JP2010257673A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2010257673A
JP2010257673A JP2009104826A JP2009104826A JP2010257673A JP 2010257673 A JP2010257673 A JP 2010257673A JP 2009104826 A JP2009104826 A JP 2009104826A JP 2009104826 A JP2009104826 A JP 2009104826A JP 2010257673 A JP2010257673 A JP 2010257673A
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
activated carbon
storage battery
lead storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009104826A
Other languages
Japanese (ja)
Inventor
Atsushi Furukawa
淳 古川
Daisuke Monma
大輔 門馬
Trieu Lan Lam
トリュー ラン ラム
Rosalie Louey
ロザリー ルーエイ
Peter Nigel Haigh
ピーター ニゲル ハイフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Furukawa Battery Co Ltd
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO, Furukawa Battery Co Ltd filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Priority to JP2009104826A priority Critical patent/JP2010257673A/en
Priority to PCT/JP2010/055481 priority patent/WO2010122874A1/en
Publication of JP2010257673A publication Critical patent/JP2010257673A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead storage battery capable of extending quick charge and discharge cycle lifetime on PSOC of the lead storage battery having a negative electrode in which a coated layer of a carbon mixture including a carbon material having conductivity and activated carbon having capacitor capacitance is prepared on the surface. <P>SOLUTION: In the lead storage battery including, as a negative electrode, a negative electrode plate having a coated layer of a carbon mixture made by mixing two kinds of carbon materials made of the carbon material having conductivity on the surface of a negative electrode active material filling plate and activated carbon having capacitor capacitance and/or pseudo-capacitor capacitance with at least a binder, the activated carbon included in the carbon mixture coated layer has a gravity point angle of less than 44.4° on a tenth face on the basis of X-ray diffraction. Thus, cycle lifetime of the lead storage battery shown in Fig.1 can be extended. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表面がカーボン合剤で被覆された負極を具備し、PSOCで急速充放電を繰り返すハイブリッド自動車用、風車や太陽電池(PV)など電源により充電される産業用などに適用される鉛蓄電池に関する。   The present invention has a negative electrode whose surface is coated with a carbon mixture, and is applied to a hybrid vehicle that repeats rapid charge and discharge with PSOC, an industrial product that is charged by a power source such as a windmill or a solar cell (PV), etc. It relates to a storage battery.

上記の表面がカーボン合剤で被覆された負極を有する鉛蓄電池は、特表2007-506230号公報に公開されている。茲に公開のカーボン合剤は、導電性を有する第1カーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を有する第2カーボン材料から成る2種類のカーボン材料と結着剤を混合して成るものであり、第1カーボン材料としてカーボンブラック、ケッチェンブラック、黒鉛などから選択して使用され、その第2カーボン材料として活性炭、カーボンブラック、黒鉛などが選択使用されることが記載されている。   A lead storage battery having a negative electrode whose surface is coated with a carbon mixture is disclosed in JP-T-2007-506230. The carbon mixture disclosed to the public is a mixture of two carbon materials consisting of a first carbon material having conductivity and a second carbon material having a capacitor capacity and / or a pseudo capacitor capacity, and a binder. There is a description that carbon black, ketjen black, graphite or the like is selected and used as the first carbon material, and activated carbon, carbon black, graphite or the like is selectively used as the second carbon material.

特表2007-506230号公報Special table 2007-506230 gazette

しかし乍ら、上記の特許文献1には、コンデンサ電極の電気二重層キャパシタに用いられる活性炭として、1000〜2500m2/gの高表面積を有するものが好ましいことを記載しているのみで、上記の各種産業分野に用いられる鉛蓄電池のPSOCでの急放電特性を向上し、サイクル寿命を延長するため、どのような特性を有する活性炭を使用することが良いか全く検討されていない。
本発明は、かかる課題を解消し、上記の目的を達成した上記の産業分野に有用な鉛蓄電池を提供することに在る。
However, the above Patent Document 1 only describes that the activated carbon used for the electric double layer capacitor of the capacitor electrode is preferably one having a high surface area of 1000 to 2500 m 2 / g, In order to improve the rapid discharge characteristics at PSOC of lead storage batteries used in various industrial fields and extend the cycle life, it has not been studied at all what kind of characteristics to use activated carbon.
This invention exists in providing the lead storage battery useful for said industrial field which solved this subject and achieved said objective.

本発明は、請求項1に記載の通り、負極活物質充填板の表面に、導電性を有するカーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を有する活性炭とから成る2種類のカーボン材料と少なくとも結着剤を混合して成るカーボン合剤の被覆層を設けた負極板を負極として具備した鉛蓄電池において、該カーボン合剤被覆層に含有する活性炭はX線回折による10面の重心点角度が44.4°未満である活性炭を用いることを特徴とする鉛蓄電池に存する。   According to the present invention, as described in claim 1, the surface of the negative electrode active material-filled plate is bonded to at least two types of carbon materials comprising a carbon material having conductivity and activated carbon having a capacitor capacity and / or a pseudo capacitor capacity. In a lead-acid battery having a negative electrode plate provided with a coating layer of a carbon mixture formed by mixing an adhesive as a negative electrode, the activated carbon contained in the carbon mixture coating layer has a centroid point angle of 104.4 by X-ray diffraction of 44.4. It exists in the lead acid battery characterized by using activated carbon which is less than °.

請求項1に係る発明により、負極の性能が向上するため該鉛蓄電池の寿命を延長することができる。従って、PSOCで急速充放電を繰り返すハイブリッド自動車用途や、風車や太陽電池(PV)など電源により充電される産業用途における鉛蓄電池の改善をもたらす。   According to the invention of claim 1, since the performance of the negative electrode is improved, the life of the lead storage battery can be extended. Therefore, it leads to an improvement in lead-acid batteries in hybrid vehicle applications that repeatedly charge and discharge rapidly with PSOC, and in industrial applications that are charged by a power source such as a windmill or solar cell (PV).

活性炭の10回折線の重心点角度とサイクル寿命との関係を示す図。The figure which shows the relationship between the gravity center angle of 10 diffraction lines of activated carbon, and cycle life.

本発明の実施形態を以下に説明する。
本発明の鉛蓄電池の負極は、カーボン合剤を通常の負極板の両面又は片面又は両面又は片面の一部にカーボン合剤を塗布し、乾燥し、ポーラスなカーボン合剤被覆層を設けたものである。
該カーボン合剤は、アセチレンブラック、ファーネスブラックなどのカーボンブラック、ケッチェンブラック、黒鉛などの導電性を確保する第1カーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を確保する活性炭とから成るカーボン材料と少なくとも結着剤を混合して成るものである。この場合、第1カーボン材料としてその少なくとも1種を選択使用する。
Embodiments of the present invention will be described below.
The negative electrode of the lead-acid battery of the present invention is a carbon mixture prepared by applying a carbon mixture on both sides, one side, or both sides or part of one side of a normal negative electrode plate, drying, and providing a porous carbon mixture coating layer It is.
The carbon mixture is a carbon material composed of a first carbon material that secures conductivity such as carbon black such as acetylene black and furnace black, ketjen black, and graphite, and activated carbon that secures capacitor capacity and / or pseudo capacitor capacity. And at least a binder. In this case, at least one of the first carbon materials is selectively used.

かかるカーボン合剤に混入する活性炭として、本発明等は、鋭意検討を重ねた結果、X線回折における10面の重心点角度が44.4°未満の活性炭を用いると、下記に明らかにするように優れた電池性能を発揮することを見出した。   As the activated carbon mixed in such a carbon mixture, the present invention, etc., as a result of intensive studies, the use of activated carbon having a 10-point center of gravity angle of less than 44.4 ° in X-ray diffraction is excellent as will be clarified below. It was found that the battery performance was exhibited.

活性炭は六角網面が積層したグラファイトの結晶構造が大きく乱れたものと言われ、六角網面は維持されるが、c軸方向が乱層構造を取るためX線回折を行ってもピークが不鮮明になることが知られ、00l回折線とhkl回折線はブロードになり、hkl回折線は認められなくなる。即ち、2θ=20-30°に002回折線、40-50°に10回折線(グラファイトの100,101,102回折線に対応)、75-85°に11回折線(グラファイトの110,112回折線に対応)が現れる。一般に002回折線が低角度側に移動するとc軸方向の面間隔が拡がり、イオンが層間に侵入し易くなることが知られている。
本発明の上記に特定した活性炭の作用は明らかではないが、10面の重心点角度が44.4°未満の活性炭は、c軸方向の乱れに加えて、a軸方向の面間隔がある値よりも拡大することで、更にイオンの吸脱着を容易にし、また酸化還元反応に対する活性の向上にも影響したと考えられる。
Activated carbon is said to have greatly disturbed the crystal structure of graphite with hexagonal mesh layers laminated, and the hexagonal mesh surface is maintained, but the c-axis direction takes a disordered layer structure, so the peak is unclear even if X-ray diffraction is performed. The 00l diffraction line and the hkl diffraction line become broad, and the hkl diffraction line is not recognized. That is, 002 diffraction lines appear at 2θ = 20-30 °, 10 diffraction lines appear at 40-50 ° (corresponding to 100, 101, 102 diffraction lines of graphite), and 11 diffraction lines (corresponding to 110, 112 diffraction lines of graphite) appear at 75-85 °. . In general, it is known that when the 002 diffraction line moves to the low angle side, the surface interval in the c-axis direction increases, and ions easily enter between layers.
Although the action of the above-specified activated carbon of the present invention is not clear, activated carbon having a centroid point angle of 10 planes of less than 44.4 ° is greater than a certain value in the a-axis direction in addition to the c-axis direction disturbance. By enlarging, it is considered that the adsorption / desorption of ions is further facilitated, and the improvement in the activity for the oxidation-reduction reaction is also affected.

X線粉末回折法による活性炭の重心点角度の測定は次のように行った。X線回折装置は、理学電機工業株式会社製RINT2200 Ultima(商品名)を用いた。サンプルとして、平均粒径が30ミクロン以下になるように機械粉砕した活性炭をガラス製サンプルホルダーにセットした。そして、X線源としてCu、Kα線を用い、2θ=10-90°の測定を行った。得られた回折線はX線回折総合解析ソフトJADE+(商品名)を用いてラインブロードニングとバックグラウンドの処理を行い、40-50°付近に現れる10回折線の重心点角度を算出した。   Measurement of the center-of-gravity point angle of the activated carbon by the X-ray powder diffraction method was performed as follows. RINT2200 Ultima (trade name) manufactured by Rigaku Denki Kogyo Co., Ltd. was used as the X-ray diffractometer. As a sample, activated carbon mechanically pulverized so as to have an average particle size of 30 microns or less was set in a glass sample holder. Then, Cu and Kα rays were used as the X-ray source, and measurement was performed at 2θ = 10-90 °. The obtained diffraction lines were subjected to line broadening and background processing using the X-ray diffraction comprehensive analysis software JADE + (trade name), and the barycentric angle of 10 diffraction lines appearing around 40-50 ° was calculated.

かくして、下記表1に示す配合組成のペースト状カーボン合剤を調製するに当り、活性炭として、原料や賦活条件の異なる市販の活性炭の上記の重心点角度を調べ、活性炭の重心角度が43.90〜44.85の範囲で異なる活性炭を用意した。   Thus, in preparing a paste-like carbon mixture having the composition shown in Table 1 below, as the activated carbon, the above-mentioned centroid point angle of commercially available activated carbon with different raw materials and activation conditions was examined, and the centroid angle of the activated carbon was 43.90 to 44.85. Different activated carbons were prepared in the range of.

Figure 2010257673
Figure 2010257673

鉛蓄電池の製造:
公知の方法で制御弁式鉛蓄電池に用いる正極板と負極板を製造した。製造された各負極板は更に、負極活物質を充填した鉛多孔集電板の耳部を除く負極活物質充填板の両面全体に上記の重心点角度を異にする活性炭を表1に示す配合量を含む夫々のペースト状カーボン合剤を調製し、これを乾燥重量換算で負極活物質重量の5wt.%になるように塗布して夫々の負極板を製造し、その各負極を空気中60℃で1時間乾燥すると同時に負極を酸化させた。
Lead acid battery manufacturing:
A positive electrode plate and a negative electrode plate used for a control valve type lead storage battery were manufactured by a known method. Each manufactured negative electrode plate is further mixed with activated carbon having different angles of the center of gravity described above on both surfaces of the negative electrode active material-filled plate excluding the ears of the lead porous current collector plate filled with the negative electrode active material. Each paste-like carbon mixture containing an amount was prepared, and this was applied so as to be 5 wt.% Of the weight of the negative electrode active material in terms of dry weight to produce each negative electrode plate. The negative electrode was oxidized at the same time of drying at 1 ° C. for 1 hour.

次に、これらの各負極と正極をタンクに収容し、化成により鉛蓄電池組み立て前に化成処理を施した。かくして得られた各種の負極化成板と正極化成板をAGMセパレータを介して交互に積層して極板群を形成し、これを制御弁式鉛電池で公知の組み立て方法と同様に電槽内に収納し、正極容量規制で、5時間率容量が10Ahで2Vの鉛蓄電池を夫々組み立てた。尚、各極板群の圧迫度は50kPaになるように電槽と極板群間にスペーサーを入れて調製した。   Next, each of these negative electrodes and positive electrodes was accommodated in a tank and subjected to chemical conversion treatment prior to assembly of the lead-acid battery by chemical conversion. The negative electrode conversion plate and the positive electrode conversion plate thus obtained are alternately laminated via AGM separators to form an electrode plate group, and this is placed in a battery case in the same manner as a known assembly method using a control valve type lead battery. The batteries were assembled, and 2V lead-acid batteries with a 5-hour rate capacity of 10Ah were assembled under positive electrode capacity regulations. Each electrode plate group was prepared by inserting a spacer between the battery case and the electrode plate group so that the degree of compression was 50 kPa.

次に、各鉛蓄電池について、硫酸アルミニウム・18水塩を30g/l溶解した比重1.30の硫酸水溶液を電解液としてその電槽内に注入した後、1Aで20時間充電を行い、その後、該蓄電池電圧が1.75Vに達するまで2Aで放電した。その後、再び1Aで15時間の充電と2Aで電池電圧1.75Vまで放電し、5時間率容量を測定したところ、容量は約10Ahであった。   Next, for each lead-acid battery, a sulfuric acid aqueous solution having a specific gravity of 1.30 in which aluminum sulfate / 18 hydrate was dissolved at 30 g / l was injected into the battery case as an electrolytic solution, and then charged at 1A for 20 hours. The battery was discharged at 2A until the voltage reached 1.75V. Thereafter, the battery was charged again at 1A for 15 hours and discharged at 2A to a battery voltage of 1.75 V. When the 5-hour rate capacity was measured, the capacity was about 10 Ah.

寿命試験:
次にこれらの鉛蓄電池の夫々を用いて、HEVによる走行を模擬してPSOCで急速充放電を繰り返すことによる寿命試験を行った。即ち、各鉛蓄電池を2Aで1時間放電してPSOC80%とした後、40℃の雰囲気中で50A・1秒放電と20A・1秒充電を500回繰り返した後、30A・1秒充電と1秒の休止を510回繰り返し、これを1サイクルとした。そして、放電時の蓄電池電圧が0Vに達した時点を寿命として、寿命に至るまでのサイクル数を測定した。
その結果を図1に示す。図1から明らかな通り、活性炭の10回折線の重心点角度の相異により、サイクル寿命が異なることが判る。そして、重心点角度が小さくなるほど鉛蓄電池のサイクル寿命は延び、特に、10回折線の重心点角度が44.4°未満の活性炭は、サイクル寿命が500サイクル以上の長寿命をもたらすことが確認された。
Life test:
Next, using each of these lead-acid batteries, a life test was conducted by repeating rapid charge and discharge with PSOC while simulating running by HEV. That is, after each lead-acid battery was discharged at 2A for 1 hour to 80% PSOC, 50A, 1 second discharge and 20A, 1 second charge were repeated 500 times in an atmosphere of 40 ° C, then 30A, 1 second charge and 1 The pause in seconds was repeated 510 times, and this was taken as one cycle. And the time when the storage battery voltage at the time of discharge reached 0V was defined as the lifetime, and the number of cycles until reaching the lifetime was measured.
The results are shown in FIG. As is clear from FIG. 1, it can be seen that the cycle life differs depending on the angle of the center of gravity of the 10 diffraction lines of activated carbon. It was confirmed that the cycle life of the lead-acid battery increased as the centroid point angle decreased, and in particular, activated carbon having a centroid point angle of 10 diffraction lines of less than 44.4 ° had a cycle life of 500 cycles or more.

Claims (1)

負極活物質充填板の表面に、導電性を有するカーボン材料とキャパシタ容量及び/又は擬似キャパシタ容量を有する活性炭とから成る2種類のカーボン材料と少なくとも結着剤を混合して成るカーボン合剤の被覆層を設けた負極板を負極として具備した鉛蓄電池において、該カーボン合剤被覆層に含有する活性炭はX線回折による10面の重心点角度が44.4°未満である活性炭を用いることを特徴とする鉛蓄電池。   The surface of the negative electrode active material-filled plate is coated with a carbon mixture formed by mixing at least a binder with two types of carbon materials consisting of a carbon material having conductivity and activated carbon having a capacitor capacity and / or pseudo-capacitor capacity. In the lead-acid battery having a negative electrode plate provided with a layer as a negative electrode, the activated carbon contained in the carbon mixture coating layer is activated carbon whose 10-plane gravity point angle by X-ray diffraction is less than 44.4 °. Lead acid battery.
JP2009104826A 2009-04-23 2009-04-23 Lead storage battery Withdrawn JP2010257673A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009104826A JP2010257673A (en) 2009-04-23 2009-04-23 Lead storage battery
PCT/JP2010/055481 WO2010122874A1 (en) 2009-04-23 2010-03-19 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104826A JP2010257673A (en) 2009-04-23 2009-04-23 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2010257673A true JP2010257673A (en) 2010-11-11

Family

ID=43010997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104826A Withdrawn JP2010257673A (en) 2009-04-23 2009-04-23 Lead storage battery

Country Status (2)

Country Link
JP (1) JP2010257673A (en)
WO (1) WO2010122874A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192417A (en) * 2009-01-26 2010-09-02 Nippon Zeon Co Ltd Capacitor electrode composition layer with support for lead-acid battery and method for manufacturing electrode for lead-acid battery
WO2019039722A1 (en) * 2017-08-25 2019-02-28 주식회사 에너지플래닛 Multilayer-structured electrode for lead acid battery and lead acid-based storage battery system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200287246A1 (en) * 2017-10-12 2020-09-10 Amara Raja Batteries Limited An electrode for lead acid battery assembly and its method of preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284188A (en) * 2000-04-03 2001-10-12 Asahi Glass Co Ltd Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
JP2002367613A (en) * 2001-04-03 2002-12-20 Hitachi Ltd Lead storage battery
JP5092272B2 (en) * 2005-05-31 2012-12-05 新神戸電機株式会社 Lead-acid battery and method for producing lead-acid battery
JP2008047452A (en) * 2006-08-18 2008-02-28 Shin Kobe Electric Mach Co Ltd Paste type electrode plate and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192417A (en) * 2009-01-26 2010-09-02 Nippon Zeon Co Ltd Capacitor electrode composition layer with support for lead-acid battery and method for manufacturing electrode for lead-acid battery
WO2019039722A1 (en) * 2017-08-25 2019-02-28 주식회사 에너지플래닛 Multilayer-structured electrode for lead acid battery and lead acid-based storage battery system

Also Published As

Publication number Publication date
WO2010122874A1 (en) 2010-10-28

Similar Documents

Publication Publication Date Title
Cao et al. Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode
Xu et al. Design and synthesis of 3D interconnected mesoporous NiCo 2 O 4@ Co x Ni 1− x (OH) 2 core–shell nanosheet arrays with large areal capacitance and high rate performance for supercapacitors
AU2011349121B2 (en) Electrode and electrical storage device for lead-acid system
Senthilkumar et al. Fabrication and performance studies of a cable-type flexible asymmetric supercapacitor
RU2672675C2 (en) Tungsten-based material, super battery and supercapacitor
Wu et al. A rough endoplasmic reticulum-like VSe 2/rGO anode for superior sodium-ion capacitors
Enos et al. Understanding function and performance of carbon additives in lead-acid batteries
JP2011071112A (en) Compound capacitor negative electrode plate for lead-acid battery, and the lead-acid battery
US9159502B2 (en) Supercapacitor with hexacyanometallate cathode, activated carbon anode, and non-aqueous electrolyte
CN102024996A (en) High-performance rechargeable magnesium battery and manufacturing method thereof
Peng et al. Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors
CN111725002A (en) Water system alkaline electrolyte and application thereof, zinc-based hybrid supercapacitor and preparation method thereof
Hu et al. Using silkworm excrement and spent lead paste to prepare additives for improving the cycle life of lead-acid batteries
CN111129489A (en) Graphene-based antimony sulfide negative electrode material and preparation method and application thereof
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP2010257673A (en) Lead storage battery
Hu et al. Transition metal oxide@ hydroxide assemblies as electrode materials for asymmetric hybrid capacitors with excellent cycling stabilities
JP2012133958A (en) Composite capacitor negative electrode plate and lead storage battery
JP5396216B2 (en) Lead acid battery
JP2019091598A (en) Positive electrode plate and lead storage battery
CN105810927B (en) Lead-carbon battery negative electrode material
Zhao et al. Synergistically Coupling Atomic‐Level Defect‐Manipulation and Nanoscopic‐Level Interfacial Engineering Enables Fast and Durable Sodium Storage
JP2011171035A (en) Negative electrode plate for lead storage battery, and lead storage battery
JP5839988B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703