JP2022009931A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2022009931A
JP2022009931A JP2021179534A JP2021179534A JP2022009931A JP 2022009931 A JP2022009931 A JP 2022009931A JP 2021179534 A JP2021179534 A JP 2021179534A JP 2021179534 A JP2021179534 A JP 2021179534A JP 2022009931 A JP2022009931 A JP 2022009931A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode plate
lead
proofing agent
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021179534A
Other languages
Japanese (ja)
Other versions
JP7143927B2 (en
Inventor
宏樹 籠橋
Hiroki Kagohashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Publication of JP2022009931A publication Critical patent/JP2022009931A/en
Application granted granted Critical
Publication of JP7143927B2 publication Critical patent/JP7143927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

SOLUTION: A lead acid battery includes a negative electrode plate, a positive electrode plate, and an electrolytic solution, and the negative electrode plate includes a negative electrode grid and a negative electrode material, and the negative electrode material includes an organic shrinkage proofing agent including a sulfur element. The content of the sulfur element in the organic shrinkage proofing agent is 6000 μmol/g or more, and the height of the negative electrode plate exceeds 10 cm.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池は、負極板と、正極板と、電解液とを含む。負極板と正極板との間にはセパレータが配置される。フォークリフト用などの産業用途に利用される鉛蓄電池では、高さが大きな負極板および正極板が、大きな電槽に収容されている。例えば、特許文献1には、高さ190~700mmの電槽を備える鉛蓄電池が記載されている。特許文献2には、高さ120cmの負極板および正極板を備える鉛蓄電池が記載されている。 Lead-acid batteries are used in various applications such as in-vehicle use and industrial use. The lead-acid battery includes a negative electrode plate, a positive electrode plate, and an electrolytic solution. A separator is arranged between the negative electrode plate and the positive electrode plate. In lead-acid batteries used for industrial applications such as forklifts, a negative electrode plate and a positive electrode plate having a large height are housed in a large electric tank. For example, Patent Document 1 describes a lead storage battery including an electric tank having a height of 190 to 700 mm. Patent Document 2 describes a lead storage battery including a negative electrode plate having a height of 120 cm and a positive electrode plate.

特開2013-41757号公報Japanese Unexamined Patent Publication No. 2013-41757 特開昭59-186262号公報Japanese Unexamined Patent Publication No. 59-186262

しかし、高さが大きな負極板は、極板下部の充電効率が低いため、鉛蓄電池内で下部に硫酸鉛が蓄積される。 However, since the charging efficiency of the lower portion of the electrode plate is low in the negative electrode plate having a large height, lead sulfate is accumulated in the lower portion in the lead storage battery.

本発明の一側面は、負極板と、正極板と、電解液と、を備え、
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、硫黄元素を含む有機防縮剤を含み、
前記有機防縮剤中の前記硫黄元素の含有量は、4000μmol/g以上であり、
前記負極板の高さは、10cmを超える、鉛蓄電池に関する。
One aspect of the present invention includes a negative electrode plate, a positive electrode plate, and an electrolytic solution.
The negative electrode plate comprises a negative electrode current collector and a negative electrode material.
The negative electrode material contains an organic shrinkage proofing agent containing a sulfur element, and the negative electrode material contains.
The content of the sulfur element in the organic shrinkage proofing agent is 4000 μmol / g or more, and the content is 4000 μmol / g or more.
The height of the negative electrode plate relates to a lead storage battery having a height of more than 10 cm.

本発明によれば、高さが大きな負極板を用いる鉛蓄電池においても、負極板の下部における硫酸鉛の蓄積を抑制できる。 According to the present invention, even in a lead storage battery using a negative electrode plate having a large height, the accumulation of lead sulfate in the lower part of the negative electrode plate can be suppressed.

本発明の一側面に係る鉛蓄電池のフタを外した状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which the lid of the lead storage battery which concerns on one aspect of this invention is removed. 図1の鉛蓄電池の正面図である。It is a front view of the lead storage battery of FIG. 図2Aの鉛蓄電池のIIB-IIB線による矢示断面図である。FIG. 2 is a cross-sectional view taken along the line IIB-IIB of the lead storage battery of FIG. 2A. 硫黄元素の含有量が異なる有機防縮剤を用いたときの負極板の高さ(6~30cm)と硫酸鉛の蓄積量との関係を示すグラフである。It is a graph which shows the relationship between the height (6 to 30 cm) of a negative electrode plate and the accumulation amount of lead sulfate when the organic shrinkage agent containing different sulfur elements is used. 硫黄元素の含有量が異なる有機防縮剤を用いたときの負極板の高さ(6~50cm)と硫酸鉛の蓄積量との関係を示すグラフである。It is a graph which shows the relationship between the height (6 to 50 cm) of a negative electrode plate and the accumulation amount of lead sulfate when the organic shrinkage agent containing different sulfur elements is used. 硫黄元素の含有量が異なる有機防縮剤を用いたときの負極板の高さ(6~30cm)と鉛蓄電池の寿命サイクルとの関係を示すグラフである。It is a graph which shows the relationship between the height (6 to 30 cm) of a negative electrode plate and the life cycle of a lead storage battery when the organic shrinkage agent containing different sulfur elements is used. 硫黄元素の含有量が異なる有機防縮剤を用いたときの負極板の高さ(6~50cm)と鉛蓄電池の寿命サイクルとの関係を示すグラフである。It is a graph which shows the relationship between the height (6 to 50 cm) of a negative electrode plate and the life cycle of a lead storage battery when the organic shrinkage agent containing different sulfur elements is used. 負極電極材料の密度が異なる負極を用いたときの有機防縮剤の硫黄元素の含有量と5時間率容量との関係を示すグラフである。It is a graph which shows the relationship between the content of the sulfur element of the organic shrinkage proofing agent, and the 5-hour rate capacity when the negative electrode having different densities of the negative electrode electrode material is used.

本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 Although the novel features of the invention are described in the appended claims, the invention is further described in detail with respect to both configuration and content, in conjunction with other objects and features of the invention, with reference to the drawings below. It will be well understood.

本発明の一側面に係る鉛蓄電池は、負極板と、正極板と、電解液と、を備え、負極板は、負極集電体と、負極電極材料と、を備え、負極電極材料は、硫黄元素を含む有機防縮剤を含み、有機防縮剤中の硫黄元素の含有量は、4000μmol/g以上であり、負極板の高さは、10cmを超える。 The lead storage battery according to one aspect of the present invention includes a negative electrode plate, a positive electrode plate, and an electrolytic solution, the negative electrode plate includes a negative electrode current collector and a negative electrode electrode material, and the negative electrode electrode material is sulfur. The content of the sulfur element in the organic shrink-proofing agent containing the organic shrinkage-proofing agent is 4000 μmol / g or more, and the height of the negative electrode plate exceeds 10 cm.

鉛蓄電池の負極電極材料は、一般に、酸化還元反応により容量を発現する活物質(海綿状鉛もしくは硫酸鉛)を含む。負極板では、充電時に、硫酸鉛の還元反応が進行するが、硫酸鉛は海綿状鉛に還元され難い。そのため、硫酸鉛の結晶が次第に成長するサルフェーションが進行することが知られている。鉛蓄電池において、負極板および正極板の上端部には、鉛蓄電池の外部端子に電気的に接続するための耳部が形成されている。負極板の下部の領域では、上部の領域に比べて、耳部までの距離が長くなるため、その分、抵抗が大きくなる。高さが10cmを超える大きな負極板を用いると、負極板の下部の領域では抵抗が特に大きくなり、上部の領域において優先的に充放電反応が進行する。さらに充放電反応の繰り返しによって、電池の下方における電解液の硫酸濃度が高くなるため、充電効率が低下する。その結果、負極板下部ではサルフェーションが進行しやすい。 The negative electrode material of a lead storage battery generally contains an active material (spoiled lead or lead sulfate) whose capacity is developed by a redox reaction. In the negative electrode plate, the reduction reaction of lead sulfate proceeds during charging, but lead sulfate is difficult to be reduced to spongy lead. Therefore, it is known that sulfation in which lead sulfate crystals gradually grow progresses. In a lead-acid battery, an ear portion for electrically connecting to an external terminal of the lead-acid battery is formed at an upper end portion of a negative electrode plate and a positive electrode plate. In the lower region of the negative electrode plate, the distance to the selvage portion is longer than in the upper region, so that the resistance is increased accordingly. When a large negative electrode plate having a height of more than 10 cm is used, the resistance becomes particularly large in the lower region of the negative electrode plate, and the charge / discharge reaction proceeds preferentially in the upper region. Further, by repeating the charge / discharge reaction, the sulfuric acid concentration of the electrolytic solution under the battery becomes high, so that the charging efficiency is lowered. As a result, sulfation tends to proceed in the lower part of the negative electrode plate.

また、一般に、高さが大きい負極板を用いる鉛蓄電池(例えば、産業用鉛蓄電池など)では、天然物に由来するリグニンもしくはリグノスルホン酸(以下、リグニンと称する。)などの有機防縮剤が利用されている。リグニン中に含まれる硫黄元素の含有量は、通常、500μmol/g以上600μmol/g以下である。 Further, in general, in a lead storage battery using a negative electrode plate having a large height (for example, an industrial lead storage battery), an organic shrink proofing agent such as lignin or lignosulfonic acid (hereinafter referred to as lignin) derived from a natural product is used. Has been done. The content of the sulfur element contained in lignin is usually 500 μmol / g or more and 600 μmol / g or less.

それに対し、本発明の上記側面では、硫黄元素の含有量が4000μmol/g以上である有機防縮剤を含む負極電極材料を用いることで、高さが10cmを超える負極板を用いるにも拘わらず、負極板の下部の領域における硫酸鉛の蓄積を抑制することができる。また、充放電時に硫酸鉛の蓄積が抑制されることで、鉛蓄電池の寿命を延ばすことができる。 On the other hand, in the above aspect of the present invention, by using the negative electrode electrode material containing the organic shrink-proofing agent having a sulfur element content of 4000 μmol / g or more, the negative electrode plate having a height of more than 10 cm is used. Accumulation of lead sulfate in the lower region of the negative electrode plate can be suppressed. Further, by suppressing the accumulation of lead sulfate during charging and discharging, the life of the lead storage battery can be extended.

従って、本発明の上記側面に係る鉛蓄電池は、特に、耳部を負極板の上端部に備え、耳部が、鉛蓄電池を設置した状態で、鉛蓄電池の上側に位置するように負極板を配置する場合に好適である。この場合、負極板の下部から耳部までの距離が遠くなり、抵抗が大きくなり易いが、このような場合にも、本実施形態によれば負極板の下部の領域における硫酸鉛の蓄積を効果的に抑制することができる。 Therefore, in the lead storage battery according to the above aspect of the present invention, in particular, the negative electrode plate is provided so that the ear portion is provided at the upper end portion of the negative electrode plate and the ear portion is located above the lead storage battery with the lead storage battery installed. Suitable for placement. In this case, the distance from the lower part of the negative electrode plate to the selvage portion becomes long, and the resistance tends to increase. However, even in such a case, according to the present embodiment, the accumulation of lead sulfate in the region of the lower part of the negative electrode plate is effective. Can be suppressed.

鉛蓄電池は、制御弁式(密閉式)鉛蓄電池および液式(ベント式)鉛蓄電池のいずれでもでもよい。特に、液式鉛蓄電池においては、負極板の耳部を鉛蓄電池の上側に位置するように配置することになるが、このような場合でも、本実施形態によれば、負極板の下部の領域における硫酸鉛の蓄積を効果的に抑制できる。 The lead storage battery may be either a control valve type (sealed type) lead storage battery or a liquid type (vent type) lead storage battery. In particular, in a liquid lead-acid battery, the ear portion of the negative electrode plate is arranged so as to be located above the lead-acid battery, but even in such a case, according to the present embodiment, the region below the negative electrode plate The accumulation of lead sulfate in the above can be effectively suppressed.

なお、負極板の高さとは、負極板において負極電極材料が存在する領域の高さ(具体的には、負極集電体に負極電極材料が充填された部分の下端から上端までの長さ)をいう。なお、正極板の高さについても、負極板の場合に準じて、正極板において正極電極材料が存在する領域の高さをいう。 The height of the negative electrode plate is the height of the region where the negative electrode material is present in the negative electrode plate (specifically, the length from the lower end to the upper end of the portion where the negative electrode current collector is filled with the negative electrode material). To say. The height of the positive electrode plate also refers to the height of the region where the positive electrode material is present in the positive electrode plate, as in the case of the negative electrode plate.

負極板および正極板の上下は、耳部が存在する側を各極板の上側とし、耳部とは反対側を各極板の下側とする。そのため、耳部が存在する側の端部は、各極板の上端部となる。一方、鉛蓄電池の上下は、各極板における耳部の位置とは無関係に、鉛蓄電池を設置したときの上下を意味する。 The upper and lower sides of the negative electrode plate and the positive electrode plate are such that the side where the selvage is present is the upper side of each electrode plate, and the side opposite to the selvage portion is the lower side of each electrode plate. Therefore, the end portion on the side where the selvage portion exists is the upper end portion of each electrode plate. On the other hand, the upper and lower parts of the lead-acid battery mean the upper and lower parts when the lead-acid battery is installed, regardless of the position of the selvage portion on each electrode plate.

本明細書中、負極板の下部の領域とは、負極板の下(具体的には、負極電極材料が存在する下端)から負極板の高さの30%以下の領域とする。また、負極板の下部の領域における硫酸鉛の蓄積量を調べる場合には、負極板の下から20%の位置において調べるものとする。 In the present specification, the lower region of the negative electrode plate is a region of 30% or less of the height of the negative electrode plate from below the negative electrode plate (specifically, the lower end where the negative electrode material is present). Further, when examining the accumulated amount of lead sulfate in the region below the negative electrode plate, the examination shall be carried out at a position 20% from the bottom of the negative electrode plate.

本発明の上記側面に係る鉛蓄電池は、自動車用鉛蓄電池として用いることもできるが、高さが大きい負極板を用いるため、特に、産業用鉛蓄電池に適している。産業用鉛蓄電池としては、例えば、非常用電源、非常用電力バックアップ、電動車両(フォークリフトなど)用電源などが挙げられる。なお、フォークリフトとは、荷物を支えるフォークと、フォークを昇降させるマストとを備える荷役運搬車両である。フォークリフトなどの荷役運搬車両では、従来より、電池で駆動する電動車両が普及しており、本発明の上記側面に係る鉛蓄電池を利用するのに適している。 The lead-acid battery according to the above aspect of the present invention can be used as a lead-acid battery for automobiles, but is particularly suitable for an industrial lead-acid battery because it uses a negative electrode plate having a large height. Examples of the industrial lead-acid battery include an emergency power supply, an emergency power backup, a power supply for an electric vehicle (forklift, etc.) and the like. A forklift is a material handling vehicle equipped with a fork that supports luggage and a mast that raises and lowers the fork. As a cargo handling vehicle such as a forklift, an electric vehicle driven by a battery has been widely used, and it is suitable to use the lead storage battery according to the above aspect of the present invention.

電動車両用の鉛蓄電池は、液式鉛蓄電池であり、負極板の高さも高い場合が多い。このような場合、負極板の下部の領域から負極板の上端部に位置する耳部までの距離が長くなり、硫酸鉛の蓄積量が多くなり易い。本発明の上記側面によれば、このような場合にも、負極板の下部における硫酸鉛の蓄積を効果的に抑制することができる。 The lead-acid battery for an electric vehicle is a liquid-type lead-acid battery, and the height of the negative electrode plate is often high. In such a case, the distance from the lower region of the negative electrode plate to the selvage portion located at the upper end of the negative electrode plate becomes long, and the amount of lead sulfate accumulated tends to increase. According to the above aspect of the present invention, the accumulation of lead sulfate in the lower part of the negative electrode plate can be effectively suppressed even in such a case.

本発明の上記側面に係る鉛蓄電池で使用する有機防縮剤は、4000μmol/g以上の硫黄元素を含む。負極板の下部の領域における硫酸鉛の蓄積を抑制する効果をさらに高める観点からは、有機防縮剤中の硫黄元素の含有量は、6000μmol/g以上が好ましい。この場合、高さが15cm以上もしくは20cm以上の負極板を用いても、下部の領域における硫酸鉛の蓄積を効果的に抑制することができる。また、有機防縮剤中の硫黄元素の含有量が7000μmol/g以上になると硫酸鉛の蓄積を大幅に抑制でき、この抑制効果は負極板の高さが20cm以上になっても得ることができる。有機防縮剤中の硫黄元素の含有量は、正極の軟化脱落を防止し、5時間率容量の低下を抑制する点で、10000μmol/g以下が好ましく、9000μmol/g以下がより好ましい。 The organic shrinkage proofing agent used in the lead storage battery according to the above aspect of the present invention contains 4000 μmol / g or more of sulfur elements. From the viewpoint of further enhancing the effect of suppressing the accumulation of lead sulfate in the lower region of the negative electrode plate, the content of the sulfur element in the organic shrinkage proofing agent is preferably 6000 μmol / g or more. In this case, even if a negative electrode plate having a height of 15 cm or more or 20 cm or more is used, the accumulation of lead sulfate in the lower region can be effectively suppressed. Further, when the content of the sulfur element in the organic shrinkage inhibitor is 7,000 μmol / g or more, the accumulation of lead sulfate can be significantly suppressed, and this suppressing effect can be obtained even when the height of the negative electrode plate is 20 cm or more. The content of the sulfur element in the organic shrinkage proofing agent is preferably 10,000 μmol / g or less, and more preferably 9000 μmol / g or less, in terms of preventing softening and falling off of the positive electrode and suppressing a decrease in the 5-hour rate capacity.

なお、有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。 The content of the sulfur element in the organic shrinkage proofing agent is Xμmol / g means that the content of the sulfur element contained in 1 g of the organic shrinkage proofing agent is Xμmol / g.

負極電極材料の密度は、例えば2.5g/cm以上5g/cm以下の範囲で適宜調整できる。鉛蓄電池の軽量化の観点からは、2.5g/cm以上4.5g/cm以下が好ましく、2.5g/cm以上4.2g/cm以下がより好ましい。硫黄元素の含有量が高い有機防縮剤を用いると、負極活物質が微細化されて硫酸が負極板の内部に侵入し難くなるため、5時間率容量が低下し易い。5時間率容量の低下を抑制する点からは、負極電極材料の密度は、例えば2.5g/cm以上4.0g/cm以下であることが好ましい。特に、硫黄元素の含有量が6000μmol/g以上である有機防縮剤を用いる場合は、負極電極材料の密度を4.0g/cm以下とすることで、5時間率容量の低下を効果的に抑制することができる。 The density of the negative electrode material can be appropriately adjusted in the range of, for example, 2.5 g / cm 3 or more and 5 g / cm 3 or less. From the viewpoint of weight reduction of the lead storage battery, 2.5 g / cm 3 or more and 4.5 g / cm 3 or less is preferable, and 2.5 g / cm 3 or more and 4.2 g / cm 3 or less is more preferable. When an organic shrink-proofing agent having a high sulfur element content is used, the negative electrode active material is made finer and sulfuric acid is less likely to penetrate into the negative electrode plate, so that the 5-hour rate capacity tends to decrease. From the viewpoint of suppressing the decrease in the 5-hour rate capacity, the density of the negative electrode electrode material is preferably, for example, 2.5 g / cm 3 or more and 4.0 g / cm 3 or less. In particular, when an organic shrink-proofing agent having a sulfur element content of 6000 μmol / g or more is used, the density of the negative electrode electrode material is set to 4.0 g / cm 3 or less to effectively reduce the 5-hour rate capacity. It can be suppressed.

一般には、負極電極材料の密度を小さくして空隙密度を大きくすると、通常は、抵抗が増加し、5時間率容量が低下すると予想される。しかし、この予想に反して、本発明の上記側面では、負極電極材料の密度を小さく(例えば、4.0g/cm以下に)しても、負極板の下部の領域における硫酸鉛の蓄積を抑制しながらも、5時間率容量を向上することができる。 In general, when the density of the negative electrode material is reduced and the void density is increased, it is usually expected that the resistance increases and the 5-hour rate capacity decreases. However, contrary to this expectation, in the above aspect of the present invention, even if the density of the negative electrode material is reduced (for example, 4.0 g / cm 3 or less), lead sulfate accumulation in the lower region of the negative electrode plate is accumulated. While suppressing it, the 5-hour rate capacity can be improved.

鉛蓄電池の負極集電体は、一般に、鋳造方式、エキスパンド方式、打ち抜き方式などの加工方式により形成される。中でも、打ち抜き方式で形成された格子体は、他の方式で形成された集電体に比べて、抵抗を小さくすることができる。このような集電体と硫黄元素含有量が4000μmol/g以上の有機防縮剤とを組み合わせることで、負極板全体の抵抗を効果的に低く抑えることができるため、負極板の高さを高くしても、負極板の下部の領域における硫酸鉛の蓄積を効果的に抑制することができる。また、負極集電体として格子体を用いると、負極電極材料を担持させ易いことに加え、負極集電体の抵抗を調節し易い。 The negative electrode current collector of a lead storage battery is generally formed by a processing method such as a casting method, an expanding method, or a punching method. Above all, the lattice body formed by the punching method can have a smaller resistance than the current collector formed by the other method. By combining such a current collector and an organic shrink-proofing agent having a sulfur element content of 4000 μmol / g or more, the resistance of the entire negative electrode plate can be effectively suppressed to a low level, so that the height of the negative electrode plate is increased. However, the accumulation of lead sulfate in the lower region of the negative electrode plate can be effectively suppressed. Further, when a lattice body is used as the negative electrode current collector, it is easy to support the negative electrode electrode material and it is easy to adjust the resistance of the negative electrode current collector.

なお、一般に、産業用鉛蓄電池の用途では、鉛蓄電池は、一旦、満充電状態した後に使用されることが多い。本発明者は、このような充電状態で鉛蓄電池が使用される場合に、負極板の高さの違いにより、有機防縮剤の硫黄元素含有量の違いによる効果が顕在化し易いことに気づいた。本発明の上記側面に係る鉛蓄電池においては、特に、充電電気量(充電量とも言う)の、放電電気量(放電量とも言う)に対する比(=充電量/放電量)が100%以上で、充放電が行なわれる場合に、硫黄元素含有量が4000μmol/g以上の有機防縮剤を用いることで、負極板の下部における硫酸鉛の蓄積を抑制する効果をさらに高めることができる。よって、10cmを超える高さの負極板においても、高い寿命サイクルを確保することができる。 In general, in the use of industrial lead-acid batteries, the lead-acid batteries are often used after being fully charged. The present inventor has noticed that when the lead-acid battery is used in such a charged state, the effect due to the difference in the sulfur element content of the organic shrinkage proofing agent is likely to become apparent due to the difference in the height of the negative electrode plate. In the lead-acid battery according to the above aspect of the present invention, the ratio (= charge amount / discharge amount) of the charge electricity amount (also referred to as charge amount) to the discharge electricity amount (also referred to as discharge amount) is 100% or more. When charging / discharging is performed, the effect of suppressing the accumulation of lead sulfate in the lower part of the negative electrode plate can be further enhanced by using an organic shrinkage barrier having a sulfur element content of 4000 μmol / g or more. Therefore, a high life cycle can be ensured even in a negative electrode plate having a height of more than 10 cm.

鉛蓄電池の充放電を行なう際の充電量/放電量の比は、例えば、100%以上、好ましくは115%以上であり、120%以上または125%以上であってもよい。充電量/放電量の比は、例えば、200%以下であり、150%以下であることが好ましく、130%以下または125%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。なお、JIS5303-1の充放電サイクル試験では、電動車両(電気車)用の試験が、充電量/放電量の比が115%以上125%以下で行なわれることが規定されている。本発明の上記側面によれば、充電量/放電量の比が、115%以上125%以下の範囲でも、硫黄元素含有量が4000μmol/g以上の有機防縮剤を用いることで、負極板の下部における硫酸鉛の蓄積を抑制する高い効果を得ることができる。それに対し、充電量/放電量の比が100%以上(例えば、115%以上、120%以上または125%以上)で充放電を行う場合でも、硫黄元素含有量が4000μmol/g未満の有機防縮剤を用いると、10cmを超える高さの負極板では、高い寿命サイクルを確保し難くなる。 The charge / discharge ratio when charging / discharging the lead storage battery is, for example, 100% or more, preferably 115% or more, and may be 120% or more or 125% or more. The charge / discharge ratio is, for example, 200% or less, preferably 150% or less, and may be 130% or less or 125% or less. These lower limit values and upper limit values can be arbitrarily combined. In the charge / discharge cycle test of JIS5303-1, it is stipulated that the test for an electric vehicle (electric vehicle) is performed when the ratio of charge amount / discharge amount is 115% or more and 125% or less. According to the above aspect of the present invention, even when the charge / discharge ratio is in the range of 115% or more and 125% or less, the lower part of the negative electrode plate is used by using an organic shrinkage proofing agent having a sulfur element content of 4000 μmol / g or more. It is possible to obtain a high effect of suppressing the accumulation of lead sulfate in. On the other hand, even when charging / discharging is performed with a charge / discharge ratio of 100% or more (for example, 115% or more, 120% or more, or 125% or more), an organic shrinkage proofing agent having a sulfur element content of less than 4000 μmol / g. With a negative electrode plate having a height of more than 10 cm, it becomes difficult to secure a high life cycle.

なお、充電電気量とは、充電時の電流の積算値(Ah)であり、放電電気量とは、放電時の電流の積算値(Ah)である。例えば、定電流で充電(または放電)を行なう場合には、そのときの電流値(A)と充電時間(または放電時間)(h)とを乗ずることにより、充電電気量(または放電電気量)を求めることができる。 The charging electricity amount is an integrated value (Ah) of the current at the time of charging, and the discharging electricity amount is an integrated value (Ah) of the current at the time of discharging. For example, when charging (or discharging) with a constant current, the charging electricity amount (or discharging electricity amount) is obtained by multiplying the current value (A) at that time by the charging time (or discharging time) (h). Can be asked.

以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
(負極板)
鉛蓄電池の負極板は、負極集電体と、負極電極材料とで構成されている。負極電極材料は、負極板から負極集電体を除いたものである。負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛または鉛合金シートを加工して形成してもよい。加工方法としては、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。中でも、打ち抜き加工方式により形成される格子体は抵抗が小さくなり易い。このような格子体と硫黄含有量が4000μmol/g以上の有機防縮剤とを組み合わせることで、負極板全体の抵抗を低く抑えることができるため、負極板の高さを10cmより大きくしても(好ましくは、15cm以上や20cm以上にしても)、硫酸鉛の蓄積をさらに効果的に抑制できる。また、格子体は、負極電極材料を担持させ易く、負極集電体の抵抗を調節し易いため、好ましい。
Hereinafter, the lead-acid battery according to the embodiment of the present invention will be described for each of the main constituent requirements, but the present invention is not limited to the following embodiments.
(Negative electrode plate)
The negative electrode plate of a lead storage battery is composed of a negative electrode current collector and a negative electrode material. The negative electrode electrode material is obtained by removing the negative electrode current collector from the negative electrode plate. The negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead or lead alloy sheet. Examples of the processing method include expanding processing and punching processing. Above all, the resistance of the lattice body formed by the punching method tends to be small. By combining such a lattice and an organic shrink-proofing agent having a sulfur content of 4000 μmol / g or more, the resistance of the entire negative electrode plate can be suppressed to a low level, so that even if the height of the negative electrode plate is made larger than 10 cm ( (Preferably, even if it is 15 cm or more or 20 cm or more), the accumulation of lead sulfate can be suppressed more effectively. Further, the lattice body is preferable because it is easy to support the negative electrode electrode material and it is easy to adjust the resistance of the negative electrode current collector.

集電体に用いる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。負極集電体は、組成の異なる鉛合金層を有してもよく、合金層は複数でもよい。 The lead alloy used for the current collector may be any of a Pb—Sb alloy, a Pb—Ca alloy, and a Pb—Ca—Sn alloy. These leads or lead alloys may further contain, as an additive element, at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like. The negative electrode current collector may have lead alloy layers having different compositions, and may have a plurality of alloy layers.

負極電極材料は、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)と、4000μmol/g以上の硫黄元素を含有する有機防縮剤とを所定の含有量で含む。負極電極材料は、更に、カーボンブラックのような炭素質材料、硫酸バリウムなどを含んでもよく、必要に応じて、他の添加剤を含んでもよい。 The negative electrode electrode material contains a negative electrode active material (lead or lead sulfate) whose capacity is developed by a redox reaction and an organic shrinkage proofing agent containing 4000 μmol / g or more of a sulfur element in a predetermined content. The negative electrode material may further contain a carbonaceous material such as carbon black, barium sulfate and the like, and may contain other additives as needed.

充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。 The negative electrode active material in the charged state is spongy lead, but the unchemical negative electrode plate is usually produced using lead powder.

有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。 The organic shrinkage proofing agent is an organic polymer containing a sulfur element, and generally contains a plurality of aromatic rings in the molecule and also contains a sulfur element as a sulfur-containing group. Among the sulfur-containing groups, a sulfonic acid group or a sulfonyl group, which is a stable form, is preferable. The sulfonic acid group may be present in acid form or may be present in salt form such as Na salt.

有機防縮剤の具体例としては、硫黄含有基を有するとともに芳香環を有する化合物のホルムアルデヒドによる縮合物が好ましい。化合物は、芳香環を複数有していてもよい。芳香環としては、ベンゼン環、ナフタレン環などが挙げられる。芳香環を有する化合物が複数の芳香環を有する場合には、複数の芳香環は直接結合や連結基(例えば、アルキレン基、スルホン基など)などで連結していてもよい。このような構造としては、例えば、ビフェニル、ビスフェニルアルカン、ビスフェニルスルホンなどが挙げられる。芳香環を有する化合物としては、例えば、上記の芳香環と、ヒドロキシ基および/またはアミノ基とを有する化合物が挙げられる。ヒドロキシ基やアミノ基は、芳香環に直接結合していてもよく、ヒドロキシ基やアミノ基を有するアルキル鎖として結合していてもよい。芳香環を有する化合物としては、ビスフェノール化合物、ヒドロキシビフェニル化合物、ヒドロキシナフタレン化合物、フェノール化合物などが好ましい。芳香環を有する化合物は、さらに置換基を有していてもよい。有機防縮剤は、これらの化合物の残基を一種含んでもよく、複数種含んでもよい。ビスフェノール化合物としては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。中でも、ビスフェノールSは、スルホニル基(-SO-)を有するため、硫黄元素の含有量を大きくすることが容易である。なお、ビスフェノール化合物の縮合物は、常温より高い環境を経験しても、低温での始動性能が損なわれないので、常温より高い温度環境に置かれる鉛蓄電池に適している。 As a specific example of the organic shrinkage proofing agent, a condensate of a compound having a sulfur-containing group and an aromatic ring with formaldehyde is preferable. The compound may have a plurality of aromatic rings. Examples of the aromatic ring include a benzene ring and a naphthalene ring. When the compound having an aromatic ring has a plurality of aromatic rings, the plurality of aromatic rings may be directly bonded or linked by a linking group (for example, an alkylene group, a sulfone group, etc.). Examples of such a structure include biphenyl, bisphenyl alkane, bisphenyl sulfone and the like. Examples of the compound having an aromatic ring include the above-mentioned aromatic ring and a compound having a hydroxy group and / or an amino group. The hydroxy group or amino group may be directly bonded to the aromatic ring, or may be bonded as an alkyl chain having a hydroxy group or amino group. As the compound having an aromatic ring, a bisphenol compound, a hydroxybiphenyl compound, a hydroxynaphthalene compound, a phenol compound and the like are preferable. The compound having an aromatic ring may further have a substituent. The organic shrinkage proofing agent may contain one kind of residues of these compounds, or may contain a plurality of kinds. As the bisphenol compound, bisphenol A, bisphenol S, bisphenol F and the like are preferable. Among them, since bisphenol S has a sulfonyl group (-SO 2- ), it is easy to increase the content of sulfur element. The condensate of the bisphenol compound is suitable for lead-acid batteries placed in a temperature environment higher than normal temperature because the starting performance at low temperature is not impaired even if the environment is higher than normal temperature.

硫黄含有基は、化合物に含まれる芳香環に直接結合していてもよく、例えば硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。また、例えば、アミノベンゼンスルホン酸もしくはアルキルアミノベンゼンスルホン酸のような単環式の芳香族化合物を、上記の芳香環を有する化合物とともにホルムアルデヒドで縮合させてもよい。 The sulfur-containing group may be directly bonded to the aromatic ring contained in the compound, or may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group, for example. Further, for example, a monocyclic aromatic compound such as aminobenzenesulfonic acid or alkylaminobenzenesulfonic acid may be condensed with formaldehyde together with the above-mentioned compound having an aromatic ring.

N,N’-(スルホニルジ-4,1-フェニレン)ビス(1,2,3,4-テトラヒドロ-6-メチル-2,4-ジオキソピリミジン-5-スルホンアミド)の縮合物などを有機防縮剤として用いてもよい。 Condensates of N, N'-(sulfonyldi-4,1-phenylene) bis (1,2,3,4-tetrahydro-6-methyl-2,4-dioxopyrimidine-5-sulfonamide) are organic It may be used as a shrink-proofing agent.

負極電極材料中に含まれる有機防縮剤の含有量は、一般的な範囲であれば、有機防縮剤の作用を大きく左右するものではない。負極電極材料中に含まれる有機防縮剤の含有量は、例えば0.01質量%以上が好ましく、0.02質量%以上がより好ましく、0.05質量%以上が更に好ましく、一方、1.0質量%以下が好ましく、0.8質量%以下がより好ましく、0.3質量%以下が更に好ましい。ここで、負極電極材料中に含まれる有機防縮剤の含有量とは、既化成の満充電状態の鉛蓄電池から、後述の方法で採取した負極電極材料における含有量である。 The content of the organic shrink-proofing agent contained in the negative electrode electrode material does not greatly affect the action of the organic shrinkage-proofing agent as long as it is in the general range. The content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is, for example, preferably 0.01% by mass or more, more preferably 0.02% by mass or more, further preferably 0.05% by mass or more, while 1.0. It is preferably 0% by mass or less, more preferably 0.8% by mass or less, still more preferably 0.3% by mass or less. Here, the content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is the content in the negative electrode material collected by the method described later from a prefabricated lead-acid battery in a fully charged state.

負極板の高さは、10cmより高ければよく、15cm以上または20cm以上であってもよい。負極板の高さは、例えば、150cm以下であり、100cm以下であることが好ましく、80cm以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。負極板の高さがこのような範囲である場合には、硫黄元素含有量が4000μmol/g以上の有機防縮剤を用いることによる効果が得られ易い。よって、負極電極材料における抵抗を低く抑えることができるため、負極板の高さが上記のように高くても、負極板の下部の領域における硫酸鉛の蓄積を抑制することができる。 The height of the negative electrode plate may be higher than 10 cm, and may be 15 cm or more or 20 cm or more. The height of the negative electrode plate is, for example, 150 cm or less, preferably 100 cm or less, and may be 80 cm or less. These lower limit values and upper limit values can be arbitrarily combined. When the height of the negative electrode plate is in such a range, the effect of using an organic shrinkage proofing agent having a sulfur element content of 4000 μmol / g or more can be easily obtained. Therefore, since the resistance of the negative electrode material can be suppressed to a low level, the accumulation of lead sulfate in the lower region of the negative electrode plate can be suppressed even if the height of the negative electrode plate is high as described above.

負極板は、負極集電体に、負極ペーストを充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤および必要に応じて各種添加剤に、水と硫酸を加えて混練することで作製する。熟成工程では、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。 The negative electrode plate can be formed by filling a negative electrode current collector with a negative electrode paste, aging and drying to produce an unchemical negative electrode plate, and then forming an unchemical negative electrode plate. The negative electrode paste is prepared by adding water and sulfuric acid to lead powder, an organic shrink-proofing agent and, if necessary, various additives, and kneading them. In the aging step, it is preferable to ripen the unchemical negative electrode plate at a temperature higher than room temperature and high humidity.

化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。 The chemical conversion can be carried out by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical formation may be performed before assembling the lead-acid battery or the electrode plate group. The formation produces spongy lead.

(正極板)
鉛蓄電池の正極板には、ペースト式とクラッド式がある。
ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。ペースト式正極板では、正極電極材料は、正極板から正極集電体を除いたものである。正極集電体は、負極集電体と同様に形成すればよく、鉛または鉛合金の鋳造や、鉛または鉛合金シートの加工により形成することができる。
(Positive plate)
There are two types of positive electrode plates for lead-acid batteries: paste type and clad type.
The paste type positive electrode plate includes a positive electrode current collector and a positive electrode material. The positive electrode material is held in the positive current collector. In the paste type positive electrode plate, the positive electrode electrode material is the positive electrode plate minus the positive electrode current collector. The positive electrode current collector may be formed in the same manner as the negative electrode current collector, and can be formed by casting lead or a lead alloy or processing a lead or a lead alloy sheet.

クラッド式正極板は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。クラッド式正極板では、正極電極材料は、正極板から、チューブ、芯金、および連座を除いたものである。 The clad type positive electrode plate has a plurality of porous tubes, a core metal inserted in each tube, a positive electrode material filled in the tube into which the core metal is inserted, and a collective punishment for connecting multiple tubes. Equipped with. In the clad type positive electrode plate, the positive electrode material is the positive electrode plate excluding the tube, the core metal, and the collective punishment.

正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb-Ca系合金、Pb-Ca-Sn系合金が好ましい。正極集電体は、組成の異なる鉛合金層を有してもよく、合金層は複数でもよい。芯金には、Pb-Ca系合金やPb-Sb系合金を用いることが好ましい。
正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤を含んでもよい。
As the lead alloy used for the positive electrode current collector, Pb-Ca-based alloys and Pb-Ca-Sn-based alloys are preferable in terms of corrosion resistance and mechanical strength. The positive electrode current collector may have lead alloy layers having different compositions, and may have a plurality of alloy layers. It is preferable to use a Pb—Ca alloy or a Pb—Sb alloy for the core metal.
The positive electrode material contains a positive electrode active material (lead dioxide or lead sulfate) that develops a capacity by a redox reaction. The positive electrode material may contain other additives, if necessary.

未化成のペースト式正極板は、負極板の場合に準じて、正極集電体に、正極ペーストを充填し、熟成、乾燥することにより得られる。その後、未化成の正極板を化成する。正極ペーストは、鉛粉、添加剤、水、硫酸を練合することで調製される。 The unchemical paste type positive electrode plate can be obtained by filling a positive electrode current collector with a positive electrode paste, aging and drying, as in the case of a negative electrode plate. After that, an unchemical positive electrode plate is formed. The positive electrode paste is prepared by kneading lead powder, additives, water and sulfuric acid.

クラッド式正極板は、芯金が挿入されたチューブに鉛粉または、スラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。得られる未化成の正極板は化成される。 The clad type positive electrode plate is formed by filling a tube into which a core metal is inserted with lead powder or slurry-like lead powder, and connecting a plurality of tubes in a collective punishment. The obtained unchemical positive electrode plate is formed.

(セパレータ)
セパレータには、不織布、微多孔膜などが用いられる。負極板と正極板との間に介在させるセパレータの厚さや枚数は、極間距離に応じて適宜選択すればよい。不織布は、繊維を織らずに絡み合わせたマットであり、繊維を主体とする(例えば、60質量%以上が繊維で形成されている)。繊維としては、ガラス繊維、ポリマー繊維(ポリオレフィン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維など)、パルプ繊維などを用いることができる。中でも、ガラス繊維が好ましい。不織布は、繊維以外の成分、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。
(Separator)
As the separator, a non-woven fabric, a microporous membrane, or the like is used. The thickness and number of separators interposed between the negative electrode plate and the positive electrode plate may be appropriately selected according to the distance between the electrodes. The non-woven fabric is a mat that is entwined without weaving fibers, and is mainly composed of fibers (for example, 60% by mass or more is formed of fibers). As the fiber, glass fiber, polymer fiber (polyolefin fiber such as polyolefin fiber, acrylic fiber, polyethylene terephthalate fiber, etc.), pulp fiber and the like can be used. Of these, glass fiber is preferable. The non-woven fabric may contain components other than fibers, such as an acid-resistant inorganic powder, a polymer as a binder, and the like.

一方、微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤(ポリマー粉末および/またはオイルなど)を含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。セパレータを構成する材料は、耐酸性を有するものが好ましく、ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。 On the other hand, the microporous film is a porous sheet mainly composed of components other than fiber components. For example, a composition containing a pore-forming agent (polymer powder and / or oil, etc.) is extruded into a sheet and then pore-formed. It is obtained by removing the agent to form pores. The material constituting the separator is preferably an acid resistant material, and the polymer component is preferably a polyolefin such as polyethylene or polypropylene.

セパレータは、例えば、不織布のみで構成してもよく、微多孔膜のみで構成してもよい。また、セパレータは、必要に応じて、不織布と微多孔膜との積層物、異種または同種の素材を貼り合わせた物、または異種または同種の素材においてオスメスをかみ合わせた物などであってもよい。 The separator may be composed of, for example, only a non-woven fabric or only a microporous membrane. Further, the separator may be, if necessary, a laminate of a non-woven fabric and a microporous membrane, a material obtained by laminating different or similar materials, or a material in which different or similar materials are engaged with male and female.

(電解液)
電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。化成後で満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば1.10g/cm以上1.35g/cm以下であり、1.20g/cm以上1.35g/cm以下であることが好ましい。
(Electrolytic solution)
The electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary. The specific gravity of the electrolytic solution in a fully charged lead-acid battery after chemical conversion at 20 ° C. is, for example, 1.10 g / cm 3 or more and 1.35 g / cm 3 or less, and 1.20 g / cm 3 or more and 1.35 g / cm 3 The following is preferable.

次に、各物性の分析方法について説明する。
(1)負極電極材料の密度
負極電極材料の密度は化成後の満充電状態の負極電極材料のかさ密度の値を意味し、以下のようにして測定する。化成後の電池を満充電してから解体し、入手した負極板に水洗と真空乾燥(大気圧より低い圧力下で乾燥)とを施すことにより、負極板中の電解液を除く。次いで負極板から負極電極材料を分離して、未粉砕の測定試料を入手する。測定容器に試料を投入し、真空排気した後、0.5psia以上0.55psia以下(≒3.45kPa以上3.79kPa以下)の圧力で水銀を満たして、負極電極材料のかさ容積を測定し、測定試料の質量をかさ容積で除すことにより、負極電極材料のかさ密度を求める。なお、測定容器の容積から、水銀の注入容積を差し引いた容積をかさ容積とする。
Next, an analysis method for each physical property will be described.
(1) Density of Negative Electrode Material The density of the negative electrode material means the value of the bulk density of the negative electrode material in a fully charged state after chemical conversion, and is measured as follows. The battery after chemical conversion is fully charged and then disassembled, and the obtained negative electrode plate is washed with water and vacuum dried (dried under a pressure lower than atmospheric pressure) to remove the electrolytic solution in the negative electrode plate. Next, the negative electrode material is separated from the negative electrode plate to obtain an unground measurement sample. After the sample is put into the measuring container and evacuated, the bulk volume of the negative electrode material is measured by filling mercury with a pressure of 0.5 psia or more and 0.55 psia or less (≈3.45 kPa or more and 3.79 kPa or less). The bulk density of the negative electrode material is obtained by dividing the mass of the measurement sample by the bulk volume. The volume obtained by subtracting the mercury injection volume from the volume of the measuring container is defined as the bulk volume.

本明細書中、鉛蓄電池の満充電状態とは、液式の電池の場合、25℃の水槽中で、5時間率電流(つまり、0.2CAの電流)で2.5V/セルに達するまで定電流充電を行った後、さらに5時間率電流で2時間、定電流充電を行った状態である。また、制御弁式の電池の場合、満充電状態とは、25℃の気槽中で、5時間率電流で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流が1mCA以下になった時点で充電を終了した状態である。
なお、本明細書中、1CAとは、電池の公称容量(Ah)と同じ数値の電流値(A)である。例えば、公称容量が30Ahの電池であれば、1CAは30Aであり、1mCAは30mAである。
In the present specification, the fully charged state of a lead-acid battery means that in the case of a liquid battery, it reaches 2.5 V / cell at a 5-hour rate current (that is, a current of 0.2 CA) in a water tank at 25 ° C. After the constant current charge, the constant current charge is further performed for 2 hours at a rate current of 5 hours. In the case of a control valve type battery, the fully charged state means that the battery is charged at a constant current and constant voltage of 2.23 V / cell at a rate of 5 hours in an air tank at 25 ° C. Charging is completed when the current becomes 1 mCA or less.
In the present specification, 1CA is a current value (A) having the same numerical value as the nominal capacity (Ah) of the battery. For example, in the case of a battery having a nominal capacity of 30 Ah, 1CA is 30 A and 1 mCA is 30 mA.

(2)有機防縮剤の分析
まず、既化成の満充電状態の鉛蓄電池を分解し、負極板を取り出し、水洗により硫酸を除去し、真空乾燥(大気圧より低い圧力下で乾燥)する。次に、乾燥した負極板から負極電極材料(初期試料)を採取し、初期試料を下記方法で分析する。
(2) Analysis of organic shrinkant Next, the negative electrode material (initial sample) is collected from the dried negative electrode plate, and the initial sample is analyzed by the following method.

(2-1)負極電極材料中の有機防縮剤の定性分析
初期試料を1mol/Lの水酸化ナトリウム(NaOH)水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出された有機防縮剤を含むNaOH水溶液から不溶成分を濾過で取り除き、得られた濾液を透析により脱塩した後、濃縮し、乾燥する。脱塩は、濾液をイオン交換膜に通すことにより行うか、もしくは濾液を透析チューブに入れて蒸留水中に浸すことにより行なう。これにより有機防縮剤の粉末試料が得られる。
(2-1) Qualitative analysis of the organic shrinkage proofing agent in the negative electrode material The initial sample is immersed in a 1 mol / L sodium hydroxide (NaOH) aqueous solution to extract the organic shrinkage proofing agent. Next, the insoluble component is removed by filtration from the extracted NaOH aqueous solution containing an organic shrinkage proofing agent, the obtained filtrate is desalted by dialysis, concentrated, and dried. Desalination is performed by passing the filtrate through an ion exchange membrane, or by placing the filtrate in a dialysis tube and immersing it in distilled water. This gives a powder sample of the organic shrink proofing agent.

このようにして得た有機防縮剤の粉末試料を用いて測定した赤外分光スペクトルや、粉末試料を蒸留水等で希釈し、紫外可視吸光度計で測定した紫外可視吸収スペクトル、重水等の所定の溶媒で溶解し、得られた溶液のNMRスペクトルなどから得た情報を組み合わせて用いて、有機防縮剤種を特定する。 Predetermined infrared spectroscopic spectra measured using the powder sample of the organic shrink proofing agent thus obtained, ultraviolet-visible absorption spectra measured by an ultraviolet-visible absorptiometer after diluting the powder sample with distilled water, etc., and heavy water, etc. The organic shrink-proofing agent species is specified by dissolving in a solvent and using a combination of information obtained from the NMR spectrum of the obtained solution and the like.

(2-2)負極電極材料中における有機防縮剤の含有量の定量
上記(2-1)と同様に、有機防縮剤を含むNaOH水溶液の濾液を得た後、濾液の紫外可視吸収スペクトルを測定する。スペクトル強度と、予め作成した検量線とを用いて、負極電極材料中の有機防縮剤の含有量を定量する。
(2-2) Quantification of the content of the organic shrinkage proofing agent in the negative electrode material In the same manner as in (2-1) above, after obtaining a filtrate of the NaOH aqueous solution containing the organic shrinkage proofing agent, the ultraviolet-visible absorption spectrum of the filtrate is measured. do. The content of the organic shrinkage barrier in the negative electrode electrode material is quantified using the spectral intensity and the calibration curve prepared in advance.

なお、有機防縮剤の含有量が未知の鉛蓄電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できないことがある。この場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機防縮剤を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定するものとする。 When a lead-acid battery having an unknown content of the organic shrinkage proof is obtained and the content of the organic shrinkage proofing agent is measured, the structural formula of the organic shrinkage proofing agent cannot be specified exactly, so that the same organic shrinkage proofing is applied to the calibration curve. The agent may not be available. In this case, calibration is performed using an organic shrinkage proofing agent extracted from the negative electrode of the battery and a separately available organic shrinkage proofing agent having a similar shape in the ultraviolet-visible absorption spectrum, the infrared spectroscopic spectrum, and the NMR spectrum. By creating a line, the content of the organic shrink-proofing agent shall be measured using the ultraviolet-visible absorption spectrum.

(2-3)有機防縮剤中の硫黄元素の含有量
上記(2-1)と同様に、有機防縮剤の粉末試料を得た後、酸素燃焼フラスコ法によって、0.1gの有機防縮剤中の硫黄元素を硫酸に変換する。このとき、吸着液を入れたフラスコ内で粉末試料を燃焼させることで、硫酸イオンが吸着液に溶け込んだ溶出液を得る。次に、トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。次に、C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
(2-3) Content of sulfur element in organic shrinkage proofing agent In the same manner as in (2-1) above, after obtaining a powder sample of the organic shrinkage proofing agent, 0.1 g of the organic shrinkage proofing agent is added by the oxygen combustion flask method. Converts the sulfur element of the to sulfuric acid. At this time, by burning the powder sample in the flask containing the adsorbent, an eluate in which sulfate ions are dissolved in the adsorbent is obtained. Next, by titrating the eluate with barium perchlorate using thorin as an indicator, the content (C1) of the sulfur element in 0.1 g of the organic shrink-proofing agent is determined. Next, C1 is multiplied by 10 to calculate the content of sulfur element (μmol / g) in the organic shrinkage proofing agent per 1 g.

図1は、本発明の実施形態に係る鉛蓄電池のフタを外した一例を模式的に示す斜視図である。図2Aは、図1の鉛蓄電池の正面図であり、図2Bは、図2AのIIB-IIB線による矢示断面図である。
鉛蓄電池1は、極板群11と電解液12とを収容する電槽10を具備する。極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2が、袋状のセパレータ4で包まれている状態を示すが、セパレータの形態は特に限定されない。
FIG. 1 is a perspective view schematically showing an example in which the lid of the lead storage battery according to the embodiment of the present invention is removed. 2A is a front view of the lead-acid battery of FIG. 1, and FIG. 2B is a cross-sectional view taken along the line IIB-IIB of FIG. 2A.
The lead-acid battery 1 includes an electric tank 10 that houses the electrode plate group 11 and the electrolytic solution 12. The electrode plate group 11 is configured by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 via a separator 4, respectively. Here, the negative electrode plate 2 is wrapped in the bag-shaped separator 4, but the form of the separator is not particularly limited.

複数の負極板2のそれぞれの上部には、上方に突出する集電用の耳部(図示せず)が設けられている。複数の正極板3のそれぞれの上部にも、上方に突出する集電用の耳部(図示せず)が設けられている。そして、負極板2の耳部同士は負極用ストラップ5aにより連結され一体化されている。同様に、正極板3の耳部同士も正極用ストラップ5bにより連結されて一体化されている。負極用ストラップ5aの上部には負極柱6aの下端部が固定され、正極用ストラップ5bの上部には正極柱6bの下端部が固定されている。 At the upper part of each of the plurality of negative electrode plates 2, an ear portion (not shown) for collecting electricity is provided so as to project upward. An ear portion (not shown) for collecting electricity is also provided on the upper portion of each of the plurality of positive electrode plates 3 so as to project upward. The ears of the negative electrode plate 2 are connected to each other by the negative electrode strap 5a and integrated. Similarly, the ears of the positive electrode plate 3 are also connected and integrated by the positive electrode strap 5b. The lower end of the negative electrode column 6a is fixed to the upper part of the negative electrode strap 5a, and the lower end of the positive electrode column 6b is fixed to the upper part of the positive electrode strap 5b.

本発明の一側面に係る鉛蓄電池を以下にまとめて記載する。
(1)鉛蓄電池であって、前記鉛蓄電池は、負極板と、正極板と、電解液と、を備え、
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、硫黄元素を含む有機防縮剤を含み、
前記有機防縮剤中の前記硫黄元素の含有量は、4000μmol/g以上であり、
前記負極板の高さは、10cmを超える、鉛蓄電池である。
The lead-acid batteries according to one aspect of the present invention are summarized below.
(1) A lead storage battery, wherein the lead storage battery includes a negative electrode plate, a positive electrode plate, and an electrolytic solution.
The negative electrode plate comprises a negative electrode current collector and a negative electrode material.
The negative electrode material contains an organic shrinkage proofing agent containing a sulfur element, and the negative electrode material contains.
The content of the sulfur element in the organic shrinkage proofing agent is 4000 μmol / g or more, and the content is 4000 μmol / g or more.
The height of the negative electrode plate is a lead storage battery exceeding 10 cm.

(2)上記(1)において、前記硫黄元素の含有量は、6000μmol/g以上であることが好ましい。 (2) In the above (1), the content of the sulfur element is preferably 6000 μmol / g or more.

(3)上記(1)または(2)において、前記負極板の高さは、20cm以上であることが好ましい。 (3) In the above (1) or (2), the height of the negative electrode plate is preferably 20 cm or more.

(4)上記(1)~(3)のいずれか1つにおいて、前記負極電極材料の密度は、2.5g/cm以上4.0g/cm以下であることが好ましい。 (4) In any one of the above (1) to (3), the density of the negative electrode material is preferably 2.5 g / cm 3 or more and 4.0 g / cm 3 or less.

(5)上記(1)~(4)のいずれか1つにおいて、前記負極板は、前記負極板の上端部に耳部を備えており、前記耳部は、前記鉛蓄電池を設置した状態で、前記鉛蓄電池の上側に位置していることが好ましい。 (5) In any one of the above (1) to (4), the negative electrode plate has an ear portion at the upper end portion of the negative electrode plate, and the ear portion is in a state where the lead storage battery is installed. , It is preferable that it is located above the lead storage battery.

(6)上記(1)~(5)のいずれか1つにおいて、前記負極板の高さは、100cm以下であることが好ましい。 (6) In any one of the above (1) to (5), the height of the negative electrode plate is preferably 100 cm or less.

(7)上記(1)~(6)のいずれか1つにおいて、前記負極集電体は、打ち抜き方式の格子体であることが好ましい。 (7) In any one of the above (1) to (6), it is preferable that the negative electrode current collector is a punched lattice body.

(8)上記(1)~(7)のいずれか1つにおいて、前記硫黄元素の含有量は、10000μmol/g以下または9000μmol/g以下であることが好ましい。 (8) In any one of the above (1) to (7), the content of the sulfur element is preferably 10,000 μmol / g or less or 9000 μmol / g or less.

(9)上記(1)~(8)のいずれか1つにおいて、前記負極電極材料中に含まれる前記有機防縮剤の含有量は、0.01質量%以上が好ましい。 (9) In any one of the above (1) to (8), the content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is preferably 0.01% by mass or more.

(10)上記(1)~(9)のいずれか1つにおいて、前記負極電極材料中に含まれる前記有機防縮剤の含有量は、1.0質量%以下が好ましい。 (10) In any one of the above (1) to (9), the content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is preferably 1.0% by mass or less.

(11)上記(1)~(10)のいずれか1つにおいて、前記鉛蓄電池は、充電量/放電量の比が、100%以上で充放電されることが好ましい。 (11) In any one of the above (1) to (10), it is preferable that the lead-acid battery is charged / discharged at a charge / discharge ratio of 100% or more.

(12)上記(1)~(11)のいずれか1つにおいて、前記鉛蓄電池は、電動車両用であることが好ましい。 (12) In any one of the above (1) to (11), the lead storage battery is preferably for an electric vehicle.

以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

《参考例1》
(1)負極板の作製
(a)高さ20cmの負極板の作製
鉛粉、水、希硫酸、硫酸バリウム、カーボンブラック、および所定量の有機防縮剤を混合して、負極ペーストを得る。負極ペーストを、Pb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の負極板(高さ20cm)を得る。有機防縮剤には、スルホン酸基を導入したビスフェノール化合物のホルムアルデヒドによる縮合物を用いる。ここでは、有機防縮剤中の硫黄元素の含有量が4000μmol/gになるように、導入するスルホン酸基の量を制御する。
<< Reference example 1 >>
(1) Preparation of Negative Electrode Plate (a) Preparation of Negative Electrode Plate with Height 20 cm Lead powder, water, dilute sulfuric acid, barium sulfate, carbon black, and a predetermined amount of organic shrink-proofing agent are mixed to obtain a negative electrode paste. The negative electrode paste is filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn alloy, and aged and dried to obtain an unchemicald negative electrode plate (height 20 cm). As the organic shrinkage proofing agent, a condensate of a bisphenol compound having a sulfonic acid group introduced by formaldehyde is used. Here, the amount of the sulfonic acid group to be introduced is controlled so that the content of the sulfur element in the organic shrinkage proofing agent is 4000 μmol / g.

なお、有機防縮剤中の硫黄元素含有量(μmol/g)については、負極電極材料を調製する前の値と、鉛蓄電池を解体し、有機防縮剤を抽出して測定した値には差がない。そのため、以下、実施例、参考例、および比較例で記載した有機防縮剤中の硫黄元素含有量としては、負極電極材料を調製する前の有機防縮剤について求めた値を記載している。 Regarding the sulfur element content (μmol / g) in the organic shrinkage proofing agent, there is a difference between the value before preparing the negative electrode electrode material and the value measured by disassembling the lead storage battery and extracting the organic shrinkage proofing agent. do not have. Therefore, as the sulfur element content in the organic shrinkage proofing agents described in Examples, Reference Examples, and Comparative Examples, the values obtained for the organic shrinkage proofing agent before preparing the negative electrode electrode material are described below.

有機防縮剤は、既化成で満充電後の負極電極材料100質量%に含まれる有機防縮剤の含有量(A(質量%))が0.15質量%になるように、添加量を調整して、負極ペーストに配合する。また、負極ペーストを調製する際には、既化成で満充電後の負極電極材料の密度が4.0g/cmになるように、負極ペーストに加える水と希硫酸の量を調節する。なお、負極電極材料の密度は、既述の手順で、化成後の電池を満充電してから解体し、回収した測定試料を用いて求める。電池の満充電は、既述の手順で行なう。負極電極材料の密度は、島津製作所(株)製の自動ポロシメータ(オートポアIV9505)を用いて既述の方法で測定する。 The amount of the organic shrinkage proofing agent is adjusted so that the content (A (mass%)) of the organic shrinkage proofing agent contained in 100% by mass of the negative electrode electrode material after being fully charged is 0.15% by mass. And mix it with the negative electrode paste. When preparing the negative electrode paste, the amount of water and dilute sulfuric acid added to the negative electrode paste is adjusted so that the density of the negative electrode material after being fully charged is 4.0 g / cm 3 . The density of the negative electrode material is determined by using the measured sample collected by disassembling the battery after the chemical conversion after fully charging the battery in the procedure described above. The battery is fully charged according to the procedure described above. The density of the negative electrode material is measured by the method described above using an automatic porosimeter (Autopore IV9505) manufactured by Shimadzu Corporation.

(b)高さの異なる負極板の作製
上記の(a)の高さが20cmである負極板の場合に準じて、高さが6cm、10cm、15cm、30cm、40cm、50cmおよび60cmの未化成の負極板をそれぞれ作製する。
(B) Preparation of negative electrode plates having different heights According to the case of the negative electrode plate having a height of 20 cm in (a) above, the heights are 6 cm, 10 cm, 15 cm, 30 cm, 40 cm, 50 cm and 60 cm. Each of the negative electrode plates is manufactured.

(2)正極板の作製
鉛粉と、水と、硫酸とを混練させて、正極ペーストを作製する。正極ペーストを、Pb-Ca-Sn系合金製のエキスパンド格子の網目部に充填し、熟成、乾燥し、未化成の正極板を得る。未化成の正極板の高さは、未化成の負極板と同じ高さとする。
(2) Preparation of positive electrode plate Lead powder, water, and sulfuric acid are kneaded to prepare a positive electrode paste. The positive electrode paste is filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn based alloy, and aged and dried to obtain an unchemicald positive electrode plate. The height of the unchemical positive electrode plate shall be the same as the height of the unchemical negative electrode plate.

(3)鉛蓄電池の作製
未化成の負極板を、ポリエチレン製の微多孔膜で形成された袋状セパレータに収容し、セル当たり未化成の負極板5枚と未化成の正極板4枚とで極板群を形成する。未化成の負極板と未化成の正極板とは同じ高さのものを組み合わせる。
(3) Preparation of lead-acid battery The unchemical negative electrode plate is housed in a bag-shaped separator formed of a polyethylene microporous membrane, and 5 unchemical negative electrode plates and 4 unchemical positive electrode plates are used per cell. Form a group of plates. The unchemical negative electrode plate and the unchemical positive electrode plate are combined at the same height.

極板群をポリプロピレン製の電槽に挿入し、電解液を注液して、電槽内で化成を施し、各高さの負極板および正極板を用いた極板群ごとに、液式の鉛蓄電池を組み立てる。鉛蓄電池の端子電圧は2Vであり、公称容量は、極板の高さ1cm当たり、8Ah/cmとする。 The electrode plate group is inserted into a polypropylene electric tank, an electrolytic solution is injected, and chemical formation is performed in the electric tank. For each electrode plate group using a negative electrode plate and a positive electrode plate of each height, a liquid type Assemble the lead-acid battery. The terminal voltage of the lead storage battery is 2V, and the nominal capacity is 8Ah / cm per 1 cm of the height of the electrode plate.

なお、作製した1つの鉛蓄電池について、既述の手順で、負極板から取り出した負極電極材料(100質量%)中に含まれる有機防縮剤の含有量(A(質量%))を求める。このようにして定量される有機防縮剤の含有量は、鉛蓄電池について調製される負極電極材料(100質量%)中の有機防縮剤の含有量(B(質量%))とは幾分異なった値となる。そのため、これらの含有量AおよびBの比率R(=A/B)を予め求め、他の鉛蓄電池の負極板に使用する負極電極材料を調製する際に、比率Rを利用して、負極電極材料中の有機防縮剤の含有量(A(質量%))が所定の値になるように、調製される負極電極材料中の有機防縮剤の含有量(B(質量%))を調整する。また、実施例、参考例、および比較例では、使用する有機防縮剤の硫黄元素含有量ごとに比率Rを求め、同じ硫黄元素含有量の有機防縮剤を用いる負極電極材料については、求めた比率Rに基づいて有機防縮剤の含有量(B(質量%))を調整する。 The content (A (mass%)) of the organic shrinkage-proofing agent contained in the negative electrode material (100% by mass) taken out from the negative electrode plate is determined for one of the manufactured lead-acid batteries by the procedure described above. The content of the organic shrinkage proofing agent quantified in this way was somewhat different from the content of the organic shrinkage proofing agent (B (mass%)) in the negative electrode electrode material (100% by mass) prepared for the lead storage battery. It becomes a value. Therefore, when the ratio R (= A / B) of these contents A and B is obtained in advance and the negative electrode material to be used for the negative electrode plate of another lead storage battery is prepared, the ratio R is used to obtain the negative electrode. The content of the organic shrinkage-proofing agent (B (mass%)) in the prepared negative electrode electrode material is adjusted so that the content of the organic shrinkage-proofing agent (A (mass%)) in the material becomes a predetermined value. Further, in Examples, Reference Examples, and Comparative Examples, the ratio R was obtained for each sulfur element content of the organic shrinkage proofing agent used, and the obtained ratio was obtained for the negative electrode material using the organic shrinkage proofing agent having the same sulfur element content. The content of the organic shrinkage proofing agent (B (% by mass)) is adjusted based on R.

《実施例1~4および参考例2》
有機防縮剤中の硫黄元素の含有量が、6000μmol/g(実施例1)、7000μmol/g(実施例2)、8000μmol/g(実施例3)、9000μmol/g(実施例4)、または3000μmol/g(参考例2)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節する。これらの硫黄元素の含有量を有する有機防縮剤をそれぞれ用いること以外は、参考例1と同様にして、各高さを有する負極板を形成する。得られた負極板を用いること以外は、参考例1と同様にして、鉛蓄電池を組み立てる。
<< Examples 1 to 4 and Reference Example 2 >>
The content of the sulfur element in the organic shrinkage proofing agent is 6000 μmol / g (Example 1), 7000 μmol / g (Example 2), 8000 μmol / g (Example 3), 9000 μmol / g (Example 4), or 3000 μmol. The amount of the sulfonic acid group introduced into the formaldehyde-based condensate of the bisphenol compound is adjusted so as to be / g (Reference Example 2). A negative electrode plate having each height is formed in the same manner as in Reference Example 1 except that each of these organic shrink proofing agents having a sulfur element content is used. A lead storage battery is assembled in the same manner as in Reference Example 1 except that the obtained negative electrode plate is used.

《比較例1》
合成有機防縮剤の代わりに、天然物に由来し、硫黄元素の含有量が600μmol/gであるリグニンを用いること以外は、参考例1と同様に、各高さを有する負極板を形成する。得られた負極板を用いること以外は、参考例1と同様にして、鉛蓄電池を組み立てる。
<< Comparative Example 1 >>
Similar to Reference Example 1, a negative electrode plate having each height is formed, except that lignin derived from a natural product and having a sulfur element content of 600 μmol / g is used instead of the synthetic organic shrinkage proofing agent. A lead storage battery is assembled in the same manner as in Reference Example 1 except that the obtained negative electrode plate is used.

[評価1]
実施例1~4、参考例1~2、および比較例1で作製した鉛蓄電池に関し、充放電サイクル試験を行い、600サイクル目で、負極板の下部(負極板の高さの下から20%の位置)における硫酸鉛の蓄積量を調べる。充放電サイクル試験は、JIS5303-1に準拠して行う。より具体的には、温度40℃にて、鉛蓄電池を、電流値0.25CAで3時間放電し、電流値0.2CAで放電量の125%まで充電するサイクルを繰り返す。
[Evaluation 1]
The lead-acid batteries produced in Examples 1 to 4, Reference Examples 1 and 2, and Comparative Example 1 were subjected to a charge / discharge cycle test, and at the 600th cycle, the lower part of the negative electrode plate (20% from the bottom of the height of the negative electrode plate). Investigate the amount of lead sulfate accumulated at (position). The charge / discharge cycle test is performed in accordance with JIS5303-1. More specifically, the cycle of discharging the lead-acid battery at a temperature of 40 ° C. at a current value of 0.25 CA for 3 hours and charging the lead storage battery at a current value of 0.2 CA to 125% of the discharge amount is repeated.

硫酸鉛の蓄積量の測定では、まず、鉛蓄電池から負極板を取り出し、負極板を水洗、真空乾燥(大気圧より低い圧力下で乾燥)する。負極板下部から負極電極材料を採取し、粉砕する。次に、硫黄元素分析装置(例えばLECO社製、S-200型)を用いて、粉砕された負極電極材料(粉砕試料)中の硫黄元素の含有量を測定する。そして、下記式に従い、負極電極材料中に蓄積された硫酸鉛中の硫黄元素の含有量を求める。 In the measurement of the accumulated amount of lead sulfate, first, the negative electrode plate is taken out from the lead storage battery, the negative electrode plate is washed with water, and vacuum dried (dried under a pressure lower than atmospheric pressure). Negative electrode material is collected from the lower part of the negative electrode plate and crushed. Next, the content of sulfur element in the crushed negative electrode material (crushed sample) is measured using a sulfur element analyzer (for example, S-200 type manufactured by LECO). Then, the content of the sulfur element in the lead sulfate accumulated in the negative electrode electrode material is determined according to the following formula.

硫酸鉛中の硫黄元素の含有量
=(硫黄元素分析装置で得られる硫黄元素の含有量)-(粉砕試料の質量(g)×有機防縮剤の含有量(g/g)×有機防縮剤中の硫黄元素の含有量(g/g))
Sulfur element content in lead sulfate = (content of sulfur element obtained by sulfur element analyzer)-(mass of crushed sample (g) x content of organic shrinkage proofing agent (g / g) x in organic shrinkage proofing agent Sulfur element content (g / g))

次に、硫酸鉛中の硫黄元素の含有量を、硫酸鉛量に換算し、粉砕試料の単位質量あたりの硫酸鉛濃度(質量%)を求めて、硫酸鉛の蓄積量とする。そして、硫酸鉛の蓄積量は、比較例1において負極板の高さが6cmの場合の硫酸鉛の蓄積量を100としたときの比率(%)で表す。硫酸鉛の蓄積量が多いほど、サルフェーションや電解液の成層化が進行しているといえる。 Next, the content of the sulfur element in lead sulfate is converted into the amount of lead sulfate, and the lead sulfate concentration (% by mass) per unit mass of the pulverized sample is obtained and used as the accumulated amount of lead sulfate. The amount of lead sulfate accumulated is expressed as a ratio (%) when the accumulated amount of lead sulfate is 100 when the height of the negative electrode plate is 6 cm in Comparative Example 1. It can be said that the greater the amount of lead sulfate accumulated, the more the sulfation and the stratification of the electrolytic solution progress.

硫黄元素の含有量が異なる各有機防縮剤について、負極板の高さと硫酸鉛の蓄積量との関係を表1および図3、ならびに表2および図4に示す。表1および表2には、負極板の下部における硫酸鉛の蓄積量(%)を示す。 Tables 1 and 3 and Tables 2 and 4 show the relationship between the height of the negative electrode plate and the accumulated amount of lead sulfate for each organic shrinkage agent having a different sulfur element content. Tables 1 and 2 show the accumulated amount (%) of lead sulfate in the lower part of the negative electrode plate.

Figure 2022009931000002
Figure 2022009931000002

Figure 2022009931000003
Figure 2022009931000003

硫黄元素の含有量が600μmol/g~3000μmol/gの有機防縮剤を用いた比較例1および参考例2と、4000μmol/g以上の有機防縮剤を用いた参考例1および実施例1~4とでは、負極板の高さに対する硫酸鉛の蓄積量の変化の挙動が全く異なる(表1および図3)。 Comparative Example 1 and Reference Example 2 using an organic shrinkage proofing agent having a sulfur element content of 600 μmol / g to 3000 μmol / g, and Reference Example 1 and Examples 1 to 4 using an organic shrinkage proofing agent having a sulfur element content of 4000 μmol / g or more. Then, the behavior of the change in the accumulated amount of lead sulfate with respect to the height of the negative electrode plate is completely different (Table 1 and FIG. 3).

具体的には、比較例1および参考例2では、負極板の高さが高くなるにつれて硫酸鉛の蓄積量が多くなり、10cmを超える高さでも硫酸鉛の蓄積量は非常に多くなっている。これに対し、参考例1および実施例1~4では、負極の高さが低い場合には、硫酸鉛の蓄積量の変化はほとんどなく、10cmを超える高さでも硫酸鉛の蓄積量の変化は比較例1および参考例2に比べて緩やかになっている。このように、高さ10cmを超える場合には、通常、硫酸鉛の蓄積量が非常に多くなるが(比較例1および参考例2)、参考例1および実施例1~4では、硫酸鉛の蓄積を大きく抑制できている。 Specifically, in Comparative Example 1 and Reference Example 2, the accumulated amount of lead sulfate increases as the height of the negative electrode plate increases, and the accumulated amount of lead sulfate increases even at a height of more than 10 cm. .. On the other hand, in Reference Example 1 and Examples 1 to 4, when the height of the negative electrode is low, there is almost no change in the accumulated amount of lead sulfate, and even when the height exceeds 10 cm, the accumulated amount of lead sulfate does not change. It is looser than that of Comparative Example 1 and Reference Example 2. As described above, when the height exceeds 10 cm, the accumulated amount of lead sulfate is usually very large (Comparative Example 1 and Reference Example 2), but in Reference Example 1 and Examples 1 to 4, lead sulfate is accumulated. Accumulation can be greatly suppressed.

表1および図3、ならびに表2および図4より、硫酸鉛の蓄積を抑制する高い効果が得られる点からは、有機防縮剤中の硫黄元素の含有量は、6000μmol/g以上であることが好ましい。この場合、負極板の高さが15cm以上であっても、硫酸鉛の蓄積を抑制することができる。また、有機防縮剤中の硫黄元素の含有量が7000μmol/g以上である場合には、負極板の高さが20cm以上になっても、負極板の下部の領域における硫酸鉛の蓄積が殆ど見られない。 From Tables 1 and 3, and from Tables 2 and 4, the content of the sulfur element in the organic shrink-proofing agent is 6000 μmol / g or more from the viewpoint of obtaining a high effect of suppressing the accumulation of lead sulfate. preferable. In this case, even if the height of the negative electrode plate is 15 cm or more, the accumulation of lead sulfate can be suppressed. Further, when the content of the sulfur element in the organic shrink proofing agent is 7,000 μmol / g or more, even if the height of the negative electrode plate is 20 cm or more, the accumulation of lead sulfate in the lower region of the negative electrode plate is almost observed. I can't.

[評価2]
評価1の充放電サイクル試験において、放電容量が、鉛蓄電池の公称容量の80%を下回ったときのサイクル数を求め、鉛蓄電池の寿命サイクルを評価する。そして、鉛蓄電池の寿命サイクルは、比較例1において負極板の高さが6cmの場合の寿命サイクルを100としたときの比率(%)で表す。
[Evaluation 2]
In the charge / discharge cycle test of evaluation 1, the number of cycles when the discharge capacity falls below 80% of the nominal capacity of the lead storage battery is determined, and the life cycle of the lead storage battery is evaluated. The life cycle of the lead storage battery is expressed as a ratio (%) when the life cycle when the height of the negative electrode plate is 6 cm in Comparative Example 1 is set to 100.

硫黄元素の含有量が異なる各有機防縮剤を用いた場合について、負極板の高さと鉛蓄電池の寿命サイクルとの関係を表3および図5、ならびに表4および図6に示す。表3および表4には、寿命サイクル(%)を示す。 Tables 3 and 5, and Tables 4 and 6 show the relationship between the height of the negative electrode plate and the life cycle of the lead-acid battery when each organic shrinkage agent having a different sulfur element content is used. Tables 3 and 4 show the life cycle (%).

Figure 2022009931000004
Figure 2022009931000004

Figure 2022009931000005
Figure 2022009931000005

寿命サイクルの結果は、表1および図3、ならびに表2および図4の硫酸鉛の蓄積量と類似の結果を示している。つまり、負極板の高さが10cmを超える場合には、通常、寿命サイクルは大きく低下するが(比較例1および参考例2)、参考例1および実施例1~4では、寿命サイクルの低下が緩やかである。特に、有機防縮剤の硫黄含有量が6000μmol/g以上もしくは7000μmol/g以上の場合には、負極板の高さが15cm以上もしくは20cm以上と高くなっても、寿命サイクルの低下を抑制することができる。 The results of the life cycle show similar results to the amount of lead sulfate accumulated in Tables 1 and 3, and Tables 2 and 4. That is, when the height of the negative electrode plate exceeds 10 cm, the life cycle is usually greatly reduced (Comparative Example 1 and Reference Example 2), but in Reference Example 1 and Examples 1 to 4, the life cycle is reduced. It is gradual. In particular, when the sulfur content of the organic shrinkage proofing agent is 6000 μmol / g or more or 7,000 μmol / g or more, even if the height of the negative electrode plate is as high as 15 cm or more or 20 cm or more, the decrease in the life cycle can be suppressed. can.

《実施例5》
既化成の負極電極材料の密度が2.5g/cmになるように負極ペーストに加える水と希硫酸の量を調節すること以外は、参考例1と同様にして高さ20cmの負極板を作製する。
また、有機防縮剤中の硫黄元素の含有量が5000μmol/g(参考例)、6000μmol/g、7000μmol/g、8000μmol/g、9000μmol/g、または3000μmol/gになるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節する。これらの硫黄元素の含有量を有する有機防縮剤をそれぞれ用いること以外は、参考例1と同様にして、20cmの負極板を形成する。
<< Example 5 >>
A negative electrode plate having a height of 20 cm is used in the same manner as in Reference Example 1 except that the amount of water and dilute sulfuric acid added to the negative electrode paste is adjusted so that the density of the ready-made negative electrode material becomes 2.5 g / cm 3 . To make.
Further, the content of the sulfur element in the organic shrinkage proofing agent is 5000 μmol / g (reference example), 6000 μmol / g, 7000 μmol / g, 8000 μmol / g, 9000 μmol / g, or 3000 μmol / g, respectively. Adjust the amount of sulfonic acid groups introduced into the formaldehyde condensate. A 20 cm negative electrode plate is formed in the same manner as in Reference Example 1 except that each of these organic shrink proofing agents having a sulfur element content is used.

合成有機防縮剤の代わりに、天然物に由来し、硫黄元素の含有量が600μmol/gであるリグニンを用いること以外は、実施例1と同様にして高さ20cmの負極板を形成する。
そして、上記で得られた負極板を用いること以外は、参考例1と同様にして、鉛蓄電池を組み立てる。
A negative electrode plate having a height of 20 cm is formed in the same manner as in Example 1 except that lignin derived from a natural product and having a sulfur element content of 600 μmol / g is used instead of the synthetic organic shrinkage proofing agent.
Then, the lead storage battery is assembled in the same manner as in Reference Example 1 except that the negative electrode plate obtained above is used.

《実施例6》
既化成の負極電極材料の密度が4.5g/cmになるように負極ペーストに加える水と希硫酸の量を調節すること以外は、実施例5と同様にして、各硫黄元素の含有量につき、高さ20cmの負極板を作製する。
そして、上記で得られた負極板を用いること以外は、参考例1と同様にして、鉛蓄電池を組み立てる。
<< Example 6 >>
The content of each sulfur element is the same as in Example 5, except that the amount of water and dilute sulfuric acid added to the negative electrode paste is adjusted so that the density of the ready-made negative electrode material becomes 4.5 g / cm 3 . Therefore, a negative electrode plate having a height of 20 cm is produced.
Then, the lead storage battery is assembled in the same manner as in Reference Example 1 except that the negative electrode plate obtained above is used.

[評価3]
実施例5および実施例6で作製した鉛蓄電池の5時間率容量を次のようにして求める。電解液温度30℃にて、満充電状態から、0.20CAで、電池電圧が1.72Vになるまで鉛蓄電池を放電し、このときの放電持続時間および放電電流を求める。放電持続時間と放電電流との積から5時間率容量を求める。そして、5時間率容量を、比較例1の高さ20cmの負極板を用いた場合の5時間率容量を100としたときの比率(%)で表す。
[Evaluation 3]
The 5-hour rate capacity of the lead-acid batteries produced in Examples 5 and 6 is determined as follows. The lead-acid battery is discharged at 0.20 CA from a fully charged state at an electrolytic solution temperature of 30 ° C. until the battery voltage reaches 1.72 V, and the discharge duration and discharge current at this time are obtained. The 5-hour rate capacity is obtained from the product of the discharge duration and the discharge current. Then, the 5-hour rate capacity is expressed as a ratio (%) when the 5-hour rate capacity is 100 when the negative electrode plate having a height of 20 cm of Comparative Example 1 is used.

負極電極材料の密度が異なる負極板につき、有機防縮剤中の硫黄元素の含有量と5時間率容量との関係を表5および図7に示す。表5および図7には、参考例1、実施例1~4、参考例2および比較例1において負極板の高さが20cmの場合(負極電極材料の密度=4.0g/cm)の結果、並びにこれらの場合に対応し、かつ硫黄元素含有量が5000μmol/gである有機防縮剤を用いた結果も合わせて示す。表5には、5時間率容量(%)を示す。 Tables 5 and 7 show the relationship between the content of the sulfur element in the organic shrinkage proofing agent and the 5-hour rate capacity for the negative electrode plates having different densities of the negative electrode materials. In Table 5 and FIG. 7, when the height of the negative electrode plate is 20 cm in Reference Example 1, Examples 1 to 4, Reference Example 2 and Comparative Example 1 (density of negative electrode material = 4.0 g / cm 3 ). The results and the results of using an organic shrink-proofing agent corresponding to these cases and having a sulfur element content of 5000 μmol / g are also shown. Table 5 shows the 5-hour rate capacity (%).

Figure 2022009931000006
Figure 2022009931000006

表5および図7に示されるように、有機防縮剤の硫黄元素の含有量が大きくなる(具体的には、6000μmol/g以上になる)と、負極電極材料の密度によっては、5時間率容量が低下する。よって、高い5時間率容量を確保する点からは、負極電極材料の密度は、4.0g/cm以下であることが好ましい。 As shown in Table 5 and FIG. 7, when the sulfur element content of the organic shrink proofing agent increases (specifically, it becomes 6000 μmol / g or more), the 5-hour rate capacity depends on the density of the negative electrode material. Decreases. Therefore, from the viewpoint of ensuring a high 5-hour rate capacity, the density of the negative electrode material is preferably 4.0 g / cm 3 or less.

《参考例1A》
参考例1の(a)の高さが20cmである負極板の場合に準じて、高さが5cm、12cm、70cm、および80cmの未化成の負極板をそれぞれ作製する。得られる負極板を用いること以外は、参考例1と同様にして、鉛蓄電池を組み立てる。
<< Reference Example 1A >>
According to the case of the negative electrode plate having a height of 20 cm in Reference Example 1 (a), unchemical negative electrode plates having heights of 5 cm, 12 cm, 70 cm, and 80 cm are produced, respectively. A lead-acid battery is assembled in the same manner as in Reference Example 1 except that the obtained negative electrode plate is used.

《実施例1A~4Aおよび参考例2A》
有機防縮剤中の硫黄元素の含有量が、6000μmol/g(実施例1A)、7000μmol/g(実施例2A)、8000μmol/g(実施例3A)、9000μmol/g(実施例4A)、または3000μmol/g(参考例2A)になるように、それぞれ、ビスフェノール化合物のホルムアルデヒドによる縮合物に導入するスルホン酸基の量を調節する。これらの硫黄元素の含有量を有する有機防縮剤をそれぞれ用いること以外は、参考例1Aと同様にして、各高さを有する負極板を形成する。得られる負極板を用いること以外は、参考例1と同様にして、鉛蓄電池を組み立てる。
<< Examples 1A to 4A and Reference Example 2A >>
The content of the sulfur element in the organic shrink proofing agent is 6000 μmol / g (Example 1A), 7000 μmol / g (Example 2A), 8000 μmol / g (Example 3A), 9000 μmol / g (Example 4A), or 3000 μmol. The amount of the sulfonic acid group introduced into the formaldehyde-based condensate of the bisphenol compound is adjusted so as to be / g (Reference Example 2A). A negative electrode plate having each height is formed in the same manner as in Reference Example 1A except that each of these organic shrink proofing agents having a sulfur element content is used. A lead-acid battery is assembled in the same manner as in Reference Example 1 except that the obtained negative electrode plate is used.

《比較例1A》
合成有機防縮剤の代わりに、天然物に由来し、硫黄元素の含有量が600μmol/gであるリグニンを用いること以外は、参考例1Aと同様に、各高さを有する負極板を形成する。得られた負極板を用いること以外は、参考例1と同様にして、鉛蓄電池を組み立てる。
<< Comparative Example 1A >>
Similar to Reference Example 1A, a negative electrode plate having each height is formed except that lignin derived from a natural product and having a sulfur element content of 600 μmol / g is used instead of the synthetic organic shrinkage proofing agent. A lead storage battery is assembled in the same manner as in Reference Example 1 except that the obtained negative electrode plate is used.

[評価4]
実施例1~4、実施例1A~4A、参考例1~2、参考例1A~2A、比較例1、および比較例1Aで作製した鉛蓄電池に関し、評価1の充放電サイクル試験を行なう。より具体的には、温度40℃にて、鉛蓄電池を、電流値0.25CAで3時間放電し、電流値0.2CAで放電量の125%まで充電するサイクルを繰り返す。つまり、充電時の充電量(すなわち、充電電気量)の、放電量(すなわち、放電電気量)に対する比(=充電量/放電量(%))は、125%である。
また、充電量/放電量比を、120%および115%のそれぞれに変更し、上記の125%の場合と同様にサイクルを繰り返す。
そして、比較例1の負極板の高さが6cmの場合の寿命サイクル数を基準の100とし、各充電量/放電量比の場合について、寿命サイクル数が、基準の85%を下回る最小の負極板の高さを評価する。なお、上記の実施例、参考例、および比較例では、基準の85%付近で寿命サイクル数が目だって低下するため、基準の85%を閾値として評価するものとする。
結果を表6に示す。表6には、基準の85%を下回る最小の負極板の高さ(cm)を示す。
[Evaluation 4]
The charge / discharge cycle test of Evaluation 1 is performed on the lead-acid batteries produced in Examples 1 to 4, Examples 1A to 4A, Reference Examples 1 to 2, Reference Examples 1A to 2A, Comparative Example 1 and Comparative Example 1A. More specifically, the cycle of discharging the lead-acid battery at a temperature of 40 ° C. at a current value of 0.25 CA for 3 hours and charging the lead storage battery at a current value of 0.2 CA to 125% of the discharge amount is repeated. That is, the ratio (= charge amount / discharge amount (%)) of the charge amount (that is, the charge electricity amount) at the time of charging to the discharge amount (that is, the discharge electricity amount) is 125%.
Further, the charge / discharge ratio is changed to 120% and 115%, respectively, and the cycle is repeated in the same manner as in the case of 125% above.
Then, the number of life cycles when the height of the negative electrode plate of Comparative Example 1 is 6 cm is set as the standard 100, and the minimum negative electrode whose life cycle number is less than 85% of the standard in the case of each charge amount / discharge amount ratio. Evaluate the height of the board. In the above Examples, Reference Examples, and Comparative Examples, the number of life cycles is remarkably reduced near 85% of the standard, so 85% of the standard is used as the threshold value for evaluation.
The results are shown in Table 6. Table 6 shows the minimum height (cm) of the negative electrode plate, which is less than 85% of the standard.

Figure 2022009931000007
Figure 2022009931000007

表6に示されるように、充電量/放電量の比が100%以上の場合において、硫黄元素含有量が4000μmol/g未満では、基準の85%に満たない負極板の高さの最小値は5cmや10cmである。それに対し、硫黄元素含有量が4000μmol/g以上の場合には、基準の85%に満たない負極板の高さの最小値は、10cmを超える。よって、硫黄元素含有量が4000μmol/g以上の場合には、負極板の高さが10cmを超える場合にも高い寿命サイクルを確保することができると言える。また、充電量/放電量の比が大きくなるにつれて、基準の85%を下回る最小の負極板の高さは高くなり、高い寿命サイクルが得られる。実施例と参考例および比較例とのこのような違いは、実施例に比べて、参考例や比較例において、負極電極材料における抵抗の増加が顕在化して、負極板の下部における硫酸鉛の蓄積が顕著になり、負極板の高さによる影響が顕在化し易いためと考えられる。 As shown in Table 6, when the charge / discharge ratio is 100% or more and the sulfur element content is less than 4000 μmol / g, the minimum height of the negative electrode plate, which is less than 85% of the standard, is It is 5 cm or 10 cm. On the other hand, when the sulfur element content is 4000 μmol / g or more, the minimum height of the negative electrode plate, which is less than 85% of the standard, exceeds 10 cm. Therefore, when the sulfur element content is 4000 μmol / g or more, it can be said that a high life cycle can be ensured even when the height of the negative electrode plate exceeds 10 cm. Further, as the charge / discharge ratio increases, the height of the minimum negative electrode plate, which is less than 85% of the standard, increases, and a long life cycle can be obtained. Such a difference between the example and the reference example and the comparative example is that the increase in resistance in the negative electrode electrode material becomes apparent in the reference example and the comparative example as compared with the example, and the accumulation of lead sulfate in the lower part of the negative electrode plate becomes apparent. This is considered to be because the effect of the height of the negative electrode plate is likely to become apparent.

本発明の一側面に係る鉛蓄電池は、制御弁式および液式の鉛蓄電池に適用可能であり、電動車両(フォークリフトなど)などの産業用蓄電装置などの電源として好適に用いられる。また、自動車もしくはバイクなどの始動用の電源としても利用できる。 The lead-acid battery according to one aspect of the present invention is applicable to control valve type and liquid type lead acid storage batteries, and is suitably used as a power source for industrial power storage devices such as electric vehicles (forklifts and the like). It can also be used as a power source for starting a car or a motorcycle.

本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。 Although the present invention has described preferred embodiments at this time, such disclosures should not be construed in a limited way. Various modifications and modifications will undoubtedly become apparent to those skilled in the art belonging to the present invention by reading the above disclosure. Accordingly, the appended claims should be construed to include all modifications and modifications without departing from the true spirit and scope of the invention.

1:鉛蓄電池
2:負極板
3:正極板
4:セパレータ
5a:負極用ストラップ
5b:正極用ストラップ
6a:負極柱
6b:正極柱
10:電槽
11:極板群
12:電解液
1: Lead-acid battery 2: Negative electrode plate 3: Positive electrode plate 4: Separator 5a: Negative electrode strap 5b: Positive electrode strap 6a: Negative electrode column 6b: Positive electrode column 10: Electrode tank 11: Electrode plate group 12: Electrolyte

Claims (8)

鉛蓄電池であって、
前記鉛蓄電池は、負極板と、正極板と、電解液と、を備え、
前記負極板は、負極集電体と、負極電極材料と、を備え、
前記負極電極材料は、硫黄元素を含む有機防縮剤を含み、
前記有機防縮剤中の前記硫黄元素の含有量は、6000μmol/g以上であり、
前記負極板の高さは、10cmを超える、鉛蓄電池。
It ’s a lead-acid battery.
The lead-acid battery includes a negative electrode plate, a positive electrode plate, and an electrolytic solution.
The negative electrode plate comprises a negative electrode current collector and a negative electrode material.
The negative electrode material contains an organic shrinkage proofing agent containing a sulfur element, and the negative electrode material contains.
The content of the sulfur element in the organic shrinkage proofing agent is 6000 μmol / g or more, and the content is 6000 μmol / g or more.
A lead-acid battery having a height of more than 10 cm on the negative electrode plate.
前記負極電極材料の密度は、2.5g/cm以上4.0g/cm以下である、請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the density of the negative electrode material is 2.5 g / cm 3 or more and 4.0 g / cm 3 or less. 前記負極板は、前記負極板の上端部に耳部を備えており、
前記耳部は、前記鉛蓄電池を設置した状態で、前記鉛蓄電池の上側に位置している、請求項1または2に記載の鉛蓄電池。
The negative electrode plate has an ear portion at the upper end portion of the negative electrode plate.
The lead-acid battery according to claim 1 or 2, wherein the selvage portion is located above the lead-acid battery with the lead-acid battery installed.
前記負極板の高さは、100cm以下である、請求項1~3のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 3, wherein the height of the negative electrode plate is 100 cm or less. 前記負極集電体は、打ち抜き方式の格子体である、請求項1~4のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 4, wherein the negative electrode current collector is a punched-out grid body. 前記硫黄元素の含有量は、10000μmol/g以下である、請求項1~5のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 5, wherein the content of the sulfur element is 10,000 μmol / g or less. 前記負極電極材料中に含まれる前記有機防縮剤の含有量は、0.01質量%以上である、請求項1~6のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 6, wherein the content of the organic shrink-proofing agent contained in the negative electrode electrode material is 0.01% by mass or more. 前記負極電極材料中に含まれる前記有機防縮剤の含有量は、1.0質量%以下である、請求項1~7のいずれか1項に記載の鉛蓄電池。
The lead-acid battery according to any one of claims 1 to 7, wherein the content of the organic shrink-proofing agent contained in the negative electrode electrode material is 1.0% by mass or less.
JP2021179534A 2016-07-29 2021-11-02 lead acid battery Active JP7143927B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016150860 2016-07-29
JP2016150860 2016-07-29
PCT/JP2017/027073 WO2018021420A1 (en) 2016-07-29 2017-07-26 Lead storage cell
JP2018530361A JP6973392B2 (en) 2016-07-29 2017-07-26 Lead-acid battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018530361A Division JP6973392B2 (en) 2016-07-29 2017-07-26 Lead-acid battery

Publications (2)

Publication Number Publication Date
JP2022009931A true JP2022009931A (en) 2022-01-14
JP7143927B2 JP7143927B2 (en) 2022-09-29

Family

ID=61016860

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018530361A Active JP6973392B2 (en) 2016-07-29 2017-07-26 Lead-acid battery
JP2021179534A Active JP7143927B2 (en) 2016-07-29 2021-11-02 lead acid battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018530361A Active JP6973392B2 (en) 2016-07-29 2017-07-26 Lead-acid battery

Country Status (2)

Country Link
JP (2) JP6973392B2 (en)
WO (1) WO2018021420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210513A1 (en) * 2022-04-26 2023-11-02 株式会社Gsユアサ Lead-acid battery and method for manufacturing same, and method for use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419794B2 (en) 2019-12-20 2024-01-23 株式会社Gsユアサ lead acid battery
CN112510214A (en) * 2020-12-08 2021-03-16 英德奥克莱电源有限公司 Lead-acid storage battery with excellent starting performance and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209084A (en) * 2011-03-29 2012-10-25 Gs Yuasa Corp Liquid type lead storage battery
JP2013218894A (en) * 2012-04-09 2013-10-24 Gs Yuasa Corp Lead acid battery
JP2016103422A (en) * 2014-11-28 2016-06-02 株式会社Gsユアサ Lead storage battery and negative electrode plate thereof
WO2016194328A1 (en) * 2015-05-29 2016-12-08 株式会社Gsユアサ Lead storage battery, and process for producing lead storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209084A (en) * 2011-03-29 2012-10-25 Gs Yuasa Corp Liquid type lead storage battery
JP2013218894A (en) * 2012-04-09 2013-10-24 Gs Yuasa Corp Lead acid battery
JP2016103422A (en) * 2014-11-28 2016-06-02 株式会社Gsユアサ Lead storage battery and negative electrode plate thereof
WO2016194328A1 (en) * 2015-05-29 2016-12-08 株式会社Gsユアサ Lead storage battery, and process for producing lead storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210513A1 (en) * 2022-04-26 2023-11-02 株式会社Gsユアサ Lead-acid battery and method for manufacturing same, and method for use thereof

Also Published As

Publication number Publication date
JP6973392B2 (en) 2021-11-24
JPWO2018021420A1 (en) 2019-05-23
JP7143927B2 (en) 2022-09-29
WO2018021420A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP2022009931A (en) Lead acid battery
EP3780243A1 (en) Lead acid storage battery
JP6766504B2 (en) Lead-acid battery
JP6756182B2 (en) Lead-acid battery
JP6750377B2 (en) Lead acid battery
WO2020080420A1 (en) Lead-acid battery
JP6958034B2 (en) Lead-acid battery
JP7424310B2 (en) lead acid battery
JPWO2019021690A1 (en) Lead acid battery
JP7099450B2 (en) Lead-acid battery
CN110546797B (en) Lead-acid battery
JP7111099B2 (en) lead acid battery
JP7388110B2 (en) lead acid battery
JPWO2019225161A1 (en) Lead-acid battery
WO2022137700A1 (en) Clad positive-electrode plate for lead storage battery, and lead storage battery
WO2021060386A1 (en) Negative plate for lead-acid battery, lead-acid battery, and production method for negative plate for lead-acid battery
JP6750378B2 (en) Lead acid battery
JPWO2019021692A1 (en) Lead acid battery
JP6750376B2 (en) Lead acid battery
WO2022113636A1 (en) Lead-acid battery
JP6756181B2 (en) Lead-acid battery
JP2024005293A (en) lead acid battery
JP2023094127A (en) Lead storage battery
JP2021192352A (en) Lead acid battery
JPWO2020080423A1 (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220829

R150 Certificate of patent or registration of utility model

Ref document number: 7143927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150