JPH07220751A - Sealed lead acid battery and manufacture thereof - Google Patents

Sealed lead acid battery and manufacture thereof

Info

Publication number
JPH07220751A
JPH07220751A JP6008355A JP835594A JPH07220751A JP H07220751 A JPH07220751 A JP H07220751A JP 6008355 A JP6008355 A JP 6008355A JP 835594 A JP835594 A JP 835594A JP H07220751 A JPH07220751 A JP H07220751A
Authority
JP
Japan
Prior art keywords
electrode plate
silica
retainer
silica powder
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6008355A
Other languages
Japanese (ja)
Inventor
Hiroki Okamoto
博喜 岡本
Katsura Mitani
桂 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP6008355A priority Critical patent/JPH07220751A/en
Publication of JPH07220751A publication Critical patent/JPH07220751A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a sealed lead acid battery wherein a life can be extended by preventing stratification of an electrolyte in a clearance formed between a plate and a retainer. CONSTITUTION:An auxiliary liquid holding layer 6 mainly composed of silica is formed between a positive plate 3 and a retainer 5. The silica used for forming the auxiliary liquid holding layer 6 is prepared first by mixing water- contained silicon dioxide with colloidal silica, heating an obtained mixture to prepare a dewatered object, and next by crushing this dewatered object. Silica powder thus prepared is kneaded by an electrolyte and screen process printed in a surface opposed to the retainer 5 of the positive plate 3, to form the auxiliary liquid holding layer 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形鉛蓄電池及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead acid battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般的な密閉形鉛蓄電池は正極板と負極
板とがリテーナを介して積層された極板群を有してい
る。使用するリテーナは微細なガラス繊維等の繊維を用
いて形成された不織布により形成されている。しかしな
がら、極板の活物質表面及びリテーナの表面にはそれぞ
れ凹凸があるため、極板とリテーナとの間にわずかな隙
間が形成され、この隙間に電解液(希硫酸)が滞留す
る。隙間に滞留した電解液では、時間の経過と共に下部
の硫酸濃度が上部の硫酸濃度より高くなるため、上部と
下部との間で成層化が発生する。隙間に位置する電解液
が成層化すると、硫酸濃度が高くなる極板群の下部では
充電受入性が低下するため、電池に充放電が繰り返され
るとサルフェーションが生じる。そのため、硫酸濃度が
低くなる極板群の上側部分に充放電反応が集中し、電池
の容量及び寿命を低下させるという問題があった。そこ
で、極板とリテーナとの間の隙間にシリカ粉末を主成分
とする補助保液層を形成し、このシリカ粉末に硫酸イオ
ンを吸着させて、電解液の成層化防止を図ることが提案
された。
2. Description of the Related Art A general sealed lead-acid battery has an electrode plate group in which a positive electrode plate and a negative electrode plate are laminated via a retainer. The retainer used is made of a non-woven fabric formed by using fibers such as fine glass fibers. However, since the surface of the active material of the electrode plate and the surface of the retainer have irregularities, a slight gap is formed between the electrode plate and the retainer, and the electrolytic solution (dilute sulfuric acid) stays in this gap. In the electrolytic solution retained in the gap, the sulfuric acid concentration in the lower portion becomes higher than the sulfuric acid concentration in the upper portion with the lapse of time, so that stratification occurs between the upper portion and the lower portion. When the electrolytic solution located in the gap is stratified, the charge acceptability is lowered in the lower part of the electrode plate group where the sulfuric acid concentration is high, so that the sulfation occurs when the battery is repeatedly charged and discharged. Therefore, there is a problem that the charge / discharge reaction concentrates on the upper part of the electrode plate group where the sulfuric acid concentration becomes low, and the capacity and life of the battery are reduced. Therefore, it has been proposed to form an auxiliary liquid retaining layer containing silica powder as a main component in the gap between the electrode plate and the retainer, and to adsorb sulfate ions to the silica powder to prevent stratification of the electrolytic solution. It was

【0003】[0003]

【発明が解決しようとする課題】補助保液層を形成する
ために従来用いられていたシリカ粉末の平均粒子径は数
μm と小さく、シリカ粉末に硫酸イオンを十分に吸着さ
せることができなかった。そのため、成層化を十分に防
止することができなかった。また従来は保液性を高める
ためにシリカ粉末の量を増加させる必要があったので、
補助保液層内の電解液の含有量が低下し、電池容量が大
きく低下する問題があった。
The average particle diameter of the silica powder conventionally used for forming the auxiliary liquid retaining layer is as small as several μm, and sulfate ions cannot be sufficiently adsorbed on the silica powder. . Therefore, stratification could not be sufficiently prevented. Also, in the past, it was necessary to increase the amount of silica powder in order to improve liquid retention,
There has been a problem that the content of the electrolytic solution in the auxiliary liquid retaining layer is reduced and the battery capacity is significantly reduced.

【0004】本発明の目的は、従来の課題を解決するこ
とができる密閉形鉛蓄電池を提供することにある。
An object of the present invention is to provide a sealed lead acid battery which can solve the conventional problems.

【0005】本発明の他の目的は、極板とリテーナとの
間の隙間における電解液の成層化を防止して寿命を延ば
すことができる密閉形鉛蓄電池を簡単に製造する方法を
提供することにある。
Another object of the present invention is to provide a method for easily manufacturing a sealed lead acid battery capable of preventing the stratification of the electrolyte in the gap between the electrode plate and the retainer and extending the life. It is in.

【0006】[0006]

【課題を解決するための手段】本発明は、少なくとも正
極板とリテーナとの間にシリカを主成分とする補助保液
層が形成されている密閉形鉛蓄電池を対象にして、補助
保液層に含まれるシリカとして、脱水処理により造粒さ
れたシリカ粉体を用いる。シリカ粉体はシラノール脱水
状態まで脱水して造粒してもよく、表面融着が発生する
状態まで脱水して造粒してもよい。
SUMMARY OF THE INVENTION The present invention is directed to a sealed lead-acid battery in which an auxiliary liquid retaining layer containing silica as a main component is formed at least between a positive electrode plate and a retainer, and the auxiliary liquid retaining layer is provided. As the silica contained in, the silica powder granulated by the dehydration treatment is used. The silica powder may be dehydrated to a silanol dehydration state and granulated, or may be dehydrated to a state where surface fusion occurs and granulated.

【0007】密閉形鉛蓄電池を製造するには、含水二酸
化珪素とコロイダルシリカとを混合した混合物に脱水処
理を施して脱水物を作り、この脱水物を粉砕して平均粒
子径寸法が含水二酸化珪素の平均粒子径寸法よりも大き
なシリカ粉体を作る。このようにして作ったシリカ粉体
により極板またはリテーナの表面に補助保液層を形成す
る。簡単に補助保液層を作る方法としては、シリカ粉体
を電解液等の溶液で混練して混練物を作り、スクリーン
印刷法等により極板またはリテーナに充填する。混練物
は少なくともリテーナの正極板側の表面及び少くとも正
極板のリテーナ側の表面の少なくとも一方に塗布すれば
よい。混練する溶液として電解液を用いると、極板の活
物質中に確実に電解液を含浸することができる。
In order to manufacture a sealed lead-acid battery, a dehydrated product is prepared by subjecting a mixture of hydrous silicon dioxide and colloidal silica to dehydration, and the dehydrated product is pulverized to obtain hydrous silicon dioxide having an average particle size. A silica powder larger than the average particle size of is produced. An auxiliary liquid retaining layer is formed on the surface of the electrode plate or retainer with the silica powder thus produced. As a simple method of forming the auxiliary liquid retaining layer, silica powder is kneaded with a solution such as an electrolytic solution to prepare a kneaded product, and the electrode plate or the retainer is filled by a screen printing method or the like. The kneaded product may be applied to at least one of the surface of the retainer on the positive electrode plate side and at least the surface of the positive electrode plate on the retainer side. When the electrolytic solution is used as the kneading solution, the active material of the electrode plate can be surely impregnated with the electrolytic solution.

【0008】含水二酸化珪素はSiO2 n(H2 O)
(n=約0.5)が凝集した数μm の粉体であり、一般
的にはSiO2 の分子式で統一して表されることが多
い。一般のシリカが乾燥法で製造されるのに対して含水
二酸化珪素は湿式法により製造されているため、乾燥後
の粉末中に結晶水(吸着水)が残留している。含水二酸
化珪素は乾燥法で製造した二酸化珪素に比べて不純物が
少ないという特徴を有している。コロイダルシリカとは
数nmの無水二酸化珪素を水中に分散したものである。
このような含水二酸化珪素、コロイダルシリカは、その
表面にシラノール基[−Si(OH)]からなる親水基
を多く有している。なお本願明細書においてシリカと
は、二酸化珪素だけでなく、表面にシラノール基[−S
i(OH)]、吸着水を備えたもの(例えば、含水二酸
化珪素、コロイダルシリカ等)も含むと定義される。
Hydrous silicon dioxide is SiO 2 n (H 2 O)
(N = about 0.5) is an agglomerated powder of several μm, and is generally represented by the uniform molecular formula of SiO 2 . Since ordinary silica is produced by a dry method, hydrous silicon dioxide is produced by a wet method, so that water of crystallization (adsorption water) remains in the powder after drying. Hydrous silicon dioxide is characterized by having less impurities than silicon dioxide produced by a dry method. Colloidal silica is a dispersion of anhydrous silicon dioxide of several nm in water.
Such hydrous silicon dioxide and colloidal silica have many hydrophilic groups composed of silanol groups [-Si (OH)] on their surfaces. In the specification of the present application, silica means not only silicon dioxide but also a silanol group [-S
i (OH)], and those with adsorbed water (for example, hydrous silicon dioxide, colloidal silica, etc.) are also defined.

【0009】シリカをシラノール脱水状態まで脱水する
とシラノール基[−Si(OH)]のわずかな水素原子
がとれて、シリカ粒子どうしががわずかな酸素原子によ
り相互に接続される。また表面融着が発生する状態まで
脱水するとシラノール基[−Si(OH)]の比較的多
くの水素原子がとれて、シリカ粒子どうしが多くの酸素
原子により相互に接続される。
When silica is dehydrated to the silanol dehydration state, a few hydrogen atoms of the silanol group [-Si (OH)] are removed, and silica particles are connected to each other by a few oxygen atoms. Further, when dehydration is performed to a state where surface fusion occurs, a relatively large number of hydrogen atoms of silanol groups [—Si (OH)] are removed, and silica particles are interconnected by a large number of oxygen atoms.

【0010】[0010]

【作用】含水二酸化珪素、コロイダルシリカ等のシリカ
を加熱して脱水処理を行うと、表1に示すように加熱温
度によりそれぞれ異なった形で造粒される。造粒された
シリカ粉体は複数の粒子が結合した大きな形状を有して
いる。そのため、本発明のように補助保液層に含まれる
シリカとして、脱水処理により造粒されたシリカ粉体を
用いると、補助保液層内の粉体相互間の空隙部が大きく
なり、シリカ粉体と電解液との接触面積が増える。その
結果、シリカ粉体に硫酸イオンが吸着しやすくなって、
成層化防止効果が高くなる。また補助保液層内の保液量
が増えることによっても、電池容量を高めることができ
る。
When silica, such as hydrous silicon dioxide and colloidal silica, is heated and dehydrated, it is granulated in different shapes depending on the heating temperature, as shown in Table 1. The granulated silica powder has a large shape in which a plurality of particles are combined. Therefore, when silica powder granulated by dehydration treatment is used as silica contained in the auxiliary liquid retaining layer as in the present invention, voids between the powder particles in the auxiliary liquid retaining layer become large, and silica powder The contact area between the body and the electrolyte increases. As a result, it becomes easier for sulfate ions to be adsorbed on the silica powder,
The stratification prevention effect is enhanced. Also, the battery capacity can be increased by increasing the amount of liquid retained in the auxiliary liquid retaining layer.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【実施例】【Example】

(実施例1)図1は本実施例の密閉形鉛蓄電池の概略断
面図である。本実施例の密閉形鉛蓄電池は、安全弁2a
を備えた電槽2内に極板群1が収納された構造を有して
いる。極板群1は3枚の正極板3…と3枚の負極板4…
とがリテーナ5…を介して積層されて構成されており、
正極板3…とリテーナ5…の間には補助保液層6…がそ
れぞれ形成されている。正極板3はPbO2 を主成分と
する活物質150gがPb格子体からなる正極集電体に
充填された構造を有しており、3.6mmの厚みを有して
いる。負極板4は海綿状Pbを主成分とする活物質12
0gがPb格子体からなる負極集電体に充填された構造
を有しており、3.0mmの厚みを有している。正極板3
…は相互に接続されて正極端子7に接続され、負極板4
…は相互に接続されて負極端子8に接続されている。リ
テーナ5は平均線径0.7μm 、平均長さ5.0mmのガ
ラス繊維からなる厚み2.3mmの不織布により形成され
ており、内部には比重1.320の希硫酸からなる電解
液が100g含浸されている。
(Embodiment 1) FIG. 1 is a schematic sectional view of a sealed lead-acid battery of this embodiment. The sealed lead-acid battery of this embodiment has a safety valve 2a.
It has a structure in which the electrode plate group 1 is housed in a battery case 2 provided with. The electrode plate group 1 includes three positive electrode plates 3 ... and three negative electrode plates 4.
And are laminated via the retainer 5 ...
Auxiliary liquid-retaining layers 6 are formed between the positive electrode plates 3 and the retainers 5. The positive electrode plate 3 has a structure in which 150 g of an active material containing PbO2 as a main component is filled in a positive electrode current collector composed of a Pb lattice, and has a thickness of 3.6 mm. The negative electrode plate 4 is an active material 12 containing spongy Pb as a main component.
It has a structure in which 0 g is filled in a negative electrode current collector made of a Pb lattice, and has a thickness of 3.0 mm. Positive plate 3
Are connected to each other and to the positive electrode terminal 7, and the negative electrode plate 4
Are connected to each other and to the negative electrode terminal 8. The retainer 5 is made of a non-woven fabric of glass fiber having an average wire diameter of 0.7 μm and an average length of 5.0 mm and a thickness of 2.3 mm, and is impregnated with 100 g of an electrolytic solution made of diluted sulfuric acid having a specific gravity of 1.320. Has been done.

【0013】補助保液層6はシラノール脱水状態まで脱
水されて造粒されたシリカ粉体と電解液との混合物によ
り形成されており、次のようにして形成した。まず平均
粒子径50μm の含水二酸化珪素20重量%と平均単粒
子径20nmの無水二酸化珪素を含有するコロイダルシ
リカ80重量%とを混合して混合物を作った。含水二酸
化珪素の好ましい含有量は5〜30重量%であり、コロ
イダルシリカの好ましい含有量は70〜95重量%であ
る。次にこの混合物を500℃で3時間加熱してシラノ
ール脱水状態の脱水物を作った。なおシラノール脱水状
態まで脱水するのに好ましい加熱温度の範囲は400〜
600℃であり、好ましい加熱時間は0.5〜2時間で
ある。なおこの加熱温度の範囲と加熱時間との関係は、
低い加熱温度では長い時間加熱をし、高い加熱温度では
短い時間加熱するものである。例えば加熱温度400℃
では2時間で加熱し、加熱温度600℃では0.5時間
加熱すればよい。次にこの脱水物を平均粒子径200μ
m の大きさに粉砕してシリカ粉体を造粒した。このよう
にして造ったシリカ粉体の平均粒子径寸法は、含水二酸
化珪素の平均粒子径寸法よりも大きい。シリカ粉体の平
均粒子径寸法は、補助保液層内においてシリカ粉体と電
解液との接触面積を十分に確保することができ、しかも
補助保液層内の保液量を十分に高めることができる大き
さにすればよく、本実施例では平均粒子径180〜25
0μm の大きさの粉体が得られるように脱水物を粉砕す
るのが好ましい。次にシリカ粉体25重量%を比重1.
320の希硫酸と混合してインクを作り、このインク3
0gを正極板3のリテーナ5と対向する面にスクリーン
印刷法で印刷して厚み約2mmの補助保液層6を形成し
た。この補助保液層6には単位体積(cm3 )当たり5〜
10gのシリカ粉体が含まれている。また補助保液層6
内の粉体間に形成される空隙部の最大寸法の平均値はリ
テーナ5内の空隙部の最大寸法の平均値とほぼ同様の1
0μm 程度であり、電解液の保液量は80〜90%であ
った。例えば、混練液を用いずにシリカ粉体の層を、極
板またはリテーナの表面に形成した後に、極板群を組立
て、その極板群を電槽に入れて電解液をリテーナに含浸
させると、電解液の大部分がリテーナと補助保液層に保
持されてしまい、電解液は極板の活物質中に入り難くな
る。そこで電解液を用いてスクリーン印刷用のインクを
作ると、電解液を活物質内に確実且つ容易に浸透させる
ことができる。また、本実施例では極板側に補助保液層
6を形成したが、リテーナの極板に対向する面に補助保
液層6を形成してもよく、極板及びリテーナの双方の面
に補助保液層を形成しても構わない。本実施例のように
極板側に補助保液層6を形成するとシリカ粉体が極板に
密着する上、極板中への電解液の含浸がスムーズになる
という利点がある。
The auxiliary liquid-retaining layer 6 is formed of a mixture of silica powder dehydrated to a silanol dehydration state and granulated, and an electrolytic solution, and was formed as follows. First, 20% by weight of hydrous silicon dioxide having an average particle size of 50 μm and 80% by weight of colloidal silica containing anhydrous silicon dioxide having an average single particle size of 20 nm were mixed to prepare a mixture. The preferred content of hydrous silicon dioxide is 5 to 30% by weight, and the preferred content of colloidal silica is 70 to 95% by weight. Next, this mixture was heated at 500 ° C. for 3 hours to prepare a dehydrated product in a silanol dehydrated state. The preferable heating temperature range for dehydration to the silanol dehydration state is 400 to
The temperature is 600 ° C., and the preferable heating time is 0.5 to 2 hours. The relationship between this heating temperature range and heating time is
Heating is performed for a long time at a low heating temperature, and for a short time at a high heating temperature. For example, heating temperature 400 ℃
Then, the heating may be performed for 2 hours, and the heating temperature may be 600 ° C. for 0.5 hours. Next, this dehydrated product is treated with an average particle size of 200 μm.
The silica powder was granulated by pulverizing to a size of m 2. The silica powder produced in this manner has an average particle size larger than that of hydrous silicon dioxide. The average particle size of the silica powder is such that the contact area between the silica powder and the electrolytic solution can be sufficiently secured in the auxiliary liquid retaining layer, and the liquid retaining amount in the auxiliary liquid retaining layer can be sufficiently increased. The average particle diameter is 180 to 25 in this embodiment.
It is preferred to grind the dehydrated product so as to obtain a powder with a size of 0 μm. Next, 25% by weight of silica powder has a specific gravity of 1.
Make an ink by mixing it with 320 diluted sulfuric acid.
0 g was printed on the surface of the positive electrode plate 3 facing the retainer 5 by a screen printing method to form an auxiliary liquid retaining layer 6 having a thickness of about 2 mm. The auxiliary liquid retaining layer 6 has 5 to 5 per unit volume (cm 3 ).
It contains 10 g of silica powder. In addition, the auxiliary liquid retention layer 6
The average value of the maximum dimensions of the voids formed between the powders inside is approximately the same as the average value of the maximum dimensions of the voids inside retainer 5.
It was about 0 μm, and the amount of electrolyte retained was 80 to 90%. For example, if a layer of silica powder is formed on the surface of an electrode plate or retainer without using a kneading liquid, an electrode plate group is assembled, and the electrode plate group is placed in a battery case to impregnate the retainer with the electrolytic solution. However, most of the electrolytic solution is retained in the retainer and the auxiliary liquid retaining layer, and it becomes difficult for the electrolytic solution to enter the active material of the electrode plate. Therefore, when an ink for screen printing is prepared by using the electrolytic solution, the electrolytic solution can surely and easily penetrate into the active material. Although the auxiliary liquid retaining layer 6 is formed on the electrode plate side in this embodiment, the auxiliary liquid retaining layer 6 may be formed on the surface of the retainer that faces the electrode plate, and the auxiliary liquid retaining layer 6 may be formed on both surfaces of the electrode plate and the retainer. An auxiliary liquid retaining layer may be formed. Forming the auxiliary liquid-retaining layer 6 on the electrode plate side as in this embodiment has the advantages that silica powder adheres to the electrode plate and the impregnation of the electrolyte solution into the electrode plate becomes smooth.

【0014】(実施例2)本実施例の密閉形鉛蓄電池
は、含水二酸化珪素とコロイダルシリカとの混合物を2
70℃で3時間加熱して、混合物に含まれるシリカから
吸着水を脱水して脱水物を作り、その他は実施例1と同
様にして作った。なお吸着水を脱水するのに好ましい加
熱温度の範囲は150〜400℃であり、好ましい加熱
時間は1〜5時間である。
(Embodiment 2) The sealed lead-acid battery of this embodiment contains 2 parts of a mixture of hydrous silicon dioxide and colloidal silica.
The mixture was heated at 70 ° C. for 3 hours to dehydrate the adsorbed water from silica contained in the mixture to prepare a dehydrated product, and otherwise the same as in Example 1. The preferable heating temperature range for dehydrating the adsorbed water is 150 to 400 ° C., and the preferable heating time is 1 to 5 hours.

【0015】(実施例3)本実施例の密閉形鉛蓄電池
は、含水二酸化珪素とコロイダルシリカとの混合物を9
00℃で3時間加熱して、混合物に含まれるシリカに表
面融着が発生した脱水物を作り、その他は実施例1と同
様にして作った。なおシリカに表面融着を発生させるの
に好ましい加熱温度の範囲は800〜1000℃であ
り、好ましい加熱時間は0.5〜3時間である。
(Embodiment 3) The sealed lead-acid battery of this embodiment contains a mixture of hydrous silicon dioxide and colloidal silica.
The mixture was heated at 00 ° C. for 3 hours to prepare a dehydrated product in which surface fusion occurred on silica contained in the mixture, and otherwise the same as in Example 1. The preferred heating temperature range for generating surface fusion on silica is 800 to 1000 ° C., and the preferred heating time is 0.5 to 3 hours.

【0016】(比較例1)本比較例の密閉形鉛蓄電池
は、シリカ粉体を含む補助保液層を形成せず、単にリテ
ーナと極板とを積層して極板群を構成し、その他は実施
例1と同様にして作った。
(Comparative Example 1) The sealed lead-acid battery of this comparative example does not form an auxiliary liquid-retaining layer containing silica powder but simply forms a retainer and an electrode plate to form an electrode plate group. Was made in the same manner as in Example 1.

【0017】(比較例2)本比較例の密閉形鉛蓄電池
は、含水二酸化珪素とコロイダルシリカとの混合物を加
熱せず、その他は実施例1と同様にして作った。
Comparative Example 2 The sealed lead-acid battery of this Comparative Example was made in the same manner as in Example 1 except that the mixture of hydrous silicon dioxide and colloidal silica was not heated.

【0018】次に各実施例及び各比較例の密閉形鉛蓄電
池に0.25Cで2時間放電した後に0.1Cで6時間
充電する充放電を繰り返して、各電池のサイクル寿命特
性を調べた。図2はその測定結果を示している。本図よ
り各実施例の密閉形鉛蓄電池は各比較例の密閉形鉛蓄電
池に比べてサイクル寿命特性が大幅に向上しているのが
判る。
Next, the sealed lead-acid batteries of Examples and Comparative Examples were repeatedly charged and discharged by discharging at 0.25C for 2 hours and then at 0.1C for 6 hours, and the cycle life characteristics of each battery were examined. . FIG. 2 shows the measurement result. From this figure, it can be seen that the sealed lead acid batteries of the examples have significantly improved cycle life characteristics as compared with the sealed lead acid batteries of the comparative examples.

【0019】なお上記各実施例では吸着水の脱水により
造粒されたシリカ粉体、シラノール脱水されて造粒され
たシリカ粉体及び脱水による表面融着により造粒された
シリカ粉体をそれぞれ単独で用いて密閉形鉛蓄電池の補
助保液層を形成したが、本発明はこれに限定されるもの
ではなく、これら三種類のシリカ粉体を適宜に組合わせ
て混合した粉体を用いて補助保液層を形成してもよいの
は勿論である。 また本実施例では、正極板とリテーナ
との間にのみシリカ粉体を含む補助保液層を形成した
が、本発明はこれに限定されるものではなく、負極板と
リテーナとの間にシリカ粉体を含む補助保液層を形成し
てもよいのは勿論である。ただし、正極板では電池の充
放電反応により極板表面に水が生成されるのに対して、
負極板では極板表面に水が生成されないため、補助保液
層で電解液を保液し難くなるおそれがある。そのため、
電池をかなり長期間に亘って使用する場合には、負極板
とリテーナとの間に形成された補助保液層に電解液を注
液する必要が生じるであろう。
In each of the above examples, the silica powder granulated by the dehydration of adsorbed water, the silica powder granulated by silanol dehydration, and the silica powder granulated by the surface fusion by dehydration are used individually. Although the auxiliary liquid-retaining layer of the sealed lead-acid battery was formed by using the above, the present invention is not limited to this, and the auxiliary using a powder obtained by appropriately combining and mixing these three kinds of silica powders. Of course, the liquid retaining layer may be formed. Further, in the present example, the auxiliary liquid retaining layer containing silica powder was formed only between the positive electrode plate and the retainer, but the present invention is not limited to this, and silica is provided between the negative electrode plate and the retainer. Needless to say, an auxiliary liquid retaining layer containing powder may be formed. However, in the positive electrode plate, while water is generated on the surface of the electrode plate due to the charge / discharge reaction of the battery,
Since water is not generated on the surface of the negative electrode plate, it may be difficult to retain the electrolytic solution in the auxiliary liquid retaining layer. for that reason,
When the battery is used for a considerably long period of time, it may be necessary to inject the electrolytic solution into the auxiliary liquid retaining layer formed between the negative electrode plate and the retainer.

【0020】以下、本発明の好ましい実施態様を示す。The preferred embodiments of the present invention will be described below.

【0021】[実施態様1]正極板とリテーナとの間に
シリカを主成分とする補助保液層が形成されている密閉
形鉛蓄電池において、補助保液層に含まれるシリカは、
脱水処理により造粒されたシリカ粉体であることを特徴
とする密閉形鉛蓄電池。
[Embodiment 1] In a sealed lead-acid battery in which an auxiliary liquid retaining layer containing silica as a main component is formed between a positive electrode plate and a retainer, the silica contained in the auxiliary liquid retaining layer is
A sealed lead-acid battery, which is a silica powder granulated by dehydration treatment.

【0022】[実施態様2]前記シリカ粉体として、吸
着水の脱水により造粒されたシリカ粉体、シラノール脱
水されて造粒されたシリカ粉体及び脱水による表面融着
により造粒されたシリカ粉体の少なくとも一種類の粉体
が用いられている実施態様1に記載の密閉形鉛蓄電池。
[Embodiment 2] As the silica powder, silica powder granulated by dehydration of adsorbed water, silica powder granulated by silanol dehydration, and silica granulated by surface fusion by dehydration. The sealed lead-acid battery according to embodiment 1, wherein at least one kind of powder is used.

【0023】[実施態様3]前記補助保液層には単位体
積(cm3 )当たり5〜10gの前記シリカ粉体が含まれ
ている実施態様1または2に記載の密閉形鉛蓄電池。
[Embodiment 3] The sealed lead-acid battery according to Embodiment 1 or 2, wherein the auxiliary liquid retaining layer contains 5 to 10 g of the silica powder per unit volume (cm 3 ).

【0024】[実施態様4]含水二酸化珪素とコロイダ
ルシリカとを混合して作った混合物を加熱して脱水物を
作り、この脱水物を粉砕して平均粒子径寸法が180〜
250μm のシリカ粉体を作り、前記シリカ粉体と電解
液とを混練した混練物を正極板のリテーナと対向する面
上に塗布し、前記正極板と負極板とを前記リテーナを介
して積層して極板群を作ることを特徴とする密閉形鉛蓄
電池の製造方法。
[Embodiment 4] A dehydration product is prepared by heating a mixture prepared by mixing hydrous silicon dioxide and colloidal silica, and the dehydration product is pulverized to have an average particle size of 180 to
A 250 μm silica powder is prepared, and a kneaded product obtained by kneading the silica powder and an electrolytic solution is applied onto the surface of the positive electrode plate facing the retainer, and the positive electrode plate and the negative electrode plate are laminated via the retainer. A method for manufacturing a sealed lead-acid battery, which comprises forming a group of electrode plates.

【0025】[実施態様5]前記含水二酸化珪素5〜3
0重量%と前記コロイダルシリカ70〜95重量%とを
混合して前記混合物を作り、前記混合物を加熱して前記
混合物に含まれるシリカから吸着水を脱水して前記脱水
物を作ることを特徴とする実施態様4に記載の密閉形鉛
蓄電池の製造方法。[実施態様6]前記混合物を150
〜400℃で1〜5時間加熱する実施態様5に記載の密
閉形鉛蓄電池の製造方法。
[Embodiment 5] Said hydrous silicon dioxide 5 to 3
0% by weight and 70 to 95% by weight of the colloidal silica are mixed to form the mixture, and the mixture is heated to dehydrate adsorbed water from silica contained in the mixture to form the dehydrated product. The method for manufacturing a sealed lead-acid battery according to embodiment 4, wherein. [Embodiment 6] The above mixture is added to 150
The method for manufacturing a sealed lead-acid battery according to embodiment 5, which comprises heating at ~ 400 ° C for 1 to 5 hours.

【0026】[実施態様7]前記含水二酸化珪素5〜3
0重量%と前記コロイダルシリカ70〜95重量%とを
混合して前記混合物を作り、前記混合物を加熱して前記
混合物に含まれるシリカがシラノール脱水状態になった
前記脱水物を作ることを特徴とする実施態様4に記載の
密閉形鉛蓄電池の製造方法。
[Embodiment 7] Said hydrous silicon dioxide 5 to 3
0% by weight and 70 to 95% by weight of the colloidal silica are mixed to form the mixture, and the mixture is heated to form the dehydrated product in which silica contained in the mixture is in a silanol dehydration state. The method for manufacturing a sealed lead-acid battery according to embodiment 4, wherein.

【0027】[実施態様8]前記混合物を400〜60
0℃で0.5〜2時間加熱する実施態様7に記載の密閉
形鉛蓄電池の製造方法。
[Embodiment 8] 400 to 60 of the above mixture is added.
The method for producing a sealed lead-acid battery according to embodiment 7, which comprises heating at 0 ° C. for 0.5 to 2 hours.

【0028】[実施態様9]前記含水二酸化珪素5〜3
0重量%と前記コロイダルシリカ70〜95重量%とを
混合して前記混合物を作り、前記混合物を加熱して前記
混合物に含まれるシリカに表面融着が発生した前記脱水
物を作ることを特徴とする実施態様4に記載の密閉形鉛
蓄電池の製造方法。 [実施態様10]前記混合物を800〜1000℃で
0.5〜3時間加熱する実施態様9に記載の密閉形鉛蓄
電池の製造方法。
[Embodiment 9] Said hydrous silicon dioxide 5 to 3
0% by weight and 70 to 95% by weight of the colloidal silica are mixed to form the mixture, and the mixture is heated to form the dehydration product in which surface fusion of silica contained in the mixture occurs. The method for manufacturing a sealed lead-acid battery according to embodiment 4, wherein. [Embodiment 10] The method for producing a sealed lead-acid battery according to Embodiment 9, wherein the mixture is heated at 800 to 1000 ° C for 0.5 to 3 hours.

【0029】[0029]

【発明の効果】本発明によれば補助保液層に含まれるシ
リカとして、脱水処理により造粒されたシリカ粉体を用
いるので、補助保液層内の粉体相互間の空隙部が大きく
なり、シリカ粉体と電解液との接触面積が増える。その
結果、シリカ粉体に硫酸イオンが吸着しやすくなって、
成層化防止効果が高くなる。また補助保液層内の保液量
が増えることによっても、電池容量を高めることができ
る。したがって本発明によれば、電池容量が高く長寿命
の密閉形鉛蓄電池を得ることができる。
According to the present invention, since silica powder granulated by dehydration treatment is used as silica contained in the auxiliary liquid retaining layer, the voids between the powder particles in the auxiliary liquid retaining layer become large. The contact area between the silica powder and the electrolytic solution increases. As a result, it becomes easier for sulfate ions to be adsorbed on the silica powder,
The stratification prevention effect is enhanced. Also, the battery capacity can be increased by increasing the amount of liquid retained in the auxiliary liquid retaining layer. Therefore, according to the present invention, a sealed lead acid battery having a high battery capacity and a long life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の密閉形鉛蓄電池の概略断面
図である。
FIG. 1 is a schematic cross-sectional view of a sealed lead-acid battery according to an embodiment of the present invention.

【図2】 試験に用いた密閉形鉛蓄電池のサイクル寿命
特性を示す図である。
FIG. 2 is a diagram showing cycle life characteristics of a sealed lead acid battery used in a test.

【符号の説明】[Explanation of symbols]

3 正極板 4 負極板 5 リテーナ 6 補助保液層 3 Positive electrode plate 4 Negative electrode plate 5 Retainer 6 Auxiliary liquid retaining layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくとも正極板とリテーナとの間にシリ
カを主成分とする補助保液層が形成されている密閉形鉛
蓄電池において、 前記補助保液層に含まれるシリカは、脱水処理により造
粒されたシリカ粉体であることを特徴とする密閉形鉛蓄
電池。
1. A sealed lead-acid battery in which an auxiliary liquid retaining layer containing silica as a main component is formed at least between a positive electrode plate and a retainer, wherein the silica contained in the auxiliary liquid retaining layer is produced by dehydration treatment. A sealed lead-acid battery, which is a granulated silica powder.
【請求項2】前記シリカ粉体はシラノール脱水状態まで
脱水されて造粒されたシリカ粉体であることを特徴とす
る請求項1に記載の密閉形鉛蓄電池。
2. The sealed lead acid battery according to claim 1, wherein the silica powder is a silica powder dehydrated to a silanol dehydration state and granulated.
【請求項3】前記シリカ粉体は表面融着が発生する状態
まで脱水されて造粒されたシリカ粉体であることを特徴
とする請求項1に記載の密閉形鉛蓄電池。
3. The sealed lead acid battery according to claim 1, wherein the silica powder is a silica powder that is dehydrated and granulated to a state where surface fusion occurs.
【請求項4】含水二酸化珪素とコロイダルシリカとを混
合した混合物に脱水処理を施して脱水物を作り、 この脱水物を粉砕して平均粒子径寸法が前記含水二酸化
珪素の平均粒子径寸法よりも大きなシリカ粉体を作り、 前記シリカ粉体と電解液とを混練した混練物をリテーナ
の少くとも正極板側の表面及び少くとも正極板のリテー
ナ側の表面の少なくとも一方に塗布し、 前記リテーナを介して前記正極板と負極板とを積層して
極板群を作ることを特徴とする密閉形鉛蓄電池の製造方
法。
4. A mixture of hydrous silicon dioxide and colloidal silica is dehydrated to produce a dehydrated product, and the dehydrated product is crushed to have an average particle size larger than that of the hydrous silicon dioxide. A large silica powder is prepared, and a kneaded product obtained by kneading the silica powder and an electrolytic solution is applied to at least one of the surface of the retainer on the positive electrode plate side and at least one of the surface of the positive electrode plate on the retainer side, and the retainer is applied. A method of manufacturing a sealed lead-acid battery, characterized in that the positive electrode plate and the negative electrode plate are laminated with each other to form an electrode plate group.
JP6008355A 1994-01-28 1994-01-28 Sealed lead acid battery and manufacture thereof Withdrawn JPH07220751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6008355A JPH07220751A (en) 1994-01-28 1994-01-28 Sealed lead acid battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6008355A JPH07220751A (en) 1994-01-28 1994-01-28 Sealed lead acid battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07220751A true JPH07220751A (en) 1995-08-18

Family

ID=11690930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6008355A Withdrawn JPH07220751A (en) 1994-01-28 1994-01-28 Sealed lead acid battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07220751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332471C (en) * 2005-09-23 2007-08-15 周明明 Colloidal electrolyte of lead acid accumulator
JP2013098016A (en) * 2011-11-01 2013-05-20 Shin Kobe Electric Mach Co Ltd Lead acid battery
WO2015146919A1 (en) * 2014-03-27 2015-10-01 新神戸電機株式会社 Lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332471C (en) * 2005-09-23 2007-08-15 周明明 Colloidal electrolyte of lead acid accumulator
JP2013098016A (en) * 2011-11-01 2013-05-20 Shin Kobe Electric Mach Co Ltd Lead acid battery
WO2015146919A1 (en) * 2014-03-27 2015-10-01 新神戸電機株式会社 Lead storage battery
JPWO2015146919A1 (en) * 2014-03-27 2017-04-13 日立化成株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
JP4364460B2 (en) Negative electrode for lead acid battery
JPH05508049A (en) Glass fiber separator and its manufacturing method
CN107768637B (en) Preparation method of porous graphene/carbon nanotube lithium-sulfur positive electrode material
CN106207124A (en) The nano combined nano fibrous membrane of silicon/carbon of graphene coated and application thereof
BG106662A (en) Battery paste
US7435758B2 (en) Additive for producing the positive active material for lead-acid storage batteries, a method for its production, and its use
CA2098687A1 (en) Lead-acid battery electrode and method of manufacture
CN112864391B (en) Preparation method and application of lead/reduced graphene oxide nanocomposite
Tokunaga et al. Effect of Anisotropic Graphite on Discharge Performance of Positive Plates in Pasted‐Type Lead‐Acid Batteries
CN109817952A (en) A kind of negative electrode of lithium ion battery and preparation method thereof
JP2847761B2 (en) Sealed lead-acid battery and method of manufacturing the same
CN106207131A (en) Accumulator Graphene/β PbO2the preparation method of nano composite material
JPH07220751A (en) Sealed lead acid battery and manufacture thereof
CN1679184A (en) Separator, battery with separator and method for producing a separator
JP3705146B2 (en) Lead-acid battery separator and lead-acid battery
CN107680830B (en) A kind of lithium titanate/charcoal combination electrode and its application
US3716412A (en) Electric storage batteries
JPS63152868A (en) Lead-acid battery
JPS6319772A (en) Lead-acid battery
EP4456186A1 (en) Lithium-ion battery negative electrode material with improved reversibility, and method for manufacturing same
JPH0253908B2 (en)
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
JPH10172543A (en) Sealed lead-acid battery
JPS5940468A (en) Multilayer electrodes stepwisely divided in grain size and component weight ratio
JPH03147255A (en) Lead-acid battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403