JP2001210320A - Lead-acid storage battery and its manufacturing method - Google Patents

Lead-acid storage battery and its manufacturing method

Info

Publication number
JP2001210320A
JP2001210320A JP2000015665A JP2000015665A JP2001210320A JP 2001210320 A JP2001210320 A JP 2001210320A JP 2000015665 A JP2000015665 A JP 2000015665A JP 2000015665 A JP2000015665 A JP 2000015665A JP 2001210320 A JP2001210320 A JP 2001210320A
Authority
JP
Japan
Prior art keywords
lead
paste
positive electrode
active material
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000015665A
Other languages
Japanese (ja)
Other versions
JP3659111B2 (en
Inventor
Yukio Yoshiyama
行男 吉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000015665A priority Critical patent/JP3659111B2/en
Publication of JP2001210320A publication Critical patent/JP2001210320A/en
Application granted granted Critical
Publication of JP3659111B2 publication Critical patent/JP3659111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lead-acid storage battery of a long life. SOLUTION: A paste-state active substance for a positive electrode is made by adding dilute sulfuric acid, water and resin fiber to lead powder and mixing them together. A current collector made of a lead alloy is coated with the paste state active substance. After being coated, the current collector is kept under the following condition for 4-8 hours; temperature 75-85 deg.C, relative humidity 95-98%. After that, it is further kept under the condition, temperature 50-65 deg.C, relative humidity 50-70% for more than 20 hours for letting it aged and dried. The dried paste state active substance layer of the positive electrode contains 40-70% of tetrabasic lead sulfate. The length of the electrode is made to be 30-150 μ. The lead-acid storage battery is made using this paste-state positive electrode plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池のペース
ト式正極板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type positive electrode plate for a lead storage battery.

【0002】[0002]

【従来の技術】近年、ペースト式正極板を用いた鉛蓄電
池の高容量化及び長寿命化が強く要求されている。鉛蓄
電池を高容量化するには、正極板の活物質層の多孔度を
高くする手法が有効である。しかしながら、正極板の活
物質層の多孔度を高くすると、集電体として用いている
鉛合金製の格子体から、前記活物質層が脱落しやすくな
り、その結果、寿命が短くなるという問題点が認められ
ている。
2. Description of the Related Art In recent years, there has been a strong demand for higher capacity and longer life of lead-acid batteries using a paste-type positive electrode plate. In order to increase the capacity of the lead storage battery, it is effective to increase the porosity of the active material layer of the positive electrode plate. However, when the porosity of the active material layer of the positive electrode plate is increased, the active material layer easily falls off from the lead alloy lattice used as the current collector, and as a result, the life is shortened. Has been recognized.

【0003】鉛蓄電池を高容量化し、長寿命化する手法
として、ペースト式正極板の活物質層の物性を改良する
手法が検討されている。すなわち、未化成状態でのペー
スト式正極板の活物質層に、大きな結晶の大きな4PbO・P
bSO4(以下、四塩基性硫酸鉛と称す)を生成させた後、
化成することによって、二酸化鉛(PbO2)の骨格を長く
し、格子体と活物質層の密着強度を向上させる手法であ
る。
As a technique for increasing the capacity and extending the life of a lead storage battery, a technique for improving the physical properties of an active material layer of a paste-type positive electrode plate is being studied. In other words, the 4PbO.P with large crystals is added to the active material layer of the paste-type positive electrode plate in the unformed state.
After generating bSO 4 (hereinafter referred to as tetrabasic lead sulfate),
This is a method in which the skeleton of lead dioxide (PbO 2 ) is lengthened by chemical conversion to improve the adhesion strength between the lattice and the active material layer.

【0004】前記四塩基性硫酸鉛は三塩基性硫酸鉛と同
様に、化成すると二酸化鉛化するが、四塩基性硫酸鉛は
三塩基性硫酸鉛に比べて化成時における体積膨張率が小
さいため、化成によってもその骨格がほとんど崩れない
ことが知られている。その結果、格子体と活物質層の密
着強度が向上し、鉛蓄電池が長寿命化できるものと考え
られている。
[0004] Like the tribasic lead sulfate, the above-mentioned tetrabasic lead sulfate is converted to lead dioxide when it is formed. However, the tetrabasic lead sulfate has a smaller volume expansion coefficient during the formation than the tribasic lead sulfate. It is known that the skeleton hardly collapses even by chemical formation. As a result, it is considered that the adhesion strength between the lattice body and the active material layer is improved, and the life of the lead storage battery can be extended.

【0005】なお、パブロフ(Pavlov)等の研究(ジー
ナル・オブ・エレクトロケミカル・ソサイエテー、137
巻、16ページ(1990)「D.Pavlov and N.Kapkov、J.Ele
ctrochem.Soc.,137,16(1990)」)によれば、前記鉛丹の
添加量を増やすと四塩基性硫酸鉛が生成されにくくな
り、活物質層の強度も弱くなるとの報告がある。一方、
四塩基性硫酸鉛の結晶が大きくなりすぎると化成されに
くくなることや、活物質層の表面積が小さくなるため
に、放電されにくくなることが報告されている。また、
前記した四塩基性硫酸鉛は、骨格の長さ及び生成量を安
定化することが難しいという問題点があった。
Incidentally, a study by Pavlov et al. (Genal of Electrochemical Society, 137)
Volume, page 16 (1990) "D. Pavlov and N. Kapkov, J. Ele
According to ctrochem. Soc., 137 , 16 (1990) ”, there is a report that increasing the amount of the above-mentioned lead tin makes it difficult to generate tetrabasic lead sulfate and weakens the strength of the active material layer. on the other hand,
It has been reported that if the crystal of the tetrabasic lead sulfate is too large, it is difficult to be chemically formed, and that the surface area of the active material layer is small, so that the discharge is difficult. Also,
The above-mentioned tetrabasic lead sulfate has a problem that it is difficult to stabilize the length of the skeleton and the production amount.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、熟成
・乾燥後における未化成状態の正極用活物質層中に、安
定した骨格の長さ及び量の四塩基性硫酸鉛を生成させる
ことによって、長寿命な鉛蓄電池を提供することであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to form a stable skeleton length and amount of tetrabasic lead sulfate in an unformed positive electrode active material layer after aging and drying. Thus, a long-life lead-acid battery is provided.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、第一の発明はペースト状活物質を集電体に塗着した
後、熟成・乾燥させて作成するペースト式正極板を用い
る鉛蓄電池において、前記乾燥後のペースト式正極板の
活物質層には四塩基性硫酸鉛が40〜70質量%含まれてお
り、該四塩基性硫酸鉛の骨格の長さが30〜150μmである
ことを特徴としている。
Means for Solving the Problems In order to solve the above-mentioned problems, a first invention is a lead-acid battery using a paste-type positive electrode plate formed by applying a paste-like active material to a current collector, and then aging and drying. In the above, the active material layer of the paste-type positive electrode plate after drying contains 40 to 70% by mass of tetrabasic lead sulfate, and the length of the skeleton of the tetrabasic lead sulfate is 30 to 150 μm. It is characterized by.

【0008】第二の発明は、ペースト状活物質を集電体
に塗着し、熟成・乾燥させたペースト式正極板を用いる
鉛蓄電池の製造方法において、鉛粉、希硫酸、水、樹脂
繊維を含むペースト状活物質を作製し、該ペースト状活
物質を鉛合金製の集電体に塗着してペースト式正極板を
作製し、該ペースト式正極板を温度が75〜85℃、相対湿
度が95〜98%の雰囲気で4〜8時間の1次放置をした後、
温度が50〜65℃、相対湿度が50%以上の雰囲気で20時間
以上の2次放置をして、熟成・乾燥することを特徴とし
ている。
A second invention relates to a method for manufacturing a lead-acid battery using a paste-type positive electrode plate obtained by applying a paste-like active material to a current collector, and then aging and drying the lead-acid battery. To prepare a paste-type positive electrode plate by applying the paste-like active material to a current collector made of a lead alloy, the paste-type positive electrode plate at a temperature of 75-85 ℃, relative to After the first leaving for 4-8 hours in an atmosphere with 95-98% humidity,
It is characterized in that it is aged for at least 20 hours in an atmosphere at a temperature of 50 to 65 ° C. and a relative humidity of 50% or more, and is aged and dried.

【0009】[0009]

【発明の実施の形態】1.正極板の作製・試験条件 一酸化鉛を主成分とする鉛粉に、水、希硫酸及び樹脂繊
維を加えて混練して正極用のペースト状活物質を作成す
る。なお、ペースト状活物質中の水分量は、鉛粉に対し
て14質量%に調整した。縦が240mm、横が140mm、厚みが
4.2mmの格子形状をした鉛−カルシウム合金製の集電体
に、前記ペースト状活物質を塗布した後、温度が70〜90
℃、相対湿度が90〜98%の雰囲気で3〜10時間の1次放置
をする。
BEST MODE FOR CARRYING OUT THE INVENTION Preparation and Test Conditions of Positive Electrode Water, dilute sulfuric acid and resin fibers are added to lead powder mainly composed of lead monoxide and kneaded to prepare a paste-like active material for a positive electrode. The water content in the paste-like active material was adjusted to 14% by mass with respect to the lead powder. 240mm length, 140mm width, thickness
After applying the paste-like active material to a current collector made of a lead-calcium alloy having a lattice shape of 4.2 mm, the temperature was increased to 70 to 90.
C. and a relative humidity of 90 to 98% for 3 to 10 hours.

【0010】次に、温度が40〜70℃、相対湿度が40〜70
%の雰囲気で15〜30時間の2次放置をして未化成の正極
板を作製した。そして、2次放置後における正極用活物
質中の四塩基性硫酸鉛の骨格の長さを電子顕微鏡で観察
した。
Next, a temperature of 40 to 70 ° C. and a relative humidity of 40 to 70
% For 15 to 30 hours to produce an unformed positive electrode plate. After the second standing, the length of the skeleton of the tetrabasic lead sulfate in the positive electrode active material was observed with an electron microscope.

【0011】また、2次放置後における正極用活物質中
の四塩基性硫酸鉛の生成量については、X線回折法を用
い、四塩基性硫酸鉛、三塩基性硫酸鉛及び一酸化鉛(P
bO)の標準サンプルとの比較により決定した。
The amount of tetrabasic lead sulfate in the positive electrode active material after the second standing is determined by X-ray diffraction using tetrabasic lead sulfate, tribasic lead sulfate and lead monoxide ( P
bO) was determined by comparison with a standard sample.

【0012】2.密閉形鉛蓄電池の作製及び試験条件 前記したペースト式正極板と、従来から使用していた縦
が240mm、横が140mm、厚みが2.4mmのペースト式負極板
とを用いた。そして、リテーナを介して、ペースト式正
極板が8枚、ペースト式負極板が9枚それぞれ使用した
極板群を作成し、該極板群を用いて密閉形鉛蓄電池を作
製し、希硫酸電解液を注液した後に電槽化成をして公称
容量が2V-200Ahの密閉形鉛蓄電池とした。
2. Production and Test Conditions of Sealed Lead-Acid Battery The paste-type positive electrode plate described above and a paste-type negative electrode plate which had been conventionally used and had a length of 240 mm, a width of 140 mm, and a thickness of 2.4 mm were used. Then, through a retainer, an electrode group was prepared using eight paste-type positive electrode plates and nine paste-type negative electrode plates, and a sealed lead-acid battery was manufactured using the electrode group. After injecting the liquid, the battery was formed to form a sealed lead-acid battery having a nominal capacity of 2 V-200 Ah.

【0013】前記した正極板の1次放置及び2次放置の
条件が密閉形鉛蓄電池のトリクル寿命特性(60℃、2.23
Vの定電圧過充電試験)に、どのように影響するかにつ
いて評価した。すなわち、25℃、0.16CAの定電流で、放
電終止電圧が1.75Vまで放電して初期の放電容量を測定
する。そして、60℃、2.23Vの定電圧で充電し、1ヶ月
ごとに、25℃、0.16CAの定電流で、放電終止電圧が1.75
Vまで放電して容量を測定し、放電容量が140Ah以下にな
った時点を寿命とした。
[0013] The conditions for the primary and secondary storage of the positive electrode plate are the trickle life characteristics (60 ° C, 2.23 ° C) of the sealed lead-acid battery.
V constant-voltage overcharge test). That is, discharge is performed at a constant current of 0.16 CA at 25 ° C. until the discharge end voltage is 1.75 V, and the initial discharge capacity is measured. The battery is charged at a constant voltage of 60 ° C and 2.23V, and the discharge end voltage is 1.75 at a constant current of 25 ° C and 0.16CA every month.
The battery was discharged to V and the capacity was measured. The time when the discharge capacity became 140 Ah or less was defined as the life.

【0014】3.四塩基性硫酸鉛の骨格の長さ及び生成
量 化成前のペースト式正極板について、上記した1次放置
及び2次放置の条件と、四塩基性硫酸鉛の骨格の長さ及
び生成量との関係を表1、2に示す。
3. Length and amount of skeleton of tetrabasic lead sulfate Regarding the paste-type positive electrode plate before chemical conversion, the conditions of the above-mentioned primary and secondary standing, and the length and amount of skeleton of tetrabasic lead sulfate are described. Tables 1 and 2 show the relationship.

【0015】3.1 1次放置条件の影響 2次放置の条件として60℃、相対湿度65%、30時間の放
置とし、1次放置の温度、相対湿度、放置時間の影響に
ついて測定した。
3.1 Influence of Primary Leaving Conditions The conditions of the secondary leaving were 60 ° C., 65% relative humidity and left for 30 hours, and the effects of the temperature, the relative humidity and the leaving time of the primary leaving were measured.

【0016】(正極板No1〜5)1次放置の条件として相
対湿度が98%、5時間として、温度の影響について測定
した。温度が75〜90℃の範囲では、温度が高いほど四塩
基性硫酸鉛の骨格が長く、生成量も多くなる傾向を示
す。
(Positive electrode plates No. 1 to 5) The influence of temperature was measured with the relative humidity being 98% and 5 hours as the conditions of the first standing. When the temperature is in the range of 75 to 90 ° C., the higher the temperature, the longer the skeleton of tetrabasic lead sulfate tends to increase the amount of formation.

【0017】(正極板No3、6、7)1次放置の条件とし
て温度が80℃、5時間として、相対湿度の影響について
測定した。相対湿度が90〜98%の範囲では、相対湿度が
高いほど四塩基性硫酸鉛の骨格が長く、生成量も多くな
る傾向を示す。
(Positive electrode plates No. 3, 6, 7) The influence of relative humidity was measured at a temperature of 80.degree. When the relative humidity is in the range of 90 to 98%, the higher the relative humidity is, the longer the skeleton of the tetrabasic lead sulfate tends to be, and the more the amount of formation is.

【0018】(正極板No3、8〜11)1次放置の条件とし
て温度が80℃、相対湿度が98%として、放置時間の影響
について測定した。放置時間が3〜10時間の範囲では、
放置時間が長いほど四塩基性硫酸鉛の骨格が長く、生成
量も多くなる傾向を示す。
(Positive electrode plates No. 3, 8 to 11) The influence of the standing time was measured at a temperature of 80 ° C. and a relative humidity of 98% as the conditions of the first standing. If the leaving time is in the range of 3 to 10 hours,
The longer the standing time, the longer the skeleton of the tetrabasic lead sulfate, and the more the amount of formation tends to increase.

【0019】3.2 2次放置条件の影響 1次放置の条件として温度が80℃、相対湿度が98%、5
時間の放置とし、2次放置の温度、相対湿度、放置時間
の影響について測定した。
3.2 Influence of secondary storage conditions The primary storage conditions were as follows: temperature 80 ° C., relative humidity 98%, 5
After leaving for a period of time, the effects of the temperature, relative humidity, and standing time of the secondary standing were measured.

【0020】(正極板No3、12〜17)2次放置の条件と
して相対湿度が65%、30時間放置し、温度の影響につい
て測定した。温度が40〜65℃の範囲では、温度が高いほ
ど四塩基性硫酸鉛の骨格が長く、生成量も多くなる傾向
を示す。しかしながら、70℃では65℃に比べて四塩基性
硫酸鉛の骨格が短く、生成量も少ない。
(Positive electrode plate No. 3, 12 to 17) As a condition for the second standing, the substrate was left for 30 hours at a relative humidity of 65%, and the influence of the temperature was measured. When the temperature is in the range of 40 to 65 ° C., the higher the temperature, the longer the skeleton of the tetrabasic lead sulfate tends to increase the amount of formation. However, at 70 ° C., the skeleton of tetrabasic lead sulfate is shorter than at 65 ° C., and the amount of formation is small.

【0021】(正極板No3、18〜21)2次放置の条件と
しての温度が60℃、30時間放置し、相対湿度の影響につ
いて測定した。相対湿度が40〜70%の範囲では、相対湿
度が高いほど四塩基性硫酸鉛の骨格が長く、生成量も多
くなる傾向を示す。
(Positive electrode plate No. 3, 18 to 21) The temperature was set to 60 ° C. for 30 hours as a condition of the second standing, and the influence of the relative humidity was measured. When the relative humidity is in the range of 40 to 70%, the higher the relative humidity is, the longer the skeleton of the tetrabasic lead sulfate tends to be, and the more the amount of generation is.

【0022】(正極板No3、22〜25)2次放置の条件と
しての温度が60℃、相対湿度が60%で放置し、放置時間
の影響について測定した。放置時間が3〜10時間の範囲
では、放置時間が長いほど四塩基性硫酸鉛の骨格が長
く、生成量も多くなる傾向を示す。
(Positive electrode plate No. 3, 22 to 25) The temperature was set to 60 ° C. and the relative humidity was set to 60% as a condition of the second standing, and the influence of the standing time was measured. When the standing time is in the range of 3 to 10 hours, the longer the standing time, the longer the skeleton of the tetrabasic lead sulfate, and the more the amount of production tends to increase.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【実施例】(実施例1〜3、比較例1、2)上記した表
1のNo1〜5の正極板を用いて密閉形鉛蓄電池を作製
し、上記した条件で寿命試験をした結果を表3に示す。
四塩基性硫酸鉛の骨格の長さが30〜150μmで、生成量が
40〜70質量%の正極板(No2〜4)を用いると、長寿命な
密閉形鉛蓄電池を作製できる。なお、表2のNo6〜25の
正極板において、この範囲の四塩基性硫酸鉛を有する正
極板(No7,9,10,14〜16,19〜21,23〜25)を用いた密閉
形鉛蓄電池でも、すべて良好な寿命特性を示した。
Examples (Examples 1 to 3 and Comparative Examples 1 and 2) Sealed lead-acid batteries were manufactured using the positive plates Nos. 1 to 5 in Table 1 described above, and the results of a life test performed under the above-described conditions were shown. 3 is shown.
The skeleton length of the tetrabasic lead sulfate is 30 to 150 μm,
When a positive electrode plate (Nos. 2 to 4) of 40 to 70% by mass is used, a long-life sealed lead-acid battery can be manufactured. In addition, in the positive electrode plates of Nos. 6 to 25 in Table 2, the sealed lead using the positive electrode plates (Nos. 7, 9, 10, 14 to 16, 19 to 21, 23 to 25) having tetrabasic lead sulfate in this range. All the storage batteries also exhibited good life characteristics.

【0027】すなわち、熟成・乾燥において、1次放置
として温度が75〜85℃、相対湿度が95〜98%で4〜8時間
放置し、2次放置として温度50〜65℃、相対湿度50〜70
%で20時間以上の放置をすることにより、骨格の長さが3
0〜150μmで、生成量が40〜70質量%の四塩基性硫酸鉛が
安定して得られ、これらの正極板(No2〜4,7,9,10,14〜
16,19〜21,23〜25)を用いると、長寿命な密閉形鉛蓄電
池を作製できる。
That is, in aging and drying, the mixture is left at a temperature of 75 to 85 ° C. and a relative humidity of 95 to 98% for 4 to 8 hours as a first standing, and at a temperature of 50 to 65 ° C. and a relative humidity of 50 to 85 as a second standing. 70
By leaving it for more than 20 hours at%, the skeleton length becomes 3
0-150 μm, the production amount of 40-70% by mass of tetrabasic lead sulfate can be obtained stably, and these positive plates (No.2-4,7,9,10,14-
16,19-21,23-25), a long-life sealed lead-acid battery can be manufactured.

【0028】[0028]

【表3】 [Table 3]

【0029】上記した実施例は密閉形鉛蓄電池で実験し
た結果を示したが、液式の鉛蓄電池でも同様の結果が得
られた。
Although the above-described embodiment shows the results of experiments with a sealed lead-acid battery, similar results were obtained with a liquid-type lead-acid battery.

【0030】[0030]

【発明の効果】上述したように、本発明を用いると、安
定した形状及び生成量の四塩基性硫酸鉛を作成すること
ができるとともに、長寿命な鉛蓄電池を提供することが
できる点で優れている。
As described above, the use of the present invention is excellent in that a tetrabasic lead sulfate having a stable shape and a generated amount can be produced and a long-life lead-acid battery can be provided. ing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ペースト状活物質を集電体に塗着した後、
熟成・乾燥させて作成するペースト式正極板を用いる鉛
蓄電池において、前記乾燥後のペースト式正極板の活物
質層には四塩基性硫酸鉛が40〜70質量%含まれており、
該四塩基性硫酸鉛の骨格の長さが30〜150μmであること
を特徴とする鉛蓄電池。
1. After applying a paste-like active material to a current collector,
In a lead-acid battery using a paste-type positive electrode plate prepared by aging and drying, the active material layer of the dried paste-type positive electrode plate contains 40 to 70% by mass of tetrabasic lead sulfate,
A lead-acid battery, wherein the skeleton of the tetrabasic lead sulfate has a length of 30 to 150 μm.
【請求項2】ペースト状活物質を集電体に塗着し、熟成
・乾燥させたペースト式正極板を用いる鉛蓄電池の製造
方法において、鉛粉、希硫酸、水、樹脂繊維を含むペー
スト状活物質を作製し、該ペースト状活物質を鉛合金製
の集電体に塗着してペースト式正極板を作製し、該ペー
スト式正極板を温度が75〜85℃、相対湿度が95〜98%の
雰囲気で4〜8時間の1次放置をした後、温度が50〜65
℃、相対湿度が50%以上の雰囲気で20時間以上の2次放
置をして、熟成・乾燥することを特徴とする鉛蓄電池の
製造方法。
2. A method for producing a lead-acid battery using a paste-type positive electrode plate obtained by applying a paste-type active material to a current collector, and aging and drying the paste-type active material, comprising a paste containing lead powder, dilute sulfuric acid, water, and resin fibers. An active material is produced, the paste-like active material is applied to a current collector made of a lead alloy to produce a paste-type positive electrode plate, and the paste-type positive electrode plate has a temperature of 75 to 85 ° C and a relative humidity of 95 to 85 ° C. After the first leaving for 4-8 hours in 98% atmosphere, the temperature is 50-65
A method for producing a lead-acid battery, wherein the battery is aged for at least 20 hours in an atmosphere at 50 ° C. and a relative humidity of 50% or more, and then aged and dried.
JP2000015665A 2000-01-25 2000-01-25 Manufacturing method of lead acid battery Expired - Lifetime JP3659111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000015665A JP3659111B2 (en) 2000-01-25 2000-01-25 Manufacturing method of lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000015665A JP3659111B2 (en) 2000-01-25 2000-01-25 Manufacturing method of lead acid battery

Publications (2)

Publication Number Publication Date
JP2001210320A true JP2001210320A (en) 2001-08-03
JP3659111B2 JP3659111B2 (en) 2005-06-15

Family

ID=18542918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000015665A Expired - Lifetime JP3659111B2 (en) 2000-01-25 2000-01-25 Manufacturing method of lead acid battery

Country Status (1)

Country Link
JP (1) JP3659111B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177000A (en) * 2007-01-18 2008-07-31 Shin Kobe Electric Mach Co Ltd Manufacturing method of paste type positive electrode plate
WO2013122132A1 (en) * 2012-02-14 2013-08-22 新神戸電機株式会社 Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate
JP2013211205A (en) * 2012-03-30 2013-10-10 Furukawa Battery Co Ltd:The Negative electrode plate for lead-acid storage battery, manufacturing method therefor and lead-acid storage battery
CN105374990A (en) * 2015-11-16 2016-03-02 天能电池(芜湖)有限公司 Two-day curing process of accumulator plate
CN110380059A (en) * 2019-07-30 2019-10-25 漳州市华威电源科技有限公司 A kind of rare earth alloy grid pretreating process
WO2021017347A1 (en) * 2019-07-29 2021-02-04 浙江天能电池(江苏)有限公司 Lead-carbon storage battery negative plate spontaneous curing process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177000A (en) * 2007-01-18 2008-07-31 Shin Kobe Electric Mach Co Ltd Manufacturing method of paste type positive electrode plate
WO2013122132A1 (en) * 2012-02-14 2013-08-22 新神戸電機株式会社 Positive electrode plate for lead acid battery, method for producing said electrode plate, and lead acid battery using said positive electrode plate
JPWO2013122132A1 (en) * 2012-02-14 2015-05-18 新神戸電機株式会社 Positive electrode plate for lead acid battery, method for producing the electrode plate, and lead acid battery using the positive electrode plate
JP2013211205A (en) * 2012-03-30 2013-10-10 Furukawa Battery Co Ltd:The Negative electrode plate for lead-acid storage battery, manufacturing method therefor and lead-acid storage battery
CN105374990A (en) * 2015-11-16 2016-03-02 天能电池(芜湖)有限公司 Two-day curing process of accumulator plate
WO2021017347A1 (en) * 2019-07-29 2021-02-04 浙江天能电池(江苏)有限公司 Lead-carbon storage battery negative plate spontaneous curing process
CN110380059A (en) * 2019-07-30 2019-10-25 漳州市华威电源科技有限公司 A kind of rare earth alloy grid pretreating process

Also Published As

Publication number Publication date
JP3659111B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
US5302476A (en) High performance positive electrode for a lead-acid battery
JP2001229920A (en) Method of manufacturing sealed lead acid battery
JP2009048800A (en) Manufacturing method for paste type positive electrode plate
JP2003123760A (en) Negative electrode for lead-acid battery
JP2001210320A (en) Lead-acid storage battery and its manufacturing method
JP4635325B2 (en) Control valve type lead acid battery
JP5017746B2 (en) Control valve type lead acid battery
JP2001155723A (en) Sealed lead acid storage battery and method of fabricating it
JP3835093B2 (en) Sealed lead acid battery
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP2002100347A (en) Lead-acid battery
JPH0676815A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH10247491A (en) Lead-acid battery and its manufacture
JP3987998B2 (en) Unformed positive electrode plate for lead acid battery
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JPH1040907A (en) Manufacture of positive electrode plate for lead-acid battery
JPS6030054A (en) Manufacture of plate for paste type lead-acid battery
JP2006318775A (en) Manufacturing method of pasty activator for anode
JP2002198039A (en) Negative electrode active material in paste form and its manufacturing method
JPS61264675A (en) Positive plate of clad type lead-acid battery
JP3038995B2 (en) Lead storage battery
JP2003123744A (en) Control valve-type lead-acid battery
JP2002343360A (en) Control valve type lead storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3659111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120325

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 9

EXPY Cancellation because of completion of term