JPS62145655A - Sealed lead storage battery - Google Patents

Sealed lead storage battery

Info

Publication number
JPS62145655A
JPS62145655A JP60286761A JP28676185A JPS62145655A JP S62145655 A JPS62145655 A JP S62145655A JP 60286761 A JP60286761 A JP 60286761A JP 28676185 A JP28676185 A JP 28676185A JP S62145655 A JPS62145655 A JP S62145655A
Authority
JP
Japan
Prior art keywords
negative electrode
weight
sealed lead
active material
barium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60286761A
Other languages
Japanese (ja)
Other versions
JPH067486B2 (en
Inventor
Yuji Matsumaru
松丸 雄次
Kenzo Kawakita
健三 川北
Takamasa Yoshida
吉田 隆正
Kenjiro Kishimoto
岸本 健二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP60286761A priority Critical patent/JPH067486B2/en
Publication of JPS62145655A publication Critical patent/JPS62145655A/en
Publication of JPH067486B2 publication Critical patent/JPH067486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a hermetically-sealed lead storage battery having a very long life and a high capacity and safe against thermal runaway, by using a negative electrode plate having 0.01% or more by weight of lignin and 0.001-0.15% by weight of barium sulfate in the active material of the negative electrode. CONSTITUTION:The negative electrode active material of a sealed lead storage battery contains at least 0.01%, preferably 0.1-0.4%, by weight of lignin, and 0.001-0.2%, preferably 0.01-0.1%, by weight of barium sulfate. Since there is a clear difference between the effect of 0.1% by weight of the barium sulfate and that of 0.2% by weight thereof, the maximum amount of the barium sulfate should be about 0.15% by weight. To maximize the performance of the battery, the negative electrode lattice thereof should contain substantially no antimony. If the lattice contained antimony, the charge-end voltage of the battery would be lowered to decrease the charging efficiency thereof.

Description

【発明の詳細な説明】 11上度■且分肪 本発明は携帯式電気機器に組み込まれサイクル方式で使
用されたり、非常電源としてフロート方式やトリクル方
式で使用されたりする密閉形鉛蓄電池に関するものであ
る。
[Detailed description of the invention] 11. The present invention relates to a sealed lead-acid battery that is incorporated into portable electrical equipment and used in a cycle mode, or used as an emergency power source in a float mode or a trickle mode. It is.

′の′ の 占 密閉形鉛蓄電池は充電末期に正極で発生する酸素ガスを
、 Pb+−Q、2→pb。
In the sealed lead-acid battery, the oxygen gas generated at the positive electrode at the end of charging is Pb+-Q, 2→pb.

の式にて負極活物質と反応させ、かつ P bo+H2SO4−+P b SOa + H20
P b S 04 + 2 e→P b + S 04
2−め式にて再び元に戻すことにより、密閉系内でこの
酸素ガスを処理する、いわゆる酸素サイクルを利用する
ことにより、密閉化している。
React with the negative electrode active material according to the formula, and P bo + H2SO4- + P b SOa + H20
P b S 04 + 2 e→P b + S 04
By returning to the original state again in the second method, the oxygen gas is processed in a closed system, making use of a so-called oxygen cycle, which seals the system.

すなわちこの反応が正常に行われるためには、負極活物
質内に常にPbSO4が存在することが必要であり、も
しもこれがなければ負極から水素ガスが発生することに
なる。
That is, in order for this reaction to occur normally, it is necessary that PbSO4 always be present in the negative electrode active material, and if PbSO4 is not present, hydrogen gas will be generated from the negative electrode.

もっとも負極活物質内にPb5Oaが存在していても、
大電流充電時や自己放電時に水素ガスが発生することは
避けられず、しかも正極での水素ガスの吸収は、負極で
の酸素ガスの吸収に比べると極めて小さいので、発生し
た水素ガスを密閉系外に放出し電池の安全を保つために
電池には安全弁が設けられている。なおこの安全弁は密
閉系内に酸素ガスが浸入するのを防止する役目も兼ねて
おり、従って逆止弁の構造となっている。
However, even if Pb5Oa exists in the negative electrode active material,
It is unavoidable that hydrogen gas is generated during large current charging or self-discharge, and the absorption of hydrogen gas at the positive electrode is extremely small compared to the absorption of oxygen gas at the negative electrode. The battery is equipped with a safety valve to release it to the outside and keep the battery safe. Note that this safety valve also serves to prevent oxygen gas from entering the closed system, and therefore has the structure of a check valve.

またこの種の電池では、正極から負極への酸素ガスの移
動を容易にするために、電解液をゲル化して酸素ガスの
移動する隙間を確保したり、電解液の吸収量が多くかつ
その吸収力の強い多孔体を正・負極板間に配し、かつ注
入する電解液の量を制限して多孔体内の粗大孔に酸素ガ
スの移動を可能にするための空隙を形成する手段がとら
れている。
In addition, in this type of battery, in order to facilitate the movement of oxygen gas from the positive electrode to the negative electrode, the electrolyte must be gelled to ensure a gap for the oxygen gas to move, or the electrolyte must be able to absorb a large amount of the electrolyte. A strong porous body is placed between the positive and negative electrode plates, and the amount of electrolyte injected is limited to form voids in the coarse pores within the porous body to allow the movement of oxygen gas. ing.

ところでこのように構成された従来の密閉形鉛蓄電池は
、深放電を繰り返すと50〜200サイクルといった比
較的短い期間に寿命になるという欠点があった。そして
この原因は充放電のくり返しによって起こる電解液の層
状化、および酸素ガスの吸収反応の局部集中化の少なく
とも一方であると考えられる。いずれにしてもこの寿命
の原因は正極活物質の軟化や正極格子の腐食に起因する
のではなく、負極活物質が部分的にPbSO4になり、
かつこれが還元されることなく蓄積するいわゆる負極の
サルフエーションが根本の原因である。そしてこの負極
のサルフェーションにより充電効率が低下し、充電来電
圧も下がって来る。
However, the conventional sealed lead-acid battery configured as described above has a drawback that, if deep discharge is repeated, the battery life ends in a relatively short period of 50 to 200 cycles. The cause of this is thought to be at least one of stratification of the electrolytic solution caused by repeated charging and discharging, and local concentration of the oxygen gas absorption reaction. In any case, the cause of this short life is not due to softening of the positive electrode active material or corrosion of the positive electrode lattice, but rather due to the negative electrode active material partially becoming PbSO4.
Moreover, the so-called negative electrode sulfation, which accumulates without being reduced, is the root cause. Due to this sulfation of the negative electrode, charging efficiency decreases, and the voltage after charging also decreases.

また従来のこの種の電池における上記の現象は特に深放
電状態での使用の場合に顕著ではあるが、フロート方式
やトリクル方式といった定電圧充電状態で使用される場
合でも負極の充電効率に伴う部分的なサルフェーション
が正極での部分的な電流集中を生じ、これにより正極格
子の部分的な腐食が進行し寿命となるという現象が認め
られる。さらにこうした使用法による電池では、その使
用条件によっては充電来電圧の低下により熱暴走を起こ
す危険性があった。
In addition, although the above-mentioned phenomenon in conventional batteries of this kind is particularly noticeable when used in a deep discharge state, even when used in a constant voltage charging state such as a float method or a trickle method, the phenomenon due to the charging efficiency of the negative electrode It is observed that sulfation causes local current concentration at the positive electrode, which causes local corrosion of the positive electrode grid to progress and end its life. Furthermore, batteries used in this manner have the risk of thermal runaway due to a drop in voltage after charging, depending on the conditions of use.

すなわち従来の密閉形鉛蓄電池においては、サイクル方
式だけでなくフロート方式やトリクル方式においても、
高信頼性の電源としては不充分な寿命性能であり、その
主な原因は負極活物質の充電効率の低下にともなう部分
的なサルフエーションにあった。
In other words, in conventional sealed lead-acid batteries, not only the cycle method but also the float method and trickle method
The lifetime performance was insufficient for a highly reliable power source, and the main cause of this was partial sulfation due to a decrease in the charging efficiency of the negative electrode active material.

ところで従来の密閉形鉛蓄電池において使用されてG〜
る負極板は、従来の開放形鉛蓄電池に、  おいて使用
されている負極板と同じ活物質組成を用いていた。すな
わちこの極板の負極活物質は、その多孔性を維持し、ま
た特に低温高率放電特性を向上させるために、リグニン
を0. 1〜0.8重量%で添加し、また充放電ができ
るように負極活物質の多孔性を維持し、かつ高率放電で
の持続時間を長(するために、硫酸バリウムを0.18
〜2.5重量%で添加し、さらに充電来電圧を下げ、充
電受は入れを良くするために、カーボンを0.6重量%
以下程度で添加し、組立時に活物質が脱落するのを防ぐ
ために、有機短繊維を0.2重量%以下程度で添加した
ものが用いられていた。
By the way, G~ used in conventional sealed lead acid batteries.
The negative electrode plate used in this study used the same active material composition as the negative electrode plate used in conventional open lead-acid batteries. That is, the negative electrode active material of this electrode plate contains 0.00% lignin in order to maintain its porosity and particularly improve low-temperature high-rate discharge characteristics. Barium sulfate is added in an amount of 1 to 0.8% by weight, and in order to maintain the porosity of the negative electrode active material so that it can be charged and discharged, and to prolong the duration of high rate discharge.
Carbon was added at ~2.5% by weight, and 0.6% by weight was added to further lower the charging voltage and improve charge acceptance.
In order to prevent the active material from falling off during assembly, organic short fibers have been added in an amount of about 0.2% by weight or less.

血皿皇旦m 本発明は密閉形鉛蓄電池において、充電効率が低下せず
、サルフェーションしない負極板を用いることにより、
上記のごとき問題点を解消し、サイクル方式、フロート
方式あるいはトリクル方式のいずれの高信頼性が要求さ
れる用途であっても、充分にその要求に応えられる長寿
命の密閉形鉛蓄電池を提供することを目的と子るもので
ある。
The present invention uses a negative electrode plate that does not reduce charging efficiency and does not cause sulfation in a sealed lead-acid battery.
To provide a long-life sealed lead-acid battery that solves the above-mentioned problems and can fully meet the demands of cycle, float, or trickle type applications that require high reliability. It is something that is born with the purpose of doing so.

発肌立1戊 すなわち本発明は密閉形鉛蓄電池において、負極活物質
に0.01重量%以上のリグニンを含み、かつ0.00
1〜0.15重量%と従来に比べて極めて少量の硫酸バ
リウムを含む負極板を用いたことを特徴とするものであ
る。
The first aspect of the invention is a sealed lead-acid battery in which the negative electrode active material contains 0.01% by weight or more of lignin, and 0.00% by weight or more of lignin.
This method is characterized by the use of a negative electrode plate that contains barium sulfate in an extremely small amount of 1 to 0.15% by weight compared to conventional methods.

また本発明はその実施態様として、それぞれ負極活物質
にさらにカーボン、有機短繊維、鉛短繊維のうちの少な
くとも1つを含む負極板を用いたことを特徴とするもの
、負極板が実質的にアンチモンを含まない格子を備えて
いることを特徴とするもの、および負極活物質にO11
〜0.4ffiffi%のリグニン、および0.01〜
0.1重量%の硫酸バリウムを含む負極板を用いたこと
を特徴とするものを提案するものである。
Further, as an embodiment of the present invention, a negative electrode plate further containing at least one of carbon, short organic fibers, and short lead fibers is used as the negative electrode active material, and the negative electrode plate is substantially Those characterized by having a lattice that does not contain antimony, and O11 as a negative electrode active material.
~0.4ffiffi% lignin, and ~0.01
We propose a device characterized by using a negative electrode plate containing 0.1% by weight of barium sulfate.

さらに本発明によれば、負極板がサルフーションしにく
いために、従来の密閉形鉛蓄電池に使用されている希硫
酸電解液よりも比重の高い、例えば1.29〜1.35
dといった比重の電解液を使用することのできる密閉形
鉛蓄電池とすることができ、これにより高容量で熱暴走
の危険性の少ない密閉形鉛蓄電池を提供することのでき
るものである。
Furthermore, according to the present invention, since the negative electrode plate is less susceptible to sulfation, the specific gravity is higher than that of the dilute sulfuric acid electrolyte used in conventional sealed lead-acid batteries, for example, 1.29 to 1.35.
The present invention can be used as a sealed lead-acid battery that can use an electrolyte having a specific gravity of d, thereby providing a sealed lead-acid battery with high capacity and less risk of thermal runaway.

尖施拠 以下、本発明に至った実験につき説明する。cusp The experiments that led to the present invention will be explained below.

負極活物質への添加剤としてリグニンおよび硫酸バリウ
ムを取り上げ、その添加量をそれぞれ変えて負極活物質
のペーストを作製し、常法に従ってこれをPb−Ca系
合金からなる格子に塗布し、これを硬化、化成、乾燥さ
せて24種類の負極板を得た。これらの負極板3枚と従
来から使用されているPbCa−3n系合金を格子に用
いた正極板2枚とを、繊維径1μm以下のガラス繊維を
主体としてシート状に形成したセパレータを介して積層
し極群を得た。該極群を電槽内に挿入し、こののち電槽
蓋を接着した。これに珪酸微粉末を1重量%含む比重1
.30dの希硫酸電解液を注液し、安全弁を装着して密
閉形鉛蓄電池を得た。
Taking lignin and barium sulfate as additives to the negative electrode active material, we prepared a paste of the negative electrode active material by varying the amounts added, and applied this to a lattice made of a Pb-Ca alloy according to a conventional method. By curing, chemical conversion, and drying, 24 types of negative electrode plates were obtained. These three negative electrode plates and two positive electrode plates using a conventionally used PbCa-3n alloy for the lattice are laminated with a separator formed into a sheet mainly made of glass fibers with a fiber diameter of 1 μm or less. and obtained a polar group. The electrode group was inserted into the battery case, and then the battery case lid was adhered. Specific gravity 1 containing 1% by weight of silicic acid fine powder
.. A 30 d dilute sulfuric acid electrolyte was injected and a safety valve was installed to obtain a sealed lead acid battery.

こうして得られた密閉形鉛蓄電池24種類を公称容量の
80%の放電、放電電気量の125%の充電を1サイク
ルとして定電流による交互充放電試験に供したところ、
第1表に示される結果を得た。
Twenty-four types of sealed lead-acid batteries obtained in this way were subjected to an alternating charge and discharge test using a constant current, with one cycle of discharging to 80% of the nominal capacity and charging to 125% of the discharged electricity amount.
The results shown in Table 1 were obtained.

またこれらの密閉形鉛蓄電池の試験結果と対比するため
に、上記の24種類の負極板1枚と容量的に大過剰の正
極板2枚とを平板伏のセパレータを介して組み合わせ、
これを電槽内に挿入したのち比重1.33dの希硫酸電
解液を流動するものが充分に存在するように過剰に注液
した開放形鉛蓄電池を製作し、これらについて負極理論
容量の40%の放電、放電電気量の125%の充電を1
サイクルとして交互充放電試験に供した結果を第1表に
併せて示す。
In addition, in order to compare with the test results of these sealed lead-acid batteries, one negative electrode plate of the 24 types mentioned above and two positive electrode plates with a large excess capacity were combined via a flat separator.
After inserting this into a battery case, we fabricated an open lead-acid battery in which a dilute sulfuric acid electrolyte with a specific gravity of 1.33 d was injected in excess so that there was enough liquid to flow, and for these, 40% of the theoretical capacity of the negative electrode was created. discharge, charge 125% of the amount of discharged electricity to 1
Table 1 also shows the results of the alternating charge/discharge test as a cycle.

第1表の結果から、密閉形鉛蓄電池、開放形鉛蓄電池に
関係な(、リグニンおよび硫酸バリウムが負極の寿命を
長くすることにとって必要であることが1.明確に理解
できる。しかしながらその添加器については、この両者
の添加剤の効果は全く異なっている。すなわち開放形鉛
蓄電池においては、リグニンの存在よりも硫酸バリウム
の絶対量が重要で、少なくとも0.2重量%は必要であ
り、これより少ないと例えリグニンが0.8重量%も存
在したとしてもなお、負極板はその多孔性を失い早期に
寿命に至る。
From the results in Table 1, it can be clearly understood that lignin and barium sulfate are necessary for prolonging the life of the negative electrode in both sealed lead-acid batteries and open lead-acid batteries. The effects of these two additives are completely different.For open lead-acid batteries, the absolute amount of barium sulfate is more important than the presence of lignin, and at least 0.2% by weight is required. Even if the amount of lignin is less than 0.8% by weight, the negative electrode plate will still lose its porosity and its life will come to an early end.

密閉形鉛蓄電池においては、リグニンは例え第1表 0.01重量%であっても欠くことができないが、硫酸
バリウムは0重量%では寿命が短いものの、0.001
重量%でも存在していれば良く、0.001〜0.1重
量%が最適であり、また0、2重量%を越えると逆に寿
命は短くなる。このように密閉形鉛蓄電池では負極活物
質は少なくとも0.01重量%の、より好ましくは0.
1〜0.4重量%のリグニンと、0.001〜0.2重
量%の、より好ましくは0.01〜0.1重量%の硫酸
バリウムとを含んでいるのが良い。また硫酸バリウムに
関しては0.1重量%の添加量の場合と、0.2重量%
の添加量の場合とで明らかな差が認められることから、
その最大添加量は0.15重量%程度にすべきである。
In sealed lead-acid batteries, lignin is indispensable even at 0.01% by weight as shown in Table 1, but barium sulfate has a short lifespan at 0% by weight;
It suffices if it is present even in % by weight, and 0.001 to 0.1 % by weight is optimal, and if it exceeds 0.2 % by weight, the life will be shortened. Thus, in a sealed lead-acid battery, the negative active material contains at least 0.01% by weight, more preferably 0.01% by weight.
It is preferable that it contains 1 to 0.4% by weight of lignin and 0.001 to 0.2% by weight, more preferably 0.01 to 0.1% by weight of barium sulfate. Regarding barium sulfate, the addition amount is 0.1% by weight, and the addition amount is 0.2% by weight.
Since there is a clear difference in the amount of addition of
Its maximum addition amount should be around 0.15% by weight.

硫酸バリウムが0.2重量%を越えて添加されると、密
閉形鉛蓄電池では部分的なサルフエーションを生じ短寿
命となるが、このことは密閉形鉛蓄電池のサルフェーシ
ョンに至るメカニズムが、開放形鉛蓄電池のそれとは本
質的に異なることを意味しており、密閉形鉛蓄電池では
負極での酸素ガス吸収が極めて重要な役割を演じている
。つまり負極活物質が酸素ガスを吸収することは、電池
としては充電中であっても、この吸収反応にあずかる活
物質粒子はpb←−PbSO4の反応、すなわち充放電
がくり返されており、充電末期にPbSO4が還元され
ずに残る可能性があり、さらにpbso4−pbへの還
元効率が低下してくると、生成されたPbSO4が蓄積
して来るので、これを防止するために常に同じ活物質粒
子がこの吸収反応に関与することのないようにしなけれ
ばならない。
When barium sulfate is added in excess of 0.2% by weight, sealed lead-acid batteries undergo partial sulfation, resulting in a shortened lifespan. This means that it is essentially different from that of a lead-acid battery, in which oxygen gas absorption at the negative electrode plays an extremely important role. In other words, the fact that the negative electrode active material absorbs oxygen gas means that even when the battery is being charged, the active material particles that participate in this absorption reaction undergo a pb←-PbSO4 reaction, that is, are repeatedly charged and discharged, and are There is a possibility that PbSO4 remains unreduced at the final stage, and as the reduction efficiency to pbso4-pb decreases, the generated PbSO4 accumulates, so to prevent this, always use the same active material. It must be ensured that particles do not take part in this absorption reaction.

ところで負極活物質中の硫酸バリウムがPb5Oa生成
の核になることはでA成形鉛蓄電池ではよく知られてい
るが、密閉形鉛蓄電池においても酸素ガス吸収における
Pb5Oaの核にもなり得ることが考えられる。それゆ
えこの硫酸バリウムを可能な限り分散させることが密閉
形鉛蓄電池におけるPb5Oaの生成−M積−サルフェ
ーションによる短寿命を防止するのに有効な手段の一つ
である。ところで密閉形鉛蓄電池においては先に述べた
ように元々充電末期にも負極活物質中にpbso、が残
っているので、放電時に生成するpbsOaの核として
の硫酸バリウムの添加を必ずしも積極的に行う必要はな
いのではないかと考えられる。このように本発明は密閉
形鉛蓄電池において硫酸バリウムの添加を極力少なくす
るという点に立脚している。
By the way, it is well known that barium sulfate in the negative electrode active material becomes the nucleus of Pb5Oa formation in A-shaped lead acid batteries, but it is thought that it can also become the nucleus of Pb5Oa in the absorption of oxygen gas in sealed lead acid batteries. It will be done. Therefore, dispersing barium sulfate as much as possible is one of the effective means for preventing short life due to Pb5Oa formation-M product-sulfation in sealed lead acid batteries. By the way, in sealed lead-acid batteries, as mentioned earlier, PBSO remains in the negative electrode active material even at the end of charging, so barium sulfate is not always actively added to serve as the nucleus of PBSOa generated during discharge. It is thought that it is not necessary. As described above, the present invention is based on the point of minimizing the addition of barium sulfate to a sealed lead-acid battery.

そして第1表の結果よりその添加量として、0.01i
量%以上のリグニン、および0.001〜0615重量
%の硫酸バリウムが適切であることが分かる。第1表に
おいて符号に括弧を付けた密閉形鉛蓄電池が本発明によ
る密閉形鉛蓄電池である。
From the results in Table 1, the amount added is 0.01i
% lignin and 0.001-0615% barium sulfate are found to be suitable. In Table 1, the sealed lead-acid batteries whose symbols are in parentheses are the sealed lead-acid batteries according to the present invention.

本発明による密閉形鉛蓄電池は寿命末期に至るまで比較
的高い充電来電圧を維持し、かつ充電曲線に「コブ」が
できにくいという特徴を有している。すなわち本発明に
よる密閉形鉛蓄電池Aおよび従来の密閉形鉛蓄電池Bの
、公称容量の80%の放電、放電電気量の125%の充
電を1サイクルとして定電流による交互充放電試験にお
ける、充放電回数に対するO、IOA充電充電圧電圧び
容量の関係を示す第1図、および本発明による密閉形鉛
蓄電池で新品のものA”、寿命末期のものA ” 、従
来の密閉形鉛蓄電池で新品のものBo、寿命末期のもの
B”についての充電量に対するO、ICA充電中の電池
電圧の関係を示す第2図より明らかなように、従来の密
閉形鉛蓄電池Bの充電来電圧は数十サイクルで2.50
V/セルに低下している。これは第2図の従来の密閉形
鉛蓄電池で寿命末期のものB”の曲線に示すごとく、一
度は2.7〜2.8V/セルにまで立ち上がったのち、
低下するためであり、こうしてできる「コブ」の2.4
0V付近から2.70V近くまでの急激な立ち上がり点
はサイクルの(り返しに伴って次第に早くなるという特
徴がある。このことは第2図の充電率(充電電気量/放
電電気量×100%)を見れば明らかな通り、従来の密
閉形鉛蓄電池は新品のうちは充電率100%付近で立ち
上がっているにもかかわらず、サイクルの繰り返しに伴
い次第に低下し、寿命末期には90%付近で立ち上がる
ようになる。すなわちこれは充電効率がサイクルのくり
返しに伴って低下していることを示すものであり、さら
に従来の密閉形鉛蓄電池で寿命末期のものB”の充電末
電圧が低下しているという現象は、実際の使用において
はフロート電流や過充電電流が増加して、正極格子の腐
食を促進し短寿命になる原因を作っているだけでなく、
使用温度・設定電圧によっては、熱暴走を起こすことに
なりかねない危険性をはらんでいる。
The sealed lead-acid battery according to the present invention maintains a relatively high charging voltage until the end of its life, and is characterized by being less likely to have a "bump" in its charging curve. That is, the charging and discharging of the sealed lead-acid battery A according to the present invention and the conventional sealed lead-acid battery B in an alternate charging and discharging test using a constant current, where one cycle is discharging to 80% of the nominal capacity and charging to 125% of the amount of discharged electricity. Figure 1 shows the relationship between O, IOA charging voltage and capacity with respect to the number of times, and a sealed lead-acid battery according to the present invention that is new A'', a battery that is at the end of its life A'', and a conventional sealed lead-acid battery that is new As is clear from Figure 2, which shows the relationship between battery voltage during ICA charging and battery voltage during ICA charging, the charging voltage of conventional sealed lead-acid battery B is several tens of cycles. So 2.50
V/cell. As shown in the curve B'' of a conventional sealed lead-acid battery at the end of its life in Figure 2, it once rose to 2.7 to 2.8 V/cell, and then
2.4 of the "bump" created in this way.
The rapid rise point from around 0V to around 2.70V has the characteristic that it gradually becomes faster as the cycle repeats. ), even though conventional sealed lead-acid batteries start up at around 100% charge rate when new, the charge rate gradually decreases as the cycle is repeated, reaching around 90% at the end of their life. In other words, this indicates that the charging efficiency is decreasing with repeated cycles, and furthermore, the end-of-charge voltage of conventional sealed lead-acid batteries at the end of their lifespan "B" is decreasing. In actual use, this phenomenon not only causes an increase in float current and overcharge current, which accelerates corrosion of the positive electrode grid and shortens its lifespan.
Depending on the operating temperature and set voltage, there is a danger that thermal runaway may occur.

これに対し本発明による密閉形鉛蓄電池は第1・第2図
で示されるように、充電末電圧も低くならず、しかも寿
命末期まで「コブ」ができないという性質を持つ。さら
に充電未電圧の立ち上がりは常に充電率100%付近で
あり、充電効率が低下することもないので、正極格子の
腐食や熱暴走の危険性もない。
On the other hand, the sealed lead-acid battery according to the present invention, as shown in FIGS. 1 and 2, has the property that the voltage at the end of charging does not decrease, and furthermore, it does not form a "bump" until the end of its life. Furthermore, the rise of the uncharged voltage is always around 100% charging rate, and the charging efficiency does not decrease, so there is no risk of corrosion of the positive electrode grid or thermal runaway.

本発明の密閉形鉛蓄電池においては、負掻活物質中の添
加剤として、さらに例えばカーボン、有機短繊維、鉛短
繊維を従来の開放形鉛蓄電池と同様の目的で、必要に応
じて使用することができる。しかしながらカーボンは開
放形鉛蓄電池に使用した場合はどにはその効果は期待で
きない。また活物質粒子と負極格子との間の電導性を向
上させるため、鉛の、より好ましくは純鉛の短繊維を添
加することが有効である。そしてこの鉛短繊維はその繊
維径10〜200μm、長さ2〜15mm程度のものが
、ペーストの作成および塗布の作業性から考えて最適で
ある。
In the sealed lead-acid battery of the present invention, as an additive in the negative active material, for example, carbon, short organic fibers, short lead fibers are used as necessary for the same purposes as in conventional open-type lead-acid batteries. be able to. However, when carbon is used in open lead-acid batteries, no effect can be expected. Furthermore, in order to improve the electrical conductivity between the active material particles and the negative electrode grid, it is effective to add short fibers of lead, more preferably pure lead. From the viewpoint of workability in preparing and applying the paste, it is optimal that the short lead fibers have a fiber diameter of 10 to 200 .mu.m and a length of 2 to 15 mm.

また本発明に用いる密閉形鉛蓄電池は充電効率が低下し
難いという特徴を有しているので、従来のものに比べる
と高い比重の電解液を使用することができ、その分、容
量を増加させることができる。従来の密閉形鉛蓄電池は
1.26〜1.32d程度の希硫酸を使用していたが、
同じ寿命性能で良ければ、本発明による密閉形鉛蓄電池
では1.29〜1.35dの約30ポイントも比重の高
い希硫酸を使用できるので、同一体積で10%以上の容
量の増加を獲得することができる。
Furthermore, since the sealed lead-acid battery used in the present invention has the characteristic that charging efficiency does not easily decrease, it is possible to use an electrolyte with a higher specific gravity than conventional batteries, which increases the capacity accordingly. be able to. Conventional sealed lead-acid batteries used dilute sulfuric acid of about 1.26 to 1.32 d,
If the same life performance is acceptable, the sealed lead-acid battery according to the present invention can use dilute sulfuric acid, which has a specific gravity of 1.29 to 1.35 d, which is about 30 points higher, so the capacity can be increased by more than 10% with the same volume. be able to.

本発明の密閉形鉛蓄電池においては、その効果を最大限
に発揮するためには、負極格子は実質的にアンチモンを
含んではならない。すなわちもしもアンチモンが含まれ
ていたとするならば、充電末電圧を下げ、充電効率を低
下させることになるからである。
In the sealed lead-acid battery of the present invention, in order to maximize its effects, the negative electrode grid must substantially not contain antimony. In other words, if antimony were contained, it would lower the voltage at the end of charging and reduce the charging efficiency.

衾皿皇訪来 このように本発明による密閉形鉛蓄電池は充電効率が低
下せず、従ってサルフエーションすることもないので、
サイクル使用のみならずフロート使用、トリクル使用に
も極めて長い寿命を有し、かつ高容量で熱暴走に対して
も安全な製品である。
Since the sealed lead-acid battery according to the present invention does not reduce its charging efficiency and therefore does not undergo sulfation,
It has an extremely long life not only for cycle use but also for float and trickle use, and is a product with high capacity and safe against thermal runaway.

以上、本発明は高信頼性が要求される用途に充分に応え
ることのできる密閉形鉛蓄電池を提供するものであり、
その工業的価値の極めて高いものである。
As described above, the present invention provides a sealed lead-acid battery that can fully meet applications requiring high reliability.
It has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による密閉形鉛蓄電池Aおよび従来の密
閉形鉛蓄電池Bの、交互充放電試験における、充放電回
数に対するO、ICA充電充電圧電圧び容量の関係を示
すグラフである。 第2図は本発明による密閉形鉛蓄電池で新品のものA“
、寿命末期のものA”、および従来の密閉形鉛蓄電池で
新品のものB l、寿命末期のものB″についての充電
量に対する0、ICA充電中の電池電圧の関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between O, ICA charging voltage and capacity with respect to the number of charging and discharging times in an alternate charging and discharging test of a sealed lead acid battery A according to the present invention and a conventional sealed lead acid battery B. Figure 2 shows a new sealed lead-acid battery A" according to the present invention.
2 is a graph showing the relationship between the battery voltage during 0 and ICA charging with respect to the charge amount for conventional sealed lead-acid batteries A'', which are at the end of their lifespan, and B'', which are new and conventional sealed lead-acid batteries, and B'', which is at the end of their lifespan.

Claims (1)

【特許請求の範囲】 1)負極活物質に0.01重量%以上のリグニン、およ
び0.001〜0.15重量%の硫酸バリウムを含む負
極板を用いたことを特徴とする密閉形鉛蓄電池。 2)負極活物質にさらにカーボン、有機短繊維、鉛短繊
維のうちの少なくとも1つを含む負極板を用いたことを
特徴とする特許請求の範囲第1項に記載の密閉形鉛蓄電
池。 3)負極板が実質的にアンチモンを含まない格子を備え
ていることを特徴とする特許請求の範囲第1項に記載の
密閉形鉛蓄電池。 4)負極活物質に0.1〜0.4重量%のリグニン、お
よび0.01〜0.1重量%の硫酸バリウムを含む負極
板を用いたことを特徴とする特許請求の範囲第1項に記
載の密閉形鉛蓄電池。
[Scope of Claims] 1) A sealed lead-acid battery characterized in that a negative electrode plate containing 0.01% by weight or more of lignin and 0.001 to 0.15% by weight of barium sulfate as a negative electrode active material is used. . 2) The sealed lead-acid battery according to claim 1, further comprising a negative electrode plate containing at least one of carbon, short organic fibers, and short lead fibers as a negative electrode active material. 3) A sealed lead-acid battery according to claim 1, characterized in that the negative electrode plate is provided with a grid substantially free of antimony. 4) Claim 1, characterized in that a negative electrode plate containing 0.1 to 0.4% by weight of lignin and 0.01 to 0.1% by weight of barium sulfate as the negative electrode active material is used. Sealed lead-acid batteries as described in .
JP60286761A 1985-12-19 1985-12-19 Sealed lead acid battery Expired - Lifetime JPH067486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286761A JPH067486B2 (en) 1985-12-19 1985-12-19 Sealed lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286761A JPH067486B2 (en) 1985-12-19 1985-12-19 Sealed lead acid battery

Publications (2)

Publication Number Publication Date
JPS62145655A true JPS62145655A (en) 1987-06-29
JPH067486B2 JPH067486B2 (en) 1994-01-26

Family

ID=17708702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286761A Expired - Lifetime JPH067486B2 (en) 1985-12-19 1985-12-19 Sealed lead acid battery

Country Status (1)

Country Link
JP (1) JPH067486B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328979A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2012174342A (en) * 2011-02-17 2012-09-10 Gs Yuasa Corp Lead acid battery and negative electrode active material for the same
JP2016189260A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
WO2020013112A1 (en) 2018-07-09 2020-01-16 日本製紙株式会社 Organic anti-shrinkage agent for lead storage battery
WO2021182364A1 (en) 2020-03-09 2021-09-16 日本製紙株式会社 Organic shrink-proofing agent for lead acid storage batteries, and method for producing same
WO2022190829A1 (en) 2021-03-08 2022-09-15 日本製紙株式会社 Organic anti-shrinkage agent for lead-acid batteries
WO2023095511A1 (en) 2021-11-26 2023-06-01 日本製紙株式会社 Organic anti-shrinkage agent for lead-acid batteries

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328979A (en) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2012174342A (en) * 2011-02-17 2012-09-10 Gs Yuasa Corp Lead acid battery and negative electrode active material for the same
JP2016189260A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery
WO2020013112A1 (en) 2018-07-09 2020-01-16 日本製紙株式会社 Organic anti-shrinkage agent for lead storage battery
US11251434B2 (en) 2018-07-09 2022-02-15 Nippon Paper Industries Co., Ltd. Organic expander for lead storage battery
WO2021182364A1 (en) 2020-03-09 2021-09-16 日本製紙株式会社 Organic shrink-proofing agent for lead acid storage batteries, and method for producing same
WO2022190829A1 (en) 2021-03-08 2022-09-15 日本製紙株式会社 Organic anti-shrinkage agent for lead-acid batteries
WO2023095511A1 (en) 2021-11-26 2023-06-01 日本製紙株式会社 Organic anti-shrinkage agent for lead-acid batteries

Also Published As

Publication number Publication date
JPH067486B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
TW201112482A (en) Negative plate for lead acid battery
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
US20110250500A1 (en) Positive active material for a lead-acid battery
JPS62145655A (en) Sealed lead storage battery
Atlung et al. Failure mode of the negative plate in recombinant lead/acid batteries
US4031293A (en) Maintenance free lead storage battery
JP2004055323A (en) Control valve type lead-acid battery
JPH0756811B2 (en) Sealed lead acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2001102027A (en) Enclosed lead battery
Nann Improving the performance of deep-cycling, valve-regulated, lead/acid batteries
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
KR102580198B1 (en) Electrolyte stratification prevention structure using sodium bicarbonate
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP4406959B2 (en) Sealed lead acid battery
JP3185300B2 (en) Sealed lead-acid battery
WO2024035663A2 (en) Titanium dioxide in flooded deep cycle lead-acid batteries
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP3518123B2 (en) Anode plate for lead-acid battery
JP3951285B2 (en) Control valve type lead acid battery
Prengaman et al. Corrosion resistant positive grids, novel separators, and negative plate additives for increased vrla battery life
CN116114084A (en) Method of manufacturing lead acid battery assembly
JP2008034286A (en) Closed lead battery
JPH06223863A (en) Sealed lead-acid battery