JP2013098016A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2013098016A
JP2013098016A JP2011239909A JP2011239909A JP2013098016A JP 2013098016 A JP2013098016 A JP 2013098016A JP 2011239909 A JP2011239909 A JP 2011239909A JP 2011239909 A JP2011239909 A JP 2011239909A JP 2013098016 A JP2013098016 A JP 2013098016A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lead
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011239909A
Other languages
Japanese (ja)
Other versions
JP5720947B2 (en
Inventor
Shinsuke Kobayashi
真輔 小林
Satoshi Minoura
敏 箕浦
Yuji Arashiro
裕司 荒城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2011239909A priority Critical patent/JP5720947B2/en
Publication of JP2013098016A publication Critical patent/JP2013098016A/en
Application granted granted Critical
Publication of JP5720947B2 publication Critical patent/JP5720947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lead acid battery with high capacity, without degrading its life characteristics.SOLUTION: Electrolyte having specific gravity between 1.30 and 1.36 (reduced to 20°C) is used, in a fully charged state, for a lead acid battery whose capacity is mainly controlled by the amount of positive electrode active material. The mass ratio of the sulfuric acid in the electrolyte to the positive electrode active material is to be between 0.48 and 0.58. Preferably, pore volume of the positive electrode active material is between 0.11 and 0.15 ml/g in a fully charged state.

Description

本発明は鉛蓄電池、特に自動車用鉛蓄電池に関するものである。   The present invention relates to a lead acid battery, and more particularly to a lead acid battery for automobiles.

近年の自動車では、搭載される電装品が増加している。これに伴い、電装品の電源である鉛蓄電池に対する負荷が高まっている。そのため、鉛蓄電池には、高容量化と長寿命化の特性を両立させることが求められている。   In recent automobiles, the number of electrical components installed is increasing. In connection with this, the load with respect to the lead storage battery which is a power supply of an electrical component is increasing. Therefore, the lead storage battery is required to achieve both high capacity and long life characteristics.

鉛蓄電池の容量の支配因子は、正極活物質量、負極活物質量及び電解液量であるので、鉛蓄電池の容量を設計する場合、各々の物質量を考慮する必要がある。高容量化を計るためには、正極活物質量や負極活物質量を増し、電解液中の硫酸量、すなわち硫酸イオン(SO 2−)量を増す手段がある。限られた容積の電槽内で電解液中の硫酸量を増やすということは、電解液の比重を高めることである。 The controlling factors of the capacity of the lead storage battery are the amount of the positive electrode active material, the amount of the negative electrode active material, and the amount of the electrolyte solution. In order to increase the capacity, there are means for increasing the amount of the positive electrode active material and the amount of the negative electrode active material to increase the amount of sulfuric acid in the electrolyte solution, that is, the amount of sulfate ion (SO 4 2− ). Increasing the amount of sulfuric acid in the electrolytic solution in a limited volume battery case increases the specific gravity of the electrolytic solution.

特許文献1(特開2003−132937号公報)は、鉛粉に鉛丹化率が90%以上の鉛丹を添加した混合物を正極活物質の原料として正極板を作製し、完全充電状態における20℃での電解液比重を1.350〜1.300とすることを開示している。これにより、保存特性と期待寿命を減退させずに鉛蓄電池の高容量化を実現している。   Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-132937) produces a positive electrode plate using a mixture of lead powder with a lead tanning rate of 90% or more as a raw material for the positive electrode active material. It discloses that the specific gravity of the electrolyte at 1.degree. C. is 1.350 to 1.300. As a result, the capacity of the lead storage battery is increased without deteriorating the storage characteristics and expected life.

特開2003−132937号公報JP 2003-132937 A

しかしながら、特許文献1のように電解液の比重を高くすると、電解液中の硫酸イオン量が増え、極板格子体の腐食速度や負極板のサルフェーションが促進される。さらに、深い充放電を繰り返した場合、正極活物質層の深部まで硫酸イオンが浸透し、活物質と活物質を保持している格子体との界面に不導態である硫酸鉛が生成される。この硫酸鉛は、充放電反応を阻害し、鉛蓄電池が短寿命になりやすかった。   However, when the specific gravity of the electrolytic solution is increased as in Patent Document 1, the amount of sulfate ions in the electrolytic solution increases, and the corrosion rate of the electrode plate lattice and the sulfation of the negative electrode plate are promoted. Furthermore, when deep charge / discharge is repeated, sulfate ions penetrate to the deep part of the positive electrode active material layer, and lead sulfate is generated in a non-conductive state at the interface between the active material and the lattice holding the active material. . This lead sulfate hinders the charge / discharge reaction, and the lead-acid battery tends to have a short life.

本発明の目的は、寿命性能を低下させることなく、高容量の鉛蓄電池を提供することにある。   An object of the present invention is to provide a high-capacity lead-acid battery without reducing the life performance.

上記課題を解決するために、第1の発明は、正極支配で電池容量が決定される鉛蓄電池を対象とし、満充電の状態において、電解液(希硫酸)の比重(20℃換算値、以下同じ)が、1.30〜1.36であり、かつ正極活物質質量に対する電解液中の硫酸質量の比率が、0.48〜0.58であることを特徴とする。   In order to solve the above-mentioned problem, the first invention is directed to a lead storage battery whose battery capacity is determined by the positive electrode, and in a fully charged state, the specific gravity of the electrolyte (dilute sulfuric acid) (converted to 20 ° C., below) The same) is 1.30 to 1.36, and the ratio of the sulfuric acid mass in the electrolytic solution to the positive electrode active material mass is 0.48 to 0.58.

第2の発明は、第1の発明において、満充電の状態において、正極活物質の細孔容積が、0.11〜0.15ml/gであることを特徴とする。   According to a second invention, in the first invention, the positive electrode active material has a pore volume of 0.11 to 0.15 ml / g in a fully charged state.

本発明では、電解液の比重を、1.30〜1.36の範囲に設定する。単に比重の高い電解液を用いる場合は、電解液中の硫酸イオン量が増え、活物質と活物質を保持している格子体との界面に不導態である硫酸鉛が生成されやすくなるが、正極活物質質量に対する電解液中の硫酸質量の比率を、0.48〜0.58の範囲に制限することにより、硫酸イオンが正極活物質層の深部まで到達するのを防ぎ、前記界面における硫酸鉛化を抑制することができる。このため、高容量化して寿命性能を確保できる。
さらに、満充電の状態において、正極活物質の細孔容積を0.11〜0.15ml/gとする場合には、一層の高容量化を図ることができる。
In the present invention, the specific gravity of the electrolytic solution is set in the range of 1.30 to 1.36. When using an electrolytic solution with a high specific gravity, the amount of sulfate ions in the electrolytic solution increases, and lead sulfate, which is a non-conductive state, is likely to be generated at the interface between the active material and the lattice holding the active material. By restricting the ratio of the sulfuric acid mass in the electrolytic solution to the positive electrode active material mass to a range of 0.48 to 0.58, it is possible to prevent sulfate ions from reaching the deep part of the positive electrode active material layer. Lead sulfate can be suppressed. Therefore, the capacity can be increased and the life performance can be ensured.
Furthermore, when the pore volume of the positive electrode active material is 0.11 to 0.15 ml / g in a fully charged state, the capacity can be further increased.

以上のように、本発明によれば、寿命性能を低下させることなく、高容量の鉛蓄電池を得ることができる。   As described above, according to the present invention, a high-capacity lead-acid battery can be obtained without reducing the life performance.

<正極板の作製>
正極板は、例えば、次のようにして作製することができる。
酸化度70%の鉛粉に鉛丹化度90%の鉛丹を混合し、水及び希硫酸を加えて混練して正極活物質ペーストを調製する。
圧延鉛シートをエキスパンド加工した格子体(幅:90mm、高さ:70mm、厚さ:1.7mm)に前記ペーストを99g/枚の量で充填し、熟成・乾燥の工程を経て正極板を作製する。
格子体に保持される正極活物質の質量は、調製した活物質ペーストに含まれる硫酸鉛量と水分量を調整することによって変えることができる。活物質ペーストに含まれる硫酸鉛量及び/又は水分量を多くすると、格子体に保持される正極活物質の量は減少する。また、正極活物質の特性は、極板化成時の温度と電流密度と電解液比重の調整によって変えることができるが、格子体に保持された正極活物質の細孔容積は、化成温度を高くすると減少し、電解液比重を高くすると増加する。
<Preparation of positive electrode plate>
The positive electrode plate can be produced as follows, for example.
A positive electrode active material paste is prepared by mixing a lead powder having a degree of oxidation of 90% with lead powder having an oxidation degree of 70%, adding water and dilute sulfuric acid and kneading.
The above paste is filled in an amount of 99 g / sheet into a grid (width: 90 mm, height: 70 mm, thickness: 1.7 mm) obtained by expanding a rolled lead sheet, and a positive electrode plate is produced through aging and drying processes. To do.
The mass of the positive electrode active material held by the lattice can be changed by adjusting the amount of lead sulfate and the amount of water contained in the prepared active material paste. When the amount of lead sulfate and / or the amount of water contained in the active material paste is increased, the amount of the positive electrode active material held in the lattice body is reduced. The characteristics of the positive electrode active material can be changed by adjusting the temperature, current density and electrolyte specific gravity at the time of electrode plate formation, but the pore volume of the positive electrode active material held in the lattice body increases the conversion temperature. Then, it decreases, and increases when the electrolyte specific gravity is increased.

<負極板の作製>
負極板は、例えば、次のようにして作製することができる。
酸化度70%の鉛粉に少量の炭素粉末、リグニン、バリウム化合物を混合し、水及び希硫酸を加えて混練して負極活物質ペーストを調製する。
圧延鉛シートをエキスパンド加工した格子体(幅:100mm、高さ:70mm、厚さ:1.3mm)に前記ペーストを78g/枚の量で充填し、熟成・乾燥の工程を経て負極板を作製する。
<Preparation of negative electrode plate>
The negative electrode plate can be produced, for example, as follows.
A negative electrode active material paste is prepared by mixing a small amount of carbon powder, lignin, and a barium compound with lead powder having an oxidation degree of 70%, adding water and dilute sulfuric acid, and kneading.
The above paste is filled in an amount of 78 g / sheet into a grid (width: 100 mm, height: 70 mm, thickness: 1.3 mm) obtained by expanding a rolled lead sheet, and a negative electrode plate is produced through aging and drying processes. To do.

<鉛蓄電池の組立>
ポリエチレン製の袋状セパレータに収納した前記負極板8枚と前記正極板7枚とを、1枚ずつ交互に積層して極板群とする。この極板群を6つの区画(セル)を有する電槽の各セルに収容し、電槽に蓋を熱溶着して電池を組み立てた。そして、電池内に、比重1.26の希硫酸を注入し、鉛蓄電池を40℃水槽に静置して、電流16Aで16時間通電して化成する。化成後に、電池内の電解液の比重及び液量を調整して、JIS 5301D規定のB24形の鉛蓄電池とする。
ここでは、正極支配で電池容量が決定されるように、正極活物質と負極活物質の量が決定される。
<Assembly of lead acid battery>
The eight negative electrode plates and the seven positive electrode plates housed in a polyethylene bag-like separator are alternately laminated one by one to form an electrode plate group. This electrode group was accommodated in each cell of a battery case having six compartments (cells), and a battery was assembled by thermally welding a lid to the battery case. Then, dilute sulfuric acid having a specific gravity of 1.26 is injected into the battery, the lead storage battery is left in a 40 ° C. water tank, and energized for 16 hours with a current of 16 A to form. After the formation, the specific gravity and the amount of the electrolyte in the battery are adjusted to obtain a B24 type lead storage battery defined in JIS 5301D.
Here, the amounts of the positive electrode active material and the negative electrode active material are determined so that the battery capacity is determined based on the positive electrode.

以下に、本発明を実施例及び比較例により詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

尚、以下の実施例では、各物性値、特性値等を次のようにして測定した。   In the following examples, each physical property value, characteristic value, and the like were measured as follows.

<正極活物質質量の測定>
満充電後の鉛蓄電池を解体し、極板群から正極板を取り出す。正極板に付着している電解液(希硫酸)を取り除いた後、正極板を乾燥する。前記正極板から正極活物質を全量採取し、その正極活物質質量を測定する。
<Measurement of mass of positive electrode active material>
The lead-acid battery after full charge is disassembled and the positive electrode plate is taken out from the electrode plate group. After removing the electrolyte solution (dilute sulfuric acid) adhering to the positive electrode plate, the positive electrode plate is dried. A total amount of the positive electrode active material is collected from the positive electrode plate, and the mass of the positive electrode active material is measured.

<電解液中の硫酸質量の計算>
満充電状態における正極活物質量に対する電解液中の硫酸質量の比率(R)は、
電解液比重:G
電解液量:V
硫酸濃度(質量%):C
正極活物質質量:M
として、次の式(1)で求める。
R=G×V×C/M・・・(1)
<正極活物質の細孔容積の測定>
上記正極活物質質量測定のための正極活物質(正極板の上中下位置からサンプリングし混合したもの)を粉砕する。この活物質の細孔容積を、島津製作所社製「マイクロメトリクスオートポアIV」(水銀圧入式多孔度測定機)を用いて測定する。
<Calculation of the amount of sulfuric acid in the electrolyte>
The ratio (R) of the sulfuric acid mass in the electrolyte to the amount of the positive electrode active material in the fully charged state is:
Electrolyte specific gravity: G
Electrolyte volume: V
Sulfuric acid concentration (mass%): C
Positive electrode active material mass: M
Is obtained by the following equation (1).
R = G × V × C / M (1)
<Measurement of pore volume of positive electrode active material>
The positive electrode active material for mass measurement of the positive electrode active material (sampled and mixed from the upper, middle and lower positions of the positive electrode plate) is pulverized. The pore volume of this active material is measured using “Micrometrics Autopore IV” (mercury intrusion porosity measuring machine) manufactured by Shimadzu Corporation.

<5時間率の実容量の測定>
鉛蓄電池を、5時間率放電電流で、電池電圧が10.5V(終止電圧)に達するまで放電し、前記放電電流と終止電圧に達するまでの放電持続時間との積から5時間率放電の実容量を求める。
<Measurement of actual capacity at 5 hour rate>
A lead-acid battery is discharged at a 5 hour rate discharge current until the battery voltage reaches 10.5 V (end voltage), and the product of the discharge current and the discharge duration until it reaches the end voltage is Find capacity.

<重負荷寿命試験>
前記5時間率容量試験後の電池を、40℃の水槽中に置き、(ア)放電電流:20Aで1時間放電し、(イ)充電電流:5Aで1時間充電する。前記(ア)(イ)を1サイクルとして、充放電を繰り返す。25サイクルごとに放電電流:20Aで、電池電圧が10.2V(終止電圧)に達するまで放電し、その放電持続時間を測定して放電容量を求める。この放電容量が、前記5時間率放電の実容量の50%以下に低下し、再び上昇しないことを確認したサイクル数を寿命(寿命サイクル数)と判断する。
<Heavy load life test>
The battery after the 5-hour rate capacity test is placed in a water bath at 40 ° C., (a) discharged at a discharge current of 20 A for 1 hour, and (a) charged at a charge current of 5 A for 1 hour. Charging / discharging is repeated with (a) and (b) as one cycle. The battery is discharged at a discharge current of 20 A every 25 cycles until the battery voltage reaches 10.2 V (end voltage), and the discharge duration is measured to determine the discharge capacity. The number of cycles in which it is confirmed that the discharge capacity is reduced to 50% or less of the actual capacity of the 5-hour rate discharge and does not increase again is determined as the life (number of life cycles).

まず、満充電の状態において、正極活物質質量523g/セル、電解液比重1.32、電解液量500ml/セルである鉛蓄電池を作製した。
電解液比重1.32における硫酸濃度は41.9質量%であるので、正極活物質質量に対する電解液中の硫酸質量の比率(R)は、式(1)により0.53となる。
First, a lead storage battery having a positive electrode active material mass of 523 g / cell, an electrolyte specific gravity of 1.32, and an electrolyte amount of 500 ml / cell in a fully charged state was produced.
Since the sulfuric acid concentration in the electrolytic solution specific gravity of 1.32 is 41.9% by mass, the ratio (R) of the sulfuric acid mass in the electrolytic solution to the positive electrode active material mass is 0.53 according to the equation (1).

次に、満充電状態における電解液比重を1.32、正極活物質量を523g/セルに固定し、電解液量を変えて、Rを0.45〜0.60の範囲で変えた鉛蓄電池を作製した。   Next, a lead storage battery in which the electrolyte specific gravity in a fully charged state is fixed at 1.32 and the amount of positive electrode active material is fixed at 523 g / cell, the amount of electrolyte is changed, and R is changed in the range of 0.45 to 0.60. Was made.

さらに、電解液比重を、1.28、1.30、1.34、1.36、1.38のそれぞれとし、正極活物質質量及び電解液量を調整して、Rを0.45〜0.60の範囲で変えた鉛蓄電池を作製した。   Further, the specific gravity of the electrolytic solution is 1.28, 1.30, 1.34, 1.36, 1.38, the positive electrode active material mass and the amount of the electrolytic solution are adjusted, and R is 0.45 to 0. The lead acid battery which changed in the range of .60 was produced.

なお、電解液比重と電解液の硫酸濃度との関係は表1に示すとおりである。   The relationship between the specific gravity of the electrolytic solution and the sulfuric acid concentration of the electrolytic solution is as shown in Table 1.

Figure 2013098016
Figure 2013098016

上記の各種鉛蓄電池を5時間率の実容量試験、続いて重負荷寿命試験に供し、電池容量と寿命サイクル数を求め、その結果を表2に示した。
自動車用鉛蓄電池は、電解液比重が1.28、Rが0.53の鉛蓄電池(表2中No.3)が標準仕様であり、この鉛蓄電池の電池容量及び寿命サイクル数を100として、各鉛蓄電池と相対比較した。
The above-mentioned various lead-acid batteries were subjected to a 5-hour rate real capacity test, followed by a heavy load life test to determine the battery capacity and the number of life cycles, and the results are shown in Table 2.
The lead acid battery for automobiles has a standard specification of a lead acid battery (No. 3 in Table 2) having an electrolyte specific gravity of 1.28 and R of 0.53, and assuming that the battery capacity and life cycle number of this lead acid battery is 100, A relative comparison was made with each lead-acid battery.

Figure 2013098016
Figure 2013098016

表2の結果から、電池容量と寿命サイクル数の双方が100より大きい性能を満足するのは、電解液の比重が1.30〜1.36の範囲であり、かつRが0.48〜0.58の範囲であることが分かる。
電解液比重の低い鉛蓄電池は、電解液中の硫酸イオン量が少ないため、電池容量は小さくなっている。一方、電解液比重の高い鉛蓄電池は、電解液中の硫酸イオン量が増え、電池容量が増すものの、正極格子体と正極活物質の界面に不導態である硫酸鉛が生成されやすくなり、寿命サイクル数が少なくなっている。
そこで、電解液比重を1.30〜1.36の範囲に設定し、Rを0.48〜0.58の範囲とすることで、硫酸イオン量を多くしながら硫酸イオンが正極板活物質層の深部まで到達するのを抑制し、正極格子体と正極活物質の界面の硫酸鉛化を抑制するため、寿命性能を低下させることなく、高容量な電池を得ることができる。
From the results of Table 2, the battery capacity and the number of life cycles satisfy both performances greater than 100 when the specific gravity of the electrolyte is in the range of 1.30 to 1.36 and R is 0.48 to 0. It can be seen that the range is .58.
A lead storage battery having a low electrolyte specific gravity has a small battery capacity because the amount of sulfate ions in the electrolyte is small. On the other hand, lead acid batteries with a high electrolyte specific gravity increase the amount of sulfate ions in the electrolyte and increase the battery capacity, but lead sulfate is easily generated at the interface between the positive electrode grid and the positive electrode active material. The number of life cycles is low.
Therefore, by setting the specific gravity of the electrolyte in the range of 1.30 to 1.36 and R in the range of 0.48 to 0.58, the sulfate ions are increased in the positive electrode plate active material layer while increasing the amount of sulfate ions. Therefore, it is possible to obtain a high-capacity battery without deteriorating the life performance, because the formation of lead sulfate at the interface between the positive electrode grid and the positive electrode active material is suppressed.

上記の表2中のNo.13における鉛蓄電池は、満充電状態における正極活物質の細孔容積が0.13ml/gである。
正極活物質の細孔容積は、化成温度を高くすると減少し、電解液比重を高くすると増加させることができるので、これら条件を調整して、化成後の正極活物質の細孔容積を0.11〜0.15ml/gの範囲で調整した表3に示す各種鉛蓄電池を作製した。
In the lead storage battery of No. 13 in Table 2 above, the pore volume of the positive electrode active material in a fully charged state is 0.13 ml / g.
Since the pore volume of the positive electrode active material can be decreased by increasing the chemical conversion temperature and can be increased by increasing the specific gravity of the electrolyte, the pore volume of the positive electrode active material after chemical conversion is adjusted to 0. Various lead acid batteries shown in Table 3 adjusted in the range of 11 to 0.15 ml / g were prepared.

これらの鉛蓄電池の電池容量及び寿命サイクル数を、表2中No.3を100として相対比較し、表3に併せて示した。   The battery capacities and the number of life cycles of these lead storage batteries are shown in Table 3 in a relative comparison with No. 3 in Table 2 being 100.

Figure 2013098016
Figure 2013098016

表3の結果から、正極活物質の細孔容積が0.11〜0.15ml/gの範囲において電池容量及び寿命サイクル数が一層大きくなることが分かる。
正極活物質の細孔容積が小さくなると、放電反応により活物質が硫酸鉛化したとき、硫酸鉛が細孔を閉塞して充放電反応を阻害するようになる。一方、細孔容積が大きくなると、活物質粒子同士の接触面積が減り、容量低下につながると考えられる。
From the results of Table 3, it can be seen that the battery capacity and the number of life cycles are further increased when the pore volume of the positive electrode active material is in the range of 0.11 to 0.15 ml / g.
When the pore volume of the positive electrode active material is reduced, when the active material is converted to lead sulfate by the discharge reaction, the lead sulfate blocks the pores and inhibits the charge / discharge reaction. On the other hand, it is considered that when the pore volume is increased, the contact area between the active material particles is decreased, leading to a decrease in the capacity.

以上のように、本発明によれば、寿命性能を低下させることなく、高容量の鉛蓄電池を得ることができる。   As described above, according to the present invention, a high-capacity lead-acid battery can be obtained without reducing the life performance.

Claims (2)

正極支配で電池容量が決定される鉛蓄電池であって、
満充電の状態において、電解液の比重(20℃換算値)が、1.30〜1.36であり、かつ正極活物質質量に対する電解液中の硫酸質量の比率が、0.48〜0.58であることを特徴とする鉛蓄電池。
A lead-acid battery whose battery capacity is determined by the positive electrode,
In a fully charged state, the specific gravity (converted value at 20 ° C.) of the electrolytic solution is 1.30 to 1.36, and the ratio of the sulfuric acid mass in the electrolytic solution to the positive electrode active material mass is 0.48 to 0.00. The lead acid battery characterized by being 58.
請求項1において、満充電の状態において、正極活物質の細孔容積が、0.11〜0.15ml/gであることを特徴とする鉛蓄電池。   2. The lead acid battery according to claim 1, wherein the positive electrode active material has a pore volume of 0.11 to 0.15 ml / g in a fully charged state.
JP2011239909A 2011-11-01 2011-11-01 Lead acid battery Active JP5720947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011239909A JP5720947B2 (en) 2011-11-01 2011-11-01 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011239909A JP5720947B2 (en) 2011-11-01 2011-11-01 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2013098016A true JP2013098016A (en) 2013-05-20
JP5720947B2 JP5720947B2 (en) 2015-05-20

Family

ID=48619748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011239909A Active JP5720947B2 (en) 2011-11-01 2011-11-01 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5720947B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076883A1 (en) * 2012-11-13 2014-05-22 パナソニック株式会社 Lead-acid cell
JP2018018746A (en) * 2016-07-29 2018-02-01 株式会社Gsユアサ Lead storage battery
CN110036526A (en) * 2016-12-07 2019-07-19 日立化成株式会社 Lead storage battery
EP3660960A4 (en) * 2017-09-28 2021-04-28 GS Yuasa International Ltd. Lead acid storage battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220751A (en) * 1994-01-28 1995-08-18 Shin Kobe Electric Mach Co Ltd Sealed lead acid battery and manufacture thereof
JPH10302783A (en) * 1997-04-25 1998-11-13 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and manufacture thereof
JP2003132937A (en) * 2001-10-23 2003-05-09 Yuasa Corp Manufacturing method of lead storage battery
JP2004192870A (en) * 2002-12-09 2004-07-08 Japan Storage Battery Co Ltd Lead-acid battery and its manufacturing method
JP2008130516A (en) * 2006-11-24 2008-06-05 Furukawa Battery Co Ltd:The Liquid lead-acid storage battery
JP2008152968A (en) * 2006-12-14 2008-07-03 Gs Yuasa Corporation:Kk Lead storage battery
JP2009146829A (en) * 2007-12-18 2009-07-02 Shin Kobe Electric Mach Co Ltd Method for manufacturing paste type positive electrode plate and control valve type lead-acid battery using it
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2010225408A (en) * 2009-03-24 2010-10-07 Panasonic Corp Lead storage battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220751A (en) * 1994-01-28 1995-08-18 Shin Kobe Electric Mach Co Ltd Sealed lead acid battery and manufacture thereof
JPH10302783A (en) * 1997-04-25 1998-11-13 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and manufacture thereof
JP2003132937A (en) * 2001-10-23 2003-05-09 Yuasa Corp Manufacturing method of lead storage battery
JP2004192870A (en) * 2002-12-09 2004-07-08 Japan Storage Battery Co Ltd Lead-acid battery and its manufacturing method
JP2008130516A (en) * 2006-11-24 2008-06-05 Furukawa Battery Co Ltd:The Liquid lead-acid storage battery
JP2008152968A (en) * 2006-12-14 2008-07-03 Gs Yuasa Corporation:Kk Lead storage battery
JP2009146829A (en) * 2007-12-18 2009-07-02 Shin Kobe Electric Mach Co Ltd Method for manufacturing paste type positive electrode plate and control valve type lead-acid battery using it
JP2009158286A (en) * 2007-12-26 2009-07-16 Gs Yuasa Corporation Lead-acid battery and method of manufacturing the same
JP2010225408A (en) * 2009-03-24 2010-10-07 Panasonic Corp Lead storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076883A1 (en) * 2012-11-13 2014-05-22 パナソニック株式会社 Lead-acid cell
JPWO2014076883A1 (en) * 2012-11-13 2017-01-05 パナソニック株式会社 Lead-acid battery for auxiliary equipment in hybrid vehicles
JP2018018746A (en) * 2016-07-29 2018-02-01 株式会社Gsユアサ Lead storage battery
CN110036526A (en) * 2016-12-07 2019-07-19 日立化成株式会社 Lead storage battery
EP3553870A4 (en) * 2016-12-07 2019-12-18 Hitachi Chemical Co., Ltd. Lead acid storage battery
EP3660960A4 (en) * 2017-09-28 2021-04-28 GS Yuasa International Ltd. Lead acid storage battery

Also Published As

Publication number Publication date
JP5720947B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
EP3288107B1 (en) Lead storage battery
JP5190562B1 (en) Lead-acid battery for energy storage
JP2013218894A (en) Lead acid battery
EP2544292A1 (en) Lead storage battery
JP6168138B2 (en) Liquid lead-acid battery
JP5720947B2 (en) Lead acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP6575536B2 (en) Lead acid battery
JP2018055903A (en) Positive electrode plate for lead storage battery and lead storage battery
JP2010102922A (en) Control valve type lead-acid battery
JP5569164B2 (en) Lead acid battery
JP2014078325A (en) Lead storage battery
JP2006202584A (en) Lead-acid battery and its manufacturing method
JP7287884B2 (en) Positive plate for lead-acid battery, lead-acid battery
RU2424602C1 (en) Cathode of manganese-zinc chemical current source
JP2009289595A (en) Sealed lead acid storage battery
JP2016213050A (en) Control valve-type lead storage battery and method for manufacturing the same
JP2009170106A (en) Lithium ion battery
JP2009252606A (en) Manufacturing method of lead acid storage battery
Zhao et al. Study of cetyltrimethyl ammonium bromide and benzylideneacetone as electrolyte additives for valve-regulated lead-acid batteries under high-rate partial-state-of-charge conditions
JP2021086730A (en) Method for manufacturing positive electrode plate for lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2017069022A (en) Lead storage battery
JP2023046379A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150311

R150 Certificate of patent or registration of utility model

Ref document number: 5720947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250