JP6665426B2 - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP6665426B2
JP6665426B2 JP2015114851A JP2015114851A JP6665426B2 JP 6665426 B2 JP6665426 B2 JP 6665426B2 JP 2015114851 A JP2015114851 A JP 2015114851A JP 2015114851 A JP2015114851 A JP 2015114851A JP 6665426 B2 JP6665426 B2 JP 6665426B2
Authority
JP
Japan
Prior art keywords
electrode plate
battery
negative electrode
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015114851A
Other languages
Japanese (ja)
Other versions
JP2017004647A (en
Inventor
真輔 小林
真輔 小林
和也 丸山
和也 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2015114851A priority Critical patent/JP6665426B2/en
Publication of JP2017004647A publication Critical patent/JP2017004647A/en
Application granted granted Critical
Publication of JP6665426B2 publication Critical patent/JP6665426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead storage battery.

鉛蓄電池は、信頼性、価格の安さから産業用、民生用に広く用いられており、特に自動
車用鉛蓄電池(いわゆるバッテリー)の需要が多い。
Lead-acid batteries are widely used in industrial and consumer applications because of their reliability and low cost. In particular, lead-acid batteries for automobiles (so-called batteries) are in great demand.

近年、環境保護及び燃費改善の取り組みとして、停車時にはエンジンを停止させ、発進
時に再始動するアイドリングストップスタート(以下ISSと略す)車の開発が加速され
ている。ISS車に搭載されている鉛蓄電池は頻繁にエンジン始動、停止が繰り返される
とにより、始動時に大電流放電回数が増え、停車中には電装品への電力供給が必要となり
、放電負荷が多くなる。車両の充電はオルタネータによるが、これはエンジンを動力源と
しているために停車中にはスットプしてしまう。これらISS特有の使用条件により、鉛
蓄電池は完全には充電されない状態、すなわち部分充電状態(PSOC:Partial
State Of Charge)で使用される。
In recent years, as an effort to protect the environment and improve fuel efficiency, the development of an idling stop start (hereinafter abbreviated as ISS) vehicle in which the engine is stopped when the vehicle is stopped and restarted when the vehicle starts is accelerated. Lead-acid batteries installed in ISS vehicles frequently start and stop the engine repeatedly, which increases the number of large current discharges at the time of starting, requiring power supply to electrical components while the vehicle is stopped, increasing the discharge load . Although the alternator charges the vehicle, it stops when the vehicle is stopped because it is powered by the engine. Due to these ISS-specific usage conditions, the lead storage battery is not fully charged, ie, a partially charged state (PSOC: Partial).
State of Charge).

PSOC状態で鉛蓄電池を使用した場合、従来の満充電状態で使用される状況では発生
しなかった問題が発生する。これは、負極格子体の集電部(耳部)が放電され、集電部の
厚みが減少してしまう、いわゆる耳痩せ現象が知られている。前記耳痩せ現象が発生する
と、集電部の抵抗が増加して、鉛蓄電池の充放電特性が低下し、サイクル寿命性能が低下
する。
When the lead storage battery is used in the PSOC state, a problem that does not occur in a conventional situation where the lead storage battery is used in a fully charged state occurs. This is known as a so-called ear thinning phenomenon in which the current collecting portion (ear portion) of the negative electrode grid body is discharged and the thickness of the current collecting portion is reduced. When the ear thinning phenomenon occurs, the resistance of the current collector increases, the charge / discharge characteristics of the lead storage battery decrease, and the cycle life performance decreases.

特許文献1では、鉛−錫合金層を負極格子体の耳部の表面に設け、かつ、満充電後にお
ける負極活物質に0.25〜0.75質量%のカーボンを含ませることで、耳痩せを抑制
し、サイクル寿命特性の優れた鉛蓄電池を提供する技術が開示されている。
In Patent Literature 1, a lead-tin alloy layer is provided on the surface of a lug of a negative electrode grid body, and 0.25 to 0.75% by mass of carbon is contained in a negative electrode active material after a full charge. A technique has been disclosed which suppresses leanness and provides a lead storage battery having excellent cycle life characteristics.

再公表WO2010/032782号公報Re-published WO2010 / 032782

負極板は、負極格子体に活物質ペーストを充填して作製される。前記活物質ペーストは
、鉛粉に有機添加剤、カーボン、硫酸バリウムを混合し、水及び希硫酸を添加、混練して
作製される。カーボンあるいは炭素材は、導電補助剤として添加されている。
The negative electrode plate is manufactured by filling the negative electrode grid with an active material paste. The active material paste is prepared by mixing an organic additive, carbon, and barium sulfate with lead powder, and adding and kneading water and diluted sulfuric acid. Carbon or a carbon material is added as a conductive auxiliary.

通常、鉛蓄電池において、満充電後における負極活物質に対して、カーボンは0.1〜
0.3質量%含まれている。0.5質量%以上カーボン量を増やすと活物質ペーストが固
くなり、負極格子体への充填がしにくくなり、充填不良が発生し歩留りが低下する。
Usually, in a lead-acid battery, carbon is 0.1 to
0.3% by mass. When the amount of carbon is increased by 0.5% by mass or more, the active material paste becomes hard, which makes it difficult to fill the negative electrode grid body, resulting in poor filling and lowering the yield.

活物質ペーストを適正な固さにするために、前記混練時に加える水の量を増やし、水分
量を多くする方法がある。しかし、ペースト水分量を増やした負極板は、充填後の熟成、
乾燥工程で水分が抜けることで活物質が収縮し、負極板表面に亀裂が生じる。このような
状態では、続く電池の組み立て工程において、活物質の脱落が生じることになる。従って
、ペースト水分量を増やすことは好ましくない。
In order to make the active material paste have an appropriate hardness, there is a method of increasing the amount of water to be added at the time of kneading to increase the amount of water. However, the negative electrode plate with increased paste moisture content is aged after filling,
The active material shrinks due to the loss of water in the drying step, and cracks are generated on the surface of the negative electrode plate. In such a state, the active material will fall off in the subsequent battery assembly process. Therefore, it is not preferable to increase the water content of the paste.

本発明の目的は、ペースト仕様を変えることなく、サイクル特性が良好な電池を提供することにある。   An object of the present invention is to provide a battery having good cycle characteristics without changing paste specifications.

そこで本発明は、上記課題を解決するために以下の構成とする。   Therefore, the present invention has the following configuration in order to solve the above problems.

第1の発明は、セパレータを介して正極板と負極板を交互に積層し、前記正極板及び負極板それぞれの集電部を溶接したストラップ及び極柱を有した極板群を電槽に収納する鉛蓄電池において、前記正極板及び負極板の総表面積をS、前記正極板及び負極板の総体積をVとしたとき、S/Vが14.0cm-1以上であり、かつ、前記正極板の活物質量をX、前記負極板の活物質量をYとしたとき、X/Yが1.35以上とする。 According to a first aspect of the present invention, a positive electrode plate and a negative electrode plate are alternately stacked via a separator, and an electrode plate group having a strap and an electrode pole in which a current collector of each of the positive electrode plate and the negative electrode plate is welded is housed in a battery case. When the total surface area of the positive electrode plate and the negative electrode plate is S and the total volume of the positive electrode plate and the negative electrode plate is V, the S / V is 14.0 cm −1 or more, and the positive electrode plate X / Y is 1.35 or more, where X is the active material amount and Y is the active material amount of the negative electrode plate.

第2の発明は、第1の発明において、S/Vが15.5cm-1以上であり、かつ、X/Yが1.45以上とする。 In a second aspect based on the first aspect, the S / V is 15.5 cm -1 or more, and the X / Y is 1.45 or more.

本発明によれば、ペースト仕様を変えることなく、サイクル寿命特性に優れた鉛蓄電池を得ることができる。   According to the present invention, a lead storage battery having excellent cycle life characteristics can be obtained without changing paste specifications.

エキスパンド格子体を示す図である。It is a figure showing an expanded lattice object. 正極板又は負極板を示す図である。It is a figure which shows a positive electrode plate or a negative electrode plate. 微多孔性のポリエチレン製シートを示す図である。It is a figure showing a microporous polyethylene sheet. 袋セパレータに負極板を入れる図である。It is a figure which puts a negative electrode plate in a bag separator. 電槽を示す図である。It is a figure showing a battery case. 電池を示す図である。It is a figure showing a battery.

以下、図面を参照して本発明の好ましい実施形態を詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

(格子体)
格子体は、鉛−カルシウム-スズ系合金シートに切れ目をいれて拡開した図1に示すエ
キスパンド格子体1を用いた。集電部2を除いた寸法は、正極用が幅145mm、高さ1
15mm、厚さ1.5mm、負極用が幅145mm、高さ115mm、厚さ1.3mmで
ある。なお、集電部2は耳部とも呼ばれる。
(Lattice)
As the lattice body, an expanded lattice body 1 shown in FIG. 1 was used in which a lead-calcium-tin alloy sheet was cut and expanded. Excluding the current collector 2, the dimensions for the positive electrode were 145 mm in width and 1 in height.
It is 15 mm in thickness, 1.5 mm in thickness, 145 mm in width for the negative electrode, 115 mm in height, and 1.3 mm in thickness. Note that the current collector 2 is also called an ear.

(正極板)
ボールミル法によって作製した酸化度70%の鉛粉に、鉛丹化度90%の鉛丹を希硫酸
と混合・反応させたスラリと水および希硫酸を加えて混練し、活物質ペーストを作製する
。この活物質ペーストを、前記正極用エキスパンド格子体1に充填し、常法により熟成・
乾燥後に、図2に示す正極板3Aを得る。図2において、活物質ペーストを充填した部分が充填部4である。
(Positive electrode plate)
To a lead powder having a degree of oxidation of 70% prepared by a ball mill method, a slurry prepared by mixing and reacting lead-tan with a degree of lead-tanification of 90% with dilute sulfuric acid, water and dilute sulfuric acid are added and kneaded to prepare an active material paste. . This active material paste is filled in the expanded lattice body 1 for a positive electrode, and aged and aged by a conventional method.
After drying, a positive electrode plate 3A shown in FIG. 2 is obtained. In FIG. 2, a portion filled with the active material paste is a filling portion 4.

(負極板)
ボールミル法によって作製した酸化度70%の鉛粉に、添加剤として、炭素粉末、リグ
ニン粉末、バリウム化合物粉末を加え混合する。続いて、水および希硫酸を加えて混練し
、活物質ペーストを作製する。この活物質ペーストを、前記負極用エキスパンド格子体1に充填し、常法により熟成・乾燥して、図2に示す負極板3Bとする。
(Negative electrode plate)
Carbon powder, lignin powder and barium compound powder are added and mixed as additives to lead powder having an oxidation degree of 70% produced by a ball mill method. Subsequently, water and diluted sulfuric acid are added and kneaded to prepare an active material paste. This active material paste is filled in the expanded lattice body 1 for a negative electrode, aged and dried by a conventional method to obtain a negative electrode plate 3B shown in FIG.

(袋セパレータ)
図3に微多孔性のポリエチレン製シート5を示す。ポリエチレン製シート5の片面には
、長手方向にセパレータのリブ6が設けられており、ポリエチレン製シート5のベース部
の厚みは0.2mm、リブ6を含めた総厚みは0.8mmである。ポリエチレン製シート
5を長さ235mm、幅152mmに切り出し二つ折りにする。続いて両側部をメカニカ
ルシール、又は熱溶着し、図4のような袋セパレータ7に加工する。
(Bag separator)
FIG. 3 shows a microporous polyethylene sheet 5. On one surface of the polyethylene sheet 5, ribs 6 of the separator are provided in the longitudinal direction. The thickness of the base portion of the polyethylene sheet 5 is 0.2 mm, and the total thickness including the rib 6 is 0.8 mm. The polyethylene sheet 5 is cut into a length of 235 mm and a width of 152 mm and is folded in half. Subsequently, both sides are mechanically sealed or heat-welded to form a bag separator 7 as shown in FIG.

(ストラップ形成と極板群)
図4に示すように、前記袋セパレータ7に負極板3Bを入れ、正極板7枚と袋セパレータに包まれた負極板8枚を交互に積層する。正極、負極それぞれの集電部2をキャストオンストラップ(Cast On Strap)法で溶接し、溶接部、すなわちストラップを形成させ、極板群を得る。なお、ストラップの合金組成としては、鉛−アンチモン系合金または鉛−スズ系合金を用いることができる。
(Strap formation and electrode group)
As shown in FIG. 4, the negative electrode plate 3B is put in the bag separator 7, and seven positive electrode plates and eight negative electrode plates wrapped in the bag separator are alternately laminated. The current collector 2 of each of the positive electrode and the negative electrode is welded by a cast-on-strap method to form a welded part, that is, a strap, to obtain an electrode plate group. As the alloy composition of the strap, a lead-antimony alloy or a lead-tin alloy can be used.

(電槽)
図5にポリプロピレン製の電槽8を示す。電槽8は、隔壁9によって6区画に分割され、セル室10を設けられる。前記極板群は別名単電池といい、これは2Vの電池能力しかない。自動車用の電装品は、直流電圧12Vを昇圧または降圧して駆動するため、極板群を6個直列接続して、2V×6=12Vとしている。そのため、セル室10は6個必要である。電槽8の隔壁9の両面及び電槽8の両端面の内壁面に、リブ11が電槽8の高さ方向に複数本設けられている。リブ11は、極板群を適切に加圧する役割がある。
(Battery case)
FIG. 5 shows a battery case 8 made of polypropylene. The battery case 8 is divided into six sections by partition walls 9, and a cell chamber 10 is provided. The electrode group is also called a single cell, which has only a 2V battery capacity. In order to drive an electric component for an automobile by increasing or decreasing a DC voltage of 12 V, six electrode plates are connected in series and 2 V × 6 = 12 V. Therefore, six cell chambers 10 are required. A plurality of ribs 11 are provided in the height direction of the battery case 8 on both sides of the partition 9 of the battery case 8 and on inner wall surfaces at both end surfaces of the battery case 8. The rib 11 has a role of appropriately pressing the electrode group.

(電池の作製)
前記極板群を電槽8のセル室10に挿入し、隣あう極板群同士のストラップを隔壁貫通溶接で溶接する。前記電槽8にポリプロピレン製の蓋12を熱溶着し、図6に示す電池13を作製する。なお、図6に示す両端のセル室に収納する極板群には、ストラップに柱状部分を付与した極柱を形成する。これは、蓋12に突設された正極端子14Aおよび負極端子14Bに接続させるためのものである。
(Production of battery)
The electrode group is inserted into the cell chamber 10 of the battery case 8, and the straps of the adjacent electrode groups are welded by partition penetration welding. A lid 12 made of polypropylene is heat-welded to the battery case 8 to produce a battery 13 shown in FIG. In addition, in the electrode plate group housed in the cell chambers at both ends shown in FIG. 6, an electrode pole in which a columnar portion is added to a strap is formed. This is for connecting to the positive terminal 14A and the negative terminal 14B protruding from the lid 12.

続いて、蓋12のセル室10に対応した注液口15から電解液である希硫酸を注液し、
周囲温度40℃、電流25Aで20時間通電して電槽化成する。電槽化成後、電解液液面
を調整し、JISD5301規定の80D23形電池を作製した。
Subsequently, dilute sulfuric acid, which is an electrolytic solution, is injected from an inlet 15 corresponding to the cell chamber 10 of the lid 12,
A battery is formed by supplying electricity at an ambient temperature of 40 ° C. and a current of 25 A for 20 hours. After the formation of the battery case, the electrolyte level was adjusted to produce an 80D23 type battery specified in JISD5301.

(正極板及び負極板の総表面積、正極板及び負極板の総体積)
正極板及び負極板の総表面積とは、鉛蓄電池の最小単位である単電池、すなわち前記セル室10内に収容される極板群において、この中の正極板及び負極板の発電に関与する部分の表面積の合計である。これは、図2において、各正極板3A及び負極板3Bの集電部2及び活物質ペーストの未充填部を除いた部分の表と裏両面の表面積の合計に、極板群を構成する正極板3A及び負極板3Bの枚数を乗じたものである。
(Total surface area of positive and negative plates, total volume of positive and negative plates)
The total surface area of the positive electrode plate and the negative electrode plate refers to a unit cell, which is the minimum unit of the lead storage battery, that is, a part of the electrode plate group housed in the cell chamber 10 involved in the power generation of the positive electrode plate and the negative electrode plate therein. Is the sum of the surface areas. This is because in FIG. 2, the total surface area of the front and back surfaces of the positive electrode plate 3A and the negative electrode plate 3B excluding the current collector 2 and the unfilled portion of the active material paste is equal to the positive electrode constituting the electrode group. This is obtained by multiplying the number of plates 3A and the number of negative plates 3B.

すなわち、正極板及び負極板の総表面積Sは、図2から(数1)で与えられる。なお、本発明では、Sの単位として〔cm2〕を用いる。
S=(充填部幅×充填部高さ)×2×(正極板及び負極板枚数)・・・(数1)
That is, the total surface area S of the positive electrode plate and the negative electrode plate is given by (Equation 1) from FIG. In the present invention, [cm 2 ] is used as a unit of S.
S = (filling part width × filling part height) × 2 × (number of positive and negative electrode plates) (Equation 1)

正極板及び負極板の総体積とは、鉛蓄電池の最小単位である1セル内に収容される極板群の各部のうち、発電に関与する部分、すなわち、集電部2およびストラップを含まない部分で、セパレータの総厚み(袋セパレータ7のベース厚み及びリブ6の厚み)を無視した見かけの体積である。   The total volume of the positive electrode plate and the negative electrode plate does not include a part involved in power generation, that is, a part related to power generation, among the parts of the electrode plate group housed in one cell which is the minimum unit of the lead storage battery. In the portion, the apparent volume ignoring the total thickness of the separator (the thickness of the base of the bag separator 7 and the thickness of the rib 6).

すなわち、正極板及び負極板の総体積Vは、図2から(数2)で与えられる。なお、本発明では、Vの単位として〔cm〕を用いる。
V=極板幅×極板高さ×正極板及び負極板の総厚み・・・(数2)
That is, the total volume V of the positive electrode plate and the negative electrode plate is given by (Equation 2) from FIG. In the present invention, [cm 3 ] is used as a unit of V.
V = electrode plate width × electrode plate height × total thickness of positive electrode plate and negative electrode plate (2)

(活物質量)
活物質量とは、電槽化成後の活物質の総量で、極板総質量から格子体総質量を引いた値
である。
(Active material amount)
The active material amount is the total amount of the active materials after the battery case formation, and is a value obtained by subtracting the grid body total mass from the electrode plate total mass.

すなわち、正極活物質量は、正極板3Aの活物質量に、極板群を構成する正極板3Aの枚数を乗じたものである。負極活物質量は、負極板3Bの活物質量に、極板群を構成する負極板3Bの枚数を乗じたものである。   That is, the positive electrode active material amount is obtained by multiplying the positive electrode plate 3A active material amount by the number of positive electrode plates 3A constituting the electrode plate group. The amount of the negative electrode active material is obtained by multiplying the amount of the active material of the negative electrode plate 3B by the number of the negative electrode plates 3B constituting the electrode plate group.

(評価試験)
前記電池に25℃環境下で以下の試験を実施する。(ア)電流59Aで59秒間定電流放電。(イ)電流300Aで1秒間定電流放電。(ウ)定電圧14.0V、制限電流100Aで1分間定電流・定電圧充電。(エ)(ア)から(ウ)を1サイクルとして充放電を繰り返す。電池の寿命判定は、(イ)の1秒目電流が7.2V以下となったときとする。
(Evaluation test)
The following test is performed on the battery in a 25 ° C. environment. (A) Constant current discharge at a current of 59 A for 59 seconds. (A) Constant current discharge at a current of 300 A for 1 second. (C) Constant current and constant voltage charging for 1 minute at a constant voltage of 14.0 V and a limited current of 100 A. (D) Charge / discharge is repeated with (a) to (c) as one cycle. The battery life is determined when the first second current in (a) becomes 7.2 V or less.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
前記80D23形電池において、S/Vが以下のようになるように作製した。
(数1)から、S=(14.5×11)×2×15=4785〔cm2
(数2)から、V= 14.5×2.03×11.6=342〔cm
従って、S/Vは14.0cm-1となる。また、X/Yは1.35になるように作製した。
(Example 1)
The 80D23 type battery was manufactured such that the S / V was as follows.
From (Equation 1), S = (14.5 × 11) × 2 × 15 = 4785 [cm 2 ]
From (Equation 2), V = 14.5 × 2.03 × 11.6 = 342 [cm 3 ]
Therefore, the S / V is 14.0 cm -1 . Moreover, it produced so that X / Y might be set to 1.35.

(実施例2)
実施例1において、S/Vが14.0cm-1であり、X/Yは1.4となる電池を作製
した。
(Example 2)
In Example 1, a battery having an S / V of 14.0 cm -1 and an X / Y of 1.4 was produced.

(実施例3)
実施例1において、S/Vが14.0cm-1であり、X/Yは1.45となる電池を作
製した。
(Example 3)
In Example 1, a battery having an S / V of 14.0 cm -1 and an X / Y of 1.45 was produced.

(実施例4)
実施例1において、S/Vが14.0cm-1であり、X/Yは1.47となる電池を作
製した。
(Example 4)
In Example 1, a battery having an S / V of 14.0 cm -1 and an X / Y of 1.47 was produced.

(実施例5)
実施例1において、S/Vが14.5cm-1であり、X/Yは1.35となる電池を作製した。
(Example 5)
In Example 1, a battery having an S / V of 14.5 cm -1 and an X / Y of 1.35 was produced.

(実施例6)
実施例1において、S/Vが14.5cm-1であり、X/Yは1.4となる電池を作製した。
(Example 6)
In Example 1, a battery having an S / V of 14.5 cm -1 and an X / Y of 1.4 was produced.

(実施例7)
実施例1において、S/Vが14.5cm-1であり、X/Yは1.45となる電池を作製した。
(Example 7)
In Example 1, a battery having an S / V of 14.5 cm -1 and an X / Y of 1.45 was produced.

(実施例8)
実施例1において、S/Vが14.5cm-1であり、X/Yは1.47となる電池を作製した。
(Example 8)
In Example 1, a battery having an S / V of 14.5 cm -1 and an X / Y of 1.47 was produced.

(実施例9)
実施例1において、S/Vが15.0cm-1であり、X/Yは1.35となる電池を作製した。
(Example 9)
In Example 1, a battery having an S / V of 15.0 cm -1 and an X / Y of 1.35 was produced.

(実施例10)
実施例1において、S/Vが15.0cm-1であり、X/Yは1.4となる電池を作製した。
(Example 10)
In Example 1, a battery having an S / V of 15.0 cm -1 and an X / Y of 1.4 was produced.

(実施例11)
実施例1において、S/Vが15.0cm-1であり、X/Yは1.45となる電池を作製した。
(Example 11)
In Example 1, a battery having an S / V of 15.0 cm -1 and an X / Y of 1.45 was produced.

(実施例12)
実施例1において、S/Vが15.0cm-1であり、X/Yは1.47となる電池を作製した。
(Example 12)
In Example 1, a battery having an S / V of 15.0 cm -1 and an X / Y of 1.47 was produced.

(実施例13)
実施例1において、S/Vが15.5cm-1であり、X/Yは1.35となる電池を作製した。
(Example 13)
In Example 1, a battery having an S / V of 15.5 cm -1 and an X / Y of 1.35 was produced.

(実施例14)
実施例1において、S/Vが15.5cm-1であり、X/Yは1.4となる電池を作製した。
(Example 14)
In Example 1, a battery having an S / V of 15.5 cm -1 and an X / Y of 1.4 was produced.

(実施例15)
実施例1において、S/Vが15.5cm-1であり、X/Yは1.45となる電池を作製した。
(Example 15)
In Example 1, a battery having an S / V of 15.5 cm -1 and an X / Y of 1.45 was produced.

(実施例16)
実施例1において、S/Vが15.5cm-1であり、X/Yは1.47となる電池を作製した。
(Example 16)
In Example 1, a battery having an S / V of 15.5 cm -1 and an X / Y of 1.47 was produced.

(比較例1)
実施例1において、S/Vが14.0cm-1であり、X/Yは1.33となる電池を作
製した。
(Comparative Example 1)
In Example 1, a battery having an S / V of 14.0 cm -1 and an X / Y of 1.33 was produced.

(比較例2)
実施例1において、S/Vが14.5cm-1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 2)
In Example 1, a battery having an S / V of 14.5 cm -1 and an X / Y of 1.33 was produced.

(比較例3)
実施例1において、S/Vが15.0cm-1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 3)
In Example 1, a battery having an S / V of 15.0 cm -1 and an X / Y of 1.33 was produced.

(比較例4)
実施例1において、S/Vが15.5cm-1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 4)
In Example 1, a battery having an S / V of 15.5 cm -1 and an X / Y of 1.33 was produced.

(比較例5)
実施例1において、S/Vが13.5cm-1であり、X/Yは1.35となる電池を作製した。
(Comparative Example 5)
In Example 1, a battery having an S / V of 13.5 cm -1 and an X / Y of 1.35 was produced.

(比較例6)
実施例1において、S/Vが13.5cm-1であり、X/Yは1.4となる電池を作製した。
(Comparative Example 6)
In Example 1, a battery having an S / V of 13.5 cm -1 and an X / Y of 1.4 was produced.

(比較例7)
実施例1において、S/Vが13.5cm-1であり、X/Yは1.45となる電池を作製した。
(Comparative Example 7)
In Example 1, a battery having an S / V of 13.5 cm -1 and an X / Y of 1.45 was produced.

(比較例8)
実施例1において、S/Vが13.5cm-1であり、X/Yは1.47となる電池を作製した。
(Comparative Example 8)
In Example 1, a battery having an S / V of 13.5 cm -1 and an X / Y of 1.47 was produced.

(比較例9)
実施例1において、S/Vが13.5cm-1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 9)
In Example 1, a battery having an S / V of 13.5 cm -1 and an X / Y of 1.33 was produced.

表1に、これらの鉛蓄電池の寿命試験を行ったときのサイクル数の結果を示す。
本発明を用いた実施例1〜16は、寿命サイクル数が優れる。これらの理由は、定かではないが、正極板及び負極板の総体積に対する正極板及び負極板の総表面積の比率(S/V)を14.0cm-1以上とすることで、電池の抵抗を小さくし、また、負極活物質に対する正極活物質の比率(X/Y)を1.35以上とすることで、負極板が還元されやすくなるためであると考えられる。特に、表面積が増えることでより抵抗が減少すると考えられるので、S/Vが15.5cm-1以上にあると好ましい。また、負極板がより還元されやすいと考えられるので、X/Yが1.45以上にあると好ましい。
Table 1 shows the results of the number of cycles when the life test of these lead-acid batteries was performed.
Examples 1 to 16 using the present invention have excellent life cycle numbers. Although the reasons for these are not clear, the ratio (S / V) of the total surface area of the positive electrode plate and the negative electrode plate to the total volume of the positive electrode plate and the negative electrode plate is 14.0 cm -1 or more, so that the resistance of the battery is reduced. It is considered that the reduction in size and the ratio (X / Y) of the positive electrode active material to the negative electrode active material of 1.35 or more facilitate the reduction of the negative electrode plate. In particular, it is considered that the resistance is further reduced by increasing the surface area. Therefore, it is preferable that the S / V is 15.5 cm −1 or more. Further, since the negative electrode plate is considered to be more easily reduced, it is preferable that X / Y is 1.45 or more.

なお、本発明において上限値を規定していないが、鉛蓄電池の実用上、S/Vの上限は17.0cm-1、X/Yの上限は1.6が好ましい。 Although the upper limit is not specified in the present invention, it is preferable that the upper limit of S / V is 17.0 cm -1 and the upper limit of X / Y is 1.6 for practical use of a lead storage battery.

Figure 0006665426
Figure 0006665426

上記実施例において、極板の枚数、厚みを調整してS/Vを変えたが、エキスパンド格子体1の厚みを変えることによってもS/Vを変えることもできる。   In the above embodiment, the S / V was changed by adjusting the number and thickness of the electrode plates. However, the S / V can also be changed by changing the thickness of the expanded lattice 1.

1.エキスパンド格子体、2.集電部、3A.正極板、3B.負極板、4.充填部、5.ポリエチレン製シート、6.リブ、7.袋セパレータ、8.電槽、9.隔壁、10.セル室、11.リブ、12.蓋、13.電池、14A.正極端子、14B.負極端子、15.注液口 1. 1. Expanded lattice, Current collector, 3A. Positive electrode plate, 3B. 3. negative electrode plate; Filling section, 5. 5. polyethylene sheet, Ribs, 7. 7. bag separator, Battery case, 9. Partition wall; Cell room, 11. Ribs, 12. Lid, 13. Battery, 14A. Positive electrode terminal, 14B. Negative electrode terminal, 15. Filling port

Claims (2)

セパレータを介して正極板と負極板を交互に積層し、前記正極板及び負極板それぞれの集電部を溶接したストラップ及び極柱を有した極板群を電槽に収納する鉛蓄電池において、前記正極板及び負極板の総表面積をS、前記正極板及び負極板の総体積をVとしたとき、S/Vが14.0cm−1以上であり、かつ、前記正極板の活物質量をX、前記負極板の活物質量をYとしたとき、X/Yが1.35以上1.47以下であることを特徴とする鉛蓄電池。 A lead storage battery in which a positive electrode plate and a negative electrode plate are alternately laminated via a separator, and an electrode plate group having a strap and a pole that is welded to a current collector of each of the positive electrode plate and the negative electrode plate is housed in a battery case. When the total surface area of the positive electrode plate and the negative electrode plate is S and the total volume of the positive electrode plate and the negative electrode plate is V, S / V is 14.0 cm −1 or more, and the amount of the active material of the positive electrode plate is X A lead-acid battery wherein X / Y is 1.35 or more and 1.47 or less , where Y is the amount of the active material of the negative electrode plate. 請求項1において、S/Vが15.5cm−1以上であり、かつ、X/Yが1.45以上であることを特徴とする鉛蓄電池。 The lead-acid battery according to claim 1, wherein S / V is 15.5 cm -1 or more, and X / Y is 1.45 or more.
JP2015114851A 2015-06-05 2015-06-05 Lead storage battery Active JP6665426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114851A JP6665426B2 (en) 2015-06-05 2015-06-05 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114851A JP6665426B2 (en) 2015-06-05 2015-06-05 Lead storage battery

Publications (2)

Publication Number Publication Date
JP2017004647A JP2017004647A (en) 2017-01-05
JP6665426B2 true JP6665426B2 (en) 2020-03-13

Family

ID=57752158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114851A Active JP6665426B2 (en) 2015-06-05 2015-06-05 Lead storage battery

Country Status (1)

Country Link
JP (1) JP6665426B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840779A (en) * 1981-09-01 1983-03-09 Sanyo Electric Co Ltd Lead storage battery
US4769299A (en) * 1986-06-27 1988-09-06 Gates Energy Products, Inc. High rate sealed lead-acid battery with ultrathin plates
JP5017746B2 (en) * 2001-04-18 2012-09-05 パナソニック株式会社 Control valve type lead acid battery
JP5138391B2 (en) * 2008-01-15 2013-02-06 古河電池株式会社 Control valve type lead acid battery
JP2011233390A (en) * 2010-04-28 2011-11-17 Panasonic Corp Control valve type lead-acid battery
EP2571091B1 (en) * 2010-05-10 2017-11-29 Hitachi Chemical Company, Ltd. Lead storage battery
JP6582386B2 (en) * 2014-10-17 2019-10-02 日立化成株式会社 Lead acid battery

Also Published As

Publication number Publication date
JP2017004647A (en) 2017-01-05

Similar Documents

Publication Publication Date Title
EP2263276B1 (en) Flooded lead-acid battery
US9118080B2 (en) Lead-acid battery
US20110027653A1 (en) Negative plate for lead acid battery
JP2007066558A (en) Lead-acid battery
US20110250500A1 (en) Positive active material for a lead-acid battery
WO2013114822A1 (en) Lead-acid battery
JP6398111B2 (en) Lead acid battery
WO2012153464A1 (en) Lead-acid battery anode and lead-acid battery
JP5720947B2 (en) Lead acid battery
JP6582386B2 (en) Lead acid battery
JP6665426B2 (en) Lead storage battery
JP6791326B2 (en) Lead-acid battery
JP5573785B2 (en) Lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP7128482B2 (en) lead acid battery
JP6318852B2 (en) Lead acid battery
JP5034159B2 (en) Negative electrode active material for lead acid battery and lead acid battery using the same
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2002198085A (en) Lead storage battery
JP2011009128A (en) Capacitor hybrid lead-acid battery and its manufacturing method
JP6497460B2 (en) Lead acid battery
JP4984786B2 (en) Lead acid battery
JP4069743B2 (en) Lead acid battery
JP2005116206A (en) Control valve type lead-acid storage battery
JP2006202584A (en) Lead-acid battery and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180528

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190814

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R151 Written notification of patent or utility model registration

Ref document number: 6665426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250