以下になったときを寿命とし、寿命に至るサイクル数を測定した。サイクル数としては30000サイクル以上が望ましい。結果を表1に併せて示す。
(6) Idle stop life test The obtained lead storage battery was fully charged at 25 ° C. with a current of 5 hours. Next, an idle stop life test is performed in which a combination of constant current discharge at 40 ° C. for 50 A, 59 seconds and 300 A, 1 second and 100 A for 60 seconds, constant current / constant voltage charging with an upper limit voltage of 14.0 V is one cycle. It was. And when the voltage at the time of discharge became 7.2V or less, it was made into the lifetime, and the cycle number which reaches the lifetime was measured. The number of cycles is preferably 30000 cycles or more. The results are also shown in Table 1.

Figure 2008243480
Figure 2008243480

表1中、上記の未化成の正極板の製造で記載される方法により得た未化成の正極板を用いた鉛蓄電池を実施例1、その他、正極中の膨張化黒鉛やビスマスの添加量を種種変更したものを実施例2から7として示し、それぞれの添加量は表1に記載の通りである。 In Table 1, the lead storage battery using the unformed positive plate obtained by the method described in the production of the unformed positive plate is described in Example 1, and the amount of expanded graphite and bismuth added in the positive electrode is as follows. The various types are shown as Examples 2 to 7, and the respective addition amounts are as shown in Table 1.

更に、比較のために、膨張化黒鉛のみを添加しビスマスを添加しない場合を比較例1から4として示し、膨張化黒鉛の添加量は表1に記載の通りである。 Further, for comparison, cases where only expanded graphite is added and bismuth is not added are shown as Comparative Examples 1 to 4, and the amount of expanded graphite added is as shown in Table 1.

この表1から明らかな通り、膨張化黒鉛とビスマスの両方を添加することで、寿命を向上させることできた。更に容量をも向上することが出来た。 As is apparent from Table 1, the lifetime could be improved by adding both expanded graphite and bismuth. Furthermore, the capacity could be improved.

本実施例では正極に重力鋳造格子基板を用いた例を示したが、連続鋳造や圧延、押し出し条を加工したエキスパンド格子基板や打ち抜き格子基板でも同様の効果を得ることができる。また、多量の遊離する電解液を用いる液式鉛蓄電池、極板群に含浸する程度で遊離する電解液の無い密閉式鉛蓄電池に適用することが出来、その用途も自動車用や産業用鉛蓄電池として用いることができる。 In this embodiment, an example in which a gravity cast lattice substrate is used for the positive electrode has been shown. However, the same effect can be obtained with an expanded lattice substrate or a punched lattice substrate obtained by processing continuous casting, rolling, or extrusion. It can also be applied to liquid lead-acid batteries that use a large amount of free electrolyte, and sealed lead-acid batteries that do not have any electrolyte that can be impregnated into the electrode plate group. Can be used as

Claims (2)

正極の正極活物質に膨張化黒鉛とビスマスを添加したことを特徴とする鉛蓄電池。 A lead-acid battery characterized by adding expanded graphite and bismuth to a positive electrode active material of a positive electrode. 膨張化黒鉛の添加量が正極活物質の0.1質量%以上2.0質量%以下であり、ビスマスの添加量が正極活物質の0.01質量%以上0.5質量%以下である請求項1記載の鉛蓄電池。 The amount of expanded graphite added is from 0.1% by weight to 2.0% by weight of the positive electrode active material, and the amount of bismuth added is from 0.01% by weight to 0.5% by weight of the positive electrode active material. Item 14. A lead acid battery according to item 1.
JP2007080106A 2007-03-26 2007-03-26 Lead acid battery Active JP5116331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080106A JP5116331B2 (en) 2007-03-26 2007-03-26 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080106A JP5116331B2 (en) 2007-03-26 2007-03-26 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2008243480A true JP2008243480A (en) 2008-10-09
JP5116331B2 JP5116331B2 (en) 2013-01-09

Family

ID=39914583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080106A Active JP5116331B2 (en) 2007-03-26 2007-03-26 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5116331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108175A1 (en) * 2010-03-02 2011-09-09 新神戸電機株式会社 Lead storage battery
JP2015005378A (en) * 2013-06-20 2015-01-08 パナソニック株式会社 Lead storage battery
CN115255374A (en) * 2022-07-26 2022-11-01 铅锂智行(北京)科技有限公司 Preparation device and preparation method of alloy lead powder for lead-acid storage battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107331863A (en) * 2017-08-11 2017-11-07 超威电源有限公司 A kind of lead-acid accumulator anode diachylon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799560B2 (en) * 2005-09-27 2011-10-26 古河電池株式会社 Lead-acid battery and method for producing lead-acid battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799560B2 (en) * 2005-09-27 2011-10-26 古河電池株式会社 Lead-acid battery and method for producing lead-acid battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108175A1 (en) * 2010-03-02 2011-09-09 新神戸電機株式会社 Lead storage battery
JPWO2011108175A1 (en) * 2010-03-02 2013-06-20 新神戸電機株式会社 Lead acid battery
JP5598532B2 (en) * 2010-03-02 2014-10-01 新神戸電機株式会社 Lead acid battery
JP2015005378A (en) * 2013-06-20 2015-01-08 パナソニック株式会社 Lead storage battery
CN115255374A (en) * 2022-07-26 2022-11-01 铅锂智行(北京)科技有限公司 Preparation device and preparation method of alloy lead powder for lead-acid storage battery

Also Published As

Publication number Publication date
JP5116331B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP4799560B2 (en) Lead-acid battery and method for producing lead-acid battery
JP4953600B2 (en) Lead acid battery
JP2008243487A (en) Lead acid battery
WO2010032782A1 (en) Lead acid storage battery
JP2008243606A (en) Lead acid storage battery
JP2008243489A (en) Lead acid storage battery
JP5116331B2 (en) Lead acid battery
JP2008243493A (en) Lead acid storage battery
JP2005302395A (en) Lead storage battery
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP2004281197A (en) Lead acid storage battery
JP2006185678A (en) Lead-acid storage battery
JP4509660B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP2006210059A (en) Lead acid storage battery
JP4892827B2 (en) Lead acid battery
JP4904675B2 (en) Lead acid battery
JP4364054B2 (en) Lead acid battery
JP4857894B2 (en) Lead acid battery
JP2007305370A (en) Lead storage cell
JP5044888B2 (en) Liquid lead-acid battery
JP4483308B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP2005268061A (en) Lead storage cell
JP2010020905A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5116331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3