JP2016189260A - Lead acid storage battery - Google Patents

Lead acid storage battery Download PDF

Info

Publication number
JP2016189260A
JP2016189260A JP2015068615A JP2015068615A JP2016189260A JP 2016189260 A JP2016189260 A JP 2016189260A JP 2015068615 A JP2015068615 A JP 2015068615A JP 2015068615 A JP2015068615 A JP 2015068615A JP 2016189260 A JP2016189260 A JP 2016189260A
Authority
JP
Japan
Prior art keywords
negative electrode
barium sulfate
mass
electrode material
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015068615A
Other languages
Japanese (ja)
Other versions
JP6607344B2 (en
Inventor
小山 潔
Kiyoshi Koyama
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2015068615A priority Critical patent/JP6607344B2/en
Publication of JP2016189260A publication Critical patent/JP2016189260A/en
Application granted granted Critical
Publication of JP6607344B2 publication Critical patent/JP6607344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

CONSTITUTION: In a lead acid storage battery, the theoretical capacity of an electrolyte is 30% or more of the theoretical capacity of a negative electrode material, and the negative electrode material contains more than 0 and less than 0.6 mass% of barium sulfate and has a density of higher than 3.6 g/cm.EFFECT: In a lead acid storage battery, deep discharge with a negative electrode utilization ratio of 30% or more can be repeated, so that an operating time of a fork lift per cycle can be prolonged.SELECTED DRAWING: Figure 1

Description

この発明は鉛蓄電池に関し、特に繰り返し深く放電されても長寿命な鉛蓄電池に関する。   The present invention relates to a lead-acid battery, and particularly to a lead-acid battery having a long life even when repeatedly discharged deeply.

フォークリフトの1日当たりの稼働時間を長くしたいとの要望があり、鉛蓄電池の側からこれに応えるには、深い放電を繰り返した際の寿命性能を向上させる必要がある。特許文献1(JP2013-218894A)は、Na塩ではなく酸型のリグニンスルホン酸を用い、負極電極材料の密度を3.7g/cm3以上とし、電極材料に0.2〜1.2mass%のカーボンを含有させることにより、寿命性能を向上させることを開示している。また特許文献1は、負極電極材料中の硫酸バリウム濃度が0.6mass%の例を開示している。 There is a desire to increase the operating hours per day of a forklift, and in order to respond to this from the side of lead-acid batteries, it is necessary to improve the life performance when repeated deep discharge. Patent Document 1 (JP2013-218894A) uses acid-type lignin sulfonic acid instead of sodium salt, the density of the negative electrode material is 3.7 g / cm 3 or more, and the electrode material contains 0.2 to 1.2 mass% carbon. Thus, it is disclosed that the life performance is improved. Patent Document 1 discloses an example in which the barium sulfate concentration in the negative electrode material is 0.6 mass%.

特許文献2(JP2010-529619A)は、鉛蓄電池の用途毎に、負極電極材料の好ましい組成を開示している。フォークリフト用などの工業動力用では、硫酸バリウムを1.4〜2.25mass%と、自動車用等に比べ高濃度に含有させるとしている。これは、深い放電の繰り返しに対して高濃度の硫酸バリウムが有効である、との経験則があることを示唆する。   Patent Document 2 (JP2010-529619A) discloses a preferred composition of the negative electrode material for each use of the lead storage battery. In industrial power for forklifts and the like, it is said that barium sulfate is contained at a high concentration of 1.4 to 2.25 mass%, compared to automobiles and the like. This suggests that there is an empirical rule that a high concentration of barium sulfate is effective for repeated deep discharges.

JP2013-218894AJP2013-218894A JP2010-529619AJP2010-529619A

この発明の課題は、深い放電を繰り返すサイクルに対する、鉛蓄電池の寿命性能を向上させることにある。   The subject of this invention is improving the lifetime performance of a lead acid battery with respect to the cycle which repeats deep discharge.

この発明の鉛蓄電池は、電解液の理論容量が負極電極材料の理論容量の30%以上であり、負極電極材料が0より多くかつ0.6mass%未満の硫酸バリウムを含み、さらに負極電極材料の密度が3.6g/cm3より高いことを特徴とする。好ましくは、電解液の理論容量が負極電極材料の理論容量の40%以上である。 The lead acid battery of the present invention has a theoretical capacity of the electrolyte of 30% or more of the theoretical capacity of the negative electrode material, the negative electrode material contains barium sulfate of more than 0 and less than 0.6 mass%, and further the density of the negative electrode material Is higher than 3.6 g / cm 3 . Preferably, the theoretical capacity of the electrolytic solution is 40% or more of the theoretical capacity of the negative electrode material.

負極電極材料が0よりも多くかつ0.6mass%未満の硫酸バリウムを含み、さらに負極電極材料の密度を3.6g/cm3より高くすると、負極電極材料の理論容量の30%以上に相当する電気量を放電することを繰り返しても、容量を高く維持できる(図1〜図3)。なお以下、負極電極材料の理論容量の30%以上に相当する電気量の放電を、「負極電極材料の利用率が30%以上となる放電」あるいは「負極利用率が30%以上の放電」のように表現することがある。深い放電を伴う用途では硫酸バリウム含有量が高い方が良い、との経験則(例えば特許文献2を参照)が有り、硫酸バリウム含有量を0.6mass%未満とすることはこの経験則を超えるものである。また特定の硫酸バリウム含有量と、3.6g/cm3より高い負極電極材料密度との組み合わせが重要なことは、本発明で初めて得られた知見である。例えば特許文献1では、負極電極材料のカーボン含有量と密度との組み合わせが重要としている。 When the negative electrode material contains more than 0 and less than 0.6 mass% barium sulfate, and the density of the negative electrode material is higher than 3.6 g / cm 3, the amount of electricity corresponding to 30% or more of the theoretical capacity of the negative electrode material Even if it is repeatedly discharged, the capacity can be maintained high (FIGS. 1 to 3). Hereinafter, the discharge of the electric quantity corresponding to 30% or more of the theoretical capacity of the negative electrode material is referred to as “discharge where the utilization rate of the negative electrode material is 30% or more” or “discharge where the utilization rate of the negative electrode is 30% or more”. It may be expressed as follows. There is an empirical rule that high barium sulfate content is better for applications involving deep discharge (see, for example, Patent Document 2), and making the barium sulfate content less than 0.6 mass% exceeds this empirical rule. It is. In addition, the fact that a combination of a specific barium sulfate content and a negative electrode material density higher than 3.6 g / cm 3 is important is a finding obtained for the first time in the present invention. For example, in Patent Document 1, the combination of the carbon content and the density of the negative electrode material is important.

この発明の鉛蓄電池では、電解液の理論容量を負極電極材料の理論容量の30%以上とするので、負極電極材料の利用率が30%以上となる放電のような深い放電を行うことができる。この電池は、電解液の理論容量が負極電極材料の理論容量の30%未満のものと比べて、容量を大きくすることができる。また、電解液の理論容量は負極材料の理論容量の40%以上が好ましい。なぜなら、放電反応が進んだときに残存する硫酸成分の量が多くなるため、電解液中の硫酸濃度が低下することに起因する反応過電圧の上昇が抑制され、結果的に、鉛蓄電池のさらなる高容量化がはかれるからである。この効果が優れることから、電解液の理論容量は負極材料の理論容量の43%以上さらには57%以上とすることが好ましい。この発明の鉛蓄電池は深い放電を繰り返しても長寿命なので、フォークリフト用、電気車用等の鉛蓄電池とした際に、1サイクル当たりの稼働時間を長くできる。   In the lead storage battery of the present invention, since the theoretical capacity of the electrolyte is 30% or more of the theoretical capacity of the negative electrode material, it is possible to perform a deep discharge such as a discharge in which the utilization factor of the negative electrode material is 30% or more. . In this battery, the capacity of the electrolytic solution can be increased as compared with that having a theoretical capacity of less than 30% of the theoretical capacity of the negative electrode material. The theoretical capacity of the electrolytic solution is preferably 40% or more of the theoretical capacity of the negative electrode material. This is because the amount of sulfuric acid component remaining when the discharge reaction proceeds increases, so that an increase in reaction overvoltage caused by a decrease in the sulfuric acid concentration in the electrolyte is suppressed, resulting in a further increase in the lead storage battery. This is because capacity can be increased. Since this effect is excellent, the theoretical capacity of the electrolytic solution is preferably 43% or more, more preferably 57% or more of the theoretical capacity of the negative electrode material. Since the lead-acid battery of the present invention has a long life even when repeated deep discharge is performed, the operation time per cycle can be increased when a lead-acid battery for forklifts, electric cars, etc. is used.

負極電極材料は、硫酸バリウムの含有量および密度がつぎのいずれかの範囲を満たすようにすると、深い放電を繰り返した際の寿命を長くできる。
i) 硫酸バリウム含有量が0.1mass%より大きく、かつ密度が 3.7g/cm3より高い、
ii) 硫酸バリウム含有量が0.2mass%より大きく、かつ密度が 3.6g/cm3より高い
When the negative electrode material has a barium sulfate content and density satisfying any one of the following ranges, the life of the negative electrode material after repeated deep discharges can be extended.
i) Barium sulfate content is greater than 0.1 mass% and density is greater than 3.7 g / cm 3 ,
ii) Barium sulfate content is greater than 0.2 mass% and density is higher than 3.6 g / cm 3

硫酸バリウムの含有量および負極電極材料の密度がつぎのいずれかの範囲を満たすようにすると、深い放電を繰り返した際の寿命をさらに長くできる。
i) 硫酸バリウム含有量が0.15mass%以上0.5mass%以下で、かつ密度が 3.8g/cm3以上4.0g/cm3以下、
ii) 硫酸バリウム含有量が0.3mass%以上0.5mass%以下で、かつ密度が 3.7g/cm3以上4.0g/cm3以下
If the content of barium sulfate and the density of the negative electrode material satisfy any one of the following ranges, the life when deep discharge is repeated can be further increased.
i) barium sulfate content of less 0.15 mass% or more 0.5 mass%, and density of 3.8 g / cm 3 or more 4.0 g / cm 3 or less,
ii) barium sulfate content of more not more than 0.3 mass% 0.5 mass% or less, and the density is 3.7 g / cm 3 or more 4.0 g / cm 3 or less

好ましくは、負極電極材料はカーボンの含有量が0.2%mass%以下で、例えば0.2mass%以下0.1mass%以上である。特許文献1では高濃度のカーボンを含有させることにより容量を維持するが、この発明では負極電極材料の密度を3.6/cm3以上とし、硫酸バリウム含有量を0.6mass%未満で0超とすることにより、容量を維持できる。そして0.2mass%を越えるカーボンを必要としない。 Preferably, the negative electrode material has a carbon content of 0.2% mass% or less, such as 0.2 mass% or less and 0.1 mass% or more. In Patent Document 1, the capacity is maintained by containing a high concentration of carbon. In this invention, the density of the negative electrode material is 3.6 / cm 3 or more, and the barium sulfate content is less than 0.6 mass% and more than 0. Thus, the capacity can be maintained. And no more than 0.2mass% carbon is needed.

この発明の鉛蓄電池は、負極電極材料の利用率が30%以上となる放電過程を含む用途で使用でき、特に1サイクル当たりの負極電極材料の平均利用率が30%以上となる用途で使用できる。好ましくは、負極電極材料の利用率が40%以上となる放電過程を含む用途で使用でき、特に1サイクル当たりの負極電極材料の平均利用率が30%以上となる用途で使用できる。   The lead acid battery of the present invention can be used in applications including a discharge process in which the utilization factor of the negative electrode material is 30% or more, and can be used particularly in applications in which the average utilization factor of the negative electrode material per cycle is 30% or more. . Preferably, it can be used in applications including a discharge process in which the utilization factor of the negative electrode material is 40% or more, and in particular, can be used in applications in which the average utilization factor of the negative electrode material per cycle is 30% or more.

また正極電極材料の理論容量は例えば負極の理論容量の86%以上とすることによって、軟化などの正極の劣化を抑制することができる。   Further, when the theoretical capacity of the positive electrode material is, for example, 86% or more of the theoretical capacity of the negative electrode, deterioration of the positive electrode such as softening can be suppressed.

負極電極材料密度が3.8g/cm3、硫酸バリウム濃度が0.1〜0.8mass%での、サイクル試験結果を示す特性図Characteristic diagram showing the cycle test results when the negative electrode material density is 3.8 g / cm 3 and the barium sulfate concentration is 0.1 to 0.8 mass% 負極電極材料密度が3.6g/cm3及び3.7g/cm3、硫酸バリウム濃度が0.2〜0.6mass%での、サイクル試験結果を示す特性図Negative electrode material density 3.6 g / cm 3 and 3.7 g / cm 3, characteristic diagram showing barium sulfate concentration is in 0.2~0.6mass%, the cycle test results 負極電極材料密度が3.9g/cm3及び4.0g/cm3、硫酸バリウム濃度が0.3〜0.8mass%での、サイクル試験結果を示す特性図Negative electrode material density 3.9 g / cm 3 and 4.0 g / cm 3, characteristic diagram showing barium sulfate concentration is in 0.3~0.8mass%, the cycle test results 利用率44%の放電1400サイクル目の、硫酸バリウムの含有量と、負極電極材料の理論容量に対する放電容量の割合、との関係を示す特性図Characteristic diagram showing the relationship between the barium sulfate content and the ratio of the discharge capacity to the theoretical capacity of the negative electrode material at the 1400th cycle of discharge with a utilization rate of 44% 利用率20%の放電1400サイクル目の、硫酸バリウムの含有量と、負極電極材料の理論容量に対する放電容量の割合、との関係を示す特性図Characteristic chart showing the relationship between the barium sulfate content and the ratio of the discharge capacity to the theoretical capacity of the negative electrode material at the 1400th cycle of discharge with a utilization rate of 20%

以下に、本願発明の最適実施例を示す。本願発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施例を適宜に変更できる。なお実施例では、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶことがある。また負極板は、負極格子等の負極集電体と負極電極材料(負極活物質)とから成り、正極板は、芯金等の正極集電体と正極電極材料(正極活物質)とから成り、集電体以外の固形成分は電極材料に属するものとする。この明細書において、「〜」により範囲を示すときは、上限と下限とを含むものとする。   Hereinafter, an optimum embodiment of the present invention will be described. In carrying out the present invention, the embodiments can be appropriately changed in accordance with common sense of those skilled in the art and disclosure of prior art. In Examples, the negative electrode material may be referred to as a negative electrode active material, and the positive electrode material may be referred to as a positive electrode active material. The negative electrode plate includes a negative electrode current collector such as a negative electrode grid and a negative electrode material (negative electrode active material), and the positive electrode plate includes a positive electrode current collector such as a core metal and a positive electrode material (positive electrode active material). The solid components other than the current collector belong to the electrode material. In this specification, when a range is indicated by “to”, an upper limit and a lower limit are included.

高さ300mm、幅140mm、厚み3.5mmのペースト式負極板5枚と、外形が同じ寸法でチューブ径が10mmのチューブ式正極板4枚とを、それぞれタンク化成後にポリエチレン製微孔セパレータを介して積層し、フォークリフト用の鉛蓄電池とした。負極板の負極電極材料の密度を3.6g/cm3〜4.0g/cm3とし、負極電極材料に対して、カーボンとしてアセチレンブラックを0.2 mass%、リグニンスルホン酸を0.2 mass%、硫酸バリウムを0.1〜0.8 mass%含有させた負極板を準備した。なおアセチレンブラックは他のカーボンブラックに変えても良く、カーボンの種類は任意である。またリグニンスルホン酸のスルホン酸基が、H+が結合しているH型か、Na+が結合しているNa型かは、結果に有意差を与えなかった。リグニンスルホン酸に変えて、スルホン化ビスフェノール類縮合物等を用いても良い。硫酸バリウムは、ピーク粒径が1.20μmで体積平均粒径が1.40μmのものを用いたが、粒径等の性状は任意である。 Five paste-type negative electrode plates with a height of 300 mm, a width of 140 mm, and a thickness of 3.5 mm, and four tube-type positive electrode plates with the same outer dimensions and a tube diameter of 10 mm are passed through a polyethylene microporous separator after tank formation. Laminated and used as a lead storage battery for forklifts. The density of the negative electrode material of the negative electrode plate and 3.6g / cm 3 ~4.0g / cm 3 , relative to the negative electrode material, 0.2 mass% of acetylene black as carbon, lignin sulfonate 0.2 mass%, the barium sulfate 0.1 A negative electrode plate containing ˜0.8 mass% was prepared. Acetylene black may be replaced with other carbon black, and the type of carbon is arbitrary. In addition, whether the sulfonic acid group of lignin sulfonic acid was H-type bonded with H + or Na-type bonded with Na + did not give a significant difference in the results. Instead of lignin sulfonic acid, a sulfonated bisphenol condensate or the like may be used. Barium sulfate having a peak particle size of 1.20 μm and a volume average particle size of 1.40 μm was used, but properties such as particle size are arbitrary.

正極活物質は二酸化鉛を主成分とし、正極板4枚分の理論容量は710±5Ah、負極板5枚分の理論容量は575±3Ahであった。上辺を除く3辺を囲うように、封筒状のセパレータを負極板に装着し、極群を電槽に入れ、比重1.28(20℃)の希硫酸を2800cm(理論容量約357Ah)注入し、負極板の種類ごとに3セルずつ試作電池を製作した。 The positive electrode active material was composed mainly of lead dioxide, the theoretical capacity for four positive plates was 710 ± 5 Ah, and the theoretical capacity for five negative plates was 575 ± 3 Ah. Attach an envelope-like separator to the negative electrode so as to surround the three sides except the upper side, put the electrode group in the battery case, and inject 2800 cm 3 (theoretical capacity about 357 Ah) of dilute sulfuric acid with a specific gravity of 1.28 (20 ° C), Three prototype cells were manufactured for each type of negative electrode plate.

正極電極材料の理論容量は、負極の理論容量の86%以上とすることが好ましい。このようにすることにより、充放電サイクルに伴う正極板の性能低下を抑制できる。この効果がさらに向上することから、正極電極材料の理論容量は負極の理論容量の114%以上、さらには125%以上とすることが好ましい。充放電サイクルに伴う正極板の性能低下を抑制することによって、負極板の寿命性能が電池全体の寿命性能に影響する割合が大きくなるので、本発明の意義が大きくなる。   The theoretical capacity of the positive electrode material is preferably 86% or more of the theoretical capacity of the negative electrode. By doing in this way, the performance fall of the positive electrode plate accompanying a charging / discharging cycle can be suppressed. Since this effect is further improved, the theoretical capacity of the positive electrode material is preferably 114% or more, more preferably 125% or more of the theoretical capacity of the negative electrode. By suppressing the performance degradation of the positive electrode plate accompanying the charge / discharge cycle, the ratio that the life performance of the negative electrode plate affects the life performance of the entire battery increases, and thus the significance of the present invention increases.

負極活物質の種類を”3D2”等の記号で表し、先頭の”3”は硫酸バリウムを0.3mass%含有することを示し、”D”は既化成の負極活物質密度が3.8g/cm3であることを示し、末尾の”2”は2セルの平均でデータを示すことを表す。なお既化成の負極活物質の密度は、Bが3.6g/cm3、Cが3.7g/cm3、Eが3.9g/cm3、Fが4.0g/cm3である。例えば5C2では、既化成の負極活物質が硫酸バリウムを0.5mass%含有し、密度は3.7g/cm3である。 The type of negative electrode active material is represented by a symbol such as “3D2”, the leading “3” indicates that 0.3 mass% of barium sulfate is contained, and “D” indicates that the density of the preformed negative electrode active material is 3.8 g / cm 3 "2" at the end indicates that the data is shown as an average of two cells. Density of the negative electrode active material noted previously Kasei, B is 3.6g / cm 3, C is 3.7g / cm 3, E is 3.9g / cm 3, F is 4.0 g / cm 3. For example, in 5C2, the preformed negative electrode active material contains 0.5 mass% of barium sulfate and the density is 3.7 g / cm 3 .

試作電池を30℃水槽中で45Aで放電し、端子電圧が1.7Vを切った時点の放電電気量を測定すると、負極板の種類によらず約252Ahであった。そこで電池の基準容量を252Ah(負極の理論容量に対する利用率(負極利用率)で44%)とした。試作電池を以下のサイクル寿命試験に投入した。すなわち30℃水槽中で、放電は電流67Aを3時間(負極利用率35%)、充電は電流48Aを5時間、放電と充電を交互に行うサイクルを繰り返し、100サイクル毎に30℃、45A、終止電圧1.7Vの放電容量試験を行った。なおサイクル寿命試験中に各電池のうち1セルを100サイクル目の放電容量試験の直前に解体し、BET比表面積を測定した。BET比表面積は硫酸バリウム含有量と共に増加し、硫酸バリウムが負極活物質の収縮を防止していることを裏付けた。なお、上記電池は、電解液の理論容量が負極電極材料の理論容量の約62%である。この構成により、負極利用率30%を大幅に超える深い放電を達成できている。   When the prototype battery was discharged at 45 A in a 30 ° C. water bath and the amount of discharged electricity when the terminal voltage fell below 1.7 V was measured, it was about 252 Ah regardless of the type of the negative electrode plate. Therefore, the standard capacity of the battery was set to 252 Ah (44% in terms of the utilization ratio (negative electrode utilization ratio) with respect to the theoretical capacity of the negative electrode). The prototype battery was put into the following cycle life test. That is, in a 30 ° C water bath, discharging is performed at a current of 67A for 3 hours (negative electrode utilization rate 35%), charging is repeated at a current of 48A for 5 hours, and discharging and charging are repeated, and every 100 cycles at 30 ° C, 45A, A discharge capacity test with a final voltage of 1.7 V was performed. During the cycle life test, one cell of each battery was disassembled immediately before the discharge capacity test at the 100th cycle, and the BET specific surface area was measured. The BET specific surface area increased with the barium sulfate content, confirming that barium sulfate prevented shrinkage of the negative electrode active material. In the battery, the theoretical capacity of the electrolyte is about 62% of the theoretical capacity of the negative electrode material. With this configuration, deep discharge exceeding a negative electrode utilization rate of 30% can be achieved.

残りの2セルずつを1400サイクルまでサイクル寿命試験に投入し、1400サイクル後に負極活物質中の硫酸鉛の含有量を測定した。予想に反して、硫酸鉛の含有量は硫酸バリウム含有量と共に増加し、このことは、深い放電を繰り返すと、硫酸バリウムが硫酸鉛を蓄積させることを示している。また400サイクルまでの容量の挙動と1000サイクル以降の容量の挙動は異なり、400サイクルまで容量が安定な電池でも1000サイクル付近から急速に容量が低下する現象が見られた。これらのことは、100サイクル目では硫酸バリウムによりBET比表面積の低下が抑制され、容量も維持されるが、1400サイクル目では硫酸バリウムにより硫酸鉛の蓄積が進み、容量が低下することを示唆する。   The remaining two cells were put into a cycle life test up to 1400 cycles, and after 1400 cycles, the content of lead sulfate in the negative electrode active material was measured. Contrary to expectation, the content of lead sulfate increases with the content of barium sulfate, which indicates that barium sulfate accumulates lead sulfate with repeated deep discharges. Moreover, the behavior of capacity up to 400 cycles and the behavior of capacity after 1000 cycles were different, and even in batteries with stable capacity up to 400 cycles, a phenomenon was observed in which the capacity decreased rapidly from around 1000 cycles. These facts suggest that barium sulfate suppresses the decrease in BET specific surface area and maintains the capacity at the 100th cycle, but the lead sulfate accumulation proceeds by barium sulfate at the 1400th cycle and the capacity decreases. .

負極活物質の密度が3.8g/cm3のD系列での結果を図1に、3.6g/cm3のB系列と3.7g/cm3のC系列での結果を図2に、3.9g/cm3のE系列と4.0g/cm3のF系列での結果を図3に示す。 Density of the negative electrode active material results in the D series of 3.8 g / cm 3 in FIG. 1, the results of the C series of B-series and 3.7 g / cm 3 of 3.6 g / cm 3 in FIG. 2, 3.9 g / The results for the cm 3 E series and 4.0 g / cm 3 F series are shown in FIG.

図1のD系列では、硫酸バリウム含有量が0.1mass%では100サイクル目の容量低下が著しく、0.8mass%では300サイクル目以降の容量低下が著しく、0.6mass%では600サイクル目以降の容量低下が著しかった。そして硫酸バリウム含有量が0.15mass%では、容量は低いものの安定で、深い放電の繰り返しに対する耐久性には、硫酸バリウム含有量を低くすることが重要であることを示唆している。そして硫酸バリウム含有量が0.15mass%〜0.5mass%で1400サイクル目に高い容量が得られ、密度が3.8g/cm3ではこの範囲が最適であることを示している。 In the D series of FIG. 1, when the barium sulfate content is 0.1 mass%, the capacity decrease at the 100th cycle is remarkable, when 0.8 mass%, the capacity decrease after the 300th cycle is remarkable, and at 0.6 mass%, the capacity decreases after the 600th cycle. Was authoritative. When the barium sulfate content is 0.15 mass%, the capacity is low but stable, suggesting that it is important to lower the barium sulfate content for durability against repeated deep discharge. A high capacity was obtained at the 1400th cycle when the barium sulfate content was 0.15 mass% to 0.5 mass%, and this range was optimal when the density was 3.8 g / cm 3 .

図2のB系列、C系列の内、B系列(密度3.6g/cm3)では、硫酸バリウム含有量によらず、1400サイクル目の容量が低かった。このことは負極活物質の密度が低いと、深い放電の繰り返しへの耐久性が得られないことを示している。C系列(密度3.7g/cm3)では、硫酸バリウム含有量が0.3mass%(3C2)と0.5mass%(5C2)で1400サイクル目の容量が高かった。 In the B series (density 3.6 g / cm 3 ) among the B series and C series in FIG. 2, the capacity at the 1400th cycle was low regardless of the barium sulfate content. This indicates that when the density of the negative electrode active material is low, durability against repeated deep discharge cannot be obtained. In the C series (density 3.7 g / cm 3 ), the barium sulfate content was 0.3 mass% (3C2) and 0.5 mass% (5C2), and the capacity at the 1400th cycle was high.

図3のE系列(密度3.9g/cm3)、F系列(密度4.0g/cm3)では、硫酸バリウム含有量を0.6mass%以上とすると、硫酸バリウム含有量によらず、1400サイクル目の容量が低かった。これに対して負極活物質の密度3.9g/cm3で、硫酸バリウム含有量が0.3mass%で、1400サイクル目の容量が高かった。このように硫酸バリウム含有量は0.6mass%未満が良いことは、どの密度でも共通していた。 In the E series (density 3.9 g / cm 3 ) and F series (density 4.0 g / cm 3 ) in Fig. 3, if the barium sulfate content is 0.6 mass% or more, the 1400th cycle is achieved regardless of the barium sulfate content. The capacity was low. In contrast, the density of the negative electrode active material was 3.9 g / cm 3 , the barium sulfate content was 0.3 mass%, and the capacity at the 1400th cycle was high. As described above, the fact that the barium sulfate content is preferably less than 0.6 mass% is common to all densities.

上記評価結果のうち、負極活物質の密度が3.8g/cm3のものおよび3.6g/cm3にものについて、1400サイクル目の放電容量と硫酸バリウムの含有量との関係を図4にそれぞれ示す。比較として、放電深度がより浅い場合の傾向について別途評価した結果を図5に示す。図5の結果は、上記試験の放電条件を負極電極材料の理論容量の20%(すなわち負極利用率20%)に変更して行ったものである。なお、1400サイクル目の放電容量は、負極電極材料の理論容量に対する割合で評価した。 Of the above evaluation results, those and 3.6 g / cm 3 boiled for density of the negative electrode active material 3.8 g / cm 3, respectively the relationship between the discharge capacity and the content of the barium sulfate 1400 cycle in FIG. 4 . As a comparison, FIG. 5 shows the result of separately evaluating the tendency when the discharge depth is shallower. The results in FIG. 5 were obtained by changing the discharge conditions in the above test to 20% of the theoretical capacity of the negative electrode material (that is, the negative electrode utilization rate of 20%). The discharge capacity at the 1400th cycle was evaluated as a ratio to the theoretical capacity of the negative electrode material.

図4から、負極活物質の密度が3.8g/cm3かつ負極利用率44%となる放電をおこなった場合、硫酸バリウム含有量が0.4mass%〜0.8mass%の範囲では、含有量が少なくなるにしたがって1400サイクル目の放電容量が大きく向上していることがわかる。他方、図4および図5から、負極密度が3.6g/cm3の場合や、負極利用率が20%となる放電の場合においては、このような傾向が認められないことがわかる。これらのことは、負極電極材料の理論容量の44%に相当する容量を放電できるだけの電解液を備え、かつ負極電極材料の密度が3.8g/cm3という構成をそなえた場合、硫酸バリウム含有量を低減することによって寿命性能が向上する効果が顕著に得られることを意味するものである。   From FIG. 4, when discharge was performed such that the density of the negative electrode active material was 3.8 g / cm3 and the negative electrode utilization rate was 44%, the content was reduced in the range of barium sulfate content of 0.4 mass% to 0.8 mass%. Therefore, it can be seen that the discharge capacity at the 1400th cycle is greatly improved. On the other hand, FIG. 4 and FIG. 5 show that such a tendency is not observed when the negative electrode density is 3.6 g / cm 3 or when the negative electrode utilization rate is 20%. These are the reasons why the barium sulfate content is reduced when an electrolyte solution capable of discharging a capacity corresponding to 44% of the theoretical capacity of the negative electrode material is provided and the density of the negative electrode material is 3.8 g / cm3. This means that the effect of improving the life performance can be remarkably obtained by the reduction.

上記の現象は、硫酸バリウムが負極電極材料の導電性に及ぼす影響の度合いに関連性があるものと推定される。すなわち、硫酸バリウムは導電性が低いので、負極電極材料に添加すると負極電極材料の伝導性が低下するが、特定条件下ではこの低下が硫酸鉛の蓄積を加速させる原因になっていると推定される。負極利用率が20%程度の浅い放電深度においては、負極板全体にわたってほぼ均一な放電状態となっており、充電時においても負極電極材料の伝導性は高いので、硫酸バリウムの添加量が0.6mass%程度であれば負極電極材料内部は十分な伝導性を維持できる。このことは、従来技術における硫酸バリウムの含有量が1.4~2.25mass%ということからも明らかである。そのため、従来の鉛蓄電池においては、0.6mass%程度の硫酸バリウムが硫酸鉛の蓄積を加速させるという現象は生じない。他方、上記試験のように、負極利用率が44%のような深い放電深度まで放電されると、負極板内における放電状態の不均一性が顕著となり、たとえば局所的に50%を超えるようなとくに深い放電深度となる部分が生じる。このような場所では、充電時における負極電極材料の導電性がとくに低く、充電を受け入れにくい状態となっている。そのような状況下では、硫酸バリウムの添加による導電性低下の影響は大きく、硫酸鉛の蓄積が加速される程度にまで導電性を引き下げることになったと推定される。   The above phenomenon is presumed to be related to the degree of influence of barium sulfate on the conductivity of the negative electrode material. In other words, since barium sulfate has low conductivity, when added to the negative electrode material, the conductivity of the negative electrode material decreases. Under certain conditions, this decrease is presumed to cause the accumulation of lead sulfate. The At a shallow discharge depth where the negative electrode utilization rate is about 20%, the discharge state is almost uniform throughout the negative electrode plate, and the conductivity of the negative electrode material is high even during charging, so the amount of barium sulfate added is 0.6 mass. If it is about%, the inside of the negative electrode material can maintain sufficient conductivity. This is also clear from the fact that the content of barium sulfate in the prior art is 1.4 to 2.25 mass%. Therefore, in the conventional lead acid battery, the phenomenon that about 0.6 mass% barium sulfate accelerates the accumulation of lead sulfate does not occur. On the other hand, when the negative electrode utilization is discharged to a deep discharge depth such as 44% as in the above test, the non-uniformity of the discharge state in the negative electrode plate becomes remarkable, for example, locally exceeding 50%. In particular, a portion having a deep discharge depth occurs. In such a place, the conductivity of the negative electrode material at the time of charging is particularly low, making it difficult to accept charging. Under such circumstances, the effect of the decrease in conductivity due to the addition of barium sulfate is large, and it is estimated that the conductivity was lowered to the extent that the accumulation of lead sulfate was accelerated.

このようなメカニズムに基づいて考察すると、硫酸バリウムの含有量を低減することによる寿命性能の向上効果は、負極電極材料の利用率が30%以上となる放電を含む充放電サイクルを行う場合に、とくに明確に観察できると考えられる。そして負極電極材料の利用率が40%以上となる放電をする場合に、さらに顕著に認められると考えられる。負極電極材料の利用率が30%以上となる放電を含む充放電サイクルを行うと、硫酸鉛の蓄積が明確に認められるようになり、負極電極材料の利用率が40%以上の放電を行う場合は、硫酸鉛の蓄積がさらに顕著になる。そして、硫酸鉛の蓄積が発生しているという状況は、充電過程において活物質の導電性が低下していることを意味している。このため、0.6mass%程度の添加量であったとしても、活物質全体の導電性、なかんずく負極板内において放電状態の不均一性が顕著となっている状態において、とくに深い放電深度となっている部分の導電性に、硫酸バリウムが大きく影響を及ぼすと考えられる。そのような状況では、硫酸バリウムを減量することによって、硫酸鉛の蓄積を顕著に回避あるいは抑制できると推定される。したがって、当該効果は、電解液の理論容量が負極電極材料の理論容量の30%以上の電池において発揮されやすく、40%以上のときにより顕著に発揮される。   Considering based on such a mechanism, the effect of improving the lifetime performance by reducing the content of barium sulfate is when performing a charge / discharge cycle including a discharge in which the utilization factor of the negative electrode material is 30% or more, In particular, it can be observed clearly. Further, it is considered that the phenomenon is more remarkably observed when the discharge is performed such that the utilization factor of the negative electrode material becomes 40% or more. When a charge / discharge cycle that includes a discharge in which the utilization factor of the negative electrode material is 30% or more is performed, accumulation of lead sulfate is clearly recognized, and a discharge in which the utilization factor of the negative electrode material is 40% or more The accumulation of lead sulfate becomes even more pronounced. And the situation that accumulation of lead sulfate has occurred means that the conductivity of the active material is reduced in the charging process. For this reason, even if the addition amount is about 0.6 mass%, in particular, in the state where the non-uniformity of the discharge state is remarkable in the negative electrode plate, particularly the deep discharge depth, It is considered that barium sulfate has a great influence on the conductivity of the existing portion. In such a situation, it is estimated that accumulation of lead sulfate can be significantly avoided or suppressed by reducing the amount of barium sulfate. Therefore, this effect is easily exhibited in a battery in which the theoretical capacity of the electrolytic solution is 30% or more of the theoretical capacity of the negative electrode material, and is more prominent when it is 40% or more.

硫酸バリウムの含有量を低減することによって寿命性能が向上するという効果は、理由は明らかではないが、負極電極材料の密度が3.6g/cm3より大きい範囲でのみ認められる。図4に示した通り、密度が3.6g/cm3の場合は、当該効果は得られない。他方、負極電極材料の密度が3.7g/cm3、3.9g/cm3および4.0g/cm3でも同様の傾向があることが確認された。これらのことから、この効果は3.6g/cm3よりも高い密度範囲で得られるものと推定される。   The effect of improving the life performance by reducing the content of barium sulfate is not clear for reasons, but is recognized only when the density of the negative electrode material is larger than 3.6 g / cm 3. As shown in FIG. 4, this effect cannot be obtained when the density is 3.6 g / cm 3. On the other hand, it was confirmed that the same tendency was observed when the density of the negative electrode material was 3.7 g / cm 3, 3.9 g / cm 3 and 4.0 g / cm 3. From these facts, it is estimated that this effect can be obtained in a density range higher than 3.6 g / cm 3.

以上のことから、本発明において、硫酸バリウム含有量を低減することによって得られる寿命性能向上の効果は、電解液の理論容量を負極電極材料の理論容量の30%以上とし、かつ負極電極材料の密度が3.6g/cm3より高くした鉛蓄電池において、特有に確認される現象であると言える。そして、この本発明は、負極電極材料の利用率が30%以上となる用途で意義が大きく、当該割合が40%以上の用途ではさらに意義が大きい。   From the above, in the present invention, the effect of improving the life performance obtained by reducing the barium sulfate content is that the theoretical capacity of the electrolyte is 30% or more of the theoretical capacity of the negative electrode material, and the negative electrode material It can be said that this is a phenomenon that is uniquely confirmed in a lead storage battery having a density higher than 3.6 g / cm 3. The present invention is significant in applications where the utilization ratio of the negative electrode material is 30% or more, and is further significant in applications where the ratio is 40% or more.

これらの結果は、フォークリフト用などの深い放電を伴う用途で、負極活物質中の硫酸バリウム含有量を増すとの、特許文献2の指針とは反する。また硫酸バリウム含有量と負極活物質の密度との組み合わせが重要で、活物質の密度を3.6g/cm3よりも高くし、かつ硫酸バリウム含有量を0.6mass%未満にすることが重要であることを示している。 These results are contrary to the guidelines of Patent Document 2 in which the content of barium sulfate in the negative electrode active material is increased in applications involving deep discharge such as for forklifts. In addition, the combination of the barium sulfate content and the density of the negative electrode active material is important. It is important that the density of the active material is higher than 3.6 g / cm 3 and the barium sulfate content is less than 0.6 mass%. It is shown that.

負極の理論容量に対する1400サイクル目の放電容量を、表1にまとめて示し、灰色の領域が最適領域である。硫酸バリウム含有量は0.1mass%超で0.6mass%未満が良く、特に0.15mass%以上0.5mass%以下で、負極活物質の密度が3.8g/cm3以上4.0g/cm3以下が最適で、密度が3.7g/cm3以上3.8g/cm3以下で硫酸バリウム含有量が0.3mass%以上0.5mass%以下の範囲も優れている。これらのことを一般化すると、硫酸バリウム含有量が0.1mass%超0.6mass%未満で、密度が3.7g/cm3超4.0g/cm3以下の領域が好ましく、この中でも硫酸バリウム含有量が0.15mass%超0.6mass%未満の領域が好ましい。また硫酸バリウム含有量が0.2mass%超0.6mass%未満で密度が3.6g/cm3超4.0g/cm3以下の領域も好ましい。 The discharge capacity at the 1400th cycle relative to the theoretical capacity of the negative electrode is summarized in Table 1, and the gray area is the optimum area. Barium content sulfate may have less than 0.6 mass% with 0.1mass% greater, especially more than 0.15 mass% 0.5 mass% or less, the density of the negative electrode active material 3.8 g / cm 3 or more 4.0 g / cm 3 or less is optimal, density barium sulfate content is superior range of not more than 0.3 mass% or more 0.5 mass% at 3.7 g / cm 3 or more 3.8 g / cm 3 or less. Generalizing these things, below is 0.1mass% Ultra 0.6 mass% barium sulfate content, preferably the density is 3.7 g / cm 3 Ultra 4.0 g / cm 3 or less of the region, barium sulfate content among this is A region of more than 0.15 mass% and less than 0.6 mass% is preferable. The density is less than 0.2 mass% Ultra 0.6 mass% barium sulfate content is preferably also 3.6 g / cm 3 Ultra 4.0 g / cm 3 or less regions.

硫酸バリウムの添加によって改善される寿命性能は添加量に概ね比例するという認識があったが、上記の好ましい範囲については、範囲の内外で比例関係を超える性能改善が認められる。すなわち、表1からたとえば負極密度が3.8g/cm3の場合、硫酸バリウムの含有量を0.1%から0.15%としたとき放電容量は25%から31%に改善していることがわかる。比較として、負極密度が3.6g/cm3の場合は硫酸バリウムの含有量を0.1%増やすことに概ね放電容量が1%増える傾向となっていることがわかる。なお、この傾向は図4でも見ることができる。これらの対比から、0.15mass%以上0.5mass%以下で、負極活物質の密度が3.8g/cm3以上4.0g/cm3以下の範囲とすることによって、範囲外と比べて顕著な効果が得られていることがわかる。また、同様の理由で密度が3.7g/cm3以上3.8g/cm3以下で硫酸バリウム含有量が0.3mass%以上0.5mass%以下の範囲も顕著な効果が得られていることはわかる。 Although it has been recognized that the life performance improved by the addition of barium sulfate is roughly proportional to the amount added, the above-mentioned preferred range shows a performance improvement exceeding the proportional relationship inside and outside the range. That is, it can be seen from Table 1 that, for example, when the negative electrode density is 3.8 g / cm 3, the discharge capacity is improved from 25% to 31% when the barium sulfate content is changed from 0.1% to 0.15%. As a comparison, it can be seen that when the negative electrode density is 3.6 g / cm 3, the discharge capacity generally tends to increase by 1% as the barium sulfate content increases by 0.1%. This trend can also be seen in FIG. These contrasting, or 0.15 mass% 0.5 mass% or less, to obtain the density of the negative electrode active material by a 3.8 g / cm 3 or more 4.0 g / cm 3 or less in the range, a remarkable effect as compared with the range You can see that The same reason a density of 3.7 g / cm 3 or more that 3.8 g / cm 3 range barium sulfate content less not more than 0.3 mass% or more 0.5 mass% or less even remarkable effect is obtained can be seen.

上記のサイクル試験は、昼間に負極利用率35%でフォークリフトを運転し、夜間に充電して、週末の均等充電を省略することに相当する。この条件で、1400サイクルの間、理論容量に対する容量を30%以上に維持できることは、負極利用率が40%を越えるように運転条件を過酷にし、これを週末の均等充電で補うことを想定した場合、フォークリフト用の鉛蓄電池を、負極利用率が40%を越える条件で、5年間使用できることを示唆する。   The above cycle test is equivalent to driving a forklift with a negative electrode utilization rate of 35% in the daytime, charging at night, and omitting even charging on weekends. Under this condition, the capacity against the theoretical capacity can be maintained at 30% or more for 1400 cycles, and it was assumed that the operating conditions were severe so that the negative electrode utilization rate exceeded 40%, and this was compensated by even charging over the weekend. This suggests that lead-acid batteries for forklifts can be used for 5 years under conditions where the negative electrode utilization rate exceeds 40%.

なお、本発明は、フォークリフト用の鉛蓄電池以外にも、負極利用率が30%以上の放電過程を経る用途であれば好ましく用いられる。また本発明によれば、負極活物質の理論容量の30%以上または40%以上を定格容量と定めた鉛蓄電池を、市場に供給することができる。このような鉛蓄電池は、ユーザーが定格容量の100%を追加の充電なしに使い切るという使い方をしても、繰り返し充放電して使用する時の容量低下が抑制されることとなる。   In addition to the lead storage battery for forklifts, the present invention is preferably used for applications that undergo a discharge process with a negative electrode utilization rate of 30% or more. Moreover, according to the present invention, a lead storage battery in which 30% or more or 40% or more of the theoretical capacity of the negative electrode active material is determined as the rated capacity can be supplied to the market. Such a lead storage battery suppresses a decrease in capacity when it is repeatedly charged and discharged and used even if the user uses 100% of the rated capacity without additional charging.

本発明における各種材料の定量方法を示す。満充電後の鉛蓄電池を解体し、負極板を水洗及び乾燥して硫酸分を除去し、負極電極材料を採取する。負極電極材料を粉砕し、300g/L濃度の過酸化水素水を、負極電極材料100g当たり20mL加え、さらに60mass%の濃硝酸をその3倍容のイオン交換水で希釈した(1+3)硝酸を加え、撹拌下で5時間加熱し、鉛を硝酸鉛として溶解させる。次いで濾過により、カーボンブラック、硫酸バリウム、補強材(含まれている場合)を分離する。   The quantification method of various materials in this invention is shown. The lead-acid battery after full charge is disassembled, the negative electrode plate is washed with water and dried to remove sulfuric acid, and the negative electrode material is collected. The negative electrode material was pulverized, 20 mL of 300 g / L hydrogen peroxide was added per 100 g of negative electrode material, and 60 mass% concentrated nitric acid was diluted with 3 times its volume of ion-exchanged water (1 + 3) nitric acid And heat for 5 hours under stirring to dissolve lead as lead nitrate. The carbon black, barium sulfate, and reinforcing material (if included) are then separated by filtration.

濾過によって得られた固形分を水中に分散させる。補強材が通らない篩い、例えば径が
1.4mmの篩いを用い、分散液を2回篩いを通して、水洗をおこない補強材を除去する。次いで例えば3000rpm×5分の遠心分離を施し、カーボンブラックを上澄みおよび上方沈殿から抽出し、下方沈殿から硫酸バリウムを抽出する。上記一連の操作で分離した硫酸バリウム、カーボンブラックを水洗乾燥した後にそれぞれの重量を秤量する。
The solid obtained by filtration is dispersed in water. A sieve that does not allow the reinforcement to pass through
Using a 1.4mm sieve, the dispersion is passed through the sieve twice and washed with water to remove the reinforcing material. Next, for example, centrifugation is performed at 3000 rpm × 5 minutes, and carbon black is extracted from the supernatant and the upper precipitate, and barium sulfate is extracted from the lower precipitate. The barium sulfate and carbon black separated by the above series of operations are washed with water and dried, and then the respective weights are weighed.

本発明における負極電極材料の密度の測定方法をつぎに示す。既化成で満充電状態の負極電極材料を水洗・真空乾燥したあと格子から分離し、水銀アマルガムを作らないよう前処理した後に負極電極材料を水銀圧入試験用の容器に充填し、負極電極材料の質量を測定し、次いで100μm以上の細孔が水銀が満たされるように水銀を圧入したときの負極電極材料の体積を測定する。この体積で負極電極材料の質量を割ることによって負極電極材料の密度を計算する。   The method for measuring the density of the negative electrode material in the present invention is described below. The anode electrode material that is already formed and fully charged is washed with water and vacuum dried, separated from the grid, pretreated so as not to form mercury amalgam, and then filled into a container for mercury intrusion test. The mass is measured, and then the volume of the negative electrode material when mercury is injected so that the pores of 100 μm or more are filled with mercury is measured. The density of the negative electrode material is calculated by dividing the mass of the negative electrode material by this volume.

Claims (5)

電解液の理論容量が負極電極材料の理論容量の30%以上であり、前記負極電極材料が0より多くかつ0.6mass%未満の硫酸バリウムを含み、さらに負極電極材料の密度が3.6g/cm3より高いことを特徴とする鉛蓄電池。 The theoretical capacity of the electrolyte is 30% or more of the theoretical capacity of the negative electrode material, the negative electrode material contains barium sulfate greater than 0 and less than 0.6 mass%, and the density of the negative electrode material is 3.6 g / cm 3 Lead acid battery characterized by being higher. 前記負極電極材料は、前記硫酸バリウムの含有量および密度がつぎのいずれかの範囲を満たすことを特徴とする請求項1に記載の鉛蓄電池。
i) 硫酸バリウム含有量が0.1mass%より大きく、かつ密度が 3.7g/cm3より高い、
ii) 硫酸バリウム含有量が0.2mass%より大きく、かつ密度が 3.6g/cm3より高い
2. The lead acid battery according to claim 1, wherein the negative electrode material has a content and density of the barium sulfate satisfying any one of the following ranges.
i) Barium sulfate content is greater than 0.1 mass% and density is greater than 3.7 g / cm 3 ,
ii) Barium sulfate content is greater than 0.2 mass% and density is higher than 3.6 g / cm 3
前記負極電極材料は、前記硫酸バリウムの含有量および密度がつぎのいずれかの範囲を満たすことを特徴とする請求項2に記載の鉛蓄電池。
i) 硫酸バリウム含有量が0.15mass%以上0.5mass%以下で、かつ密度が3.8g/cm3以上4.0g/cm3以下、
ii) 硫酸バリウム含有量が0.3mass%以上0.5mass%以下で、かつ密度が3.7g/cm3以上4.0g/cm3以下
The lead acid battery according to claim 2, wherein the negative electrode material has a content and density of the barium sulfate satisfying any one of the following ranges.
i) barium sulfate content of less 0.15 mass% or more 0.5 mass%, and density of 3.8 g / cm 3 or more 4.0 g / cm 3 or less,
ii) barium sulfate content of more not more than 0.3 mass% 0.5 mass% or less, and the density is 3.7 g / cm 3 or more 4.0 g / cm 3 or less
前記負極電極材料は、カーボンの含有量が0.2%mass%以下であることを特徴とする請求項1〜3のいずれかに記載の鉛蓄電池。   The lead-acid battery according to any one of claims 1 to 3, wherein the negative electrode material has a carbon content of 0.2% mass% or less. 前記負極電極材料の利用率が30%以上となる放電過程を含む用途で使用されることを特徴とする請求項1〜4のいずれかに記載の鉛蓄電池。   The lead-acid battery according to any one of claims 1 to 4, wherein the lead-acid battery is used in an application including a discharge process in which a utilization factor of the negative electrode material is 30% or more.
JP2015068615A 2015-03-30 2015-03-30 Lead acid battery Active JP6607344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068615A JP6607344B2 (en) 2015-03-30 2015-03-30 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068615A JP6607344B2 (en) 2015-03-30 2015-03-30 Lead acid battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019101158A Division JP6688491B2 (en) 2019-05-30 2019-05-30 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2016189260A true JP2016189260A (en) 2016-11-04
JP6607344B2 JP6607344B2 (en) 2019-11-20

Family

ID=57240350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068615A Active JP6607344B2 (en) 2015-03-30 2015-03-30 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6607344B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199053A1 (en) 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145655A (en) * 1985-12-19 1987-06-29 Yuasa Battery Co Ltd Sealed lead storage battery
JP2013218894A (en) * 2012-04-09 2013-10-24 Gs Yuasa Corp Lead acid battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145655A (en) * 1985-12-19 1987-06-29 Yuasa Battery Co Ltd Sealed lead storage battery
JP2013218894A (en) * 2012-04-09 2013-10-24 Gs Yuasa Corp Lead acid battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199053A1 (en) 2017-04-28 2018-11-01 株式会社Gsユアサ Lead acid battery

Also Published As

Publication number Publication date
JP6607344B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP6635346B2 (en) Lead storage battery
JP2013218894A (en) Lead acid battery
JP6115796B2 (en) Lead acid battery
JP6168138B2 (en) Liquid lead-acid battery
JP6202477B1 (en) Lead acid battery
JP5748091B2 (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
CN106384821A (en) Lead acid storage battery positive electrode lead paste
JP2008130516A (en) Liquid lead-acid storage battery
JP6458829B2 (en) Lead acid battery
JP6607344B2 (en) Lead acid battery
JP2013134957A (en) Method for manufacturing lead-acid battery, and lead-acid battery
JP5720947B2 (en) Lead acid battery
JP6339030B2 (en) Lead acid battery
JP6701600B2 (en) Lead acid battery
CN101740780A (en) Rare earth alloy of anode plate grid for lead-acid storage battery
JP2016119294A (en) Lead-acid battery
JP6688491B2 (en) Lead acid battery
JP6136079B2 (en) Lead acid battery
CN102931399A (en) Lead-acid battery positive paste formula
JP6164502B2 (en) Lead acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP2017174821A (en) Lead acid battery
JP2014137970A (en) Lead-acid battery
JP2013093312A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191008

R150 Certificate of patent or registration of utility model

Ref document number: 6607344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150