JP4274873B2 - Lead-acid battery substrate and lead-acid battery using the same - Google Patents

Lead-acid battery substrate and lead-acid battery using the same Download PDF

Info

Publication number
JP4274873B2
JP4274873B2 JP2003281342A JP2003281342A JP4274873B2 JP 4274873 B2 JP4274873 B2 JP 4274873B2 JP 2003281342 A JP2003281342 A JP 2003281342A JP 2003281342 A JP2003281342 A JP 2003281342A JP 4274873 B2 JP4274873 B2 JP 4274873B2
Authority
JP
Japan
Prior art keywords
lead
mass
substrate
acid battery
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281342A
Other languages
Japanese (ja)
Other versions
JP2004158433A (en
Inventor
靖之 根兵
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2003281342A priority Critical patent/JP4274873B2/en
Publication of JP2004158433A publication Critical patent/JP2004158433A/en
Application granted granted Critical
Publication of JP4274873B2 publication Critical patent/JP4274873B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、鉛蓄電池の基板およびそれを用いた鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery substrate and a lead-acid battery using the same.

近年、自動車のエンジンルームは装備の増加と無駄な空間を排除したデザインなどから、内部の温度上昇が著しく、また、常に過充電状態に置かれる事と相まって、自動車用鉛蓄電池は鉛蓄電池の中で最も過酷な条件で使用されている。そのため、正極の基板腐食や基板のグロスと呼ばれる伸びによる変形が起こり易く、早期に寿命に至るため強く改善が求められている。また一方で、利便性の観点からメンテナンスフリー化も強く求められており、基板の合金組成としてCa0.06〜0.10質量%、Sn1.0〜2.0質量%、Al0.005〜0.04質量%、残部Pbと言った鉛−カルシウム系の合金が用いられていたが、鉛蓄電池の寿命の改善、即ち耐食性の向上とグロスの抑制に対しては十分な効果が得られていない。   In recent years, the engine compartment of automobiles has increased in temperature due to the increase in equipment and the design that eliminates wasted space, etc., and coupled with being constantly overcharged, automotive lead-acid batteries are among the lead-acid batteries. Used in the most severe conditions. For this reason, deformation due to elongation called substrate corrosion of the positive electrode or gloss of the substrate is likely to occur, and since it reaches the end of its life, there is a strong demand for improvement. On the other hand, maintenance-free is also strongly demanded from the viewpoint of convenience, and the alloy composition of the substrate is Ca 0.06-0.10 mass%, Sn 1.0-2.0 mass%, Al 0.005-0. The lead-calcium alloy of 04 mass% and the balance Pb was used, but a sufficient effect was not obtained for improving the life of the lead-acid battery, that is, improving the corrosion resistance and suppressing the gloss.

これら従来の基板合金を改良して0.05質量%以上のCaとSn、Alからなる合金に0.02質量%未満のBaを添加した鉛合金により機械的強度を維持したもの(特許文献1参照)や、Ca0.025〜0.06質量%、Sn0.3〜0.7質量%、Ag0.015〜0.045質量%を添加した鉛合金により高温下でも長寿命であるもの(特許文献2参照)などが知られている。   These conventional substrate alloys are improved and mechanical strength is maintained by a lead alloy in which 0.05% by mass or more of Ca, Sn, and Al is added to less than 0.02% by mass of Ba (Patent Document 1) And a lead alloy to which Ca 0.025 to 0.06% by mass, Sn 0.3 to 0.7% by mass, and Ag 0.015 to 0.045% by mass have a long life even at high temperatures (patent document) 2) is known.

しかし、より本質的には鉛蓄電池使用時に生成する腐食物によって発生する伸び応力に起因する伸び変形、即ちグロスを起こし、基板と活物質との電気的な接合を損ない鉛蓄電池容量の低下、更には極板変形による短絡などの問題を起こすことであり、強度の改善はグロスを低下できるが、グロスは腐食と強度の両要因の共同現象であるので、腐食反応を十分に低減できない限りその効果が限定的であることは明白である。この点で上記改良した鉛合金はともに十分であるとは言えない。   However, more essentially, it causes elongation deformation caused by the elongation stress generated by the corrosive material generated when using the lead storage battery, that is, gloss, impairs the electrical connection between the substrate and the active material, lowers the lead storage battery capacity, and Is to cause problems such as short-circuiting due to electrode plate deformation, and improvement in strength can reduce gloss, but since gloss is a joint phenomenon of both factors of corrosion and strength, its effect is effective unless the corrosion reaction can be sufficiently reduced. It is clear that is limited. In this respect, it cannot be said that both of the improved lead alloys are sufficient.

一方、本発明者らは先に全く新しい鉛合金を提案した(特願2002−116593)。この鉛合金はカルシウム0.02質量%以上0.05質量%未満、スズ0.4質量%以上2.5質量%以下、アルミニウム0.005質量%以上0.04質量%以下、バリウム0.002質量%以上0.014質量%以下、残部が鉛と不可避の不純物からなるもの、或いは更にこれらに0.005質量%以上0.07質量%以下の銀、0.01質量%以上0.10質量%以下のビスマス、0.001質量%以上0.05質量%以下のタリウムよりなる群から選ばれた少なくとも一種の元素を含むものである。この鉛合金によれば上記各鉛合金に比し、耐食性と機械的強度の両方を向上して本質的問題を解消し得、長寿命の鉛蓄電池を提供し得るものである。   On the other hand, the present inventors previously proposed a completely new lead alloy (Japanese Patent Application No. 2002-116593). This lead alloy is calcium 0.02 mass% or more and less than 0.05 mass%, tin 0.4 mass% or more and 2.5 mass% or less, aluminum 0.005 mass% or more and 0.04 mass% or less, barium 0.002 % By mass or more and 0.014% by mass or less, the balance being composed of lead and inevitable impurities, or further 0.005% by mass to 0.07% by mass of silver, 0.01% by mass or more and 0.10% by mass % Or less of bismuth and 0.001% by mass or more and 0.05% by mass or less of at least one element selected from the group consisting of thallium. According to this lead alloy, both the corrosion resistance and the mechanical strength can be improved and the essential problems can be solved, and a long-life lead-acid battery can be provided as compared with the above lead alloys.

特表2000−504783号公報(第6頁第1行〜第11行参照)JP 2000-504783 A (refer to page 6, line 1 to line 11) 米国特許第5298350号明細書(第4欄第38行〜第5欄第25行参照)U.S. Pat. No. 5,298,350 (see column 4, line 38 to column 5, line 25)

上記の鉛合金からなる基板の合金組成による耐食性や機械的強度の向上は鉛蓄電池の長寿命化に効果があるが、近年燃費向上のために自動車ではアイドリングストップや始動アシストなどハイブリッド機能が求められ、大電流での放電特性の向上をも求められるようになって来ている。しかしながら、上記合金は耐食性が極めて優れているため、基板表面の酸化により基板と活物質ペーストの密着性を高める熟成工程において基板表面を従来以上に密着させることは困難で、大電流放電特性の向上と言う要望に応えることが出来ない。   Improvements in corrosion resistance and mechanical strength due to the alloy composition of the above-mentioned lead alloy substrate are effective in extending the life of lead-acid batteries, but in recent years, automobiles require hybrid functions such as idling stop and start assist to improve fuel economy. In addition, improvement of discharge characteristics at a large current has been demanded. However, since the above alloys have extremely excellent corrosion resistance, it is difficult to bring the substrate surface into close contact more than before in the aging process in which the adhesion between the substrate and the active material paste is enhanced by oxidation of the substrate surface, which improves the high current discharge characteristics. I cannot respond to the request.

本発明は、基板合金中のカルシウムが0.05質量%未満であり、かつ基板の表面粗さ(Rz:JIS B0601に定められた十点平均粗さ)が15μm以上であることを特徴とするものである。   The present invention is characterized in that calcium in the substrate alloy is less than 0.05 mass%, and the surface roughness of the substrate (Rz: 10-point average roughness defined in JIS B0601) is 15 μm or more. Is.

合金の耐食性は合金中のCa含有量が少ないと向上する傾向があり、特に0.05質量%未満で著しく改善される。その反面、基板と活物質とも密着性を高めることが難しくなるが、基板の表面粗さ(Rz)を15μm以上とすることで密着性を高めると共に、大電流での放電特性も向上することができる。   The corrosion resistance of the alloy tends to be improved when the Ca content in the alloy is small, and is remarkably improved particularly at less than 0.05% by mass. On the other hand, it is difficult to improve the adhesion between the substrate and the active material, but by increasing the surface roughness (Rz) of the substrate to 15 μm or more, the adhesion can be improved and the discharge characteristics at a large current can be improved. it can.

本発明は基板の表面粗さと合金組成の相互作用によって達成されるものと考えられる。表面粗さを大きくするとアンカー効果による機械的な結合により密着性が向上する。しかし、活物質ペーストと基板の密着性はそれだけでは不十分であり、化学的な結合が十分でなければならない。即ち、本発明ではアンカー効果以上に基板表面と活物質との化学的結合が大きく作用する。一般に活物質ペーストを充填した基板は、高温・多湿な環境下に置かれる熟成工程で表面のpHが高くなり、鉛イオンが生成する。ところが、理由は明らかではないが、基板表面の粗さ(Rz)が15μmより大きくなると、活物質ペーストが充填された基板の表面の断面曲線の谷部は山部よりもさらにpHが高くなり、基板表面の溶解がより一層促進される。これは、表面粗さ(Rz)が15μm以上になると谷部が山部よりも含水率の高い状態になるためと考えられる。その結果、溶解した鉛イオンは活物質と基板表面に適度な腐食層を形成し、密着性を向上させるとともに大電流での放電特性も向上することができる。   The present invention is considered to be achieved by the interaction between the surface roughness of the substrate and the alloy composition. When the surface roughness is increased, the adhesion is improved by mechanical bonding due to the anchor effect. However, the adhesiveness between the active material paste and the substrate is not sufficient by itself, and chemical bonding must be sufficient. That is, in the present invention, the chemical bond between the substrate surface and the active material acts more than the anchor effect. In general, a substrate filled with an active material paste has a high pH on the surface during the aging process in a high temperature and high humidity environment, and lead ions are generated. However, although the reason is not clear, when the roughness (Rz) of the substrate surface is greater than 15 μm, the valley of the cross-sectional curve of the surface of the substrate filled with the active material paste has a higher pH than the peak, Dissolution of the substrate surface is further promoted. This is considered to be because when the surface roughness (Rz) is 15 μm or more, the valley portion has a higher moisture content than the mountain portion. As a result, the dissolved lead ions can form an appropriate corrosion layer on the active material and the substrate surface, thereby improving adhesion and improving discharge characteristics at a large current.

一方、合金中のカルシウム量が0.05質量%以上では、この腐食層が多孔質であり、充放電の繰り返しによって厚みが著しく増加してクラックが発生し基板と活物質間の電気抵抗を増大させる問題があるのに対し、カルシウム量が0.05質量%未満では腐食層は緻密となり、充放電の繰り返しによる劣化はほとんどなくなる。従って、カルシウム量が0.05質量%以上の合金を用いた基板の表面粗さ(Rz)を15μm以上とすると多孔性の腐食層が発達し、密着性は改善されないばかりか、大電流での放電特性は低下することになる。一方、カルシウム量が0.05質量%未満の合金では緻密な腐食層が生成して良好な密着性と低い電気抵抗を示し、大電流での放電特性が向上すると考えられる。   On the other hand, when the amount of calcium in the alloy is 0.05% by mass or more, this corrosive layer is porous, and the thickness increases remarkably due to repeated charge and discharge, causing cracks and increasing the electrical resistance between the substrate and the active material. On the other hand, if the calcium content is less than 0.05% by mass, the corrosion layer becomes dense, and deterioration due to repeated charge and discharge is almost eliminated. Therefore, when the surface roughness (Rz) of the substrate using an alloy having a calcium amount of 0.05% by mass or more is set to 15 μm or more, a porous corrosion layer develops and adhesion is not improved, but also at a large current. Discharge characteristics will deteriorate. On the other hand, it is considered that an alloy having a calcium content of less than 0.05% by mass forms a dense corrosion layer, exhibits good adhesion and low electrical resistance, and improves discharge characteristics at a large current.

本発明によれば、大電流放電特性を向上し得、更に用途拡大に貢献する等の効果を奏するものである。   According to the present invention, large current discharge characteristics can be improved, and further effects such as contribution to expansion of applications can be achieved.

0.04%Ca−1.00%Sn−0.020Al−0.008%Ba−Pb(%は質量% 、以下同様)の鉛合金を用いてブックモールド鋳型による重力鋳造により図1に示す様に互いに直交する多数の縦格子1と横格子2を枠格子3で囲った格子基板を鋳造した。4は耳である。鋳造は毎分15枚の速度で行った。そして金型に塗布する離型材としてコルクパウダーを水に分散したものを用い、該コルクパウダーの粒度の異なったものを用いることで格子基板の表面粗さ(Rz)を,10μ
m、15μm、25μm、45μmと変えた。なお、格子基板は10 0℃ で1時間熱処理を施し時効硬化させた。
As shown in FIG. 1 by gravity casting with a book mold using 0.04% Ca-1.00% Sn-0.020Al-0.008% Ba- Pb (% is mass%, the same applies hereinafter) lead alloy. A lattice substrate in which a plurality of vertical lattices 1 and horizontal lattices 2 orthogonal to each other are surrounded by a frame lattice 3 was cast. 4 is an ear. Casting was performed at a rate of 15 sheets per minute. Then, a cork powder dispersed in water is used as a release material to be applied to the mold, and the surface roughness (Rz) of the lattice substrate is set to 10 μm by using the cork powder having different particle sizes.
m, 15 μm, 25 μm, and 45 μm. The lattice substrate was heat-treated at 100 ° C. for 1 hour and age hardened.

得られた格子基板に鉛粉を希硫酸で練った活物質ペーストを塗布充填し、その後温度40℃、湿度95%の雰囲気で24時間熟成し、乾燥した。得られた極板を正極とし、これを従来公知の方法で製造した負極とポリエチレンセパレータを組み合わせて電槽内に収納し、蓋を施して後、電解液として比重1.200の希硫酸を注液して電槽化成を行い、5時間率容量が48Ahの6セルモノブロックの鉛蓄電池を製造した。この鉛蓄電池は、遊離する電解液を多量に備える液式の鉛蓄電池である。   The obtained lattice substrate was coated with an active material paste prepared by kneading lead powder with dilute sulfuric acid, then aged in an atmosphere of a temperature of 40 ° C. and a humidity of 95% for 24 hours, and dried. The obtained electrode plate was used as a positive electrode, and this was combined with a negative electrode manufactured by a conventionally known method and a polyethylene separator, housed in a battery case, covered, and diluted with sulfuric acid having a specific gravity of 1.200 as an electrolyte. A 6-cell monoblock lead-acid battery having a 5-hour rate capacity of 48 Ah was produced. This lead-acid battery is a liquid-type lead-acid battery provided with a large amount of electrolytic solution that is liberated.

この鉛蓄電池を−15℃の雰囲気で16時間放置した後、300Aの電流で蓄電池電圧が6Vになるまで放電し、この時の30秒目電圧を測定した。その結果を表1に示す。   After this lead storage battery was left in an atmosphere of −15 ° C. for 16 hours, it was discharged at a current of 300 A until the storage battery voltage reached 6 V, and the voltage at 30 seconds at this time was measured. The results are shown in Table 1.

更に、格子基板の合金組成やその表面粗さ(Rz)を表1に記載される通り種種変えて同様の試験をした。その結果を表1に示す。   Furthermore, the same test was conducted by changing the alloy composition of the lattice substrate and its surface roughness (Rz) as shown in Table 1. The results are shown in Table 1.

Figure 0004274873
Figure 0004274873

表1からも明らかな通り、蓄電池番号が1−1〜1−4では、基板の表面粗さ(Rz)が10μmである1−1の場合は30秒目電圧は9.72Vと低い値であるが、表面粗さ(Rz)が15μm以上である1−2〜1−4では、30秒目電圧が9.93〜9.99Vと高い値を示し、大電流放電特性がより優れていることが分かる。更にカルシウム量を0.048%と増加させた格子基板を用いた蓄電池番号2−1と2−2においても同様に表面粗さ(Rz)が10μmの場合(2−1)に比し、25μmの場合(2−2)の30秒目電圧が高くなっており同様の傾向にあることが分かる。   As is apparent from Table 1, when the battery numbers are 1-1 to 1-4, the voltage at 30 seconds is as low as 9.72 V in the case of 1-1 where the surface roughness (Rz) of the substrate is 10 μm. However, in 1-2 to 1-4 where the surface roughness (Rz) is 15 μm or more, the voltage at 30 seconds is as high as 9.93 to 9.99 V, and the large current discharge characteristics are more excellent. I understand that. Further, in the storage battery numbers 2-1 and 2-2 using the lattice substrate with the calcium amount increased to 0.048%, the surface roughness (Rz) is 25 μm as compared with the case where the surface roughness (Rz) is 10 μm (2-1). In the case of (2-2), it can be seen that the voltage at the 30th second is high and has the same tendency.

更に合金組成をCaは0.02〜0.05%未満、Snは0.4〜2.5%、Alは0.005〜0.04%、Baは0.002〜0.014%の範囲で変化させても傾向に変わりは無く、表面粗さ(Rz)が15μm以上の場合は30秒目電圧が高く殆ど変わりは無かった。更に、Agを0.005〜0.07%、Biを0.01〜0.10%、Tlを0.001〜0.05%の範囲で一種又は複数の元素を添加しても結果に殆ど変わりはなく良好な結果が得られた。また、鉛合金中に不可避な不純物が入っていても結果は同様に良好であり、更にこれら合金組成の範囲のものは耐食性や機械的強度において特に優れており好ましい。   Further, the alloy composition ranges from 0.02 to less than 0.05% for Ca, 0.4 to 2.5% for Sn, 0.005 to 0.04% for Al, and 0.002 to 0.014% for Ba. When the surface roughness (Rz) was 15 μm or more, the voltage at the 30th second was high and there was almost no change. Further, even if one or more elements are added in the range of 0.005 to 0.07% Ag, 0.01 to 0.10% Bi, and 0.001 to 0.05% of Tl, almost no results are obtained. There was no change and good results were obtained. Further, even if inevitable impurities are contained in the lead alloy, the results are similarly good, and those in the alloy composition range are particularly excellent in corrosion resistance and mechanical strength, and are preferable.

一方、蓄電池番号3−1〜4−2に示される様に、カルシウム量を0.050%や0.070%とした格子基板を用いた蓄電池は、基板の表面粗さ(Rz)を15μm以上としても30秒目電圧は変化が無いか逆に低くなっており、カルシウム量が0.05%未満含有する鉛合金を用いた場合に効果があることが分かる。   On the other hand, as shown by storage battery numbers 3-1 to 4-2, a storage battery using a lattice substrate with a calcium amount of 0.050% or 0.070% has a substrate surface roughness (Rz) of 15 μm or more. However, the voltage at the 30th second has no change or is low, and it can be seen that it is effective when a lead alloy containing less than 0.05% of calcium is used.

なお、格子基板は連続鋳造や圧延加工などの方法によっても得ることが出来、更に表面を粗くするにはサンドブラストを吹き付ける等の方法もあり、いずれの方法を用いても良い。   Note that the lattice substrate can be obtained by a method such as continuous casting or rolling, and in order to further roughen the surface, there is a method such as spraying sandblast, and either method may be used.

また、この様に本発明によれば、大電流放電特性が向上した鉛蓄電池を得ることが出来、自動車のハイブリット用蓄電池や36V蓄電池の様な高圧タイプの鉛蓄電池、あるいはUPS(無停電電源装置)用の鉛蓄電池としても使用され、その用途は多岐に渡るものである。   In addition, according to the present invention, a lead storage battery with improved large current discharge characteristics can be obtained, such as a high-voltage type lead storage battery such as a hybrid storage battery or a 36V storage battery for an automobile, or a UPS (uninterruptible power supply). ) For lead storage batteries, and its uses are diverse.

なお、鉛合金として上記実施の形態で使用した鉛合金からAlを除いた鉛合金を用いても同様な効果があり、例えば表2に記載の各合金を用いても同様の結果が得られることを確認した。なお、Alを除いた合金を鋳造する場合は非酸化状態、例えば真空状態や不活性ガス状態下で鋳造することが好ましく、そのことによりCaの酸化ロスを防止し得Ca量のコントロールがし易い。   In addition, even if it uses the lead alloy which remove | excluded Al from the lead alloy used in the said embodiment as a lead alloy, there exists the same effect, for example, the same result is obtained even if it uses each alloy of Table 2. It was confirmed. In addition, when casting an alloy excluding Al, it is preferable to cast in a non-oxidized state, for example, in a vacuum state or an inert gas state, thereby preventing Ca oxidation loss and easily controlling the Ca amount. .

Figure 0004274873
Figure 0004274873

本発明の実施形態の格子基板の正面図Front view of a lattice substrate according to an embodiment of the present invention

符号の説明Explanation of symbols

1 縦格子
2 横格子
3 枠格子
1 Vertical lattice 2 Horizontal lattice 3 Frame lattice

Claims (3)

基板が、カルシウム0.02質量% 以上0.05質量% 未満、スズ0.4質量% 以上2.5 質量%以下、アルミニウム0.005質量%以上0.04質量%
以下、バリウム0.002質量% 以上0.014質量% 以下、残部が鉛と不可避の不純物からなる鉛合金からなり、かつ基板の表面粗さ(Rz)が15μm以上であることを特徴とする鉛蓄電池用基板。
Substrate is calcium 0.02 mass% or more and less than 0.05 mass%, tin 0.4 mass% or more 2.5 mass% or less, aluminum 0.005 mass% or more 0.04 mass%
Hereinafter, lead characterized in that barium is 0.002% by mass or more and 0.014% by mass or less, the balance is made of a lead alloy composed of lead and inevitable impurities, and the surface roughness (Rz) of the substrate is 15 μm or more. Storage battery substrate.
基板が、カルシウム0.02質量%以上0.05質量% 未満、スズ0.4質量% 以上2.5質量%以下、バリウム0.002質量%
以上0.014質量% 以下、残部が鉛と不可避の不純物からなる鉛合金からなり、かつ基板の表面粗さ(Rz)が15μm以上であることを特徴とする鉛蓄電池用基板。
The substrate is calcium 0.02 mass% or more and less than 0.05 mass%, tin 0.4 mass% or more and 2.5 mass% or less, barium 0.002 mass%
A lead-acid battery substrate , wherein the balance is 0.014% by mass or less, the balance is made of a lead alloy consisting of lead and inevitable impurities, and the surface roughness (Rz) of the substrate is 15 μm or more.
請求項1乃至に記載のいずれかの鉛蓄電池用基板を用いたことを特徴とする鉛蓄電池。 Lead-acid battery, characterized in that using the substrate for one of lead-acid battery according to claim 1 or 2.
JP2003281342A 2002-10-18 2003-07-28 Lead-acid battery substrate and lead-acid battery using the same Expired - Fee Related JP4274873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281342A JP4274873B2 (en) 2002-10-18 2003-07-28 Lead-acid battery substrate and lead-acid battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304249 2002-10-18
JP2003281342A JP4274873B2 (en) 2002-10-18 2003-07-28 Lead-acid battery substrate and lead-acid battery using the same

Publications (2)

Publication Number Publication Date
JP2004158433A JP2004158433A (en) 2004-06-03
JP4274873B2 true JP4274873B2 (en) 2009-06-10

Family

ID=32827989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281342A Expired - Fee Related JP4274873B2 (en) 2002-10-18 2003-07-28 Lead-acid battery substrate and lead-acid battery using the same

Country Status (1)

Country Link
JP (1) JP4274873B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093305A (en) * 2003-09-19 2005-04-07 Furukawa Battery Co Ltd:The Electrode substrate for lead storage battery
JP4646572B2 (en) * 2004-08-27 2011-03-09 古河電池株式会社 Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
US8875361B2 (en) 2008-05-21 2014-11-04 Wirtz Manufacturing Co., Inc. Reformed battery grids
JP2013122838A (en) * 2011-12-09 2013-06-20 Furukawa Battery Co Ltd:The Positive electrode grid for lead acid battery
MX2015003678A (en) * 2012-09-28 2015-09-23 Exide Technologies Lead-acid battery positive plate and alloy therefore.
JP6551012B2 (en) * 2015-07-30 2019-07-31 株式会社Gsユアサ Negative electrode for lead acid battery and lead acid battery
EP4246621A1 (en) 2020-11-27 2023-09-20 GS Yuasa International Ltd. Lead-acid battery
JP7057461B1 (en) 2021-04-08 2022-04-19 古河電池株式会社 Bipolar storage battery, manufacturing method of bipolar storage battery
JP7057465B1 (en) 2021-05-14 2022-04-19 古河電池株式会社 Bipolar lead acid battery
WO2022215329A1 (en) * 2021-04-08 2022-10-13 古河電池株式会社 Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery
EP4329018A1 (en) * 2021-04-20 2024-02-28 Furukawa Electric Co., Ltd. Lead foil and bipolar lead-acid battery
WO2022224623A1 (en) * 2021-04-20 2022-10-27 古河電気工業株式会社 Lead foil and bipolar lead-acid battery

Also Published As

Publication number Publication date
JP2004158433A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4799560B2 (en) Lead-acid battery and method for producing lead-acid battery
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP5399272B2 (en) Storage battery grid, storage positive electrode grid, and lead acid storage battery
JP4274873B2 (en) Lead-acid battery substrate and lead-acid battery using the same
JP6099001B2 (en) Lead acid battery
WO2003088385A1 (en) Lead-based alloy for lead storage battery, plate for lead storage battery and lead storage battery
JP2008243606A (en) Lead acid storage battery
JP4148175B2 (en) Lead alloy and lead storage battery using the same
JP3987370B2 (en) Positive electrode plate for lead acid battery and lead acid battery using the same
JP2002175798A (en) Sealed lead-acid battery
JP4509660B2 (en) Lead acid battery
JP5145644B2 (en) Lead acid battery
JP4894211B2 (en) Lead acid battery
JPH0212386B2 (en)
JP2006210059A (en) Lead acid storage battery
JP4892827B2 (en) Lead acid battery
JP4364054B2 (en) Lead acid battery
JP3099328B2 (en) Lead storage battery
JP4503358B2 (en) Lead acid battery
JP4248446B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the lead-based alloy as a positive electrode substrate
JP2005044760A (en) Manufacturing method of lead-acid storage battery positive electrode plate lattice
JP2003317711A (en) Formation method of lead-acid battery
JP2004273305A (en) Lead-acid battery
JP2006140032A (en) Lead-acid battery
JP3689812B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R150 Certificate of patent or registration of utility model

Ref document number: 4274873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees