JP7057465B1 - Bipolar lead acid battery - Google Patents

Bipolar lead acid battery Download PDF

Info

Publication number
JP7057465B1
JP7057465B1 JP2021082472A JP2021082472A JP7057465B1 JP 7057465 B1 JP7057465 B1 JP 7057465B1 JP 2021082472 A JP2021082472 A JP 2021082472A JP 2021082472 A JP2021082472 A JP 2021082472A JP 7057465 B1 JP7057465 B1 JP 7057465B1
Authority
JP
Japan
Prior art keywords
lead
positive electrode
negative electrode
lead foil
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021082472A
Other languages
Japanese (ja)
Other versions
JP2022175783A (en
Inventor
彩乃 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Battery Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2021082472A priority Critical patent/JP7057465B1/en
Priority to PCT/JP2022/003587 priority patent/WO2022215329A1/en
Application granted granted Critical
Publication of JP7057465B1 publication Critical patent/JP7057465B1/en
Publication of JP2022175783A publication Critical patent/JP2022175783A/en
Priority to US18/482,514 priority patent/US20240250312A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】耐食性の高い鉛合金からなる鉛箔を集電板として備えた双極型蓄電池において、耐食性の高い鉛合金からなる鉛箔と活物質層との密着性を向上させる。【解決手段】正極用鉛箔および負極用鉛箔は粒状組織である部分を有し、正極用鉛箔111aの正極用活物質層111bとの界面および負極用鉛箔112aの負極用活物質層112bとの界面の少なくともいずれかは、粒状組織に形成された部分を有するとともに、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が50μm以上であり、この規定による最大高さ粗さ(Rz)が、粒状組織を構成する粒子の平均粒子径の1/2よりも小さい。【選択図】図1PROBLEM TO BE SOLVED: To improve the adhesion between a lead foil made of a lead alloy having high corrosion resistance and an active material layer in a bipolar storage battery provided with a lead foil made of a lead alloy having high corrosion resistance as a current collector. SOLUTION: A positive electrode lead foil and a negative electrode lead foil have a portion having a granular structure, and an interface between the positive electrode lead foil 111a and a positive electrode active material layer 111b and a negative electrode active material layer of the negative electrode lead foil 112a. At least one of the interfaces with 112b has a portion formed in a granular structure, and the ten-point average roughness (RzJIS) according to the provisions of "JIS B 0601: 2013 Annex JA" is 50 μm or more. The specified maximum height roughness (Rz) is smaller than 1/2 of the average particle size of the particles constituting the granular structure. [Selection diagram] Fig. 1

Description

本発明は、双極型鉛蓄電池に関する。 The present invention relates to a bipolar lead-acid battery.

近年、太陽光や風力等の自然エネルギを利用した発電設備が増えている。このような発電設備においては、発電量を制御することができないことから、蓄電池を利用して電力負荷の平準化を図るようにしている。すなわち、発電量が消費量よりも多いときには差分を蓄電池に充電する一方、発電量が消費量よりも小さいときには差分を蓄電池から放電するようにしている。上述した蓄電池としては、経済性や安全性等の観点から、鉛蓄電池が多用されている。このような従来の鉛蓄電池としては、例えば、下記特許文献1に記載された双極型鉛蓄電池が知られている。 In recent years, the number of power generation facilities that use natural energy such as solar power and wind power has increased. In such a power generation facility, since the amount of power generation cannot be controlled, a storage battery is used to equalize the power load. That is, when the amount of power generation is larger than the consumption amount, the difference is charged to the storage battery, while when the amount of power generation is smaller than the consumption amount, the difference is discharged from the storage battery. As the above-mentioned storage battery, a lead storage battery is often used from the viewpoint of economy, safety and the like. As such a conventional lead-acid battery, for example, the bipolar lead-acid battery described in Patent Document 1 below is known.

この双極型鉛蓄電池は、額縁形で樹脂製のフレームの内側に、樹脂製の基板が取り付けられている。基板の両面には鉛層が配置されている。基板の一面の鉛層には、正極用活物質層が隣接し、他面の鉛層には、負極用活物質層が隣接している。また、額縁形で樹脂製のスペーサを有し、その内側には、電解液を含浸させたガラスマットが配設されている。そして、フレームとスペーサとを交互に複数積層し、フレームとスペーサとの間が接着剤等で接着されている。また、基板に設けた貫通穴を介して、基板の両面の鉛層が接続されている。 This bipolar lead-acid battery has a frame shape and a resin substrate is attached to the inside of a resin frame. Lead layers are arranged on both sides of the substrate. The lead layer on one surface of the substrate is adjacent to the active material layer for the positive electrode, and the lead layer on the other surface is adjacent to the active material layer for the negative electrode. Further, it has a frame-shaped and resin spacer, and a glass mat impregnated with an electrolytic solution is arranged inside the spacer. Then, a plurality of frames and spacers are alternately laminated, and the frames and spacers are bonded with an adhesive or the like. Further, the lead layers on both sides of the substrate are connected via the through holes provided in the substrate.

すなわち、特許文献1に記載された双極型鉛蓄電池は、鉛または鉛合金からなる正極用鉛箔の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用鉛箔の一面に負極用活物質層が配置されている負極、および正極と負極との間に介在するセパレータ(ガラスマット)を備え、間隔を開けて積層配置された、複数のセル部材と、複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有する。 That is, the bipolar lead storage battery described in Patent Document 1 is a positive electrode lead foil having a positive electrode active material layer arranged on one surface of a positive electrode lead foil made of lead or a lead alloy, and a negative electrode lead foil made of lead or a lead alloy. A plurality of cell members and a plurality of cell members, which are provided with a negative electrode in which an active material layer for a negative electrode is arranged on one surface and a separator (glass mat) interposed between the positive electrode and the negative electrode, and are laminated and arranged at intervals. It has a plurality of space forming members, which form a plurality of spaces individually accommodating the cell members.

また、空間形成部材は、セル部材の正極側および負極側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体(二極式プレートおよび端部プレートの枠部とスペーサ)と、を含んでいる。さらに、セル部材と空間形成部材の基板とが交互に積層状態で配置され、隣り合うセル部材の間に配置された基板は、板面と交差する方向に延びる貫通穴を有し、貫通穴の中で、隣り合うセル部材の正極用鉛箔と負極用鉛箔とが導通されて複数のセル部材が直列に電気的に接続され、隣接する枠体が接合されている。 Further, the space forming member includes a substrate that covers at least one of the positive electrode side and the negative electrode side of the cell member, and a frame body (a frame portion and a spacer of a bipolar plate and an end plate) that surrounds the side surface of the cell member. I'm out. Further, the substrate of the cell member and the substrate of the space forming member are alternately arranged in a laminated state, and the substrate arranged between the adjacent cell members has a through hole extending in a direction intersecting the plate surface, and the through hole is formed. Inside, the lead foil for the positive electrode and the lead foil for the negative electrode of the adjacent cell members are conductive, and a plurality of cell members are electrically connected in series, and the adjacent frames are joined.

特許第6124894号公報Japanese Patent No. 6124894

鉛蓄電池の劣化原因の一つに、正極集電板の腐食がある。電池使用期間が長くなるほど、正極集電板の腐食は進行し、腐食が進むと正極活物質の保持ができなくなり、電池としての性能が低下してしまう。それだけでなく、腐食によって脱落した正極材(正極集電板または正極活物質)が負極に接してしまった場合、短絡の可能性もある。
特に、バイポーラ鉛蓄電池の場合、電流分布が面での反応となるため、電荷移動抵抗を考慮する必要がなく、集電板を薄くすることが可能であるが、正極と負極との距離が近いため、正極集電板の腐食が多いと致命的な欠陥が生じる恐れがあることから、正極集電板の腐食を抑制する必要がある。しかし、耐食性の高い鉛合金は活物質と反応しにくいことから、耐食性の高い鉛合金からなる鉛箔は活物質層との密着性に劣るものとなっている。
One of the causes of deterioration of lead-acid batteries is corrosion of the positive electrode current collector plate. As the battery usage period becomes longer, the corrosion of the positive electrode current collector plate progresses, and if the corrosion progresses, the positive electrode active material cannot be retained, and the performance as a battery deteriorates. Not only that, if the positive electrode material (positive electrode current collector plate or positive electrode active material) that has fallen off due to corrosion comes into contact with the negative electrode, there is a possibility of a short circuit.
In particular, in the case of a bipolar lead-acid battery, since the current distribution is a reaction on the surface, it is not necessary to consider the charge transfer resistance, and the current collector plate can be made thinner, but the distance between the positive electrode and the negative electrode is short. Therefore, if the positive electrode current collector plate is heavily corroded, a fatal defect may occur. Therefore, it is necessary to suppress the corrosion of the positive electrode current collector plate. However, since a lead alloy having high corrosion resistance does not easily react with an active material, a lead foil made of a lead alloy having high corrosion resistance is inferior in adhesion to an active material layer.

本発明の課題は、耐食性の高い鉛合金からなる鉛箔を集電板として備えた双極型蓄電池において、耐食性の高い鉛合金からなる鉛箔と活物質層との密着性を向上させることである。 An object of the present invention is to improve the adhesion between the lead foil made of a lead alloy having high corrosion resistance and the active material layer in a bipolar storage battery provided with a lead foil made of a lead alloy having high corrosion resistance as a current collector. ..

前述した課題を解決するための本発明の第一態様は、以下の構成(1)~(4)を有する双極型蓄電池である。
(1)鉛または鉛合金からなる正極用鉛箔の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用鉛箔の一面に負極用活物質層が配置されている負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有する。
The first aspect of the present invention for solving the above-mentioned problems is a bipolar storage battery having the following configurations (1) to (4).
(1) The active material layer for the positive electrode is arranged on one surface of the lead foil for the positive electrode made of lead or a lead alloy, and the active material layer for the negative electrode is arranged on one surface of the lead foil for the negative electrode made of lead or a lead alloy. A plurality of cell members, which are provided with a negative electrode and a separator interposed between the positive electrode and the negative electrode, and which are stacked and arranged at intervals, and a plurality of spaces individually accommodating the plurality of cell members are formed. , With a plurality of space forming members.

(2)前記空間形成部材は、前記セル部材の前記正極側および前記負極側の両方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含む。前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置されている。隣接する前記枠体が接合されている。 (2) The space forming member includes a synthetic resin substrate that covers both the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member. The cell member and the substrate of the space forming member are arranged in a state of being alternately laminated. The adjacent frames are joined together.

(3)前記正極用鉛箔および前記負極用鉛箔は粒状組織である部分を有する。前記正極用鉛箔の前記正極用活物質層との界面および前記負極用鉛箔の前記負極用活物質層との界面の少なくともいずれかは、前記粒状組織に形成された部分を有するとともに、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が50μm以上であり、前記規定による最大高さ粗さ(Rz)が、前記粒状組織を構成する粒子の平均粒子径の1/2よりも小さい。 (3) The lead foil for the positive electrode and the lead foil for the negative electrode have a portion having a granular structure. At least one of the interface between the lead foil for the positive electrode and the active material layer for the positive electrode and the interface between the lead foil for the negative electrode and the active material layer for the negative electrode has a portion formed in the granular structure and is described as ". The ten-point average roughness (RzJIS) according to the provisions of "Appendix JA of JIS B 0601: 2013" is 50 μm or more, and the maximum height roughness (Rz) according to the provisions is the average particle of the particles constituting the granular structure. It is smaller than 1/2 of the diameter.

(4)隣り合う前記セル部材の間に配置された前記基板は、板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用鉛箔と前記負極用鉛箔とが導通されて、前記複数のセル部材が直列に電気的に接続されている。 (4) The substrate arranged between the adjacent cell members has a through hole extending in a direction intersecting the plate surface, and the lead foil for the positive electrode of the adjacent cell member in the through hole. And the lead foil for the negative electrode are conducted, and the plurality of cell members are electrically connected in series.

本発明の双極型鉛蓄電池は、耐食性の高い鉛合金からなる鉛箔(集電板)と活物質層との密着性に優れたものとなることが期待できる。 The bipolar lead-acid battery of the present invention is expected to have excellent adhesion between a lead foil (current collector plate) made of a lead alloy having high corrosion resistance and an active material layer.

本発明の一実施形態である双極型鉛蓄電池の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the bipolar lead-acid battery which is one Embodiment of this invention. 図1の双極型鉛蓄電池の部分拡大図である。It is a partially enlarged view of the bipolar lead-acid battery of FIG. No.1の鉛箔の断面の金属組織を示す顕微鏡写真である。It is a micrograph showing the metal structure of the cross section of the No. 1 lead foil. No.6の鉛箔の断面の金属組織を示す顕微鏡写真である。It is a micrograph which shows the metal structure of the cross section of the lead foil of No.6.

以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential requirements of the present invention.

〔全体構成〕
先ず、この実施形態の双極(バイポーラ)型鉛蓄電池の全体構成について説明する。
図1に示すように、この実施形態の双極型鉛蓄電池100は、複数のセル部材110と、複数枚のバイプレート(空間形成部材)120と、第一のエンドプレート(空間形成部材)130と、第二のエンドプレート(空間形成部材)140を有する。図1ではセル部材110が三個積層された双極型鉛蓄電池100を示しているが、セル部材110の数は電池設計により決定される。また、バイプレート120の数はセル部材110の数に応じて決まる。
〔overall structure〕
First, the overall configuration of the bipolar lead-acid battery of this embodiment will be described.
As shown in FIG. 1, the bipolar lead-acid battery 100 of this embodiment includes a plurality of cell members 110, a plurality of biplates (space forming members) 120, and a first end plate (space forming member) 130. , Has a second end plate (space forming member) 140. FIG. 1 shows a bipolar lead-acid battery 100 in which three cell members 110 are stacked, but the number of cell members 110 is determined by the battery design. Further, the number of bi-plates 120 is determined according to the number of cell members 110.

セル部材110の積層方向をZ方向(図1及び図2の上下方向)とし、Z方向に垂直な方向をX方向とする。
セル部材110は、正極111、負極112、およびセパレータ(電解質層)113を備えている。セパレータ113には電解液が含浸されている。正極111は、正極用鉛箔(正極用集電板)111a,111aaと正極用活物質層111bを有する。負極112は負極用鉛箔(負極用集電板)112a,112aaと負極用活物質層112bを有する。セパレータ113は、正極111と負極112との間に介在している。セル部材110において、正極用鉛箔111a,111aa、正極用活物質層111b、セパレータ113、負極用活物質層112b、および負極用鉛箔112a,112aaは、この順に積層されている。
The stacking direction of the cell members 110 is the Z direction (vertical direction in FIGS. 1 and 2), and the direction perpendicular to the Z direction is the X direction.
The cell member 110 includes a positive electrode 111, a negative electrode 112, and a separator (electrolyte layer) 113. The separator 113 is impregnated with an electrolytic solution. The positive electrode 111 has lead foils for positive electrodes (current collector plates for positive electrodes) 111a and 111aa and an active material layer 111b for positive electrodes. The negative electrode 112 has a lead foil for the negative electrode (current collector plate for the negative electrode) 112a, 112aa and an active material layer 112b for the negative electrode. The separator 113 is interposed between the positive electrode 111 and the negative electrode 112. In the cell member 110, the lead foils 111a and 111aa for the positive electrode, the active material layer 111b for the positive electrode, the separator 113, the active material layer 112b for the negative electrode, and the lead foils 112a and 112aa for the negative electrode are laminated in this order.

Z方向の寸法(厚さ)は、正極用鉛箔111aの方が負極用鉛箔112aより大きく(厚く)、正極用活物質層111bの方が負極用活物質層112bより大きい(厚い)。
複数のセル部材110は、Z方向に間隔を開けて積層配置され、この間隔の部分にバイプレート120の基板121が配置されている。つまり、複数のセル部材110は、バイプレート120の基板121を間に挟んだ状態で積層されている。
The dimension (thickness) in the Z direction of the positive electrode lead foil 111a is larger (thicker) than that of the negative electrode lead foil 112a, and the positive electrode active material layer 111b is larger (thicker) than the negative electrode active material layer 112b.
The plurality of cell members 110 are stacked and arranged at intervals in the Z direction, and the substrate 121 of the biplate 120 is arranged at the portions of the intervals. That is, the plurality of cell members 110 are laminated with the substrate 121 of the biplate 120 sandwiched between them.

複数枚のバイプレート120と第一のエンドプレート130と第二のエンドプレート140は、複数のセル部材110を個別に収容する複数の空間(セル)Cを形成するための部材である。
図2に示すように、バイプレート120は、平面形状が長方形の基板121と、基板121の四つの端面を覆う枠体122と、基板121の両面から垂直に突出する柱部123とからなり、基板121と枠体122と柱部123は一体に合成樹脂で形成されている。なお、基板121の各面から突出する柱部123の数は一つであってもよいし、複数であってもよい。
The plurality of bi-plates 120, the first end plate 130, and the second end plate 140 are members for forming a plurality of spaces (cells) C that individually accommodate the plurality of cell members 110.
As shown in FIG. 2, the biplate 120 includes a substrate 121 having a rectangular planar shape, a frame body 122 covering the four end faces of the substrate 121, and a pillar portion 123 vertically protruding from both sides of the substrate 121. The substrate 121, the frame body 122, and the pillar portion 123 are integrally formed of synthetic resin. The number of pillars 123 protruding from each surface of the substrate 121 may be one or a plurality.

Z方向において、枠体122の寸法は基板121の寸法(厚さ)より大きく、柱部123の突出端面間の寸法は枠体122の寸法と同じである。そして、複数のバイプレート120が枠体122および柱部123同士を接触させて積層することにより、基板121と基板121との間に空間Cが形成され、互いに接触する柱部123同士により、空間CのZ方向の寸法が保持される。 In the Z direction, the dimension of the frame 122 is larger than the dimension (thickness) of the substrate 121, and the dimension between the protruding end faces of the pillar 123 is the same as the dimension of the frame 122. Then, a space C is formed between the substrate 121 and the substrate 121 by contacting and stacking the frame body 122 and the pillar portions 123 with each other, and the pillar portions 123 in contact with each other form a space. The dimension of C in the Z direction is retained.

正極用鉛箔111a,111aa、正極用活物質層111b、負極用鉛箔112a,112aa、負極用活物質層112b、およびセパレータ113には、柱部123を貫通させる貫通穴111c,111d,112c,112d,113aがそれぞれ形成されている。
バイプレート120の基板121は、板面を貫通する複数の貫通穴121aを有する。基板121の一面に第一の凹部121bが、他面に第二の凹部121cが形成されている。第一の凹部121bの深さは第二の凹部121cより深い。第一の凹部121bおよび第二の凹部121cのX方向およびY方向の寸法は、正極用鉛箔111aおよび負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
The lead foils 111a and 111aa for the positive electrode, the active material layer 111b for the positive electrode, the lead foils 112a and 112aa for the negative electrode, the active material layer 112b for the negative electrode, and the separator 113 have through holes 111c, 111d, 112c through which the pillar portion 123 is penetrated. 112d and 113a are formed, respectively.
The substrate 121 of the biplate 120 has a plurality of through holes 121a penetrating the plate surface. A first recess 121b is formed on one surface of the substrate 121, and a second recess 121c is formed on the other surface. The depth of the first recess 121b is deeper than that of the second recess 121c. The dimensions of the first recess 121b and the second recess 121c in the X and Y directions correspond to the dimensions of the lead foil 111a for the positive electrode and the lead foil 112a for the negative electrode in the X and Y directions.

バイプレート120の基板121は、Z方向で、隣り合うセル部材110の間に配置されている。バイプレート120の基板121は、セル部材110の正極111の側と、その隣のセル部材110の負極112の側と、の両方を覆う基板である。バイプレート120の基板121の第一の凹部121bに、セル部材110の正極用鉛箔111aが接着剤層150を介して配置されている。つまり、基板121の正極111の側の面(第一の凹部121bの底面)に接着剤で正極用鉛箔111aが固定されている。 The substrate 121 of the biplate 120 is arranged between adjacent cell members 110 in the Z direction. The substrate 121 of the biplate 120 is a substrate that covers both the positive electrode 111 side of the cell member 110 and the negative electrode 112 side of the adjacent cell member 110. In the first recess 121b of the substrate 121 of the biplate 120, the lead foil 111a for the positive electrode of the cell member 110 is arranged via the adhesive layer 150. That is, the lead foil 111a for the positive electrode is fixed to the surface of the substrate 121 on the side of the positive electrode 111 (the bottom surface of the first recess 121b) with an adhesive.

また、バイプレート120の基板121の第二の凹部121cに、セル部材110の負極用鉛箔112aが接着剤層150を介して配置されている。つまり、基板121の負極112の側の面(第二の凹部121cの底面)に接着剤で負極用鉛箔112aが固定されている。
バイプレート120の基板121の貫通穴121aに導通体160が配置され、導通体160の両端面は、正極用鉛箔111aおよび負極用鉛箔112aと接触し、結合されている。つまり、導通体160により正極用鉛箔111aと負極用鉛箔112aとが電気的に接続されている。その結果、複数のセル部材110の全てが電気的に直列に接続されている。
Further, the lead foil 112a for the negative electrode of the cell member 110 is arranged in the second recess 121c of the substrate 121 of the biplate 120 via the adhesive layer 150. That is, the lead foil 112a for the negative electrode is fixed to the surface of the substrate 121 on the side of the negative electrode 112 (the bottom surface of the second recess 121c) with an adhesive.
The conductor 160 is arranged in the through hole 121a of the substrate 121 of the biplate 120, and both end faces of the conductor 160 are in contact with and bonded to the lead foil 111a for the positive electrode and the lead foil 112a for the negative electrode. That is, the lead foil 111a for the positive electrode and the lead foil 112a for the negative electrode are electrically connected by the conductor 160. As a result, all of the plurality of cell members 110 are electrically connected in series.

図1に示すように、第一のエンドプレート130は、セル部材110の正極側を覆う基板131と、セル部材110の側面を囲う枠体132と、基板131の一面(最も正極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部133とからなる。基板131の平面形状は長方形であり、基板131の四つの端面が枠体132で覆われ、基板131と枠体132と柱部133が一体に合成樹脂で形成されている。なお、基板131の一面から突出する柱部133の数は一つであってもよいし、複数であってもよいが、柱部133と接触させるバイプレート120の柱部123に対応させる。 As shown in FIG. 1, the first end plate 130 is arranged on a substrate 131 that covers the positive electrode side of the cell member 110, a frame 132 that surrounds the side surface of the cell member 110, and one surface of the substrate 131 (most positive electrode side). It is composed of a pillar portion 133 that projects vertically from the surface of the biplate 120 facing the substrate 121). The planar shape of the substrate 131 is rectangular, the four end faces of the substrate 131 are covered with the frame 132, and the substrate 131, the frame 132, and the pillar 133 are integrally formed of synthetic resin. The number of the pillars 133 protruding from one surface of the substrate 131 may be one or a plurality, but the number of the pillars 133 may correspond to the pillars 123 of the biplate 120 in contact with the pillars 133.

Z方向において、枠体132の寸法は基板131の寸法(厚さ)より大きく、柱部133の突出端面間の寸法は枠体132の寸法と同じである。そして、最も外側(正極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体132および柱部133を接触させて積層することにより、バイプレート120の基板121と第一のエンドプレート130の基板131との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第一のエンドプレート130の柱部133とにより、空間CのZ方向の寸法が保持される。 In the Z direction, the dimension of the frame 132 is larger than the dimension (thickness) of the substrate 131, and the dimension between the protruding end faces of the column 133 is the same as the dimension of the frame 132. Then, the frame 132 and the pillar 133 are brought into contact with each other and laminated with respect to the frame 122 and the pillar 123 of the bi-plate 120 arranged on the outermost side (positive side), so that the substrate 121 of the bi-plate 120 is laminated. Space C is formed between the substrate 131 of the first end plate 130, and the Z-direction dimension of the space C is formed by the pillar portion 123 of the bi-plate 120 and the pillar portion 133 of the first end plate 130 that are in contact with each other. Is retained.

最も外側(正極側)に配置されるセル部材110の正極用鉛箔111aa、正極用活物質層111b、およびセパレータ113には、柱部133を貫通させる貫通穴111c,111d,113aがそれぞれ形成されている。
第一のエンドプレート130の基板131の一面に凹部131bが形成されている。凹部131bのX方向の寸法は、正極用鉛箔111aaのX方向の寸法に対応させてある。第一のエンドプレート130の基板131の一面に配置された正極用鉛箔111aaのZ方向の寸法は、バイプレート120の基板121の一面に配置された正極用鉛箔111aのZ方向の寸法よりも大きい。
Through holes 111c, 111d, 113a through which the pillar portion 133 is penetrated are formed in the lead foil 111aa for the positive electrode, the active material layer 111b for the positive electrode, and the separator 113 of the cell member 110 arranged on the outermost side (positive electrode side), respectively. ing.
A recess 131b is formed on one surface of the substrate 131 of the first end plate 130. The dimension of the recess 131b in the X direction corresponds to the dimension of the lead foil 111aa for the positive electrode in the X direction. The Z-direction dimension of the positive electrode lead foil 111aa arranged on one surface of the substrate 131 of the first end plate 130 is larger than the Z-direction dimension of the positive electrode lead foil 111a arranged on one surface of the substrate 121 of the bi-plate 120. Is also big.

第一のエンドプレート130の基板131の凹部131bに、セル部材110の正極用鉛箔111aaが接着剤層150を介して配置されている。つまり、基板131の正極111の側の面(凹部131bの底面)に接着剤で正極用鉛箔111aaが固定されている。
また、第一のエンドプレート130は、凹部131b内の正極用鉛箔111aaと電気的に接続された正極端子を備えている。
In the recess 131b of the substrate 131 of the first end plate 130, the lead foil 111aa for the positive electrode of the cell member 110 is arranged via the adhesive layer 150. That is, the lead foil 111aa for the positive electrode is fixed to the surface of the substrate 131 on the positive electrode 111 side (bottom surface of the recess 131b) with an adhesive.
Further, the first end plate 130 includes a positive electrode terminal electrically connected to a lead foil 111aa for a positive electrode in the recess 131b.

第二のエンドプレート140は、セル部材110の負極側を覆う基板141と、セル部材110の側面を囲う枠体142と、基板141の一面(最も負極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部143とからなる。基板141の平面形状は長方形であり、基板141の四つの端面が枠体142で覆われ、基板141と枠体142と柱部143が一体に合成樹脂で形成されている。なお、基板141の一面から突出する柱部143の数は一つであってもよいし、複数であってもよいが、柱部143と接触させるバイプレート120の柱部123に対応させる。 The second end plate 140 includes a substrate 141 that covers the negative electrode side of the cell member 110, a frame 142 that surrounds the side surface of the cell member 110, and one surface of the substrate 141 (the substrate 121 of the biplate 120 that is arranged on the most negative electrode side). It is composed of a pillar portion 143 that projects vertically from the surface facing the surface). The planar shape of the substrate 141 is rectangular, the four end faces of the substrate 141 are covered with the frame body 142, and the substrate 141, the frame body 142, and the pillar portion 143 are integrally formed of synthetic resin. The number of pillars 143 protruding from one surface of the substrate 141 may be one or a plurality, but the number of pillars 143 may correspond to the pillars 123 of the biplate 120 in contact with the pillars 143.

Z方向において、枠体142の寸法は基板131の寸法(厚さ)より大きく、二つの柱部143の突出端面間の寸法は枠体142の寸法と同じである。そして、最も外側(負極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体142および柱部143を接触させて積層することにより、バイプレート120の基板121と第二のエンドプレート140の基板141との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第二のエンドプレート140の柱部143とにより、空間CのZ方向の寸法が保持される。 In the Z direction, the dimension of the frame 142 is larger than the dimension (thickness) of the substrate 131, and the dimension between the protruding end faces of the two pillars 143 is the same as the dimension of the frame 142. Then, the frame body 142 and the pillar portion 143 are brought into contact with the frame body 122 and the pillar portion 123 of the bi-plate 120 arranged on the outermost side (negative side), and the frame body 142 and the pillar portion 143 are brought into contact with each other and laminated to form the substrate 121 of the bi-plate 120. Space C is formed between the substrate 141 of the second end plate 140, and the Z-direction dimension of the space C is formed by the pillar portion 123 of the bi-plate 120 and the pillar portion 143 of the second end plate 140 that are in contact with each other. Is retained.

最も外側(負極側)に配置されるセル部材110の負極用鉛箔112aa、負極用活物質層112b、およびセパレータ113には、柱部143を貫通させる貫通穴112c,112d,113aがそれぞれ形成されている。
第二のエンドプレート140の基板141の一面に凹部141bが形成されている。凹部141bのX方向およびY方向の寸法は、負極用鉛箔112aaのX方向およびY方向の寸法に対応させてある。第二のエンドプレート140の基板141の一面に配置された負極用鉛箔112aaのZ方向の寸法は、バイプレート120の基板121の他面に配置された負極用鉛箔112aのZ方向の寸法よりも大きい。
Through holes 112c, 112d, 113a through which the pillar portion 143 is penetrated are formed in the lead foil 112aa for the negative electrode, the active material layer 112b for the negative electrode, and the separator 113 of the cell member 110 arranged on the outermost side (negative electrode side), respectively. ing.
A recess 141b is formed on one surface of the substrate 141 of the second end plate 140. The dimensions of the recess 141b in the X and Y directions correspond to the dimensions of the lead foil 112aa for the negative electrode in the X and Y directions. The Z-direction dimension of the negative electrode lead foil 112aa arranged on one surface of the substrate 141 of the second end plate 140 is the Z-direction dimension of the negative electrode lead foil 112a arranged on the other surface of the substrate 121 of the bi-plate 120. Greater than.

第二のエンドプレート140の基板141の凹部141bに、セル部材110の負極用鉛箔112aaが接着剤層150を介して配置されている。つまり、基板141の負極112の側の面(凹部141bの底面)に接着剤で負極用鉛箔112aaが固定されている。
また、第二のエンドプレート140は、凹部141b内の負極用鉛箔112aaと電気的に接続された負極端子を備えている。
In the recess 141b of the substrate 141 of the second end plate 140, the lead foil 112aa for the negative electrode of the cell member 110 is arranged via the adhesive layer 150. That is, the lead foil 112aa for the negative electrode is fixed to the surface of the substrate 141 on the side of the negative electrode 112 (the bottom surface of the recess 141b) with an adhesive.
Further, the second end plate 140 includes a negative electrode terminal electrically connected to a lead foil 112aa for a negative electrode in the recess 141b.

なお、上記説明から分かるように、バイプレート120は、セル部材110の正極側および負極側の両方を覆う基板121と、セル部材110の側面を囲う枠体122と、を含む空間形成部材である。第一のエンドプレート130は、セル部材110の正極側のみ(正極側および負極側の一方)を覆う基板131と、セル部材110の側面を囲う枠体132と、を含む空間形成部材である。 As can be seen from the above description, the biplate 120 is a space forming member including a substrate 121 that covers both the positive electrode side and the negative electrode side of the cell member 110 and a frame body 122 that surrounds the side surface of the cell member 110. .. The first end plate 130 is a space forming member including a substrate 131 that covers only the positive electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110, and a frame 132 that surrounds the side surface of the cell member 110.

また、第二のエンドプレート140は、セル部材110の負極側のみ(正極側および負極側の一方)を覆う基板141と、セル部材110の側面を囲う枠体142と、を含む空間形成部材である。つまり、基板121,131,141は、セル部材110の正極の側および負極の側の少なくとも一方を覆う基板であり、基板121はセル部材110の正極の側および負極の側の両方を覆う基板である。また、バイプレート120の基板121は、セル部材110同士の間に配置された基板である。 Further, the second end plate 140 is a space forming member including a substrate 141 that covers only the negative electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110 and a frame body 142 that surrounds the side surface of the cell member 110. be. That is, the substrates 121, 131, 141 are substrates that cover at least one of the positive electrode side and the negative electrode side of the cell member 110, and the substrate 121 is a substrate that covers both the positive electrode side and the negative electrode side of the cell member 110. be. Further, the substrate 121 of the bi-plate 120 is a substrate arranged between the cell members 110.

〔集電板の構成〕
バイプレート120の凹部121bに配置される正極用鉛箔111aは、例えば、厚さが0.5mm未満(例えば0.1mm以上0.4mm以下)であり、錫(Sn)の含有率が1.0質量%以上2.0質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.030質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなる圧延シートの熱処理材で形成されている。この熱処理材の組織は粒状組織となっている。
[Construction of current collector plate]
The lead foil 111a for the positive electrode arranged in the recess 121b of the biplate 120 has, for example, a thickness of less than 0.5 mm (for example, 0.1 mm or more and 0.4 mm or less) and a tin (Sn) content of 1. A lead alloy having 0% by mass or more and 2.0% by mass or less, a calcium (Ca) content of 0.005% by mass or more and 0.030% by mass or less, and the balance being lead (Pb) and an unavoidable impurity. It is made of a heat-treated material of a rolled sheet made of. The structure of this heat-treated material is a granular structure.

第一のエンドプレート130の凹部131bに配置される正極用鉛箔111aaは、例えば、厚さが0.5mm以上1.5mm以下であり、正極用鉛箔111aと同じ熱処理材で形成されている。
また、正極用鉛箔111a,111aaの正極用活物質層111bとの界面は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が50μm以上であり、上記規定による最大高さ粗さ(Rz)が、正極用鉛箔111a,111aaの粒状組織を構成する粒子の平均粒子径の1/2よりも小さくなっている。
The lead foil 111a for the positive electrode arranged in the recess 131b of the first end plate 130 has, for example, a thickness of 0.5 mm or more and 1.5 mm or less, and is formed of the same heat-treated material as the lead foil 111a for the positive electrode. ..
Further, the interface between the positive electrode lead foils 111a and 111aa with the positive electrode active material layer 111b has a ten-point average roughness (RzJIS) of 50 μm or more according to the provisions of “JIS B 0601: 2013 Annex JA”, and is described above. The specified maximum height roughness (Rz) is smaller than 1/2 of the average particle size of the particles constituting the granular structure of the lead foils 111a and 111aa for the positive electrode.

バイプレート120の凹部121cに配置される負極用鉛箔(負極用集電板)112aの厚さは、例えば、0.05mm以上0.3mm以下である。負極用鉛箔112aをなす合金は、例えば、錫(Sn)の含有率が0.5質量%以上2質量%以下の鉛合金である。
第二のエンドプレート140の凹部141bに配置される負極用鉛箔(負極用集電板)112aは、例えば、厚さが0.5mm以上1.5mm以下であり、錫(Sn)の含有率が0.5質量%以上2質量%以下の鉛合金からなる。
The thickness of the lead foil for the negative electrode (current collector plate for the negative electrode) 112a arranged in the recess 121c of the bi-plate 120 is, for example, 0.05 mm or more and 0.3 mm or less. The alloy forming the lead foil 112a for the negative electrode is, for example, a lead alloy having a tin (Sn) content of 0.5% by mass or more and 2% by mass or less.
The lead foil for the negative electrode (collecting plate for the negative electrode) 112a arranged in the recess 141b of the second end plate 140 has, for example, a thickness of 0.5 mm or more and 1.5 mm or less, and a tin (Sn) content. Is made of a lead alloy of 0.5% by mass or more and 2% by mass or less.

〔作用、効果〕
実施形態の双極型鉛蓄電池100では、正極用鉛箔111a,111aaが上記鉛合金からなる圧延シートの熱処理材であることから、正極用鉛箔111a,111aaは粒状組織を有する。よって、正極用鉛箔111a,111aaは、耐食性に優れたものであるとともに、正極用活物質層111bとの界面が粒状組織の面となっている。また、正極用鉛箔111a,111aaの正極用活物質層111bとの界面は、上記規定による十点平均粗さ(RzJIS)が50μm以上(構成a)であり、上記規定による最大高さ粗さ(Rz)が、正極用鉛箔111a,111aaの粒状組織を構成する粒子の平均粒子径(A)の1/2よりも小さい(構成b)。
[Action, effect]
In the bipolar lead-acid battery 100 of the embodiment, since the lead foils 111a and 111aa for the positive electrode are heat-treated materials for the rolled sheet made of the lead alloy, the lead foils 111a and 111aa for the positive electrode have a granular structure. Therefore, the lead foils 111a and 111aa for the positive electrode have excellent corrosion resistance, and the interface with the active material layer 111b for the positive electrode is a surface of the granular structure. Further, the interface between the lead foils 111a and 111aa for the positive electrode and the active material layer 111b for the positive electrode has a ten-point average roughness (RzJIS) of 50 μm or more (configuration a) according to the above specification, and the maximum height roughness according to the above specification. (Rz) is smaller than 1/2 of the average particle diameter (A) of the particles constituting the granular structure of the positive electrode lead foils 111a and 111aa (configuration b).

このように、正極用鉛箔111a,111aaは、耐食性の高い鉛合金からなる鉛箔であるが、正極用活物質層111bとの界面が上記構成aと構成bの両方を満たすことで、正極用活物質層111bとの密着性が高いものとなっている。これに伴い、正極用鉛箔111a,111aaから正極用活物質が脱落しにくくなることで、高い電池性能が維持されるとともに短絡が防止されるため、双極型鉛蓄電池100の寿命向上効果が期待できる。 As described above, the positive electrode lead foils 111a and 111aa are lead foils made of a lead alloy having high corrosion resistance, but the interface with the positive electrode active material layer 111b satisfies both the above configurations a and b, so that the positive electrodes are positive electrodes. It has high adhesion to the active material layer 111b. Along with this, the active material for the positive electrode is less likely to fall off from the lead foils 111a and 111aa for the positive electrode, so that high battery performance is maintained and a short circuit is prevented, so that the effect of improving the life of the bipolar lead-acid battery 100 is expected. can.

これに対して、正極用鉛箔111a,111aaの正極用活物質層111bとの界面の、上記規定による十点平均粗さ(RzJIS)が50μm未満であると、正極用活物質層111bとの密着性が著しく低いものとなる。また、正極用鉛箔111a,111aaの上記規定による最大高さ粗さ(Rz)がA/2以上であると、正極用鉛箔111a,111aaが腐食し易くなるため、貫通が生じやすくなる。 On the other hand, when the ten-point average roughness (RzJIS) at the interface between the positive electrode lead foils 111a and 111aa and the positive electrode active material layer 111b is less than 50 μm, the positive electrode active material layer 111b and the positive electrode active material layer 111b are used. Adhesion is extremely low. Further, when the maximum height roughness (Rz) of the positive electrode lead foils 111a and 111aa is A / 2 or more, the positive electrode lead foils 111a and 111aa are likely to be corroded, so that penetration is likely to occur.

なお、上記実施形態の双極型鉛蓄電池100では、正極用鉛箔111a,111aaが粒状組織を有する耐食性の高い鉛合金からなり、その正極用活物質層111bとの界面が上記構成aと構成bの両方を満たすものとされている。しかし、負極用鉛箔112a,112aaが粒状組織を有する耐食性の高い鉛合金からなり、その負極用活物質層112bとの界面が上記構成aと構成bの両方を満たすものとされていれば、負極についても同様の作用、効果(活物質が脱落しにくくなることで、高い電池性能が維持されるとともに短絡が防止される)が得られるものとなる。 In the bipolar lead-acid battery 100 of the above embodiment, the positive electrode lead foils 111a and 111aa are made of a lead alloy having a granular structure and high corrosion resistance, and the interface with the positive electrode active material layer 111b is configured with the above configuration a and b. It is supposed to satisfy both of the above. However, if the lead foils 112a and 112aa for the negative electrode are made of a lead alloy having a granular structure and high corrosion resistance, and the interface with the active material layer 112b for the negative electrode satisfies both the above configurations a and b. The same action and effect can be obtained for the negative electrode (high battery performance is maintained and short circuit is prevented by making it difficult for the active material to fall off).

また、鉛箔の金属組織が粒状組織であっても、活物質層との界面の十点平均粗さ(RzJIS)が大きすぎる(表面が粗すぎる)と、部分的に鉛箔が薄くなる箇所が生じることで、電池動作時に鉛箔に貫通が生じる危険性が高くなるため、RzJISは50μm以上70μm以下であることが好ましい。同様の理由から、最大高さ粗さ(Rz)は、十点平均粗さ(Rz)よりも大きくかつ平均粒子径の1/7以上1/2以下が好ましい。 Even if the metal structure of the lead foil is a granular structure, if the ten-point average roughness (RzJIS) at the interface with the active material layer is too large (the surface is too rough), the lead foil will be partially thinned. The risk of penetration of the lead foil during battery operation increases, so the RzJIS is preferably 50 μm or more and 70 μm or less. For the same reason, the maximum height roughness (Rz) is preferably larger than the ten-point average roughness (Rz) and preferably 1/7 or more and 1/2 or less of the average particle size.

[鉛箔の準備]
表1に示すNo.1~No.6の鉛箔を準備した。各鉛箔の厚さは全て0.35mmとした。
<サンプルNo.1>
サンプルNo.1の鉛箔は、カルシウム(Ca)の含有率が0.030質量%、錫(Sn)の含有率が2.0質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、310℃で5分間、大気雰囲気下で熱処理をしたものである。
[Preparation of lead foil]
The lead foils No. 1 to No. 6 shown in Table 1 were prepared. The thickness of each lead foil was set to 0.35 mm.
<Sample No.1>
The lead foil of sample No. 1 has a calcium (Ca) content of 0.030% by mass, a tin (Sn) content of 2.0% by mass, and the balance is lead (Pb) and lead, which is an unavoidable impurity. A rolled sheet of alloy is heat-treated at 310 ° C. for 5 minutes in an air atmosphere.

サンプルNo.1の鉛箔について、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図3に示す。この画像から分かるように、その組織は粒状組織であり、その平均粒子径は160μmであった。
「JIS B 0601:2013の付属書JA」の規定に基づいて、サンプルNo.1の鉛箔の表面状態を計測したところ、十点平均粗さ(RzJIS)は20μmであり、最大高さ粗さ(Rz)は30μmであった。
The cross section of the lead foil of sample No. 1 was photographed with an electron microscope perpendicular to the sheet surface and parallel to the rolling direction. The micrograph is shown in FIG. As can be seen from this image, the structure was a granular structure, and the average particle size was 160 μm.
When the surface condition of the lead foil of sample No. 1 was measured based on the provisions of "JIS B 0601: 2013 Annex JA", the ten-point average roughness (RzJIS) was 20 μm, and the maximum height roughness. (Rz) was 30 μm.

<サンプルNo.2>
サンプルNo.1と同じ方法で作製した鉛箔の一方の面を、800番の紙やすりで擦って、十点平均粗さ(RzJIS)が30μmで、最大高さ粗さ(Rz)が45μmとなるようにした。これをサンプルNo.2の鉛箔とした。なお、作製した鉛箔は、No.1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<Sample No.2>
One side of the lead foil prepared by the same method as sample No. 1 was rubbed with sandpaper No. 800, and the ten-point average roughness (RzJIS) was 30 μm and the maximum height roughness (Rz) was 45 μm. I tried to be. This was used as the lead foil of sample No.2. The produced lead foil had a granular structure similar to that of the No. 1 lead foil, and its average particle size was 160 μm.

<サンプルNo.3>
サンプルNo.1と同じ方法で作製した鉛箔の一方の面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が50μmで、最大高さ粗さ(Rz)が60μmとなるようにした。これをサンプルNo.3の鉛箔とした。なお、作製した鉛箔は、No.1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<Sample No.3>
One side of the lead foil prepared by the same method as sample No. 1 was rubbed with No. 80 sandpaper, and the ten-point average roughness (RzJIS) was 50 μm and the maximum height roughness (Rz) was 60 μm. I tried to be. This was used as the lead foil of sample No.3. The produced lead foil had a granular structure similar to that of the No. 1 lead foil, and its average particle size was 160 μm.

<サンプルNo.4>
サンプルNo.1と同じ方法で作製した鉛箔の一方の面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が50μmで、最大高さ粗さ(Rz)が70μmとなるようにした。これをサンプルNo.4の鉛箔とした。なお、作製した鉛箔は、No.1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<Sample No.4>
One side of the lead foil prepared by the same method as sample No. 1 was rubbed with No. 80 sandpaper, and the ten-point average roughness (RzJIS) was 50 μm and the maximum height roughness (Rz) was 70 μm. I tried to be. This was used as the lead foil of sample No. 4. The produced lead foil had a granular structure similar to that of the No. 1 lead foil, and its average particle size was 160 μm.

<サンプルNo.5>
サンプルNo.1と同じ方法で作製した鉛箔の一方の面を、40番の紙やすりで擦って、十点平均粗さ(RzJIS)が70μmで、最大高さ粗さ(Rz)が110μmとなるようにした。これをサンプルNo.5の鉛箔とした。なお、作製した鉛箔は、No.1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<Sample No.5>
One side of the lead foil prepared by the same method as sample No. 1 was rubbed with sandpaper No. 40, and the ten-point average roughness (RzJIS) was 70 μm and the maximum height roughness (Rz) was 110 μm. I tried to be. This was used as the lead foil of sample No. 5. The produced lead foil had a granular structure similar to that of the No. 1 lead foil, and its average particle size was 160 μm.

<サンプルNo.6>
サンプルNo.6の鉛箔は、カルシウム(Ca)の含有率が0.030質量%、錫(Sn)の含有率が2.0質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートであって、熱処理を施していないものであり、その一方の面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が50μmで、最大高さ粗さ(Rz)が70μmとなるようにしたものである。
<Sample No.6>
The lead foil of sample No. 6 has a calcium (Ca) content of 0.030% by mass, a tin (Sn) content of 2.0% by mass, and the balance is lead (Pb) and lead, which is an unavoidable impurity. It is a rolled alloy sheet that has not been heat-treated, and one surface is rubbed with sandpaper No. 80 to have a ten-point average roughness (RzJIS) of 50 μm and a maximum height roughness (Rz JIS). Rz) is set to 70 μm.

サンプルNo.6の鉛箔を、紙やすりで擦る前に、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図4に示す。この画像から分かるように、その組織は縞状組織である。 Before rubbing the lead foil of sample No. 6 with sandpaper, a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. The micrograph is shown in FIG. As can be seen from this image, the tissue is a striped tissue.

[腐食試験]
No.1~No.6の各鉛箔について、以下の方法で腐食試験を行った。
各鉛箔を幅15mm、長さ70mmの試験片に切断して、比重1.28の60℃硫酸に入れ、1350mVの定電位(vs:Hg/Hg2SO4)で28日間連続の陽極酸化を行った後、生成酸化物を除去した。そして、試験前後に質量を測定し、その値から試験による質量の減少量を算出し、試験片の全表面積当たりの質量減少量を腐食量とした。また、腐食試験後の断面(シート面に垂直で圧延方向と平行な断面)を電子顕微鏡(倍率400倍)で観察し、鉛箔に貫通が生じているか否かを調べた。
[Corrosion test]
Corrosion tests were carried out for each lead foil of No. 1 to No. 6 by the following method.
Each lead foil is cut into test pieces having a width of 15 mm and a length of 70 mm, placed in sulfuric acid at 60 ° C. having a specific gravity of 1.28, and anodized continuously at a constant potential of 1350 mV (vs: Hg / Hg 2 SO 4 ) for 28 days. After that, the produced oxide was removed. Then, the mass was measured before and after the test, the amount of mass loss due to the test was calculated from the value, and the amount of mass loss per total surface area of the test piece was taken as the amount of corrosion. In addition, the cross section after the corrosion test (cross section perpendicular to the sheet surface and parallel to the rolling direction) was observed with an electron microscope (magnification 400 times) to investigate whether or not the lead foil had penetrated.

[活物質層の剥離試験]
〔バイプレートの作製〕
ABS樹脂の射出成形により図1に示す形状のバイプレート120を作製した。バイプレート120の基板121の厚さは2mmである。凹部121bおよび凹部121cの底面は、一辺が10.0cmの正方形であり、凹部121bおよび凹部121cの深さは0.37mmである。
[Peeling test of active material layer]
[Making a bi-plate]
By injection molding of ABS resin, a biplate 120 having the shape shown in FIG. 1 was produced. The thickness of the substrate 121 of the biplate 120 is 2 mm. The bottom surface of the recess 121b and the recess 121c is a square having a side of 10.0 cm, and the depth of the recess 121b and the recess 121c is 0.37 mm.

〔エンドプレートの作製〕
ABS樹脂の射出成形により図1に示す形状の第一のエンドプレート130および第二のエンドプレート140を作製した。第一のエンドプレート130の基板131および第二のエンドプレート140の141の厚さは10mmである。凹部131bおよび凹部141bの底面は、一辺が10.0cmcmの正方形であり、深さは1.52mmである。
[Making end plate]
The first end plate 130 and the second end plate 140 having the shapes shown in FIG. 1 were produced by injection molding of ABS resin. The thickness of the substrate 131 of the first end plate 130 and 141 of the second end plate 140 is 10 mm. The bottom surfaces of the recess 131b and the recess 141b are squares with a side of 10.0 cm cm and a depth of 1.52 mm.

〔双極型鉛蓄電池の組み立て〕
凹部121bおよび凹部121cに配置する正極用鉛箔111aおよび負極用鉛箔112aとして、サンプルNo.1~No.6の各鉛箔を一辺が9.0cmの正方形に切り出したものを用いた。これ以外は全て同じにして、図1に示す構造を有し、公称電圧が6VであるNo.1~No.6の双極型鉛蓄電池を、通常の方法で組み立てた。つまり、正極用鉛箔および負極用鉛箔の各活物質層側の面の表面状態以外は、各双極型鉛蓄電池で同じ構成とした。
[Assembly of bipolar lead-acid battery]
As the lead foil 111a for the positive electrode and the lead foil 112a for the negative electrode to be arranged in the recess 121b and the recess 121c, the lead foils of Samples No. 1 to No. 6 were cut into squares having a side of 9.0 cm. All other parts were the same, and the No. 1 to No. 6 bipolar lead-acid batteries having the structure shown in FIG. 1 and having a nominal voltage of 6 V were assembled by a usual method. That is, each bipolar lead-acid battery has the same configuration except for the surface condition of the surface of the lead foil for the positive electrode and the lead foil for the negative electrode on the active material layer side.

正極用活物質層111bは、厚さ1.8mmで正極用鉛箔111a,111aaの表面に形成した。負極用活物質層112bは、厚さ1.6mmで負極用鉛箔112a,112aaの表面に形成した。セパレータ113は、ガラス繊維からなるものを用いた。電解液としては、通常用いられている濃度の希硫酸を用いた。 The positive electrode active material layer 111b was 1.8 mm thick and was formed on the surfaces of the positive electrode lead foils 111a and 111aa. The negative electrode active material layer 112b was 1.6 mm thick and was formed on the surfaces of the negative electrode lead foils 112a and 112aa. As the separator 113, one made of glass fiber was used. As the electrolytic solution, dilute sulfuric acid having a concentration usually used was used.

〔活物質層の剥離状態の観察〕
組み立てられたNo.1~No.6の双極型鉛蓄電池に対して通常の条件で化成を行った後に、各双極型鉛蓄電池を解体して、正極用鉛箔111aを正極用活物質層111bから剥がし、正極用鉛箔111aの正極用活物質層111b側の面を顕微鏡で観察した。この観察により、正極用鉛箔111aに活物質が残っているかどうかを調べた。活物質の残りが有れば、耐食性の高い鉛合金からなる正極用鉛箔111aに対する正極用活物質層111bの密着性が優れていると判断できる。
[Observation of the peeled state of the active material layer]
After chemical conversion of the assembled No. 1 to No. 6 bipolar lead-acid batteries under normal conditions, each bipolar lead-acid battery is disassembled, and the positive electrode lead foil 111a is used as the positive electrode active material layer 111b. The surface of the positive electrode lead foil 111a on the positive electrode active material layer 111b side was observed with a microscope. By this observation, it was investigated whether or not the active material remained in the lead foil 111a for the positive electrode. If there is a residue of the active material, it can be determined that the adhesion of the positive electrode active material layer 111b to the positive electrode lead foil 111a made of a lead alloy having high corrosion resistance is excellent.

[評価]
腐食試験と剥離試験の結果を、鉛箔の表面状態とともに表1に示す。
[evaluation]
The results of the corrosion test and the peeling test are shown in Table 1 together with the surface condition of the lead foil.

Figure 0007057465000002
Figure 0007057465000002

表1の結果から以下のことが分かる。
No.1~No.5の鉛箔は、粒状組織の鉛合金からなるため耐食性が高い。しかし、No.1とNo.2の鉛箔は、「Rz<A/2」を満たすものの、「RzJIS≧50μm」を満たさないため、活物質層の密着性が低いものとなった。また、No.5の鉛箔は、「RzJIS≧50μm」を満たすものの、「Rz<A/2」を満たさないため鉛箔に貫通が生じた。これに対して、No.3~No.4の鉛箔は、「Rz<A/2」と「RzJIS≧50μm」の両方を満たすため、活物質層の密着性も高く、鉛箔に貫通が生じないものであった。
The following can be seen from the results in Table 1.
The lead foils No. 1 to No. 5 are made of lead alloys with a granular structure and therefore have high corrosion resistance. However, although the lead foils of No. 1 and No. 2 satisfy "Rz <A / 2", they do not satisfy "RzJIS ≧ 50 μm", so that the adhesion of the active material layer is low. Further, although the lead foil of No. 5 satisfied "RzJIS ≧ 50 μm", it did not satisfy "Rz <A / 2", so that the lead foil penetrated. On the other hand, the lead foils of No. 3 to No. 4 satisfy both "Rz <A / 2" and "RzJIS ≧ 50 μm", so that the active material layer has high adhesion and penetrates the lead foil. It did not occur.

さらに、No.6の鉛箔は、縞状組織の鉛合金からなるため耐食性が低いものであった。
よって、No.3~No.4の鉛箔を正極用鉛箔として用いた双極型鉛蓄電池によれば、正極用鉛箔から正極用活物質が脱落しにくくなることで、高い電池性能が維持されるとともに短絡が防止されて、No.1、No.2、No.6の鉛箔を正極用鉛箔として用いた双極型鉛蓄電池よりも寿命が向上すると推定される。
Furthermore, the lead foil of No. 6 had low corrosion resistance because it was made of a lead alloy having a striped structure.
Therefore, according to the bipolar lead-acid battery using the lead foils of No. 3 to No. 4 as the lead foil for the positive electrode, the active material for the positive electrode is less likely to fall off from the lead foil for the positive electrode, so that high battery performance is maintained. It is estimated that the life of the lead-acid battery will be longer than that of the bipolar lead-acid battery using the lead foils of No. 1, No. 2, and No. 6 as the lead foil for the positive electrode.

100 双極(バイポーラ)型鉛蓄電池
110 セル部材
111 正極
112 負極
111a 正極用鉛箔
111aa 正極用鉛箔(正極用集電板)
111b 正極用活物質層
112a 負極用鉛箔
112aa 負極用鉛箔(負極用集電板)
112b 負極用活物質層
113 セパレータ
120 バイプレート
121 バイプレートの基板(隣り合うセル部材の間に配置された基板)
121a 基板の貫通穴
121b 基板の第一の凹部
121c 基板の第二の凹部
122 バイプレートの枠体
130 第一のエンドプレート
131 第一のエンドプレートの基板
132 第一のエンドプレートの枠体
140 第二のエンドプレート
141 第二のエンドプレートの基板
142 第二のエンドプレートの枠体
150 接着剤層
160 導通体
C セル(セル部材を収容する空間)
100 Bipolar lead-acid battery 110 Cell member 111 Positive electrode 112 Negative electrode 111a Lead electrode for positive electrode 111aa Lead foil for positive electrode (collector plate for positive electrode)
111b Active material layer for positive electrode 112a Lead foil for negative electrode 112aa Lead foil for negative electrode (current collector plate for negative electrode)
112b Active material layer for negative electrode 113 Separator 120 Bi-plate 121 Bi-plate substrate (substrate arranged between adjacent cell members)
121a Through hole of the substrate 121b First recess of the substrate 121c Second recess of the substrate 122 Bi-plate frame 130 First end plate 131 First end plate substrate 132 First end plate frame 140 No. Second end plate 141 Second end plate substrate 142 Second end plate frame 150 Adhesive layer 160 Conductor C cell (space for accommodating cell members)

Claims (1)

鉛または鉛合金からなる正極用鉛箔の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用鉛箔の一面に負極用活物質層が配置されている負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
を有し、
前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う基板と、前記セル部材の側面を囲う枠体と、を含み、
前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、隣接する前記枠体が接合され、
前記正極用鉛箔および前記負極用鉛箔は粒状組織である部分を有し、
前記正極用鉛箔の前記正極用活物質層との界面および前記負極用鉛箔の前記負極用活物質層との界面の少なくともいずれかは、前記粒状組織に形成された部分を有するとともに、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が50μm以上であり、前記規定による最大高さ粗さ(Rz)が、前記粒状組織を構成する粒子の平均粒子径の1/2よりも小さく、
隣り合う前記セル部材の間に配置された前記基板は、板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用鉛箔と前記負極用鉛箔とが導通されて、前記複数のセル部材が直列に電気的に接続されている双極型鉛蓄電池。
A positive electrode having a positive electrode active material layer arranged on one surface of a positive electrode lead foil made of lead or a lead alloy, and a negative electrode having a negative electrode active material layer arranged on one surface of a negative electrode lead foil made of lead or a lead alloy. And a plurality of cell members provided with a separator interposed between the positive electrode and the negative electrode and arranged in a laminated manner at intervals.
A plurality of space forming members that form a plurality of spaces individually accommodating the plurality of cell members, and a plurality of space forming members.
Have,
The space forming member includes a substrate that covers at least one of the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member.
The cell member and the substrate of the space forming member are arranged in a state of being alternately laminated, and the adjacent frames are joined to each other.
The lead foil for the positive electrode and the lead foil for the negative electrode have a portion having a granular structure.
At least one of the interface between the lead foil for the positive electrode and the active material layer for the positive electrode and the interface between the lead foil for the negative electrode and the active material layer for the negative electrode has a portion formed in the granular structure and is described as ". The ten-point average roughness (RzJIS) according to the provisions of "Appendix JA of JIS B 0601: 2013" is 50 μm or more, and the maximum height roughness (Rz) according to the provisions is the average particle of the particles constituting the granular structure. Less than 1/2 of the diameter,
The substrate arranged between the adjacent cell members has a through hole extending in a direction intersecting the plate surface, and in the through hole, the lead foil for the positive electrode and the negative electrode of the adjacent cell member. A bipolar lead-acid battery in which a lead-acid battery is conductive and the plurality of cell members are electrically connected in series.
JP2021082472A 2021-04-08 2021-05-14 Bipolar lead acid battery Active JP7057465B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021082472A JP7057465B1 (en) 2021-05-14 2021-05-14 Bipolar lead acid battery
PCT/JP2022/003587 WO2022215329A1 (en) 2021-04-08 2022-01-31 Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery
US18/482,514 US20240250312A1 (en) 2021-04-08 2023-10-06 Bipolar Storage Battery, Method For Manufacturing Bipolar Storage Battery, And Bipolar Lead-Acid Storage Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021082472A JP7057465B1 (en) 2021-05-14 2021-05-14 Bipolar lead acid battery

Publications (2)

Publication Number Publication Date
JP7057465B1 true JP7057465B1 (en) 2022-04-19
JP2022175783A JP2022175783A (en) 2022-11-25

Family

ID=81291684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021082472A Active JP7057465B1 (en) 2021-04-08 2021-05-14 Bipolar lead acid battery

Country Status (1)

Country Link
JP (1) JP7057465B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800946A (en) 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
JP2001514794A (en) 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー Manufacturing method of bipolar plate
JP2004158433A (en) 2002-10-18 2004-06-03 Furukawa Battery Co Ltd:The Base plate for lead storage battery, and lead storage battery using the same
JP2004186013A (en) 2002-12-04 2004-07-02 Ntt Power & Building Facilities Inc Electrode collector, its manufacturing method and sealed lead-acid battery
JP2020510968A (en) 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. Bipolar battery and plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038171B1 (en) * 1971-03-29 1975-12-08
JPH11250894A (en) * 1998-02-26 1999-09-17 Shin Kobe Electric Mach Co Ltd Lead-acid battery, and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800946A (en) 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
JP2001514794A (en) 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー Manufacturing method of bipolar plate
JP2004158433A (en) 2002-10-18 2004-06-03 Furukawa Battery Co Ltd:The Base plate for lead storage battery, and lead storage battery using the same
JP2004186013A (en) 2002-12-04 2004-07-02 Ntt Power & Building Facilities Inc Electrode collector, its manufacturing method and sealed lead-acid battery
JP2020510968A (en) 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. Bipolar battery and plate

Also Published As

Publication number Publication date
JP2022175783A (en) 2022-11-25

Similar Documents

Publication Publication Date Title
US6579647B2 (en) Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same
US4539268A (en) Sealed bipolar multi-cell battery
EP2330676A1 (en) Lead acid storage battery
US20110083966A1 (en) Electrode for lead-acid battery and method for producing such an electrode
JP5016306B2 (en) Lead acid battery
JPWO2008114738A1 (en) Lead-acid battery and battery pack
BRPI0703410B1 (en) board for bipolar battery and bipolar battery
EP3352285B1 (en) Lead storage battery
CA2419248A1 (en) Lead-acid batteries and positive plate and alloys therefor
US20100062335A1 (en) Bipolar battery
JP5656068B2 (en) Liquid lead-acid battery
JP7057465B1 (en) Bipolar lead acid battery
JP7057461B1 (en) Bipolar storage battery, manufacturing method of bipolar storage battery
JP7045505B1 (en) Current collecting sheet for lead-acid batteries, lead-acid batteries, bipolar lead-acid batteries
WO2022215329A1 (en) Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery
WO2023008495A1 (en) Bipolar lead battery
JP7449375B2 (en) Current collector sheet for bipolar lead-acid battery, bipolar lead-acid battery and manufacturing method thereof
JP7057463B1 (en) Bipolar lead-acid battery, manufacturing method of bipolar lead-acid battery
JP2982545B2 (en) Sealed storage battery
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
JP2023141123A (en) Bipolar lead-acid battery and manufacturing method for bipolar lead-acid battery
WO2021150851A1 (en) Lead-acid battery having fiber electrode and alloy for use with same
KR20180135722A (en) Cylinder type lead acid battery
Rippel et al. Positive paste with lead-coated glass fibers
JPH10106548A (en) Electrode for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7057465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150