JP3116681B2 - Non-sintered nickel electrode and its manufacturing method - Google Patents

Non-sintered nickel electrode and its manufacturing method

Info

Publication number
JP3116681B2
JP3116681B2 JP05236190A JP23619093A JP3116681B2 JP 3116681 B2 JP3116681 B2 JP 3116681B2 JP 05236190 A JP05236190 A JP 05236190A JP 23619093 A JP23619093 A JP 23619093A JP 3116681 B2 JP3116681 B2 JP 3116681B2
Authority
JP
Japan
Prior art keywords
metal
electrode
active material
sintered nickel
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05236190A
Other languages
Japanese (ja)
Other versions
JPH0794181A (en
Inventor
博志 川野
隆之 林
久世 畑中
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP05236190A priority Critical patent/JP3116681B2/en
Publication of JPH0794181A publication Critical patent/JPH0794181A/en
Application granted granted Critical
Publication of JP3116681B2 publication Critical patent/JP3116681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池に使用さ
れる非焼結式ニッケル正極に関するもので、電極支持体
と電極活物質を強固に結合させ、高率放電特性、サイク
ル寿命などを改善したアルカリ蓄電池を提供するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-sintered nickel positive electrode used for an alkaline storage battery. An alkaline storage battery is provided.

【0002】[0002]

【従来の技術】アルカリ蓄電池用の代表的な正極には酸
化ニッケル極がある。この電極は大別して、焼結式電極
と非焼結式電極に分類される。前者はニッケル粉末を焼
結して得られる微孔性の焼結基板内に硝酸ニッケル水溶
液などを浸漬法により添加し、乾燥後、苛性アルカリ水
溶液中に浸漬することにより水酸化ニッケルに転化し、
極板を得るものである。この方法は工程が複雑になり、
活物質である水酸化ニッケルの充填密度が後に述べる非
焼結式電極に比べて小さくなる欠点を有している。しか
し、電極の高率放電特性、サイクル寿命などが優れてい
る特徴があり、用途に応じて広く実用化されている。一
方、非焼結式電極としては古くはポケット式と称される
電極製法があり、最近では発泡状ニッケル多孔体内へ活
物質粉末である水酸化ニッケルを直接充填する方法が実
用化されてきた。このうち後者の方法によると、電極の
製法が簡略化でき、高多孔度の発泡状ニッケル多孔体が
可能であるため、高密度充填ができ、高容量の電池を構
成できる特徴がある。しかし、発泡状ニッケル多孔体は
電気メッキにより作製されており、その材料コストが高
くつく欠点がある。したがって、電極支持体として発泡
状ニッケル多孔体に代え、安価なパンチングメタル、エ
キスパンドメタルなどを使用する非焼結式電極の開発が
実施されるようになってきた。これらの電極支持体は、
焼結式基板、発泡状ニッケル多孔体のように三次元的な
構造を有していないため、電極として使用した場合、活
物質の保持力が乏しく、電極作製中や、充放電を繰り返
した場合などに活物質の脱落が生じやすい。さらに、電
極の厚さ方向に対する電子伝導性が乏しく、電極特性の
低下が大きいため、一部の電極以外には実用化されてい
ない。
2. Description of the Related Art A typical positive electrode for an alkaline storage battery is a nickel oxide electrode. These electrodes are roughly classified into sintered electrodes and non-sintered electrodes. In the former, a nickel nitrate aqueous solution or the like is added to a microporous sintered substrate obtained by sintering nickel powder by an immersion method, and after drying, is converted into nickel hydroxide by immersing in a caustic alkali aqueous solution.
This is to obtain an electrode plate. This method is complicated,
There is a disadvantage that the packing density of nickel hydroxide as an active material is smaller than that of a non-sintered electrode described later. However, the electrode is characterized by excellent high-rate discharge characteristics, cycle life, and the like, and is widely used depending on the application. On the other hand, as a non-sintered electrode, there is an electrode manufacturing method called a pocket type in the past, and recently, a method of directly filling nickel hydroxide as an active material powder into a foamed nickel porous material has been put to practical use. According to the latter method, the method of manufacturing the electrode can be simplified, and a porous nickel foam having a high porosity can be obtained. However, the foamed nickel porous body is produced by electroplating, and has a disadvantage that the material cost is high. Therefore, non-sintered electrodes using inexpensive punching metal, expanded metal, or the like instead of the foamed nickel porous body as the electrode support have been developed. These electrode supports are
Since it does not have a three-dimensional structure such as a sintered substrate and a foamed nickel porous body, when used as an electrode, the holding power of the active material is poor, and during electrode fabrication or repeated charging and discharging In such cases, the active material is likely to fall off. Furthermore, since the electron conductivity in the thickness direction of the electrode is poor and the electrode characteristics are greatly reduced, it has not been put to practical use except for some electrodes.

【0003】[0003]

【発明が解決しようとする課題】前述したパンチングメ
タル、エキスパンドメタルなどを電極支持体として使用
する電極製法は、活物質粉末を高分子結着剤の溶液と導
電性粉末とでペースト状として、上記電極支持体に塗
着、乾燥することにより、容易に電極を作製できる長所
を有している。しかし、電極支持体である金属多孔体と
活物質層との密着性が弱く、電池用電極として用いた場
合、金属多孔体と活物質層が剥離しやすい。この結果、
電極支持体が集電体を兼ねている場合、電極の電気抵抗
が大きくなり、放電電圧、放電容量の低下の原因とな
る。この問題を解決するために活物質層内に多量の結着
剤を添加すれば、剥離現象は抑制されるが、活物質の反
応性が低下し、放電特性などに悪影響を与える。
The above-mentioned electrode manufacturing method using a punching metal, an expanded metal or the like as an electrode support is based on a method in which an active material powder is formed into a paste with a solution of a polymer binder and a conductive powder. It has an advantage that an electrode can be easily manufactured by coating and drying on an electrode support. However, the adhesion between the porous metal body as an electrode support and the active material layer is weak, and when used as a battery electrode, the porous metal body and the active material layer are easily peeled off. As a result,
When the electrode support also serves as a current collector, the electrical resistance of the electrode increases, causing a reduction in discharge voltage and discharge capacity. If a large amount of binder is added to the active material layer in order to solve this problem, the peeling phenomenon is suppressed, but the reactivity of the active material is reduced, and the discharge characteristics are adversely affected.

【0004】また、金属多孔体と活物質層の密着性を強
固にするため、接着剤の役割をする熱可塑性高分子樹脂
層を金属多孔体の表面に形成し、その上層部へ活物質層
を形成させた後、加熱することにより、金属多孔体と活
物質層の密着性が改善できる。しかし、金属多孔体と活
物質層間に絶縁層が形成されることになり、電極の集電
性が低下し電極の反応性が阻害される。
In order to strengthen the adhesion between the porous metal body and the active material layer, a thermoplastic polymer resin layer serving as an adhesive is formed on the surface of the porous metal body, and the active material layer is formed on the upper layer. After the formation, the adhesion between the porous metal body and the active material layer can be improved by heating. However, an insulating layer is formed between the porous metal body and the active material layer, so that the current collecting property of the electrode is reduced and the reactivity of the electrode is hindered.

【0005】[0005]

【課題を解決するための手段】非焼結式ニッケル正極を
構成した場合の集電体と電極支持体の役割を兼ねる金属
多孔体と電極活物質層の密着性を向上させる手段とし
て、本発明においては、上記金属多孔体と電極活物質層
の間に、粒子径が20〜100μmの導電性粉末と熱可
塑性高分子結着剤からなる導電性層を形成させるように
した。
According to the present invention, there is provided a non-sintered nickel positive electrode comprising: In the method, a conductive layer composed of a conductive powder having a particle diameter of 20 to 100 μm and a thermoplastic polymer binder was formed between the porous metal body and the electrode active material layer.

【0006】なお、電極活物質層を形成後、熱可塑性高
分子結着剤の融点以上に加熱し、熱処理を行うことが好
ましい。また、金属多孔体表面に導電層を形成し、その
上層部に耐アルカリ性の金属メッキ層を形成させ、つい
で電極活物質層を形成させることも好ましい。
After the formation of the electrode active material layer, it is preferable to perform heat treatment by heating to a temperature higher than the melting point of the thermoplastic polymer binder. It is also preferable to form a conductive layer on the surface of the porous metal body, form an alkali-resistant metal plating layer on the conductive layer, and then form an electrode active material layer.

【0007】[0007]

【作用】以上のような構成により、金属多孔体と電極活
物質層の間に導電層が形成され、しかもこの導電層は金
属多孔体の表面に比較して粗面となりやすい。このこと
より、金属多孔体の表面に直接電極活物質層を形成させ
るよりは、界面での密着性が向上し、電極活物質層を強
固に結合させることができる。この結果、電極の加工性
が向上することはもちろん、電極を用いて電池を構成
し、充放電を行った場合、電極支持体と活物質層の剥離
現象が抑制され、放電電圧、放電容量の低下が改善され
サイクル寿命特性の優れた電池が得られる。
With the above construction, a conductive layer is formed between the porous metal body and the electrode active material layer, and the conductive layer tends to be rougher than the surface of the porous metal body. Thus, the adhesion at the interface is improved and the electrode active material layer can be firmly bonded, as compared with the case where the electrode active material layer is formed directly on the surface of the porous metal body. As a result, not only is the processability of the electrode improved, but also when a battery is formed using the electrode and charged and discharged, the phenomenon of separation of the electrode support and the active material layer is suppressed, and the discharge voltage and discharge capacity are reduced. A battery with improved cycle life characteristics with improved reduction is obtained.

【0008】また、電極を構成後、導電層を形成させる
ために使用した熱可塑性高分子結着剤の軟化点以上の温
度で熱処理することにより、その作用は助長されること
になる。さらに、金属多孔体の表面に導電層を形成させ
た後に耐アルカリ性金属メッキ層を形成させることによ
り、表面が凹凸状を保持した状態でメッキ層が形成され
ることになる。この上層部に電極活物質層を形成させた
場合、電子伝導性がさらに向上し、電池の諸特性の向上
が可能になる。
[0008] Further, after the electrode is formed, heat treatment is performed at a temperature higher than the softening point of the thermoplastic polymer binder used for forming the conductive layer, thereby promoting the action. Furthermore, by forming the alkali-resistant metal plating layer after forming the conductive layer on the surface of the porous metal body, the plating layer is formed with the surface maintaining the unevenness. When an electrode active material layer is formed on the upper layer, electron conductivity is further improved, and various characteristics of the battery can be improved.

【0009】[0009]

【実施例】以下、図面に従い、本発明の実施例につき説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0010】(実施例1)図1に示したように、厚さ
0.1mmの鉄板に穴径が2mmφで中心間ピッチaが
2.5mmの開孔1を設け、その後、ニッケルメッキを
施してパンチングメタルを作製した。このパンチングメ
タルを用いて、黒鉛粉末とスチレン・ブタジエン・ラバ
ー(SBR)の微粉末を水に分散させた混合溶液からな
る導電性塗料をパンチングメタルの無開口部2へ塗布し
た。同様にして黒鉛粉末の代わりにニッケル粉末、コバ
ルト粉末を使用したもの、あるいは黒鉛とニッケル、黒
鉛とコバルト、ニッケルとコバルトをそれぞれ重量比で
50%ずつ混合したもので導電層を形成させた。これら
の導電層を形成させる時、粒子径の異なる導電性粉末を
使用した。
(Embodiment 1) As shown in FIG. 1, an opening 1 having a hole diameter of 2 mmφ and a center pitch a of 2.5 mm was formed in an iron plate having a thickness of 0.1 mm. To produce punched metal. Using this punching metal, a conductive paint composed of a mixed solution of graphite powder and styrene-butadiene rubber (SBR) fine powder dispersed in water was applied to the non-opening portion 2 of the punching metal. Similarly, a conductive layer was formed using nickel powder or cobalt powder instead of graphite powder, or a mixture of graphite and nickel, graphite and cobalt, and nickel and cobalt at a weight ratio of 50% each. When forming these conductive layers, conductive powders having different particle diameters were used.

【0011】つぎに、水酸化ニッケル粉末100gに対
して、黒鉛粉末10g、カルボキシメチルセルロース
(CMC)の3wt%水溶液を50g、スチレン・ブタ
ジエン・ラバー(SBR)の48%分散液を5g、コバ
ルト粉末(平均粒子径1.5μm)10gを混合し、ペ
ースト状にした。このペーストを前記、導電層を形成し
たパンチングメタルの両面に塗着し、ステンレス製のス
リットを通過させ一定厚さに調整し、乾燥後、加圧プレ
スを行い電極活物質層を形成させた。このようにして得
られた非焼結式ニッケル極を、幅38mm、長さ220
mmの大きさに裁断し、単2型円筒密閉電池用の正極と
した。導電層を形成するために用いた導電性粉末の種類
と粒子径範囲、熱処理の有無、電極に含まれる水酸化ニ
ッケルより計算した理論的な電気化学容量、電極体積か
ら計算された充填密度をまとめて表1に示す。
Next, for 100 g of nickel hydroxide powder, 10 g of graphite powder, 50 g of a 3 wt% aqueous solution of carboxymethyl cellulose (CMC), 5 g of a 48% dispersion of styrene-butadiene rubber (SBR), 5 g of cobalt powder ( 10 g of an average particle diameter of 1.5 μm) were mixed to form a paste. This paste was applied to both surfaces of the punched metal on which the conductive layer was formed, passed through a stainless steel slit, adjusted to a constant thickness, dried, and then pressed to form an electrode active material layer. The non-sintered nickel electrode obtained in this manner was put into a width of 38 mm and a length of 220 mm.
mm to obtain a positive electrode for a C2 cylindrical sealed battery. Summarizes the type and particle size range of the conductive powder used to form the conductive layer, the presence or absence of heat treatment, the theoretical electrochemical capacity calculated from the nickel hydroxide contained in the electrode, and the packing density calculated from the electrode volume The results are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示すニッケル極a〜pと公知のカド
ミウム極及びポリアミド樹脂からなる不織布とを組合
せ、公称容量2.2Ahの単2型電池A〜Pを構成し
た。なお、電解液には水酸化リチウムを30g/リット
ル溶解した水酸化リチウムの31wt%水溶液を1セル
当たり6ミリリットル使用した。
The nickel electrodes a to p shown in Table 1 were combined with a known cadmium electrode and a non-woven fabric made of a polyamide resin to form C-type batteries A to P having a nominal capacity of 2.2 Ah. The electrolyte used was 6 ml of a 31 wt% aqueous solution of lithium hydroxide in which 30 g / l of lithium hydroxide was dissolved per cell.

【0014】以上のような条件で構成した電池A〜Pを
0.1Cで15時間充電し、1時間の休止後、0.2C
で電池電圧が1.0Vに達するまで放電し、この条件で
3サイクル繰り返した。ついで、充電条件を同様にし
て、4サイクル目の放電を0.5C、5サイクル目の放
電を1Cにして、放電特性の比較を行った。
The batteries A to P constructed under the above conditions are charged at 0.1 C for 15 hours, and after a 1-hour pause,
The battery was discharged until the battery voltage reached 1.0 V, and three cycles were repeated under these conditions. Then, under the same charging conditions, the discharge characteristics in the fourth cycle were set to 0.5 C and the discharge in the fifth cycle were set to 1 C, and the discharge characteristics were compared.

【0015】表2に3サイクル目の放電より計算された
利用率(表1に記載の電極a〜pの理論容量を100%
とした時の比率)、4、5サイクル目の放電より得られ
た放電容量比率(3サイクル目の放電容量を100%に
した時の比率)を示す。
Table 2 shows the utilization calculated from the discharge at the third cycle (the theoretical capacity of the electrodes a to p shown in Table 1 is 100%).
), The discharge capacity ratio obtained from the discharges in the fourth and fifth cycles (the ratio when the discharge capacity in the third cycle is set to 100%).

【0016】また、6サイクル目以降は充放電電流を
0.2Cに設定し、充電時間を7時間、放電は1.0V
まで行う条件でサイクル寿命特性を評価した。その結果
を表3に示す。
After the sixth cycle, the charging / discharging current is set to 0.2 C, the charging time is 7 hours, and the discharging is 1.0 V
The cycle life characteristics were evaluated under the conditions described above. Table 3 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】表2の結果より、導電層を形成することに
より、電極活物質層と電極支持体である金属多孔体との
密着性が向上し、水酸化ニッケルの利用率が向上してい
ることがわかる。表1に示すように、ニッケル正極に充
填されている水酸化ニッケル量が少ないにもかかわらず
大きな放電容量が取り出せる電極が得られている。ま
た、高率放電特性を比較した表2からも導電層の効果が
認められるが、これは密着性の向上により電極の電気抵
抗が小さくなったことによるものである。本来、金属多
孔体の表面に直接、電極活物質層を形成した方が電極の
電気抵抗が小さくなると考えられるが、本発明のよう
に、接触面の比表面積が拡大し、密着性の向上により接
触抵抗が低下し、高率放電特性が改善されたものと考え
られる。
From the results shown in Table 2, it can be seen that, by forming the conductive layer, the adhesion between the electrode active material layer and the porous metal body as the electrode support is improved, and the utilization rate of nickel hydroxide is improved. I understand. As shown in Table 1, an electrode capable of extracting a large discharge capacity was obtained despite the small amount of nickel hydroxide filled in the nickel positive electrode. The effect of the conductive layer is also recognized from Table 2 in which the high-rate discharge characteristics are compared. This is due to the fact that the electrical resistance of the electrode has been reduced due to the improved adhesion. Originally, it is considered that forming the electrode active material layer directly on the surface of the porous metal body reduces the electric resistance of the electrode. However, as in the present invention, the specific surface area of the contact surface is increased, and the adhesion is improved. It is considered that the contact resistance was reduced and the high rate discharge characteristics were improved.

【0020】一方、表3の結果より、従来例である電池
Aは金属多孔体と電極活物質層の密着力が弱いため、充
放電を繰り返すことにより、集電体である金属多孔体と
電極活物質層が剥離し、徐々に充放電ができなくなり、
サイクル寿命特性が低下したものと考えられる。また、
比較的微粒子の粉末で導電層を形成させた電池Bのサイ
クル寿命も短くなったことから、粒径が小さいと密着性
の向上効果が少ないと考えられる。これに対して、本発
明である電池C〜Fは寿命特性に若干相違はあるが、電
池A、電池Bに比べ長寿命の電池が得られることがわか
った。
On the other hand, from the results shown in Table 3, the battery A of the conventional example has a weak adhesion between the porous metal and the electrode active material layer. The active material layer peels off and gradually becomes unable to charge and discharge,
It is considered that the cycle life characteristics decreased. Also,
Since the cycle life of the battery B in which the conductive layer was formed with relatively fine powder was shortened, it is considered that the effect of improving the adhesion was small when the particle diameter was small. On the other hand, it has been found that the batteries C to F of the present invention can have a longer life than the batteries A and B, though the life characteristics are slightly different.

【0021】以上の結果より、つぎのようなことが考え
られる。図2に本発明により得られた非焼結式ニッケル
極の断面の模式図を示したが、図中3は導電層、4はパ
ンチングメタル、5は電極活物質層を示す。図2(a)
に粒子径の小さな粉末を使用した場合、図2(b)に大
きな粒子を使用した場合を示す。図2(a)、図2
(b)を比較した場合、図2(a)の導電層は比較的平
滑面となり、図2(b)は粗面になっている。この結
果、電極活物質層が強固に結着でき、剥離現象が起こり
にくく、長寿命の電池が得られたと考えられる。したが
って、図2(b)のような構造にするためには粒径が2
0〜100μmの導電性粉末を用いることが有効であ
る。さらに粒子径を大きくした電池Gは金属多孔体と導
電層の結合力が低下し、その界面からの剥離が認めら
れ、寿命が低下したものと考えられ、導電層の粒子径と
して20〜100μmの粉末を使用することにより本発
明の効果が顕著に現れるということが言える。
From the above results, the following can be considered. FIG. 2 is a schematic view of a cross section of the non-sintered nickel electrode obtained by the present invention. In the figure, 3 indicates a conductive layer, 4 indicates a punching metal, and 5 indicates an electrode active material layer. FIG. 2 (a)
FIG. 2B shows a case where a powder having a small particle diameter is used, and FIG. FIG. 2 (a), FIG.
2B, the conductive layer of FIG. 2A has a relatively smooth surface, and FIG. 2B has a rough surface. As a result, it is considered that the electrode active material layer was firmly bound, the peeling phenomenon was hard to occur, and a long-life battery was obtained. Therefore, in order to obtain a structure as shown in FIG.
It is effective to use a conductive powder of 0 to 100 μm. Further, in the battery G having a larger particle diameter, the bonding force between the porous metal body and the conductive layer was reduced, separation from the interface was recognized, and it was considered that the life was reduced, and the particle diameter of the conductive layer was 20 to 100 μm. It can be said that the effect of the present invention is remarkably exhibited by using the powder.

【0022】電極を作製後、熱処理の有無を比較した電
池Cと電池D、電池Eと電池Fなどの比較において、い
ずれの場合も、熱処理をすることにより、サイクル寿命
の向上が認められた。この結果より、導電層と電極活物
質層の密着性がさらに改善されたものと考えられ、熱処
理を施すことにより本発明の効果を助長できることが期
待できる。
In the comparison of the batteries C and D, and the batteries E and F after the preparation of the electrodes with and without the heat treatment, in each case, the cycle life was improved by the heat treatment. From this result, it is considered that the adhesion between the conductive layer and the electrode active material layer was further improved, and it can be expected that the effect of the present invention can be promoted by performing the heat treatment.

【0023】また、導電性粉末として、炭素以外にニッ
ケル、コバルトを使用した電池H〜Mにおいても、その
効果は認められ、耐アルカリ性の導電性粉末であれば本
発明の効果は得られるものと考えられる。
The effects are also observed in batteries HM using nickel or cobalt in addition to carbon as the conductive powder, and the effects of the present invention can be obtained if the conductive powder is alkali-resistant. Conceivable.

【0024】さらに、炭素とニッケル、炭素とコバル
ト、ニッケルとコバルトを重量比で50%ずつ混合して
導電層を形成させた電池N、電池O及び電池Pにおいて
も、表2、表3の結果より、本発明の効果が認められ、
2種の導電性粉末を混合した場合でも有効であることが
わかった。このことより、3種を混合させた場合も同様
な効果が認められることが予測できる。
Further, in the batteries N, O and P in which a conductive layer was formed by mixing carbon and nickel, carbon and cobalt, and nickel and cobalt by 50% by weight, the results shown in Tables 2 and 3 were obtained. Thus, the effect of the present invention is recognized,
It has been found that even when two kinds of conductive powders are mixed, it is effective. From this, it can be expected that a similar effect is observed when three types are mixed.

【0025】実施例においては、金属多孔体としてパン
チングメタルを使用したが、それ以外にエキスパンドメ
タル、平均穴径が1〜2mmの発泡状ニッケル多孔体な
どを使用して電極を作製した場合でも同様の効果が認め
られ、パンチングメタル以外の金属多孔体でも本発明の
効果が発揮できることがわかった。
In the examples, punched metal was used as the metal porous body. However, the same applies to the case where an electrode is manufactured using expanded metal, a foamed nickel porous body having an average hole diameter of 1 to 2 mm, and the like. The effect of the present invention was recognized, and it was found that the effect of the present invention can be exerted even with a porous metal body other than the punching metal.

【0026】(実施例2)実施例1に示した金属多孔体
と同様のパンチングメタルとニッケルメッキを施さない
鉄製のパンチングメタルを用いて、20〜50μmの黒
鉛粉末とスチレン・ブタジエン・ラバー(SBR)の微
粉末を水に分散させた混合液からなる導電性塗料を、パ
ンチングメタルの無開口部へ塗布した。同様にして、導
電性粉末として、ニッケル、コバルトの導電層を形成さ
せた。ついでこれらの導電層を形成させた金属多孔体の
表面にニッケルの電気メッキを施し、実施例1で示した
水酸化ニッケル粉末を主体とする電極活物質層を形成さ
せた。このようにして得られた非焼結式ニッケル極q〜
vの作製条件、理論容量などを表4に示す。
Example 2 Using a punching metal similar to the porous metal shown in Example 1 and an iron punching metal not subjected to nickel plating, graphite powder of 20 to 50 μm and styrene-butadiene rubber (SBR) were used. A) a conductive paint composed of a mixture of fine powders dispersed in water was applied to the non-opening portions of the punching metal. Similarly, conductive layers of nickel and cobalt were formed as conductive powder. Next, nickel electroplating was performed on the surface of the porous metal body on which these conductive layers were formed to form an electrode active material layer mainly composed of the nickel hydroxide powder shown in Example 1. The thus obtained non-sintered nickel electrode q ~
Table 4 shows the conditions for preparing v, the theoretical capacity, and the like.

【0027】[0027]

【表4】 [Table 4]

【0028】表4に示すニッケル極q〜vを用いて、実
施例1に示したのと同様な方法により、単2型の円筒密
閉電池Q〜Vを作製し、電池特性を調べた。放電特性を
比較した結果を表5に、サイクル寿命試験結果を表6に
示す。
Using nickel electrodes q to v shown in Table 4, single-type cylindrical sealed batteries Q to V were produced in the same manner as in Example 1, and the battery characteristics were examined. Table 5 shows the results of the comparison of the discharge characteristics, and Table 6 shows the results of the cycle life test.

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】実施例1で示した表2の電池Cは導電層を
形成後、その上層部へ直接電極活物質層を形成させたも
ので表5の電池Qは導電層と電極活物質層の界面にニッ
ケルメッキ層を有している。両者の電池の高率放電特性
を比較すると電池Qの1Cでの放電容量が大きくなっ
た。同様に電池Iと電池R、電池Lと電池Sの比較にお
いても、ニッケルメッキを施した電池R、電池Sの高率
放電特性が改善されることがわかった。さらに、サイク
ル寿命を調べた結果を示す表3、表6の比較において
は、大きな変化は認められず、良好な結果を示した。こ
れらの結果より、ニッケルメッキを施すことは高率放電
特性に効果があり、それによりサイクル寿命特性の低下
原因にはならないということが言える。一方、表4の電
極t〜vはパンチングメタルにニッケルメッキを施して
いない鉄製の金属多孔体に直接導電層を形成させたもの
である。通常、鉄が表面に露出していれば、保存中に酸
化したり、ニッケル正極として使用した場合、電気化学
的に酸化する。これを防止する目的で、ニッケルメッキ
を行っている。しかし、本発明のように、導電層で被覆
され、さらにその上からニッケルメッキを行うことで防
錆の効果があると考え、電極t〜vを使用した電池T〜
Vを作製し、その効果を調べた。表4、表5にその試験
結果を示した通り、通常のパンチングメタルを使用した
電極より得られた電池Q〜Sと比較し遜色のない高率放
電特性、サイクル寿命特性を示すことがわかった。した
がって、電極t〜vを使用すれば導電層の形成後にニッ
ケルメッキをすることになり、パンチングメタル作製時
のニッケルメッキは省略できることになり、コストアッ
プにはつながらないはずである。
The battery C of Table 2 shown in Example 1 was obtained by forming a conductive layer and then directly forming an electrode active material layer on the conductive layer. The battery Q of Table 5 was formed of a conductive layer and an electrode active material layer. The interface has a nickel plating layer. Comparing the high-rate discharge characteristics of both batteries, the discharge capacity at 1C of battery Q was increased. Similarly, in comparison between Battery I and Battery R, and between Battery L and Battery S, it was found that the high-rate discharge characteristics of Nickel-Plated Battery R and Battery S were improved. Furthermore, in the comparison of Tables 3 and 6 showing the results of examining the cycle life, no significant change was observed, and good results were shown. From these results, it can be said that the nickel plating has an effect on the high-rate discharge characteristics, and thus does not cause a decrease in the cycle life characteristics. On the other hand, the electrodes t to v in Table 4 are obtained by directly forming a conductive layer on a porous metal body made of iron in which nickel plating is not applied to a punching metal. Usually, if iron is exposed on the surface, it oxidizes during storage or electrochemically oxidizes when used as a nickel positive electrode. To prevent this, nickel plating is performed. However, as in the present invention, it is considered that there is an effect of rust prevention by coating with a conductive layer and further performing nickel plating thereon, and the batteries T to T using the electrodes t to v are used.
V was produced and its effect was examined. As shown in the test results in Tables 4 and 5, it was found that the batteries exhibited high-rate discharge characteristics and cycle life characteristics comparable to those of batteries Q to S obtained from electrodes using ordinary punching metal. . Therefore, if the electrodes t to v are used, nickel plating is performed after the formation of the conductive layer, and the nickel plating at the time of forming the punched metal can be omitted, which should not lead to an increase in cost.

【0032】なお、実施例2においては導電性粉末とし
て、炭素は20〜50μmの粒径、ニッケル、コバルト
は20〜100μmの粒径について示したが、実施例1
で示したような20μm未満および100μmを越える
場合についても比較した結果、実施例1と同様な結果が
得られ、この場合においても導電性粉末は20〜100
μmの範囲が最適だと考えられる。また、実施例2にお
いては導電層を形成した上層部へニッケルメッキを施し
た結果を示したが、コバルトをメッキした場合、コバル
トとニッケルの合金メッキを行った場合でも同様な効果
が得られ、耐アルカリ性の金属メッキ層であればよいこ
とがわかった。さらにパンチングメタルに代えて、エキ
スパンドメタルにおいても同様な効果が認められ、本発
明に適用できることがわかった。
In the second embodiment, carbon particles having a particle diameter of 20 to 50 μm and nickel and cobalt having a particle diameter of 20 to 100 μm are shown as the conductive powder.
As a result, a result similar to that in Example 1 was obtained as a result of comparison in the case of less than 20 μm and in the case of exceeding 100 μm.
The range of μm is considered optimal. Further, in Example 2, the result of performing nickel plating on the upper layer portion on which the conductive layer was formed was shown. However, when plating with cobalt, the same effect can be obtained even when performing alloy plating of cobalt and nickel. It has been found that any alkali-resistant metal plating layer may be used. Further, similar effects were also observed in expanded metal instead of punched metal, and it was found that the same can be applied to the present invention.

【0033】[0033]

【発明の効果】以上、説明したように本発明によれば、
比較的高価につく焼結式ニッケル極の焼結基板、発泡状
ニッケル極の発泡ニッケル多孔体を使用することなく、
安価な金属多孔体を電極支持体として使用でき、この場
合に生ずる電極支持体と電極活物質層の剥離現象を抑制
でき、長寿命の電池を構成することができ、その工業的
価値は大きい。
As described above, according to the present invention,
Without using a relatively expensive sintered sintered nickel electrode substrate and foamed nickel porous nickel foam,
An inexpensive metal porous body can be used as an electrode support, and the phenomenon of peeling of the electrode support and the electrode active material layer that occurs in this case can be suppressed, and a long-life battery can be formed, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用した金属多孔体の一種であるパン
チングメタルの概略図
FIG. 1 is a schematic diagram of a punching metal which is a kind of a porous metal used in the present invention.

【図2】本発明の電極断面の模式図FIG. 2 is a schematic view of an electrode cross section of the present invention.

【符号の説明】[Explanation of symbols]

1 開孔 2 無開口部 3 導電層 4 パンチングメタル 5 電極活物質層 DESCRIPTION OF SYMBOLS 1 Opening 2 No opening 3 Conductive layer 4 Punching metal 5 Electrode active material layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳原 伸行 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭58−25081(JP,A) 特開 昭63−19762(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/24 - 4/32 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Yanagihara 1006 Kazuma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-58-25081 (JP, A) JP-A-63- 19762 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/24-4/32

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属多孔体の表面に粒子径が20〜10
0μmの導電性粉末と熱可塑性高分子結着剤からなる導
電層が形成され、その上層部に電極活物質層が形成され
ていることを特徴とする非焼結式ニッケル極。
2. The method according to claim 1, wherein the particle diameter is 20 to 10 on the surface of the porous metal body.
A non-sintered nickel electrode comprising a conductive layer made of a conductive powder of 0 μm and a thermoplastic polymer binder formed thereon, and an electrode active material layer formed thereon.
【請求項2】 導電性粉末が炭素、ニッケル、コバルト
の中から選ばれた一種あるいは二種以上の混合物である
ことを特徴とする請求項1記載の非焼結式ニッケル極。
2. The non-sintered nickel electrode according to claim 1, wherein the conductive powder is one kind or a mixture of two or more kinds selected from carbon, nickel and cobalt.
【請求項3】 金属多孔体がパンチングメタル、エキス
パンドメタル、発泡状金属多孔体から選択された一種で
あることを特徴とする請求項1記載の非焼結式ニッケル
極。
3. The non-sintered nickel electrode according to claim 1, wherein the metal porous body is one selected from punched metal, expanded metal, and foamed metal porous body.
【請求項4】 導電層と電極活物質層の間に耐アルカリ
性の金属メッキ層を設けたことを特徴とする請求項1記
載の非焼結式ニッケル極。
4. The non-sintered nickel electrode according to claim 1, wherein an alkali-resistant metal plating layer is provided between the conductive layer and the electrode active material layer.
【請求項5】 金属多孔体の表面に粒子径が20〜10
0μmの導電性粉末と熱可塑性高分子結着剤からなる導
電層を形成後、その上層部に電極活物質層を形成し、前
記熱可塑性高分子結着剤の軟化点以上の温度で熱処理を
行うことを特徴とする非焼結式ニッケル極の製造法。
5. A particle size of 20 to 10 on the surface of a porous metal body.
After forming a conductive layer made of a 0 μm conductive powder and a thermoplastic polymer binder, an electrode active material layer is formed thereon, and heat treatment is performed at a temperature equal to or higher than the softening point of the thermoplastic polymer binder. A method for producing a non-sintered nickel electrode.
【請求項6】 金属多孔体の表面に粒子径が20〜10
0μmの導電性粉末と熱可塑性高分子結着剤からなる導
電層を形成後、その上層部に耐アルカリ性の金属メッキ
層を形成し、ついで、電極活物質層を形成することを特
徴とする非焼結式ニッケル極の製造法。
6. A particle size of 20 to 10 on the surface of a porous metal body.
After forming a conductive layer composed of a conductive powder of 0 μm and a thermoplastic polymer binder, an alkali-resistant metal plating layer is formed on the conductive layer, and then an electrode active material layer is formed. Manufacturing method of sintered nickel electrode.
【請求項7】 導電性粉末が炭素、ニッケル、コバルト
の中から選ばれた一種あるいは二種以上の混合物である
ことを特徴とする請求項5または6記載の非焼結式ニッ
ケル極の製造法。
7. The method for producing a non-sintered nickel electrode according to claim 5, wherein the conductive powder is one kind or a mixture of two or more kinds selected from carbon, nickel and cobalt. .
【請求項8】 金属多孔体がパンチングメタル、エキス
パンドメタル、発泡状金属多孔体から選択された一種で
あることを特徴とする請求項5または6記載の非焼結式
ニッケル極の製造法。
8. The method for producing a non-sintered nickel electrode according to claim 5, wherein the metal porous body is one selected from a punching metal, an expanded metal, and a foamed metal porous body.
【請求項9】 金属多孔体の材質が鉄製のパンチングメ
タルあるいはエキスパンドメタルであることを特徴とす
る請求項6記載の非焼結式ニッケル極の製造法。
9. The method for producing a non-sintered nickel electrode according to claim 6, wherein the material of the porous metal body is a punching metal or an expanded metal made of iron.
【請求項10】 耐アルカリ性の金属メッキ層がニッケル
メッキ層であることを特徴とする請求項6記載の非焼結
式ニッケル極の製造法。
10. The method for producing a non-sintered nickel electrode according to claim 6, wherein the alkali-resistant metal plating layer is a nickel plating layer.
JP05236190A 1993-09-22 1993-09-22 Non-sintered nickel electrode and its manufacturing method Expired - Fee Related JP3116681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05236190A JP3116681B2 (en) 1993-09-22 1993-09-22 Non-sintered nickel electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05236190A JP3116681B2 (en) 1993-09-22 1993-09-22 Non-sintered nickel electrode and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0794181A JPH0794181A (en) 1995-04-07
JP3116681B2 true JP3116681B2 (en) 2000-12-11

Family

ID=16997114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05236190A Expired - Fee Related JP3116681B2 (en) 1993-09-22 1993-09-22 Non-sintered nickel electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3116681B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11250891A (en) * 1998-03-03 1999-09-17 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JPH11250928A (en) * 1998-03-03 1999-09-17 Toshiba Battery Co Ltd Nickel hydrogen secondary battery
JP3534031B2 (en) * 2000-02-02 2004-06-07 トヨタ自動車株式会社 Method for manufacturing electrode for battery / capacitor
JP5623303B2 (en) * 2011-01-28 2014-11-12 ダイハツ工業株式会社 Electrode for lithium-sulfur secondary battery and lithium-sulfur secondary battery

Also Published As

Publication number Publication date
JPH0794181A (en) 1995-04-07

Similar Documents

Publication Publication Date Title
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
WO2003047014A1 (en) Active electrode composition with graphite additive
EP0750358B1 (en) Non-sintered type nickel electrode and method of producing the same
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JP2000048823A (en) Non-sintering type electrode and manufacture thereof
JP2002025604A (en) Alkaline secondary battery
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP2000285922A (en) Alkaline storage battery, and manufacture of its electrode
JP3438538B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH11288710A (en) Foam-less nickel positive electrode and its manufacture
JPH11135112A (en) Positive electrode for alkaline storage battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JP3010992B2 (en) Battery electrode
JP4334783B2 (en) Negative electrode plate for nickel / hydrogen storage battery, method for producing the same, and nickel / hydrogen storage battery using the same
JP2981538B2 (en) Electrodes for alkaline batteries
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPH10162835A (en) Electrode for alkaline storage battery and manufacture thereof
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH06275261A (en) Alkaline storage battery
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP2001325955A (en) Nickel positive electrode plate and alkaline storage cell
JPH11102698A (en) Alkaline storage battery and manufacture of electrode thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees