JPWO2012153464A1 - Negative electrode for lead acid battery and lead acid battery - Google Patents

Negative electrode for lead acid battery and lead acid battery Download PDF

Info

Publication number
JPWO2012153464A1
JPWO2012153464A1 JP2013513910A JP2013513910A JPWO2012153464A1 JP WO2012153464 A1 JPWO2012153464 A1 JP WO2012153464A1 JP 2013513910 A JP2013513910 A JP 2013513910A JP 2013513910 A JP2013513910 A JP 2013513910A JP WO2012153464 A1 JPWO2012153464 A1 JP WO2012153464A1
Authority
JP
Japan
Prior art keywords
negative electrode
lattice
alloy layer
lead
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013513910A
Other languages
Japanese (ja)
Inventor
岬 原田
岬 原田
杉江 一宏
一宏 杉江
下田 一彦
一彦 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2012153464A1 publication Critical patent/JPWO2012153464A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の鉛蓄電池用負極は、アンチモンを含まない鉛合金からなる格子と、前記格子に充填された活物質ペーストとを備え、格子の一方の端には別の負極と電気的に接続するためのタブ部が設けられており、格子の表面の一部にはアンチモンを含む合金層が設けられており、格子の前記一方の端とは反対側の端の側では、前記合金層は前記活物質ペーストに覆われていて露出していない。The negative electrode for a lead storage battery according to the present invention includes a lattice made of a lead alloy containing no antimony and an active material paste filled in the lattice, and is electrically connected to another negative electrode at one end of the lattice. A tab portion of the lattice is provided, and an alloy layer containing antimony is provided on a part of the surface of the lattice. On the side of the end opposite to the one end of the lattice, the alloy layer is Covered with material paste and not exposed.

Description

本発明は、負極の格子の表面の一部にアンチモンを含む合金層を有する鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery having an alloy layer containing antimony on a part of the surface of a lattice of a negative electrode.

近年、自動車の燃費向上を目的として、停車中に自動でエンジンを停止するアイドリングストップ技術が注目されている。アイドリングストップ車に搭載された鉛蓄電池は走行中のみしか充電されないため、DOD(放電深度)が大きくなりやすい。DODが大きい領域で鉛蓄電池を用いることには、2つの大きな懸念がある。   2. Description of the Related Art In recent years, an idling stop technology that automatically stops an engine while the vehicle is stopped has been attracting attention for the purpose of improving automobile fuel efficiency. Since the lead acid battery mounted on the idling stop vehicle is charged only during traveling, the DOD (depth of discharge) tends to increase. There are two major concerns in using lead-acid batteries in areas where the DOD is large.

第1の懸念は、正極活物質が正極から脱落することを促進してしまうことである。鉛蓄電池は充放電の際、正極活物質のPbO2と負極活物質のPbが電解液のH2SO4と酸化還元反応をすることで電子の授受を行う。例えば放電すると活物質は正極、負極ともにPbSO4になるが、これらは充電することで再びPbO2(正極)とPb(負極)とに戻る。そのため、正極および負極の活物質は充放電を繰り返すたびに結晶構造が変化し、特に正極活物質は充放電を繰り返すと活物質どうしの結合力が低下して柔らかくなる現象(軟化)が起きる。正極活物質の軟化が進行すると徐々に正極から正極活物質が脱落してしまうため、電池の容量が低下する。この現象はDODが大きいほど進行しやすい。しかしこの現象は漸次的に内部抵抗が上昇するため、使用者は内部抵抗の推移からこの現象による寿命の到達を推察することが可能である。The first concern is that the positive electrode active material is promoted to fall off from the positive electrode. In charge / discharge, the lead-acid battery exchanges electrons by causing the positive electrode active material PbO 2 and the negative electrode active material Pb to undergo an oxidation-reduction reaction with the electrolytic solution H 2 SO 4 . For example, when discharged, the active material becomes PbSO 4 for both the positive electrode and the negative electrode, and these are returned to PbO 2 (positive electrode) and Pb (negative electrode) when charged. For this reason, the crystal structure of the positive and negative electrode active materials changes every time charging and discharging are repeated. In particular, when the positive electrode active material is repeatedly charged and discharged, the bonding force between the active materials decreases and softens (softens). As the softening of the positive electrode active material proceeds, the positive electrode active material gradually falls off from the positive electrode, so that the battery capacity decreases. This phenomenon tends to progress as the DOD increases. However, since this phenomenon gradually increases the internal resistance, the user can infer the end of life due to this phenomenon from the transition of the internal resistance.

第2の懸念は、負極耳部(集電のためのタブ状部分)の破断による突然死である。突然死とは、前触れがなんら無いままに充放電が突然できなくなってしまう現象である。負極における耳部(集電機構)から遠い部位は、大きなPbSO4の結晶が生成することで不活性化する現象(サルフェーション)が進行しやすい。特にDODが大きい状態においてこの部位は顕著に不活性であり、この状態で充電を開始すると、分極の小さい負極耳部が活物質化することでやせ細る。これを繰り返すことで、負極耳部が突然破断し、電池としての機能を失う。この現象は突然に放電できなくなくなるので、使用者は内部抵抗の推移から寿命の到達を推察することが不可能である。The second concern is sudden death due to breakage of the negative electrode ear (tab-like portion for collecting current). Sudden death is a phenomenon that suddenly becomes impossible to charge and discharge without any foresight. In the portion of the negative electrode that is far from the ear (current collection mechanism), a phenomenon (sulfation) that is inactivated due to the formation of large PbSO 4 crystals is likely to proceed. This part is particularly inactive in a state where the DOD is large, and when charging is started in this state, the negative electrode ear part with small polarization becomes thin and thin. By repeating this, the negative electrode ear part breaks suddenly and loses its function as a battery. Since this phenomenon suddenly becomes impossible to discharge, it is impossible for the user to infer the end of life from the transition of the internal resistance.

そこで、上述した突然死が起きてしまう第2の懸念を払拭し、使用者にとって寿命の到達を推測しやすいものにするため、特許文献1のような技術が提案されている。   Therefore, in order to eliminate the second concern that sudden death occurs as described above, and to make it easier for the user to estimate the end of life, a technique such as Patent Document 1 has been proposed.

特開2009−266514号公報JP 2009-266514 A

特許文献1によってアイドリングストップ車にある程度適した鉛蓄電池は作製できるものの、燃費向上の要望がさらに高まる中、オルタネータによる発電を自動車の減速時に集中させ、鉛蓄電池をさらにDODが大きい領域に晒すようになった場合、再び突然死が発生することがわかってきた。この突然死は上記の第2の懸念として記載したメカニズムで発生するのではなく、これまで知られていなかった機構による突然死であった。   Although a lead storage battery suitable to some extent for an idling stop vehicle can be manufactured according to Patent Document 1, power generation by an alternator is concentrated at the time of deceleration of an automobile, and the lead storage battery is exposed to a region where the DOD is larger, while the demand for improving fuel efficiency increases. It has been found that sudden death occurs again. This sudden death did not occur by the mechanism described as the second concern above, but was a sudden death by a mechanism that had not been known so far.

本発明はこの課題を解決するためのものであって、DODが顕著に大きい領域に晒しても突然死しない、アイドリングストップ車に適した鉛蓄電池用負極及び鉛蓄電池を提供することを目的とする。   An object of the present invention is to solve this problem, and to provide a negative electrode for a lead storage battery and a lead storage battery suitable for an idling stop vehicle that does not suddenly die even when exposed to a region where the DOD is significantly large. .

前述した課題を解決するために、本願の鉛蓄電池用負極は、アンチモンを含まない鉛合金からなる格子と、前記格子に充填された活物質ペーストとを備えた鉛蓄電池用負極であって、前記格子の一方の端には別の負極と電気的に接続するためのタブ部が設けられており、前記格子の表面の一部にはアンチモンを含む合金層が設けられており、前記格子の前記一方の端とは反対側の端の側では、前記合金層は前記活物質ペーストに覆われていて露出していない構成を有している。   In order to solve the above-mentioned problems, a negative electrode for a lead storage battery according to the present application is a negative electrode for a lead storage battery comprising a lattice made of a lead alloy containing no antimony and an active material paste filled in the lattice, A tab for electrically connecting to another negative electrode is provided at one end of the lattice, and an alloy layer containing antimony is provided on a part of the surface of the lattice, On the end side opposite to the one end, the alloy layer is covered with the active material paste and is not exposed.

また、合金層におけるアンチモン濃度を0.1質量%以上10質量%以下とすることが好ましく、合金層におけるアンチモン濃度を1質量%以上5質量%以下とすることがより好ましい。   The antimony concentration in the alloy layer is preferably 0.1% by mass or more and 10% by mass or less, and the antimony concentration in the alloy layer is more preferably 1% by mass or more and 5% by mass or less.

また、合金層の厚みを0.1μm以上500μm以下とすることが好ましく、合金層の厚みを0.1μm以上100μm以下とすることがより好ましい。   The thickness of the alloy layer is preferably 0.1 μm or more and 500 μm or less, and the thickness of the alloy layer is more preferably 0.1 μm or more and 100 μm or less.

本願の鉛蓄電池は、鉛合金製の格子に活物質ペーストを充填してなる正極と、上述の鉛蓄電池用負極とを、セパレータを介して対峙させて極板群を構成し、電解液とともに電槽に収納している構成を有している。   The lead storage battery of the present application comprises a positive electrode formed by filling a lead alloy grid with an active material paste and the above-mentioned negative electrode for a lead storage battery through a separator to constitute an electrode plate group. It has the structure accommodated in the tank.

また、正極の格子の表面にアンチモンを含む合金層を設けてもよい。   An alloy layer containing antimony may be provided on the surface of the positive electrode lattice.

本発明の鉛蓄電池を用いれば、充電の機会が制御されたアイドリングストップ車のようにDODが顕著に大きい領域に達する放電を頻繁に繰り返す場合でも、脱落した正極活物質の巻き上げと付着に起因する内部短絡を防いで長寿命化できるようになる。   When the lead storage battery of the present invention is used, even when the discharge that reaches the region where the DOD is remarkably large is repeated as in the idling stop vehicle in which the charging opportunity is controlled, it is caused by the winding and adhesion of the dropped positive electrode active material. Prevents internal short circuit and extends life.

実施形態の鉛蓄電池用負極に用いる格子の一例を示す概略図Schematic which shows an example of the grating | lattice used for the negative electrode for lead acid batteries of embodiment. 実施形態の鉛蓄電池用負極を示す概略図Schematic which shows the negative electrode for lead acid batteries of embodiment. 比較の形態の構成における課題を示す模式断面図Schematic cross-sectional view showing problems in the configuration of the comparative form 実施形態の構成による効果を示す模式断面図Schematic cross-sectional view showing the effect of the configuration of the embodiment 実施形態の鉛蓄電池を示す概略図Schematic showing the lead-acid battery of the embodiment 実施形態の効果を示す実験結果を表す図The figure showing the experimental result which shows the effect of embodiment 実施形態の好ましい態様が示す実験結果を表す図The figure showing the experimental result which the desirable mode of an embodiment shows 実施形態の好ましい態様が示す実験結果を表す図The figure showing the experimental result which the desirable mode of an embodiment shows

本願の実施形態に関して述べる前に、本願発明に至った経緯について説明を行う。   Before describing the embodiment of the present application, the background to the present invention will be described.

DODが比較的大きい領域(例えば3%以上)で鉛蓄電池を使用すると、早期に正極から軟化した活物質が脱落する。そして正極活物質の脱落物は電槽の底に堆積する。一方で負極の格子(鉛合金製)の表面に、特許文献1に開示されているようにアンチモンを含む合金層を設けた場合、正極活物質の脱落物は電解液中を舞って、その一部は極板群の上部に堆積してしまうことが判明した。極板群の上部に堆積した脱落物は、充電によってPbO2(正極)とPb(負極)とに還元される。そうすると正極と負極が接続されて内部短絡が発生してしまう。この内部短絡により突然死が生じてしまうことを発明者らは初めて見出した。When a lead storage battery is used in a region where the DOD is relatively large (for example, 3% or more), the active material softened from the positive electrode at an early stage falls off. The fallout of the positive electrode active material is deposited on the bottom of the battery case. On the other hand, when an alloy layer containing antimony is provided on the surface of the grid (made of lead alloy) of the negative electrode as disclosed in Patent Document 1, the fallout of the positive electrode active material flies in the electrolyte solution. It was found that the part was deposited on top of the electrode plate group. The fallen matter deposited on the upper part of the electrode plate group is reduced to PbO 2 (positive electrode) and Pb (negative electrode) by charging. If it does so, a positive electrode and a negative electrode will be connected and an internal short circuit will generate | occur | produce. For the first time, the inventors have found that sudden death occurs due to this internal short circuit.

発明者らは、種々検討の結果、アンチモンを含む合金層と格子との界面で局部電池が構成されることにより対流を伴ってガスが発生するため、正極活物質の脱落物が極板群の上部に堆積しやすくなることを見出した。この知見に基づき、負極の長寿命化に欠かせないアンチモンを含む合金層が、特許文献1のように最下部において合金層と負極格子そのものとの界面が電解液に対して露出しないようにすることとした。具体的には、負極格子の下部において合金層と負極格子そのものとの境界部分を負極活物質で覆って露出しないようにしたり、合金層を最下部には設けないようにした。これによって、正極活物質の脱落物に最も近い負極の最下部において合金層と格子との界面が露出しなくなり、そのためガスが発生しなくなって、正極活物質の脱落物を極板群の上部まで巻き上げる機会が激減した。その結果、上述した予期せぬ突然死の発生を抑制することができるようになった。   As a result of various studies, the inventors have generated local gas at the interface between the alloy layer containing antimony and the lattice, and gas is generated with convection. It was found that it tends to deposit on the top. Based on this knowledge, the alloy layer containing antimony that is indispensable for extending the life of the negative electrode prevents the interface between the alloy layer and the negative electrode lattice itself from being exposed to the electrolyte solution as in Patent Document 1. It was decided. Specifically, the boundary portion between the alloy layer and the negative electrode lattice itself is covered with the negative electrode active material at the lower portion of the negative electrode lattice so as not to be exposed, or the alloy layer is not provided at the lowermost portion. As a result, the interface between the alloy layer and the lattice is not exposed at the bottom of the negative electrode closest to the cathode active material fallout, so that no gas is generated, and the cathode active material fallout reaches the top of the electrode plate group. The opportunity to roll up has drastically decreased. As a result, the above-mentioned unexpected sudden death can be suppressed.

以下、本発明の実施の形態を、図を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は実施形態の鉛蓄電池用負極に用いる格子の一例を示す概略図であり、図2は実施形態の鉛蓄電池用負極を示す概略図である。図1に示す格子はレシプロ方式のエキスパンド格子(鉛合金製)であって、鉛の他にカルシウムや錫などを含ませることができる。なお、格子を構成している鉛合金にはアンチモンは含まれていない。ここでアンチモンが含まれていないのは、格子の骨格部分であり、後述するように格子の表面の一部にはアンチモンを含む合金層が形成されている。   FIG. 1 is a schematic view showing an example of a lattice used for the negative electrode for lead storage battery of the embodiment, and FIG. 2 is a schematic view showing the negative electrode for lead storage battery of the embodiment. The lattice shown in FIG. 1 is a reciprocating expanded lattice (made of a lead alloy), and can contain calcium, tin, and the like in addition to lead. The lead alloy constituting the lattice does not contain antimony. Here, the antimony is not contained in the lattice skeleton, and an alloy layer containing antimony is formed on a part of the surface of the lattice as will be described later.

そして耳部(タブ部)2を有する上枠部1の下に、略菱目状の網目部3が連接されている。なおロータリー方式のエキスパンド格子の場合、網目部3のさらに下に下枠部が連接されることになる。この格子(特に網目部3)に活物質ペースト5を充填することで、鉛蓄電池用負極が構成される。複数の負極同士は、耳部2の部分で互いに電気的に接続される。   A substantially rhombic mesh portion 3 is connected under the upper frame portion 1 having the ear portions (tab portions) 2. In the case of a rotary type expanding lattice, the lower frame portion is connected to the mesh portion 3 further below. By filling the lattice (particularly, the mesh portion 3) with the active material paste 5, a negative electrode for a lead storage battery is formed. The plurality of negative electrodes are electrically connected to each other at the ear 2 portion.

本実施形態の鉛蓄電池用負極は、最下部を除いた格子20の表面に、アンチモンを含む合金層4を設けており、最下部では合金層4は露出していない。   The negative electrode for a lead storage battery of this embodiment is provided with an alloy layer 4 containing antimony on the surface of the lattice 20 excluding the lowermost part, and the alloy layer 4 is not exposed at the lowermost part.

図3は、比較の形態に係る鉛蓄電池内部の模式的な構成を示した図である。見やすくするために電解液は省略して図示していない。比較の形態では図3の左側に位置する負極9bにおいて負極格子20の最下部にまでアンチモンを含む合金層4が設けられており、最下部においてアンチモンを含まない負極格子20とアンチモンを含む合金層4との両方が露出しており、両者の境界も電解液中に露出している。そして図3の右側には正極9aが位置している。正極9aは正極格子30に正極活物質6を充填して作成されている。正極9aと負極9bとの間にはセパレータ9cが置かれている。   FIG. 3 is a diagram showing a schematic configuration inside the lead storage battery according to the comparative embodiment. For ease of viewing, the electrolytic solution is omitted and not shown. In the comparative embodiment, the negative electrode 9b located on the left side of FIG. 3 is provided with the alloy layer 4 containing antimony at the bottom of the negative electrode lattice 20, and the negative electrode lattice 20 not containing antimony and the alloy layer containing antimony at the bottom. 4 is exposed, and the boundary between the two is also exposed in the electrolyte. The positive electrode 9a is located on the right side of FIG. The positive electrode 9 a is formed by filling the positive electrode active material 6 in the positive electrode lattice 30. A separator 9c is placed between the positive electrode 9a and the negative electrode 9b.

DODが顕著に大きい領域(例えば3%以上)で鉛蓄電池を使用すると、比較的早期に正極9aから軟化した正極活物質6が脱落し、堆積する。一方で比較の形態に示すように、負極格子20の最下部にまで表面にアンチモンを含む合金層4を設けた場合、図3に示すように、堆積した正極活物質6の脱落物6aに最も近い負極9bの最下部において合金層4と負極格子20との界面が存在する(図中A)。この界面の部分が局部電池となる。この局部電池により発生したガスが、実線矢印で示す対流を引き起こす。この対流によって正極活物質6の脱落物6aは正極9a及び負極9bの上部にまで運ばれて正極9a及び負極9bの上に堆積してしまう。脱落物6aが正極9a及び負極9bに堆積すると、正極9aと負極9bとの極間距離は局所的に小さくなる。正極9a及び負極9bの上部に堆積した正極活物質6の脱落物6aは、充電によってPbO2(正極)とPb(負極)とに還元される。そうすると局所的に極間距離が小さくなった箇所では、内部短絡が発生してしまう。When a lead storage battery is used in a region where the DOD is remarkably large (for example, 3% or more), the positive electrode active material 6 softened from the positive electrode 9a falls off and accumulates relatively early. On the other hand, as shown in the comparative form, when the alloy layer 4 containing antimony is provided on the surface up to the lowermost part of the negative electrode lattice 20, as shown in FIG. There is an interface between the alloy layer 4 and the negative electrode lattice 20 in the lowermost portion of the near negative electrode 9b (A in the figure). This interface portion becomes a local battery. The gas generated by the local battery causes convection indicated by a solid arrow. Due to this convection, the fallen product 6a of the positive electrode active material 6 is carried to the upper portions of the positive electrode 9a and the negative electrode 9b and is deposited on the positive electrode 9a and the negative electrode 9b. When the fallout 6a is deposited on the positive electrode 9a and the negative electrode 9b, the distance between the positive electrode 9a and the negative electrode 9b is locally reduced. The fallen matter 6a of the positive electrode active material 6 deposited on the positive electrode 9a and the negative electrode 9b is reduced to PbO 2 (positive electrode) and Pb (negative electrode) by charging. If it does so, an internal short circuit will occur in the part where distance between poles became small locally.

本実施形態では、比較の形態のように合金層4を負極格子20の最下部にまで設けず、図4のように最下部を除いて設けることで、正極活物質6の脱落物6aに最も近い負極の最下部において合金層4と負極格子20との界面を負極活物質5で覆って露出しないようにしている(図中B)。これにより負極9bの最下部でガスが発生しなくなり、正極活物質6の脱落物6aが対流によって正極9a及び負極9bの上部まで運ばれる機会が激減し、内部短絡による突然死を抑制できるようになる。   In the present embodiment, the alloy layer 4 is not provided up to the lowermost part of the negative electrode lattice 20 as in the comparative embodiment, but is provided excluding the lowermost part as shown in FIG. The interface between the alloy layer 4 and the negative electrode lattice 20 is covered with the negative electrode active material 5 so as not to be exposed at the lowermost part of the near negative electrode (B in the figure). As a result, no gas is generated at the lowermost part of the negative electrode 9b, and the chance that the fallout 6a of the positive electrode active material 6 is carried to the upper part of the positive electrode 9a and the negative electrode 9b by convection is drastically reduced, and sudden death due to an internal short circuit can be suppressed. Become.

ここで合金層4におけるアンチモン濃度を0.1質量%以上10質量%以下、より好ましくは1質量%以上5質量%以下とすることで、本実施形態の効果は顕著になる。充電受入性を向上して負極の長寿命化を顕著にするには合金層4のアンチモン濃度を0.1質量%以上にすればよいが、合金層4のアンチモン濃度が10質量%以上になると充電電流が顕著に増加することでガス発生量も多くなり、底部に堆積した正極活物質の脱落物6aを巻き上げやすくなって本実施形態の効果が薄れる。   Here, when the antimony concentration in the alloy layer 4 is 0.1% by mass or more and 10% by mass or less, more preferably 1% by mass or more and 5% by mass or less, the effect of the present embodiment becomes remarkable. In order to improve the charge acceptability and to prolong the life of the negative electrode, the antimony concentration of the alloy layer 4 may be 0.1% by mass or more. However, when the antimony concentration of the alloy layer 4 is 10% by mass or more. When the charging current is remarkably increased, the amount of gas generated is increased, and the fallout 6a of the positive electrode active material deposited on the bottom is easily rolled up, and the effect of this embodiment is diminished.

また合金層4の厚みを0.1μm以上500μm以下、より好ましくは0.1μm以上100μm以下とすることで、本実施形態の効果はさらに顕著になる。充電受入性を向上して負極の長寿命化を顕著にするには合金層4の厚みを0.1μm以上にすればよいが、合金層4の厚みが500μm以上になると充電電流が顕著に増加することでガス発生量も多くなり、底部に堆積した正極活物質の脱落物6aを巻き上げやすくなって本実施形態の効果が薄れる。   Moreover, the effect of this embodiment becomes further remarkable when the thickness of the alloy layer 4 is 0.1 μm or more and 500 μm or less, more preferably 0.1 μm or more and 100 μm or less. In order to improve the charge acceptability and prolong the life of the negative electrode, the thickness of the alloy layer 4 should be 0.1 μm or more. However, when the thickness of the alloy layer 4 is 500 μm or more, the charging current increases remarkably. By doing so, the amount of gas generation increases, and it becomes easy to wind up the fallen product 6a of the positive electrode active material deposited on the bottom, and the effect of this embodiment is reduced.

なお合金層4には、アンチモンや鉛の他に、スズや銀などを含ませても良い。   The alloy layer 4 may contain tin, silver, etc. in addition to antimony and lead.

また本実施形態の特徴である「負極格子20の最下部では、アンチモンを含む合金層4は負極活物質ペースト5に覆われて露出していない」とは、図4に示す態様(下枠部のみに合金層4を設けず、活物質ペースト5は下枠部にまで設ける)に限らない。具体的には、下枠部の上部に合金層4が設けられた態様でも良く、網目部3の下部に合金層4が設けられていない態様でも良い。すなわち図3に示す対流が起こらないように、格子20の最下部において合金層4が露出しておらず、結果として隣接している格子20と合金層4とが両方一緒に露出することがないようにすることが、本実施形態の要点である。   The feature of the present embodiment is that “the alloy layer 4 containing antimony is not exposed by being covered with the negative electrode active material paste 5 at the bottom of the negative electrode lattice 20” as shown in FIG. Only the alloy layer 4 is not provided, and the active material paste 5 is provided up to the lower frame portion). Specifically, an aspect in which the alloy layer 4 is provided on the upper part of the lower frame part or an aspect in which the alloy layer 4 is not provided on the lower part of the mesh part 3 may be used. That is, the alloy layer 4 is not exposed at the lowermost part of the lattice 20 so that the convection shown in FIG. 3 does not occur. As a result, the adjacent lattice 20 and the alloy layer 4 are not exposed together. This is the main point of this embodiment.

図5は本実施形態の鉛蓄電池の一例を示す概略図である。電槽7は、その内部を複数のセル室8に区切るための隔壁7aと、短側面7bと、長側面7cと、底面(図示せず)で構成された一体の樹脂成型品である。このセル室8のそれぞれに、セパレータ9cを介して正極9aと本実施形態の負極9bとを対峙させた極板群9と電解液(図示せず)を収納する。そしてそれぞれの極板群9における同じ極性の極板(正極9aおよび負極9b)の耳部(負極の場合は2)を1つの接続部品10に接続し、さらに隔壁7aに設けた貫通孔を介して、隣り合った極板群9の異なる極性の接続部品10どうしを接触させ、この接触させた部位を所定の条件で抵抗溶接する。一方で一端のセル室8の正極9aの耳部は正極性の極柱(図示せず)に接続し、他端のセル室8の負極9bの耳部2は負極性の極柱(図示せず)に接続する。そして電槽7の開口部を蓋11で封止しつつ、蓋11と一体化したブッシング(図示せず)にそれぞれの極柱を接続して端子12とすることで、本実施形態の鉛蓄電池が構成される。   FIG. 5 is a schematic view showing an example of the lead storage battery of the present embodiment. The battery case 7 is an integral resin molded product composed of a partition wall 7a for dividing the interior into a plurality of cell chambers 8, a short side surface 7b, a long side surface 7c, and a bottom surface (not shown). In each of the cell chambers 8, an electrode plate group 9 in which the positive electrode 9 a and the negative electrode 9 b of the present embodiment are opposed to each other through a separator 9 c are accommodated and an electrolytic solution (not shown). And the ear | edge part (2 in the case of a negative electrode) of the polar board (the positive electrode 9a and the negative electrode 9b) of the same polarity in each electrode group 9 is connected to one connection component 10, and also through the through-hole provided in the partition 7a. Then, the connecting parts 10 of different polarities in the adjacent electrode plate group 9 are brought into contact with each other, and the contacted parts are resistance-welded under a predetermined condition. On the other hand, the ear portion of the positive electrode 9a of the cell chamber 8 at one end is connected to a positive pole column (not shown), and the ear portion 2 of the negative electrode 9b of the cell chamber 8 at the other end is connected to a negative pole column (not shown). Connect to The lead storage battery of this embodiment is formed by connecting each pole column to a bushing (not shown) integrated with the lid 11 to form the terminal 12 while sealing the opening of the battery case 7 with the lid 11. Is configured.

ここで、正極9aにおいて格子と正極活物質6との界面の導電性を向上させることを目的として格子30の表面にアンチモンを含む合金層を設けた正極を用いれば、本実施形態の鉛蓄電池はさらに高性能化される。   Here, if a positive electrode in which an alloy layer containing antimony is provided on the surface of the lattice 30 for the purpose of improving the conductivity of the interface between the lattice and the positive electrode active material 6 in the positive electrode 9a, the lead storage battery of the present embodiment can be obtained. Higher performance is also achieved.

以下、実施例により、本実施形態の効果を説明する。   Hereinafter, the effect of this embodiment will be described by way of examples.

酸化鉛粉を硫酸と精製水とで混練して正極活物質ペーストを作製し、鉛−錫−アンチモンからなる合金層を表面に設けた圧延シート(組成は鉛−カルシウム合金)をレシプロ方式でエキスパンド展開して得た正極格子30にこの活物質ペーストを充填し、正極9aを作製した。   A positive electrode active material paste is prepared by kneading lead oxide powder with sulfuric acid and purified water, and a rolled sheet (composition is lead-calcium alloy) provided with an alloy layer of lead-tin-antimony on the surface is expanded by a reciprocating method. The positive electrode lattice 30 obtained by spreading was filled with this active material paste to produce a positive electrode 9a.

一方、酸化鉛粉に対して有機添加剤や硫酸バリウム、カーボンなどを常法により添加したものを硫酸と精製水とで混練して負極活物質ペーストを作製し、鉛−錫−アンチモンからなる合金層4を種々の条件(詳細は後述)で表面に設けた圧延シート(組成は鉛−錫−カルシウム合金)をレシプロ方式でエキスパンド展開して得た負極格子20にこの活物質ペーストを充填し、負極9b(長さ115mm)を作製した。圧延シートにはアンチモンが含まれていない。   On the other hand, a negative electrode active material paste is prepared by kneading an organic additive, barium sulfate, carbon, or the like added to lead oxide powder with sulfuric acid and purified water, and an alloy composed of lead-tin-antimony The active material paste is filled into a negative electrode lattice 20 obtained by expanding a rolled sheet (composition is lead-tin-calcium alloy) provided on the surface of the layer 4 under various conditions (details will be described later) by a reciprocating method, A negative electrode 9b (length 115 mm) was produced. The rolled sheet does not contain antimony.

上述した正極9aおよび負極9bを熟成乾燥させた後、正極9aをポリエチレンからなる袋状のセパレータ9cで包み、負極9bと交互に重ね、それぞれの耳部を接続部品10と溶接することで極板群9を作製した。そして6つのセル室8からなる電槽7のそれぞれのセル室8に極板群9を挿入し、隔壁7aに設けられた孔を介して接続部品10を溶接し、極板群9が直列に接続されるようにした。   After the positive electrode 9a and the negative electrode 9b described above are aged and dried, the positive electrode 9a is wrapped with a bag-like separator 9c made of polyethylene, alternately overlapped with the negative electrode 9b, and the respective ears are welded to the connection component 10 to thereby form the electrode plate Group 9 was made. Then, the electrode plate group 9 is inserted into each cell chamber 8 of the battery case 7 composed of the six cell chambers 8, and the connecting parts 10 are welded through the holes provided in the partition wall 7a. Connected.

さらに電槽7に蓋11を溶着して取り付け、ブッシングと極柱とを溶接して端子12を構成した。最後にセル室8の全てに希硫酸からなる電解液を入れ、電槽化成を行うことで電解液の比重が1.280g/cm3(20℃換算値)になるように調整して、12V48Ahの鉛蓄電池を作製した。Furthermore, the lid 11 was welded and attached to the battery case 7, and the terminal 12 was constructed by welding the bushing and the pole column. Finally, an electrolytic solution made of dilute sulfuric acid is placed in all of the cell chambers 8 and the specific gravity of the electrolytic solution is adjusted to 1.280 g / cm 3 (converted to 20 ° C.) by carrying out battery cell formation. A lead storage battery was prepared.

検討は3段階に分けて行った。第1に、本実施形態の適合範囲を検討するため、合金層4のアンチモン濃度を2質量%、厚みを10μm一定とし、合金層4を格子20のどの部位の表面に設けるかを検討した。条件を(表1)に示す。なおここで格子の「上部」「下部」「中間部」とは、図1にあるように、格子を上下方向に5等分した各部位を示している。すなわち「上部」とは最も上の1/5、「下部」とは最も下の1/5から後述する「最下部」を差し引いた領域、「中間部」とは中間の3/5を指す。そして「最下部」とは、格子の最下端から5mm上までの領域を指す。   The examination was divided into three stages. First, in order to examine the applicable range of the present embodiment, the antimony concentration of the alloy layer 4 was set to 2 mass%, the thickness was fixed to 10 μm, and the surface of the lattice 20 where the alloy layer 4 was provided was examined. The conditions are shown in (Table 1). Here, “upper part”, “lower part”, and “intermediate part” of the lattice indicate respective parts obtained by dividing the lattice into five equal parts in the vertical direction, as shown in FIG. That is, the “upper part” is the uppermost 1/5, the “lower part” is an area obtained by subtracting the “lowermost part” to be described later from the lowermost 1/5, and the “middle part” indicates the middle 3/5. The “lowermost part” refers to a region from the lowest end of the lattice to 5 mm above.

Figure 2012153464
Figure 2012153464

第2に、本実施形態の最適範囲を検討するため、格子20の表面に合金層4を設ける箇所を「最下部を除く任意の箇所」、合金層4の厚みを10μm一定とし、合金層4のアンチモン濃度を変化させた。条件を(表2)に示す。   Second, in order to examine the optimum range of the present embodiment, the location where the alloy layer 4 is provided on the surface of the lattice 20 is “any location except the lowermost portion”, the thickness of the alloy layer 4 is 10 μm constant, and the alloy layer 4 The antimony concentration was changed. The conditions are shown in (Table 2).

Figure 2012153464
Figure 2012153464

第3に、本実施形態の最適範囲を検討するため、格子の表面に合金層4を設ける箇所を「最下部を除く任意の箇所」、合金層4のアンチモン濃度を2質量%一定とし、合金層4の厚みを変化させた。条件を(表3)に示す。   Third, in order to examine the optimum range of the present embodiment, the location where the alloy layer 4 is provided on the surface of the lattice is “any location except the bottom”, and the antimony concentration of the alloy layer 4 is constant 2% by mass. The thickness of layer 4 was varied. The conditions are shown in (Table 3).

Figure 2012153464
Figure 2012153464

(表1)〜(表3)に示したそれぞれの電池について、充電の機会を制御したアイドリングストップ仕様の寿命試験を行った。具体的には下記のように、電池工業会規格(SBA S 0101)を基に改良したパターンを用いた。具体的には、気槽温度を25℃±2℃(鉛蓄電池近傍の風速は2.0m/秒以下)として、下記の「A→B」を1回行った後「C→D」を4回行うパターンを1サイクルとし、50サイクル毎にEを1回実施した。ここでαとは、1サイクル中のA及びCにおける放電の総量(総放電電気量)と鉛蓄電池の定格容量とから算出したDODの実測値(%)である。   Each battery shown in (Table 1) to (Table 3) was subjected to a life test with an idling stop specification in which the opportunity for charging was controlled. Specifically, a modified pattern based on the battery industry association standard (SBA S 0101) was used as described below. Specifically, the tank temperature is 25 ° C. ± 2 ° C. (the wind speed in the vicinity of the lead storage battery is 2.0 m / second or less), and after performing the following “A → B” once, “C → D” is changed to 4 The pattern to be repeated was one cycle, and E was performed once every 50 cycles. Here, α is a measured value (%) of DOD calculated from the total amount of discharge (total amount of discharge electricity) in A and C in one cycle and the rated capacity of the lead storage battery.

A.放電、48Aで(24×α)秒
B.放電、300Aで1秒
C.放電、48Aで(3×α)秒
D.充電(14.5V定電圧)、制限電流72Aで(6×α)秒
E.充電(14.5V定電圧)、制限電流72Aで5Aに減衰するまで
なお3600サイクル毎に40〜48時間の放置を設けた。そしてBにおける放電電圧が7.2V未満になった時点のサイクル数を寿命の尺度とした。サンプルNo.1〜5の電池を用いて種々のDODにおける寿命を検討したものを図6、サンプルNo.6〜14および15〜23の電池を用いてDOD=3%における寿命を検討したものを図7および8に、それぞれ示す。
A. Discharge at 48 A (24 × α) seconds Discharge, 1 second at 300 A C.I. Discharge at 48 A (3 × α) seconds Charging (14.5V constant voltage) at a limiting current of 72A (6 × α) seconds E. Charging (14.5 V constant voltage), until the current was attenuated to 5 A with a limiting current 72 A, a stand for 40 to 48 hours was provided every 3600 cycles. The number of cycles when the discharge voltage at B was less than 7.2 V was taken as a measure of life. Sample No. The life of various DODs studied using the batteries 1 to 5 is shown in FIG. 7 and 8 show the lifetimes at DOD = 3% using the batteries of 6 to 14 and 15 to 23, respectively.

図6からわかるように、格子の最下部を除く表面にアンチモンを含む合金層4を設けたNo.1〜4の鉛蓄電池は、格子の最下部の表面にも合金層4を設けたNo.5〜6の鉛蓄電池と比べて、充電の機会が制御されてDODが3%と大きくなった場合にも、優れた寿命特性を示すことがわかる。またDOD=3%一定として、合金層4の構成を比較した結果、アンチモン濃度を0.1質量%以上10質量%以下(より好ましくは1質量%以上5質量%以下)、もしくは厚みを0.1μm以上500μm以下(より好ましくは0.1μm以上100μm以下)とした場合に、本発明の効果がより顕著になってさらに長寿命化することがわかる。   As can be seen from FIG. 6, No. 1 is provided with an alloy layer 4 containing antimony on the surface excluding the bottom of the lattice. The lead acid batteries 1 to 4 are No. 1 in which the alloy layer 4 is provided on the bottom surface of the lattice. Compared with 5-6 lead acid batteries, it can be seen that even when the charging opportunity is controlled and the DOD increases to 3%, excellent life characteristics are exhibited. As a result of comparing the composition of the alloy layer 4 with DOD = 3% constant, the antimony concentration was 0.1% by mass or more and 10% by mass or less (more preferably 1% by mass or more and 5% by mass or less). It can be seen that when the thickness is 1 μm or more and 500 μm or less (more preferably 0.1 μm or more and 100 μm or less), the effect of the present invention becomes more remarkable and the life is further extended.

なお本実施例では、「最下部」を格子の最下端から5mm上まで(全長115mmにおける最も下の1/23)の領域とした一例を示したが、格子の最下端において合金層4との界面が存在しない形態であれば、本実施例における「最下部」と定義できることは言うまでもない。例えば、サンプルNo.1および2が十分な特性を示すことから、格子を上下方向に5等分した場合に格子の最下端から1/5までであれば、最下部の領域として好適であることがわかる。   In the present embodiment, an example is shown in which the “lowermost part” is a region extending 5 mm above the lowest end of the lattice (the lowest 1/23 in the total length of 115 mm). Needless to say, if the interface does not exist, it can be defined as the “lowermost part” in this embodiment. For example, sample no. Since 1 and 2 show sufficient characteristics, it can be seen that when the lattice is divided into 5 equal parts in the vertical direction, the lowermost region of the lattice is 1/5, which is preferable.

(その他の実施形態)
上述の実施形態は本願発明の例示であって、本願発明はこれらの例に限定されず、これらの例に周知技術や慣用技術、公知技術を組み合わせたり、一部置き換えたりしてもよい。また当業者であれば容易に思いつく改変発明も本願発明に含まれる。
(Other embodiments)
The above-described embodiment is an exemplification of the present invention, and the present invention is not limited to these examples, and these examples may be combined or partially replaced with known techniques, common techniques, and known techniques. Also, modified inventions easily conceived by those skilled in the art are included in the present invention.

負極格子の網目形状は菱形に限定されず、矩形や円形であってもよい。負極格子、正極格子、負極活物質、正極活物質の材料や組成などは公知の材料や組成であればどのようなものであってもよい。負極や正極の大きさも実施例の大きさに限定されない。   The mesh shape of the negative electrode lattice is not limited to a rhombus, and may be a rectangle or a circle. The negative electrode lattice, the positive electrode lattice, the negative electrode active material, and the material and composition of the positive electrode active material may be any known material or composition. The sizes of the negative electrode and the positive electrode are not limited to those of the examples.

本発明の鉛蓄電池は、充電の機会を制御しつつアイドリングストップを行うような深い放電を頻繁に繰り返す環境において、内部短絡を抑制して良好な寿命特性を得ることが可能であり、工業上、極めて有用である。   The lead storage battery of the present invention is capable of obtaining good life characteristics by suppressing internal short-circuits in an environment where frequent deep discharges such as idling stop are performed while controlling charging opportunities. Very useful.

1 上枠部
2 耳部(タブ部)
3 網目部
4 合金層
5 負極活物質ペースト
6 正極活物質
6a 正極活物質の脱落物
7 電槽
7a 隔壁
7b 短側面
7c 長側面
8 セル室
9 極板群
9a 正極
9b 負極
9c セパレータ
10 接続部品
11 蓋
12 端子
20 負極格子
30 正極格子
1 Upper frame part 2 Ear part (tab part)
DESCRIPTION OF SYMBOLS 3 Net | network part 4 Alloy layer 5 Negative electrode active material paste 6 Positive electrode active material 6a Falling thing of positive electrode active material 7 Battery case 7a Partition 7b Short side surface 7c Long side surface 8 Cell chamber 9 Electrode plate group 9a Positive electrode 9b Negative electrode 9c Separator 10 Connection component 11 Lid 12 Terminal 20 Negative grid 30 Positive grid

Claims (7)

アンチモンを含まない鉛合金からなる格子と、前記格子に充填された活物質ペーストとを備えた鉛蓄電池用負極であって、
前記格子の一方の端には別の負極と電気的に接続するためのタブ部が設けられており、
前記格子の表面の一部にはアンチモンを含む合金層が設けられており、
前記格子の前記一方の端とは反対側の端の側では、前記合金層は前記活物質ペーストに覆われていて露出していない、鉛蓄電池用負極。
A negative electrode for a lead storage battery comprising a lattice made of a lead alloy containing no antimony and an active material paste filled in the lattice,
One end of the grid is provided with a tab portion for electrical connection with another negative electrode,
An alloy layer containing antimony is provided on a part of the surface of the lattice,
The negative electrode for a lead-acid battery, wherein the alloy layer is covered with the active material paste and is not exposed on the end opposite to the one end of the lattice.
前記合金層におけるアンチモン濃度を0.1質量%以上10質量%以下としたことを特徴とする、請求項1記載の鉛蓄電池用負極。   2. The negative electrode for a lead storage battery according to claim 1, wherein the antimony concentration in the alloy layer is 0.1 mass% or more and 10 mass% or less. 前記合金層におけるアンチモン濃度を1質量%以上5質量%以下としたことを特徴とする、請求項2記載の鉛蓄電池用負極。   The negative electrode for a lead-acid battery according to claim 2, wherein the antimony concentration in the alloy layer is 1% by mass or more and 5% by mass or less. 前記合金層の厚みを0.1μm以上500μm以下としたことを特徴とする、請求項1記載の鉛蓄電池用負極。   The lead-acid battery negative electrode according to claim 1, wherein the alloy layer has a thickness of 0.1 μm to 500 μm. 前記合金層の厚みを0.1μm以上100μm以下としたことを特徴とする、請求項4記載の鉛蓄電池用負極。   The negative electrode for a lead storage battery according to claim 4, wherein the alloy layer has a thickness of 0.1 µm or more and 100 µm or less. 鉛合金からなる格子に活物質ペーストを充填してなる正極と、請求項1ないし5のいずれかに記載の鉛蓄電池用負極とを、セパレータを介して対峙させて極板群を構成し、電解液とともに電槽に収納した鉛蓄電池。   A positive electrode formed by filling a lattice made of a lead alloy with an active material paste and the negative electrode for a lead storage battery according to any one of claims 1 to 5 through a separator to constitute an electrode plate group, Lead-acid battery stored in a battery case with liquid. 前記正極の格子の表面にアンチモンを含む合金層を設けたことを特徴とする、請求項6記載の鉛蓄電池。
The lead acid battery according to claim 6, wherein an alloy layer containing antimony is provided on a surface of the grid of the positive electrode.
JP2013513910A 2011-05-12 2012-04-16 Negative electrode for lead acid battery and lead acid battery Pending JPWO2012153464A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011106847 2011-05-12
JP2011106847 2011-05-12
PCT/JP2012/002621 WO2012153464A1 (en) 2011-05-12 2012-04-16 Lead-acid battery anode and lead-acid battery

Publications (1)

Publication Number Publication Date
JPWO2012153464A1 true JPWO2012153464A1 (en) 2014-07-31

Family

ID=47138957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013513910A Pending JPWO2012153464A1 (en) 2011-05-12 2012-04-16 Negative electrode for lead acid battery and lead acid battery

Country Status (4)

Country Link
JP (1) JPWO2012153464A1 (en)
CN (1) CN103403933B (en)
DE (1) DE112012002048T5 (en)
WO (1) WO2012153464A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013005769T5 (en) * 2012-12-03 2015-10-15 Panasonic Intellectual Property Management Co., Ltd. Lead acid storage battery grid and lead acid storage battery
JP5587523B1 (en) * 2012-12-21 2014-09-10 パナソニック株式会社 Lead acid battery
JP6197426B2 (en) * 2013-07-16 2017-09-20 株式会社Gsユアサ Lead acid battery
JP6621637B2 (en) * 2015-09-30 2019-12-18 マクセル株式会社 Oxygen sensor
DE112017001336T5 (en) * 2016-03-15 2018-11-22 Gs Yuasa International Ltd. LEAD ACID BATTERY

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156371A (en) * 2004-11-08 2006-06-15 Gs Yuasa Corporation:Kk Negative electrode collector for lead-acid battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2010113933A (en) * 2008-11-06 2010-05-20 Panasonic Corp Paste type lead-acid storage battery
JP2010192162A (en) * 2009-02-16 2010-09-02 Gs Yuasa Corp Lead-acid storage battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047408B2 (en) * 1989-07-13 2000-05-29 松下電器産業株式会社 Plate for lead-acid battery
JP2005302395A (en) * 2004-04-08 2005-10-27 Matsushita Electric Ind Co Ltd Lead storage battery
CN101048900B (en) * 2004-11-08 2010-06-16 株式会社杰士汤浅 Negative electrode collector for lead-acid battery
JP5168893B2 (en) * 2006-12-01 2013-03-27 パナソニック株式会社 Lead acid battery
JP5228601B2 (en) * 2008-04-24 2013-07-03 新神戸電機株式会社 Lead acid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156371A (en) * 2004-11-08 2006-06-15 Gs Yuasa Corporation:Kk Negative electrode collector for lead-acid battery
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
JP2010113933A (en) * 2008-11-06 2010-05-20 Panasonic Corp Paste type lead-acid storage battery
JP2010192162A (en) * 2009-02-16 2010-09-02 Gs Yuasa Corp Lead-acid storage battery

Also Published As

Publication number Publication date
CN103403933B (en) 2016-07-06
CN103403933A (en) 2013-11-20
WO2012153464A1 (en) 2012-11-15
DE112012002048T5 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5587523B1 (en) Lead acid battery
JP5016306B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP2017063001A (en) Lead storage battery
JP6045329B2 (en) Lead acid battery
JPWO2012153464A1 (en) Negative electrode for lead acid battery and lead acid battery
JP6198046B2 (en) Liquid lead-acid battery
JP6398111B2 (en) Lead acid battery
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JPH08264202A (en) Lead-acid battery
JP6572711B2 (en) Lead acid battery
JP2004014283A (en) Valve regulated lead battery
JP6197426B2 (en) Lead acid battery
JP6255696B2 (en) Lead acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP2007305370A (en) Lead storage cell
JP2002198085A (en) Lead storage battery
CN211320252U (en) Lead-acid battery
JP2006066254A (en) Lead-acid storage battery
JP2023108240A (en) lead acid battery
JP5504383B1 (en) Lead acid battery
JP4802903B2 (en) Lead acid battery
JP4556250B2 (en) Lead acid battery
JP2004207004A (en) Lead accumulator
JPH11144719A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160823