JP3173775B2 - Paste nickel positive electrode and alkaline storage battery - Google Patents

Paste nickel positive electrode and alkaline storage battery

Info

Publication number
JP3173775B2
JP3173775B2 JP01750290A JP1750290A JP3173775B2 JP 3173775 B2 JP3173775 B2 JP 3173775B2 JP 01750290 A JP01750290 A JP 01750290A JP 1750290 A JP1750290 A JP 1750290A JP 3173775 B2 JP3173775 B2 JP 3173775B2
Authority
JP
Japan
Prior art keywords
paste
felt
metal
positive electrode
organic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01750290A
Other languages
Japanese (ja)
Other versions
JPH03222260A (en
Inventor
浩次 石和
一博 吉田
勝幸 秦
邦彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP01750290A priority Critical patent/JP3173775B2/en
Publication of JPH03222260A publication Critical patent/JPH03222260A/en
Application granted granted Critical
Publication of JP3173775B2 publication Critical patent/JP3173775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ペースト式ニッケル正極及び前記ペースト
式ニッケル正極を備えたアルカリ蓄電池(例えば、ニッ
ケルカドミウム蓄電池、ニッケル水素蓄電池)に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a paste-type nickel positive electrode and an alkaline storage battery (for example, a nickel-cadmium storage battery, a nickel-metal hydride storage battery) provided with the paste-type nickel positive electrode.

[従来の技術および発明が解決しようとする課題] ペースト式ニッケル極は従来の焼結式ニッケル極に比
べ、高容量が得られ、かつ低コストで製造できる等の優
れた長所を多く有しており、近年その需要が増加する傾
向にある。現在ペースト式ニッケル極において主流とな
っているのは、電極基板にスポンジ状金属多孔体または
繊維状金属多孔体を用いる方式である。スポンジ状金属
多孔体は、主にスポンジ状樹脂の表面に電着や蒸着等の
方法で耐アルカリ性の金属を被覆し、後に樹脂分を加熱
分解する方法によって得られ、一方繊維状金属多孔体
は、主に耐アルカリ性を有する金属のインゴットをびび
り振動切削した金属繊維を不織布状に成形し、焼結する
方法によって得られる。このほか、特公昭48−25149号
公報や特開昭61−208756号公報に見られるように、繊維
状の有機材料の表面に電着や蒸着の方法で耐アルカリ性
金属を被覆したのち加熱分解して得るフェルト状金属多
孔体がある。
[Problems to be Solved by Conventional Techniques and Inventions] Pasted nickel electrodes have many advantages over conventional sintered nickel electrodes, such as higher capacity and lower cost of production. In recent years, the demand has been increasing. At present, the mainstream of paste-type nickel electrodes is a method using a sponge-like metal porous body or a fibrous metal porous body for an electrode substrate. The sponge-like porous metal body is mainly obtained by coating the surface of a sponge-like resin with an alkali-resistant metal by a method such as electrodeposition or vapor deposition, and then thermally decomposing the resin component. It is obtained by a method in which a metal fiber obtained by chattering and shaking a metal ingot having mainly alkali resistance is formed into a nonwoven fabric and sintered. In addition, as shown in JP-B-48-25149 and JP-A-61-208756, the surface of a fibrous organic material is coated with an alkali-resistant metal by an electrodeposition or vapor deposition method and then thermally decomposed. There is a felt-like porous metal body that can be obtained by heating.

上に挙げた3種のうち、広く実用されているスポンジ
状金属多孔体と繊維状金属多孔体による2種類の基板を
比較すると、まずスポンジ状金属多孔体を電極基板とし
て用いたペースト式ニッケル極においては、特に大電流
放電を行った際の容量低下の度合が繊維状金属多孔体を
用いたものに比べ著しいという欠点がある。
A comparison of the two types of substrates made of a sponge-like metal porous material and a fibrous metal porous material which are widely used among the above three types shows that a paste-type nickel electrode using a sponge-like metal porous material as an electrode substrate is first used. However, there is a disadvantage that the degree of capacity reduction particularly when a large current discharge is performed is more remarkable than that using a fibrous metal porous body.

それは主にスポンジ形状に起因した集電性能の低さに
よるところが大きい。スポンジ状金属多孔体は直径500
〜600ミクロンの球形または略紡錘形の空隙が連続的に
連なって存在し、残りの部分が金属からなることによっ
て構成されているため一本あたりの金属格子の直径は不
均一なものとなっている。そのため大電流放電において
は最も細い部分の直径が電子導電性を規定してしまい、
同じ空隙率で比較すると繊維状金属多孔体に比べ電気抵
抗が大きい傾向にある。また球形または略紡錘形をした
空隙の中心部にある活物質は、最も近い基板までの距離
が250〜300ミクロンもあり充放電時の反応抵抗が大き
く、これらが原因となり大電流放電時の容量低下が著し
いものと考えられる。
This is largely due to the low current collecting performance caused by the sponge shape. Sponge-like porous metal body has a diameter of 500
Spherical or nearly spindle-shaped voids of ~ 600 microns exist continuously, and the rest is made up of metal, so the diameter of each metal grid is not uniform . Therefore, in a large current discharge, the diameter of the narrowest part defines the electron conductivity,
When compared at the same porosity, the electrical resistance tends to be higher than that of the fibrous metal porous body. In addition, the active material in the center of the spherical or substantially spindle-shaped void has a distance to the nearest substrate of 250 to 300 microns and a large reaction resistance during charge and discharge, which causes a decrease in capacity during large current discharge. Is considered to be significant.

一方、繊維状金属多孔体を電極基板として用いたペー
スト状ニッケル正極においては、特にスパイラル状に捲
回する際に構成する金属格子がセパレータを貫通して対
極と接触して内部短絡不良を生ずる割合がスポンジ状態
金属多孔体に比べて著しく高いという欠点がある。その
原因は、一本当りの金属格子が切削により形成されてい
るため外径が10〜20ミクロンと細く、これがセパレータ
繊維間の貫通を容易にしているものと考えられる。
On the other hand, in the case of a paste-like nickel positive electrode using a fibrous metal porous body as an electrode substrate, the rate at which the metal grid formed when spirally wound penetrates through the separator and contacts the counter electrode to cause an internal short circuit failure Has a disadvantage that it is significantly higher than that of a sponge-like porous metal body. The cause is considered to be that the outer diameter is as thin as 10 to 20 microns because one metal grid is formed by cutting, which facilitates penetration between separator fibers.

本発明は上記従来の課題を解決するためになされたも
ので、大電流放電の際の容量低下が小さく、かつ捲回時
の内部短絡不良の小さいペースト式ニッケル正極を提供
しようとするものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and an object thereof is to provide a paste-type nickel positive electrode that has a small capacity decrease at the time of large current discharge and a small internal short-circuit defect at the time of winding. .

また、本発明は、捲回時の内部短絡不良の小さいペー
スト式ニッケル正極を備え、かつ大電流放電の際の容量
低下が低減されたアルカリ蓄電池を提供しようとするも
のである。
Another object of the present invention is to provide an alkaline storage battery provided with a paste-type nickel positive electrode having a small internal short-circuit failure at the time of winding and having a reduced capacity reduction during large-current discharge.

[課題を解決するための手段] 本発明に係るペースト式ニッケル極は、フェルト状有
機材料の表面に耐アルカリ性金属を被覆した後、前記有
機材料を加熱分解することにより得られ、中空金属繊維
が無秩序に配置されたフェルト状金属多孔体を電極基板
とし、これに水酸化ニッケルを主成分とするペースト状
活物質を充填してなるペースト式ニッケル正極におい
て、前記フェルト状金属多孔体は、有効空隙率が85〜99
%で、中空金属繊維の平均外径が30〜70μmの範囲にあ
り、かつ隣接した中空金属繊維同士の平均間隔が100〜4
00μmの範囲にあることを特徴とするものである。
[Means for Solving the Problems] The paste-type nickel electrode according to the present invention is obtained by coating a surface of a felt-like organic material with an alkali-resistant metal, and then thermally decomposing the organic material. In a paste-type nickel positive electrode in which a randomly arranged felt-like metal porous body is used as an electrode substrate and filled with a paste-like active material containing nickel hydroxide as a main component, the felt-like metal porous body has an effective gap. Rate 85-99
%, The average outer diameter of the hollow metal fibers is in the range of 30 to 70 μm, and the average distance between adjacent hollow metal fibers is 100 to 4%.
It is characterized by being in the range of 00 μm.

本発明に係るアルカリ蓄電池は、フェルト状有機材料
の表面に耐アルカリ性金属を被覆した後、前記有機材料
を加熱分解することにより得られ、中空金属繊維が無秩
序に配置されたフェルト状金属多孔体を電極基板とし、
これに水酸化ニッケルを主成分とするペースト状活物質
を充填してなるペースト式ニッケル正極を備えたアルカ
リ蓄電池において、前記フェルト状金属多孔体は、有効
空隙率が85〜99%で、中空金属繊維の平均外径が30〜70
μmの範囲にあり、かつ隣接した中空金属繊維同士の平
均間隔が100〜400μmの範囲にあることを特徴とするも
のである。
The alkaline storage battery according to the present invention is obtained by coating the surface of a felt-like organic material with an alkali-resistant metal, and then thermally decomposing the organic material, and forming a felt-like metal porous body in which hollow metal fibers are randomly arranged. Electrode board,
In an alkaline storage battery provided with a paste-type nickel positive electrode which is filled with a paste-like active material containing nickel hydroxide as a main component, the felt-like metal porous body has an effective porosity of 85 to 99% and a hollow metal. The average outer diameter of the fiber is 30-70
μm, and the average interval between adjacent hollow metal fibers is in the range of 100 to 400 μm.

[作用] まず大電流放電時の容量低下を抑制するためには活物
質と基板との平均距離ができるだけ小さいことが望まし
く、そのためには、中空金属繊維の本数を多くするか、
または同じ本数同士であれば、中空金属繊維が均一に分
布しているほうが有利である。その値は少なくとも400
ミクロン以下であることが望ましいが、過度に小さいと
活物質を充填可能な空隙の割合(以下有効空隙率と呼
ぶ)が減少してしまうため100〜400ミクロンの範囲が実
用上適当である。
[Operation] First, in order to suppress a decrease in capacity at the time of large current discharge, it is desirable that the average distance between the active material and the substrate is as small as possible.
Alternatively, if the number is the same, it is advantageous that the hollow metal fibers are uniformly distributed. Its value is at least 400
It is desirable that the particle size is not more than micron, but if it is too small, the ratio of voids that can be filled with the active material (hereinafter referred to as effective porosity) is reduced, so that the range of 100 to 400 microns is practically appropriate.

また中空金属繊維によるセパレータの貫通を防止する
ためには中空金属繊維の外径ができるだけ大きいことが
望ましい。この値は少なくとも30ミクロン以上であるこ
とが望ましいが過度に大きいと上記と同様に有効空隙率
が減少してしまうため30〜70ミクロンの範囲が実用上適
当である。但し上記範囲内にあってもその組合わせによ
っては有効空隙率が不足してペースト式ニッケル正極本
来の長所である高容量を損なったり、逆に強度等の点で
使用できないほど空隙率が大きくなる場合があるため、
実用上85〜99%の有効空隙率であることが望ましい。
Further, in order to prevent the penetration of the separator by the hollow metal fiber, it is desirable that the outer diameter of the hollow metal fiber is as large as possible. This value is desirably at least 30 microns, but if it is excessively large, the effective porosity is reduced as described above, so that the range of 30 to 70 microns is practically appropriate. However, even within the above range, depending on the combination, the effective porosity is insufficient and the high capacity which is the original advantage of the paste type nickel positive electrode is impaired, or conversely, the porosity becomes so large that it cannot be used in terms of strength and the like. In some cases,
Practically, it is desirable that the effective porosity is 85 to 99%.

これら要求を満たす電極基板の形状としては、金属格
子の外径や隣接した金属繊維同士の間隔が均一であると
いう点で、スポンジ状金属多孔体よりも、むしろ繊維状
金属多孔体のほうが適している。ただし切削により成形
した金属繊維は外径が大きくできない問題があるため、
前述したフェルト状の有機材料の表面に耐アルカリ性の
金属を電着や蒸着等の方法で被覆したものが外径を自由
に調節できるため好適である。その際の有機材料として
は、ポリエチレン、ポリアミド、またはカーボン繊維を
適当なバインダーとともに不織布状に成形したものを挙
げることができる。ただし電極中に有機材料、特に炭素
が残留するニッケル正極としての自己放電特性等に悪影
響を及ぼすため・上記電着または蒸着により耐アルカリ
性金属を被覆した後、有機材料を加熱分解、除去するこ
とが望ましい。
As the shape of the electrode substrate that satisfies these requirements, a fibrous metal porous material is more suitable than a sponge-like metal porous material in that the outer diameter of the metal grid and the spacing between adjacent metal fibers are uniform. I have. However, metal fibers formed by cutting have a problem that the outer diameter cannot be increased,
It is preferable that the surface of the above-mentioned felt-like organic material is coated with an alkali-resistant metal by a method such as electrodeposition or vapor deposition because the outer diameter can be freely adjusted. Examples of the organic material at that time include polyethylene, polyamide, and carbon fibers formed into a nonwoven fabric with an appropriate binder. However, since the organic material, particularly carbon, in the electrode has a negative effect on the self-discharge characteristics of the nickel positive electrode, etc.After coating the alkali-resistant metal by the above-mentioned electrodeposition or vapor deposition, it is necessary to thermally decompose and remove the organic material. desirable.

[実施例] フェルト状有機材料としては、外径13ミクロンのピッ
チ径カーボン繊維をバインダーによりフェルト状に成形
した物を使用した。この表面に電着によりニッケルを被
覆した後、まず酸素の存在下で加熱して炭素を分解し、
続いて還元雰囲気中で加熱焼鈍する操作を経てフェルト
状の金属多孔体を得た。このフェルト状金属多孔体を電
極基板としてその空隙中に水酸化ニッケル90重量部、水
酸化コバルト10重量部、カルボキシメチルセルロース0.
5重量部、水35重量部からなるペースト状活物質を充填
し、80℃の温度で恒量になるまで乾燥したのち、ローラ
ープレスで所定の厚みになるまで加圧して、本発明のペ
ースト式ニッケル正極を得た。フェルト状金属多孔体を
製造する過程において、カーボン繊維の量、および電着
における通電電気量を調節することにより、中空金属繊
維の外径および隣接した中空金属繊維同士の間隔を変化
させた。その値を完成電極の状態で計算したところそれ
ぞれ20〜100ミクロンおよび50〜500ミクロンの範囲であ
った。作製したペースト式ニッケル極の有効空隙率を表
1に、体積当り充填密度を表2に示す。
[Example] As a felt-like organic material, a material obtained by forming a pitch-diameter carbon fiber having an outer diameter of 13 microns into a felt shape using a binder was used. After coating the surface with nickel by electrodeposition, first heat it in the presence of oxygen to decompose the carbon,
Subsequently, a heat-annealing operation was performed in a reducing atmosphere to obtain a felt-like porous metal body. Using this felt-like porous metal body as an electrode substrate, 90 parts by weight of nickel hydroxide, 10 parts by weight of cobalt hydroxide, and 0.
5 parts by weight, filled with a paste-like active material consisting of 35 parts by weight of water, dried at a temperature of 80 ° C to a constant weight, and then pressed to a predetermined thickness by a roller press, the paste nickel of the present invention A positive electrode was obtained. In the process of producing the felt-like porous metal body, the outer diameter of the hollow metal fibers and the distance between adjacent hollow metal fibers were changed by adjusting the amount of carbon fibers and the amount of electricity supplied during electrodeposition. The values were calculated for the finished electrode and were in the range of 20-100 microns and 50-500 microns, respectively. Table 1 shows the effective porosity of the produced paste-type nickel electrode, and Table 2 shows the packing density per volume.

表における白抜き特に右上の部分は空隙率が過大であ
り、強度の点で電極基板として使用できなかった箇所を
示す。全般的に中空金属繊維の外径が大きく、隣接する
中空金属繊維同士の間隔が小さい場合有効空隙率、およ
び体積当り充填密度が減少する傾向にある。
In the table, white outlines, particularly the upper right part, indicate locations where the porosity was excessive and could not be used as an electrode substrate in terms of strength. In general, when the outer diameter of the hollow metal fibers is large and the interval between adjacent hollow metal fibers is small, the effective porosity and the packing density per volume tend to decrease.

得られたペースト式ニッケル極をカドミュウム極を対
極として捲回してAA(単三)サイズのニッケルカドミウ
ム電池を作製した。第1図がこのニッケルカドミウム電
池の構造を示す断面図であり、図で1が金属缶、2が本
発明のペースト式ニッケル正極3とカドミウム負極4を
セパレータ5を介して巻回した電極群、6が金属封口
板、7が正極端子である。捲回の際の内部短絡不良は中
空金属繊維の外径が30〜100ミクロンのものが90%以上
の良品率であったのに対し、20ミクロンの場合は約50%
であった。続いてこのニッケルカドミウム電池をならし
充放電の後、理論容量にたいして3C率の放電を行いその
時の利用率を測定した。その結果を表3に示すが、隣接
した中空金属繊維同士の間隔が400ミクロンを越えると
利用率が低下する傾向にある。さらに表2の体積当り充
填密度に表3の3C放電利用率を掛け合わせた値、すなわ
ち実効の体積当り容量を表4に示す。
The obtained paste-type nickel electrode was wound with a cadmium electrode as a counter electrode to produce a nickel cadmium battery of AA (AA) size. FIG. 1 is a cross-sectional view showing the structure of this nickel cadmium battery, in which 1 is a metal can, 2 is an electrode group obtained by winding a paste-type nickel positive electrode 3 and a cadmium negative electrode 4 of the present invention via a separator 5, 6 is a metal sealing plate and 7 is a positive electrode terminal. The internal short-circuit defect at the time of winding was 90% or more when the hollow metal fiber had an outer diameter of 30 to 100 microns, while it was about 50% when the diameter was 20 microns.
Met. Subsequently, after charging and discharging the nickel cadmium battery, the battery was discharged at a rate of 3 C with respect to the theoretical capacity, and the utilization at that time was measured. The results are shown in Table 3. As shown in Table 3, when the distance between adjacent hollow metal fibers exceeds 400 microns, the utilization tends to decrease. Further, Table 4 shows the value obtained by multiplying the packing density per volume in Table 2 by the 3C discharge utilization rate in Table 3, that is, the effective capacity per volume.

表4において体積当り容量が大きく、かつ電池を作製
する際の捲回時の良品率が高い条件は中空金属繊維の平
均外径が30〜70ミクロンで、かつ隣接した中空金属繊維
同士の平均間隔が100〜400ミクロンの範囲にある。
In Table 4, the condition that the capacity per volume is large and the yield rate at the time of winding when producing a battery is high is such that the average outer diameter of the hollow metal fibers is 30 to 70 microns and the average distance between adjacent hollow metal fibers. Is in the range of 100-400 microns.

ただしその範囲においても体積当り容量が比較的小さ
いものがあり、それは表1に示す有効空隙率が85%未満
の場合に相当する。また有効空隙率が99%を越えると強
度の点で電極基板として使用できないため、さらに有効
空隙率が85〜99%の範囲にあるものが好適である。
However, even in this range, the volume per volume is relatively small, which corresponds to the case where the effective porosity shown in Table 1 is less than 85%. If the effective porosity exceeds 99%, it cannot be used as an electrode substrate in terms of strength. Therefore, those having an effective porosity in the range of 85 to 99% are preferable.

同時に比較的として直径500ミクロンの連続した略紡
錘形空間を有するスポンジ状金属多孔体と、一本当りの
金属格子の外径が約20ミクロンの繊維状金属多孔体をそ
れぞれ電極基板とし、その他の方法は実施例と同様な方
法でペースト式ニッケル正極を、およびニッケルカドミ
ユウム電池を作製したところ、スポンジ状金属多孔体を
使用したものは、3c放電時の利用率が65%とフェルト状
金属多孔体を使用したものより低い結果を示した。また
繊維状金属多孔体を使用したものは捲回時の内部短縮試
験後の良品率が約40%とやはりフェルト状のものと比較
して低い結果を示した。
At the same time, a sponge-like metal porous body having a continuous substantially spindle-shaped space with a diameter of 500 μm and a fibrous metal porous body with an outer diameter of about 20 μm per metal grid are used as electrode substrates, respectively. Produced a paste-type nickel positive electrode and a nickel cadmium battery in the same manner as in the Example. The one using a sponge-like porous metal had a utilization rate of 65% at 3c discharge and a felt-like porous metal. Showed lower results than those using. In the case of using the fibrous metal porous body, the yield rate after the internal shortening test at the time of winding was about 40%, which was also lower than that of the felt-like one.

[発明の効果] 以上詳述したように本発明によれば、大電流放電の際
にも高容量を有し、かつ捲回時の内部短絡不良の少ない
高性能のペースト式ニッケル正極を提供することがで
き、その工業的価値は大である。
[Effects of the Invention] As described in detail above, according to the present invention, there is provided a high-performance paste-type nickel positive electrode which has a high capacity even during a large current discharge and has few internal short circuit defects during winding. And its industrial value is great.

また、本発明によれば、捲回時の内部短絡不良の少な
い高性能のペースト式ニッケル正極を備え、かつ大電流
放電の際にも高容量を有するアルカリ蓄電池を提供する
ことができる。
Further, according to the present invention, it is possible to provide an alkaline storage battery including a high-performance paste-type nickel positive electrode with few internal short-circuit defects at the time of winding and having a high capacity even when discharging a large current.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明ペーストニッケル正極を用いたニッケル
カドミユウム電池の断面図である。 1……金属缶、2……電極群 3……ペースト式ニッケル正極 4……カドミユウム負極、5……セパレータ 6……金属封口板、7……正極端子
FIG. 1 is a cross-sectional view of a nickel cadmium battery using the paste nickel positive electrode of the present invention. DESCRIPTION OF SYMBOLS 1 ... Metal can 2 ... Electrode group 3 ... Paste nickel positive electrode 4 ... Cadmium negative electrode 5 ... Separator 6 ... Metal sealing plate, 7 ... Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮本 邦彦 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (56)参考文献 特開 昭55−30180(JP,A) 特開 昭61−76686(JP,A) 特開 昭56−159066(JP,A) 特開 昭62−15764(JP,A) 特開 昭62−12067(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/80 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Kunihiko Miyamoto Inventor Toshiba Battery Co., Ltd. 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo (56) References JP-A-55-30180 (JP, A) JP-A-61-76686 (JP, A) JP-A-56-159066 (JP, A) JP-A-62-15764 (JP, A) JP-A-62-12067 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01M 4/80

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フェルト状有機材料の表面に耐アルカリ性
金属を被覆した後、前記有機材料を加熱分解することに
より得られ、中空金属繊維が無秩序に配置されたフェル
ト状金属多孔体を電極基板とし、これに水酸化ニッケル
を主成分とするペースト状活物質を充填してなるペース
ト式ニッケル正極において、前記フェルト状金属多孔体
は、有効空隙率が85〜99%で、中空金属繊維の平均外径
が30〜70μmの範囲にあり、かつ隣接した中空金属繊維
同士の平均間隔が100〜400μmの範囲にあることを特徴
とするペースト式ニッケル正極。
An electrode substrate is obtained by coating a surface of a felt-like organic material with an alkali-resistant metal and then subjecting the organic material to thermal decomposition to obtain a felt-like metal porous body in which hollow metal fibers are randomly arranged. In a paste-type nickel positive electrode obtained by filling a paste-like active material containing nickel hydroxide as a main component, the felt-like metal porous body has an effective porosity of 85 to 99%, which is outside the average of hollow metal fibers. A paste-type nickel positive electrode having a diameter in the range of 30 to 70 µm and an average distance between adjacent hollow metal fibers in the range of 100 to 400 µm.
【請求項2】フェルト状有機材料の表面に耐アルカリ性
金属を被覆した後、前記有機材料を加熱分解することに
より得られ、中空金属繊維が無秩序に配置されたフェル
ト状金属多孔体を電極基板とし、これに水酸化ニッケル
を主成分とするペースト状活物質を充填してなるペース
ト式ニッケル正極を備えたアルカリ蓄電池において、前
記フェルト状金属多孔体は、有効空隙率が85〜99%で、
中空金属繊維の平均外径が30〜70μmの範囲にあり、か
つ隣接した中空金属繊維同士の平均間隔が100〜400μm
の範囲にあることを特徴とするアルカリ蓄電池。
2. An electrode substrate comprising a felt-like organic material which is obtained by coating the surface of a felt-like organic material with an alkali-resistant metal and then thermally decomposing the organic material, wherein hollow metal fibers are randomly arranged. In an alkaline storage battery provided with a paste-type nickel positive electrode obtained by filling a paste-type active material containing nickel hydroxide as a main component, the felt-like metal porous body has an effective porosity of 85 to 99%,
The average outer diameter of the hollow metal fibers is in the range of 30 to 70 μm, and the average distance between adjacent hollow metal fibers is 100 to 400 μm
Alkaline storage battery characterized by the following.
JP01750290A 1990-01-26 1990-01-26 Paste nickel positive electrode and alkaline storage battery Expired - Lifetime JP3173775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01750290A JP3173775B2 (en) 1990-01-26 1990-01-26 Paste nickel positive electrode and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01750290A JP3173775B2 (en) 1990-01-26 1990-01-26 Paste nickel positive electrode and alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH03222260A JPH03222260A (en) 1991-10-01
JP3173775B2 true JP3173775B2 (en) 2001-06-04

Family

ID=11945764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01750290A Expired - Lifetime JP3173775B2 (en) 1990-01-26 1990-01-26 Paste nickel positive electrode and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3173775B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102495814B1 (en) 2017-02-09 2023-02-03 피카 코포레이션 animal harness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102495814B1 (en) 2017-02-09 2023-02-03 피카 코포레이션 animal harness

Also Published As

Publication number Publication date
JPH03222260A (en) 1991-10-01

Similar Documents

Publication Publication Date Title
US6582855B1 (en) Current collector substrate in electrode for use in alkaline secondary battery, electrode using the same, and alkaline secondary battery having incorporated thereinto the electrode
JP2673078B2 (en) Paste type electrode for alkaline secondary battery
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
US5200282A (en) Nickel electrode and alkaline battery using the same
JP3173775B2 (en) Paste nickel positive electrode and alkaline storage battery
US6274275B1 (en) Alkali storage cell employing a spongelike metal substrate
KR100276634B1 (en) Alkali battery metal hydride electrode and its manufacturing method
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
US7247409B2 (en) Alkaline storage battery and hydrogen storage alloy electrode used therefor
JP2981538B2 (en) Electrodes for alkaline batteries
JP2581362B2 (en) Electrodes for alkaline storage batteries
EP0403052A1 (en) Nickel electrode and alkaline battery using the same
JPH0636768A (en) Electrode substrate for alkaline storage battery, its manufacture, and electrode for alkaline storage battery using it
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH05314988A (en) Sintered substrate for square alkaline storage battery and manufacture thereof
JP4085434B2 (en) Alkaline battery electrode
JPH01302668A (en) Electrode for alkaline storage battery
JPH08138680A (en) Electrode base plate for battery and manufacture thereof
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH04160757A (en) Paste type nickel positive electrode
JP3196234B2 (en) Cadmium negative electrode plate for alkaline storage battery and method of manufacturing the same
JP2615869B2 (en) Cadmium negative electrode for alkaline storage batteries
JP3145392B2 (en) Paste nickel positive electrode

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

EXPY Cancellation because of completion of term