JP7057461B1 - Bipolar storage battery, manufacturing method of bipolar storage battery - Google Patents

Bipolar storage battery, manufacturing method of bipolar storage battery Download PDF

Info

Publication number
JP7057461B1
JP7057461B1 JP2021065939A JP2021065939A JP7057461B1 JP 7057461 B1 JP7057461 B1 JP 7057461B1 JP 2021065939 A JP2021065939 A JP 2021065939A JP 2021065939 A JP2021065939 A JP 2021065939A JP 7057461 B1 JP7057461 B1 JP 7057461B1
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
substrate
current collector
collector plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021065939A
Other languages
Japanese (ja)
Other versions
JP2022161267A (en
Inventor
彩乃 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Furukawa Battery Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2021065939A priority Critical patent/JP7057461B1/en
Priority to PCT/JP2022/003587 priority patent/WO2022215329A1/en
Application granted granted Critical
Publication of JP7057461B1 publication Critical patent/JP7057461B1/en
Publication of JP2022161267A publication Critical patent/JP2022161267A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】基板の貫通穴で正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続されている双極型蓄電池において、電解液が集電板と基板との間に移動した場合でも、基板の貫通穴に至りにくくして、短絡を防止する。【解決手段】セル部材110同士の間に配置された基板(主基板)121の正極111の側の面(凹部121bの底面)および負極112の側の面(凹部121cの底面)の少なくとも一方は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、この規定による最大高さ粗さ(Rz)が120μm以下であり、上記各面に接着剤150で金属製の正極用集電板111aおよび金属製の負極用集電板112aが固定されている。【選択図】図1PROBLEM TO BE SOLVED: To provide an electrolytic solution with a current collector plate in a bipolar storage battery in which a positive electrode current collector plate and a negative electrode current collector plate are conducted through a through hole of a substrate and a plurality of cell members are electrically connected in series. Even if it is moved between the board and the board, it is difficult to reach the through hole of the board to prevent a short circuit. At least one of a surface of a substrate (main substrate) 121 arranged between cell members 110 on the side of a positive electrode 111 (bottom surface of a recess 121b) and a surface on the side of a negative electrode 112 (bottom surface of a recess 121c) , The ten-point average roughness (RzJIS) according to the provisions of "JIS B 0601: 2013 Annex JA" is 30 μm or more and 100 μm or less, and the maximum height roughness (Rz) according to this provision is 120 μm or less. A metal current collector plate 111a for a positive electrode and a metal current collector plate 112a for a negative electrode are fixed to the surface with an adhesive 150. [Selection diagram] Fig. 1

Description

本発明は、双極型蓄電池およびその製造方法に関する。 The present invention relates to a bipolar storage battery and a method for manufacturing the same.

近年、太陽光や風力等の自然エネルギを利用した発電設備が増えている。このような発電設備においては、発電量を制御することができないことから、蓄電池を利用して電力負荷の平準化を図るようにしている。すなわち、発電量が消費量よりも多いときには差分を蓄電池に充電する一方、発電量が消費量よりも小さいときには差分を蓄電池から放電するようにしている。上述した蓄電池としては、経済性や安全性等の観点から、鉛蓄電池が多用されている。このような従来の鉛蓄電池としては、例えば、下記特許文献1に記載された双極型鉛蓄電池が知られている。 In recent years, the number of power generation facilities that use natural energy such as solar power and wind power has increased. In such a power generation facility, since the amount of power generation cannot be controlled, a storage battery is used to equalize the power load. That is, when the amount of power generation is larger than the consumption amount, the difference is charged to the storage battery, while when the amount of power generation is smaller than the consumption amount, the difference is discharged from the storage battery. As the above-mentioned storage battery, a lead storage battery is often used from the viewpoint of economy, safety and the like. As such a conventional lead-acid battery, for example, the bipolar lead-acid battery described in Patent Document 1 below is known.

この双極型鉛蓄電池は、額縁形で樹脂製のフレームの内側に、樹脂製の基板が取り付けられている。基板の両面には鉛層が配置されている。基板の一面の鉛層には、正極用活物質層が隣接し、他面の鉛層には、負極用活物質層が隣接している。また、額縁形で樹脂製のスペーサを有し、その内側には、電解液を含浸させたガラスマットが配設されている。そして、フレームとスペーサとを交互に複数積層し、フレームとスペーサとの間が接着剤等で接着されている。また、基板に設けた貫通穴を介して、基板の両面の鉛層が接続されている。 This bipolar lead-acid battery has a frame shape and a resin substrate is attached to the inside of a resin frame. Lead layers are arranged on both sides of the substrate. The lead layer on one surface of the substrate is adjacent to the active material layer for the positive electrode, and the lead layer on the other surface is adjacent to the active material layer for the negative electrode. Further, it has a frame-shaped and resin spacer, and a glass mat impregnated with an electrolytic solution is arranged inside the spacer. Then, a plurality of frames and spacers are alternately laminated, and the frames and spacers are bonded with an adhesive or the like. Further, the lead layers on both sides of the substrate are connected via the through holes provided in the substrate.

すなわち、特許文献1に記載された双極型鉛蓄電池は、正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および正極と負極との間に介在するセパレータ(ガラスマット)を備え、間隔を開けて積層配置された、複数のセル部材と、複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有し、正極用集電板および負極用集電板は共に金属(鉛)製である。また、空間形成部材は、セル部材の正極側および負極側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体(二極式プレートおよび端部プレートの枠部とスペーサ)と、を含んでいる。さらに、セル部材と空間形成部材の基板とが交互に積層状態で配置され、隣り合うセル部材の間に配置された基板は、板面と交差する方向に延びる貫通穴を有し、貫通穴の中で、隣り合うセル部材の正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続され、隣接する枠体が接合されている。 That is, the bipolar lead storage battery described in Patent Document 1 includes a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a positive electrode and a negative electrode. A plurality of cell members, which are provided with a separator (glass mat) interposed between the two cells and are arranged in a laminated manner at intervals, and a plurality of space forming members for individually accommodating a plurality of cell members. , And both the positive electrode current collector plate and the negative electrode current collector plate are made of metal (lead). Further, the space forming member includes a substrate that covers at least one of the positive electrode side and the negative electrode side of the cell member, and a frame body (a frame portion and a spacer of a bipolar plate and an end plate) that surrounds the side surface of the cell member. I'm out. Further, the substrate of the cell member and the substrate of the space forming member are alternately arranged in a laminated state, and the substrate arranged between the adjacent cell members has a through hole extending in a direction intersecting the plate surface, and the through hole is formed. Among them, the positive electrode current collector plate and the negative electrode current collector plate of the adjacent cell members are electrically connected to each other in series, and the adjacent frame bodies are joined.

しかし、特許文献1には、正極用集電板および負極用集電板である鉛箔について、「鉛箔は、基板の両方の露出表面上のフレームの材料受け入れ通路に配置される」と記載されているだけで、鉛箔が基板に接着剤で固定されていることは記載されていないし、それを示唆する記載もない。 However, Patent Document 1 describes that the lead foil, which is a positive electrode current collector plate and a negative electrode current collector plate, is described as "the lead foil is arranged in the material receiving passage of the frame on both exposed surfaces of the substrate". There is no description that the lead foil is fixed to the substrate with an adhesive, and there is no description that suggests it.

特許第6124894号公報Japanese Patent No. 6124894

上述のように、基板の貫通穴で正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続されている双極型蓄電池の場合、集電板が腐食して、活物質層に存在する電解液が基板と集電体との間に移動する状態になると、電解液が貫通穴を経由して反対側の集電板に到達し、液絡現象が生じて短絡に至る可能性がある。この液絡現象は、集電板が基板に接着剤で固定されている場合でも、接着剤層が存在していない部分があると、電解液が集電板と基板との間に移動して貫通穴に至る可能性がある。 As described above, in the case of a bipolar storage battery in which a positive electrode current collector plate and a negative electrode current collector plate are conducted through a through hole in the substrate and a plurality of cell members are electrically connected in series, the current collector plate is used. When the electrolytic solution existing in the active material layer moves between the substrate and the current collector due to corrosion, the electrolytic solution reaches the collector plate on the opposite side via the through hole, and a liquid entanglement phenomenon occurs. May occur and lead to a short circuit. This liquid entanglement phenomenon occurs even when the current collector plate is fixed to the substrate with an adhesive, but if there is a part where the adhesive layer does not exist, the electrolytic solution moves between the current collector plate and the substrate. It can lead to through holes.

本発明の課題は、基板の貫通穴で正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続されている双極型蓄電池において、電解液が集電板と基板との間に移動した場合でも、貫通穴に至りにくくして、短絡を防止することである。 An object of the present invention is to collect an electrolytic solution in a bipolar storage battery in which a positive electrode current collector plate and a negative electrode current collector plate are conducted through a through hole in a substrate and a plurality of cell members are electrically connected in series. Even if it moves between the electric plate and the substrate, it is difficult to reach the through hole to prevent a short circuit.

前述した課題を解決するための本発明の第一態様は、以下の構成(1)~(4)を有する双極型蓄電池である。
(1)正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有する。
(2)前記空間形成部材は、前記セル部材の前記正極側および前記負極側の両方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含む。前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置されている。隣接する前記枠体が接合されている。
(3)隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面および前記負極の側の面の少なくとも一方は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、前記規定による最大高さ粗さ(Rz)が120μm以下である。
(4)隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面に、接着剤で金属製の前記正極用集電板が固定されている。前記主基板の前記負極の側の面に、接着剤で金属製の前記負極用集電板が固定されている。前記主基板は板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されている。
The first aspect of the present invention for solving the above-mentioned problems is a bipolar storage battery having the following configurations (1) to (4).
(1) A positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a separator interposed between the positive electrode and the negative electrode are provided at intervals. It has a plurality of cell members arranged in a laminated manner by opening the cells, and a plurality of space forming members for forming a plurality of spaces individually accommodating the plurality of cell members.
(2) The space forming member includes a synthetic resin substrate that covers both the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member. The cell member and the substrate of the space forming member are arranged in a state of being alternately laminated. The adjacent frames are joined together.
(3) At least one of the surface on the positive electrode side and the surface on the negative electrode side of the main substrate, which is the substrate arranged between the adjacent cell members, is "JIS B 0601: 2013 Annex JA". The ten-point average roughness (RzJIS) according to the above-mentioned regulation is 30 μm or more and 100 μm or less, and the maximum height roughness (Rz) according to the above-mentioned regulation is 120 μm or less.
(4) The metal current collector plate for the positive electrode is fixed to the surface of the main substrate, which is the substrate arranged between the adjacent cell members, on the side of the positive electrode with an adhesive. The metal current collector plate for the negative electrode is fixed to the surface of the main substrate on the side of the negative electrode with an adhesive. The main substrate has a through hole extending in a direction intersecting the plate surface, and in the through hole, the positive electrode current collector plate and the negative electrode current collector plate of the adjacent cell member are conducted to conduct electricity. The plurality of cell members are electrically connected in series.

本発明の第二態様は、上記構成(1)(2)(4)を有する双極型蓄電池の製造方法であって、以下の構成(5)を有する。
(5)前記主基板として、当該主基板の前記正極の側の面および前記負極の側の面の少なくとも一方が、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、前記規定による最大高さ粗さ(Rz)が120μm以下であるものを使用する。
The second aspect of the present invention is a method for manufacturing a bipolar storage battery having the above configurations (1), (2) and (4), and has the following configuration (5).
(5) As the main substrate, at least one of the surface on the positive electrode side and the surface on the negative electrode side of the main substrate has a ten-point average roughness according to the provisions of "Appendix JA of JIS B 0601: 2013" ( RzJIS) is 30 μm or more and 100 μm or less, and the maximum height roughness (Rz) according to the above specification is 120 μm or less.

本発明の双極型蓄電池および本発明の方法で得られた双極型蓄電池は、電解液が集電板と基板との間に移動した場合でも、貫通穴に至りにくくなって、短絡防止効果が得られることが期待できる。 The bipolar storage battery of the present invention and the bipolar storage battery obtained by the method of the present invention are less likely to reach through holes even when the electrolytic solution moves between the current collector plate and the substrate, and a short-circuit prevention effect can be obtained. Can be expected to be done.

本発明の一実施形態である双極型鉛蓄電池の概略構成を示す断面図である。It is sectional drawing which shows the schematic structure of the bipolar lead-acid battery which is one Embodiment of this invention. 図1の双極型鉛蓄電池の部分拡大図である。It is a partially enlarged view of the bipolar lead-acid battery of FIG.

以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。なお、以下においては、双極型蓄電池として双極型鉛蓄電池を例に挙げて説明する。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the embodiments shown below. In the embodiments shown below, technically preferable limitations are made for carrying out the present invention, but these limitations are not essential requirements of the present invention. In the following, a bipolar lead-acid battery will be described as an example of the bipolar lead-acid battery.

〔全体構成〕
先ず、この実施形態の双極(バイポーラ)型鉛蓄電池の全体構成について説明する。
図1に示すように、この実施形態の双極型鉛蓄電池100は、複数のセル部材110と、複数枚のバイプレート(空間形成部材)120と、第一のエンドプレート(空間形成部材)130と、第二のエンドプレート(空間形成部材)140を有する。図1ではセル部材110が三個積層された双極型鉛蓄電池100を示しているが、セル部材110の数は電池設計により決定される。また、バイプレート120の数はセル部材110の数に応じて決まる。
〔overall structure〕
First, the overall configuration of the bipolar lead-acid battery of this embodiment will be described.
As shown in FIG. 1, the bipolar lead-acid battery 100 of this embodiment includes a plurality of cell members 110, a plurality of biplates (space forming members) 120, and a first end plate (space forming member) 130. , Has a second end plate (space forming member) 140. FIG. 1 shows a bipolar lead-acid battery 100 in which three cell members 110 are stacked, but the number of cell members 110 is determined by the battery design. Further, the number of bi-plates 120 is determined according to the number of cell members 110.

セル部材110の積層方向をZ方向(図1及び図2の上下方向)とし、Z方向に垂直な方向をX方向とする。
セル部材110は、正極111、負極112、およびセパレータ(電解質層)113を備えている。セパレータ113には電解液が含浸されている。正極111は、正極用鉛箔(正極用集電板)111a,111aaと正極用活物質層111bを有する。負極112は負極用鉛箔(負極用集電板)112a,112aaと負極用活物質層112bを有する。セパレータ113は、正極111と負極112との間に介在している。セル部材110において、正極用鉛箔111a,111aa、正極用活物質層111b、セパレータ113、負極用活物質層112b、および負極用鉛箔112a,112aaは、この順に積層されている。
The stacking direction of the cell members 110 is the Z direction (vertical direction in FIGS. 1 and 2), and the direction perpendicular to the Z direction is the X direction.
The cell member 110 includes a positive electrode 111, a negative electrode 112, and a separator (electrolyte layer) 113. The separator 113 is impregnated with an electrolytic solution. The positive electrode 111 has lead foils for positive electrodes (current collector plates for positive electrodes) 111a and 111aa and an active material layer 111b for positive electrodes. The negative electrode 112 has a lead foil for the negative electrode (current collector plate for the negative electrode) 112a, 112aa and an active material layer 112b for the negative electrode. The separator 113 is interposed between the positive electrode 111 and the negative electrode 112. In the cell member 110, the lead foils 111a and 111aa for the positive electrode, the active material layer 111b for the positive electrode, the separator 113, the active material layer 112b for the negative electrode, and the lead foils 112a and 112aa for the negative electrode are laminated in this order.

Z方向の寸法(厚さ)は、正極用鉛箔111aの方が負極用鉛箔112aより大きく(厚く)、正極用活物質層111bの方が負極用活物質層112bより大きい(厚い)。
複数のセル部材110は、Z方向に間隔を開けて積層配置され、この間隔の部分にバイプレート120の基板121が配置されている。つまり、複数のセル部材110は、バイプレート120の基板121を間に挟んだ状態で積層されている。
The dimension (thickness) in the Z direction of the positive electrode lead foil 111a is larger (thicker) than that of the negative electrode lead foil 112a, and the positive electrode active material layer 111b is larger (thicker) than the negative electrode active material layer 112b.
The plurality of cell members 110 are stacked and arranged at intervals in the Z direction, and the substrate 121 of the biplate 120 is arranged at the portions of the intervals. That is, the plurality of cell members 110 are laminated with the substrate 121 of the biplate 120 sandwiched between them.

複数枚のバイプレート120と第一のエンドプレート130と第二のエンドプレート140は、複数のセル部材110を個別に収容する複数の空間(セル)Cを形成するための部材である。
図2に示すように、バイプレート120は、平面形状が長方形の基板121と、基板121の四つの端面を覆う枠体122と、基板121の両面から垂直に突出する柱部123とからなり、基板121と枠体122と柱部123は一体に合成樹脂で形成されている。なお、基板121の各面から突出する柱部123の数は一つであってもよいし、複数であってもよい。
The plurality of bi-plates 120, the first end plate 130, and the second end plate 140 are members for forming a plurality of spaces (cells) C that individually accommodate the plurality of cell members 110.
As shown in FIG. 2, the biplate 120 includes a substrate 121 having a rectangular planar shape, a frame body 122 covering the four end faces of the substrate 121, and a pillar portion 123 vertically protruding from both sides of the substrate 121. The substrate 121, the frame body 122, and the pillar portion 123 are integrally formed of synthetic resin. The number of pillars 123 protruding from each surface of the substrate 121 may be one or a plurality.

Z方向において、枠体122の寸法は基板121の寸法(厚さ)より大きく、柱部123の突出端面間の寸法は枠体122の寸法と同じである。そして、複数のバイプレート120が枠体122および柱部123同士を接触させて積層することにより、基板121と基板121との間に空間Cが形成され、互いに接触する柱部123同士により、空間CのZ方向の寸法が保持される。 In the Z direction, the dimension of the frame 122 is larger than the dimension (thickness) of the substrate 121, and the dimension between the protruding end faces of the pillar 123 is the same as the dimension of the frame 122. Then, a space C is formed between the substrate 121 and the substrate 121 by contacting and stacking the frame body 122 and the pillar portions 123 with each other, and the pillar portions 123 in contact with each other form a space. The dimension of C in the Z direction is retained.

正極用鉛箔111a,111aa、正極用活物質層111b、負極用鉛箔112a,112aa、負極用活物質層112b、およびセパレータ113には、柱部123を貫通させる貫通穴111c,111d,112c,112d,113aがそれぞれ形成されている。
バイプレート120の基板(主基板)121は、板面を貫通する複数の貫通穴121aを有する。基板121の一面に第一の凹部121bが、他面に第二の凹部121cが形成されている。第一の凹部121bの深さは第二の凹部121cより深い。第一の凹部121bおよび第二の凹部121cのX方向およびY方向の寸法は、正極用鉛箔111aおよび負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
The lead foils 111a and 111aa for the positive electrode, the active material layer 111b for the positive electrode, the lead foils 112a and 112aa for the negative electrode, the active material layer 112b for the negative electrode, and the separator 113 have through holes 111c, 111d, 112c through which the pillar portion 123 is penetrated. 112d and 113a are formed, respectively.
The substrate (main substrate) 121 of the biplate 120 has a plurality of through holes 121a penetrating the plate surface. A first recess 121b is formed on one surface of the substrate 121, and a second recess 121c is formed on the other surface. The depth of the first recess 121b is deeper than that of the second recess 121c. The dimensions of the first recess 121b and the second recess 121c in the X and Y directions correspond to the dimensions of the lead foil 111a for the positive electrode and the lead foil 112a for the negative electrode in the X and Y directions.

また、第一の凹部121bの底面(基板121の正極111の側の面)および第二の凹部121cの底面(基板121の負極112の側の面)は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、この規定による最大高さ粗さ(Rz)が120μm以下になっている。 Further, the bottom surface of the first recess 121b (the surface of the substrate 121 on the positive electrode 111 side) and the bottom surface of the second recess 121c (the surface of the substrate 121 on the negative electrode 112 side) are described in "JIS B 0601: 2013 Annex". The ten-point average roughness (RzJIS) according to the provisions of "JA" is 30 μm or more and 100 μm or less, and the maximum height roughness (Rz) according to this provision is 120 μm or less.

バイプレート120の基板121は、Z方向で、隣り合うセル部材110の間に配置されている。バイプレート120の基板121は、セル部材110の正極111の側と、その隣のセル部材110の負極112の側と、の両方を覆う基板である。バイプレート120の基板121の第一の凹部121bに、セル部材110の正極用鉛箔111aが接着剤層150を介して配置されている。つまり、基板121の正極111の側の面(第一の凹部121bの底面)に接着剤で正極用鉛箔111aが固定されている。 The substrate 121 of the biplate 120 is arranged between adjacent cell members 110 in the Z direction. The substrate 121 of the biplate 120 is a substrate that covers both the positive electrode 111 side of the cell member 110 and the negative electrode 112 side of the adjacent cell member 110. In the first recess 121b of the substrate 121 of the biplate 120, the lead foil 111a for the positive electrode of the cell member 110 is arranged via the adhesive layer 150. That is, the lead foil 111a for the positive electrode is fixed to the surface of the substrate 121 on the side of the positive electrode 111 (the bottom surface of the first recess 121b) with an adhesive.

また、バイプレート120の基板121の第二の凹部121cに、セル部材110の負極用鉛箔112aが接着剤層150を介して配置されている。つまり、基板121の負極112の側の面(第二の凹部121cの底面)に接着剤で負極用鉛箔112aが固定されている。
バイプレート120の基板121の貫通穴121aに導通体160が配置され、導通体160の両端面は、正極用鉛箔111aおよび負極用鉛箔112aと接触し、結合されている。つまり、導通体160により正極用鉛箔111aと負極用鉛箔112aとが電気的に接続されている。その結果、複数のセル部材110の全てが電気的に直列に接続されている。
Further, the lead foil 112a for the negative electrode of the cell member 110 is arranged in the second recess 121c of the substrate 121 of the biplate 120 via the adhesive layer 150. That is, the lead foil 112a for the negative electrode is fixed to the surface of the substrate 121 on the side of the negative electrode 112 (the bottom surface of the second recess 121c) with an adhesive.
The conductor 160 is arranged in the through hole 121a of the substrate 121 of the biplate 120, and both end faces of the conductor 160 are in contact with and bonded to the lead foil 111a for the positive electrode and the lead foil 112a for the negative electrode. That is, the lead foil 111a for the positive electrode and the lead foil 112a for the negative electrode are electrically connected by the conductor 160. As a result, all of the plurality of cell members 110 are electrically connected in series.

図1に示すように、第一のエンドプレート130は、セル部材110の正極側を覆う基板131と、セル部材110の側面を囲う枠体132と、基板131の一面(最も正極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部133とからなる。基板131の平面形状は長方形であり、基板131の四つの端面が枠体132で覆われ、基板131と枠体132と柱部133が一体に合成樹脂で形成されている。なお、基板131の一面から突出する柱部133の数は一つであってもよいし、複数であってもよいが、柱部133と接触させるバイプレート120の柱部123に対応させる。 As shown in FIG. 1, the first end plate 130 is arranged on a substrate 131 that covers the positive electrode side of the cell member 110, a frame 132 that surrounds the side surface of the cell member 110, and one surface of the substrate 131 (most positive electrode side). It is composed of a pillar portion 133 that projects vertically from the surface of the biplate 120 facing the substrate 121). The planar shape of the substrate 131 is rectangular, the four end faces of the substrate 131 are covered with the frame 132, and the substrate 131, the frame 132, and the pillar 133 are integrally formed of synthetic resin. The number of the pillars 133 protruding from one surface of the substrate 131 may be one or a plurality, but the number of the pillars 133 may correspond to the pillars 123 of the biplate 120 in contact with the pillars 133.

Z方向において、枠体132の寸法は基板131の寸法(厚さ)より大きく、柱部133の突出端面間の寸法は枠体132の寸法と同じである。そして、最も外側(正極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体132および柱部133を接触させて積層することにより、バイプレート120の基板121と第一のエンドプレート130の基板131との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第一のエンドプレート130の柱部133とにより、空間CのZ方向の寸法が保持される。 In the Z direction, the dimension of the frame 132 is larger than the dimension (thickness) of the substrate 131, and the dimension between the protruding end faces of the column 133 is the same as the dimension of the frame 132. Then, the frame 132 and the pillar 133 are brought into contact with each other and laminated with respect to the frame 122 and the pillar 123 of the bi-plate 120 arranged on the outermost side (positive side), so that the substrate 121 of the bi-plate 120 is laminated. Space C is formed between the substrate 131 of the first end plate 130, and the Z-direction dimension of the space C is formed by the pillar portion 123 of the bi-plate 120 and the pillar portion 133 of the first end plate 130 that are in contact with each other. Is retained.

最も外側(正極側)に配置されるセル部材110の正極用鉛箔111aa、正極用活物質層111b、およびセパレータ113には、柱部133を貫通させる貫通穴111c,111d,113aがそれぞれ形成されている。
第一のエンドプレート130の基板131の一面に凹部131bが形成されている。凹部131bのX方向の寸法は、正極用鉛箔111aaのX方向の寸法に対応させてある。第一のエンドプレート130の基板131の一面に配置された正極用鉛箔111aaのZ方向の寸法は、バイプレート120の基板121の一面に配置された正極用鉛箔111aのZ方向の寸法よりも大きい。
Through holes 111c, 111d, 113a through which the pillar portion 133 is penetrated are formed in the lead foil 111aa for the positive electrode, the active material layer 111b for the positive electrode, and the separator 113 of the cell member 110 arranged on the outermost side (positive electrode side), respectively. ing.
A recess 131b is formed on one surface of the substrate 131 of the first end plate 130. The dimension of the recess 131b in the X direction corresponds to the dimension of the lead foil 111aa for the positive electrode in the X direction. The Z-direction dimension of the positive electrode lead foil 111aa arranged on one surface of the substrate 131 of the first end plate 130 is larger than the Z-direction dimension of the positive electrode lead foil 111a arranged on one surface of the substrate 121 of the bi-plate 120. Is also big.

第一のエンドプレート130の基板131の凹部131bに、セル部材110の正極用鉛箔111aaが接着剤層150を介して配置されている。つまり、基板131の正極111の側の面(凹部131bの底面)に接着剤で正極用鉛箔111aaが固定されている。
また、第一のエンドプレート130は、凹部131b内の正極用鉛箔111aaと電気的に接続された正極端子を備えている。
In the recess 131b of the substrate 131 of the first end plate 130, the lead foil 111aa for the positive electrode of the cell member 110 is arranged via the adhesive layer 150. That is, the lead foil 111aa for the positive electrode is fixed to the surface of the substrate 131 on the positive electrode 111 side (bottom surface of the recess 131b) with an adhesive.
Further, the first end plate 130 includes a positive electrode terminal electrically connected to a lead foil 111aa for a positive electrode in the recess 131b.

第二のエンドプレート140は、セル部材110の負極側を覆う基板141と、セル部材110の側面を囲う枠体142と、基板141の一面(最も負極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部143とからなる。基板141の平面形状は長方形であり、基板141の四つの端面が枠体142で覆われ、基板141と枠体142と柱部143が一体に合成樹脂で形成されている。なお、基板141の一面から突出する柱部143の数は一つであってもよいし、複数であってもよいが、柱部143と接触させるバイプレート120の柱部123に対応させる。 The second end plate 140 includes a substrate 141 that covers the negative electrode side of the cell member 110, a frame 142 that surrounds the side surface of the cell member 110, and one surface of the substrate 141 (the substrate 121 of the biplate 120 that is arranged on the most negative electrode side). It is composed of a pillar portion 143 that projects vertically from the surface facing the surface). The planar shape of the substrate 141 is rectangular, the four end faces of the substrate 141 are covered with the frame body 142, and the substrate 141, the frame body 142, and the pillar portion 143 are integrally formed of synthetic resin. The number of pillars 143 protruding from one surface of the substrate 141 may be one or a plurality, but the number of pillars 143 may correspond to the pillars 123 of the biplate 120 in contact with the pillars 143.

Z方向において、枠体142の寸法は基板131の寸法(厚さ)より大きく、二つの柱部143の突出端面間の寸法は枠体142の寸法と同じである。そして、最も外側(負極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体142および柱部143を接触させて積層することにより、バイプレート120の基板121と第二のエンドプレート140の基板141との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第二のエンドプレート140の柱部143とにより、空間CのZ方向の寸法が保持される。 In the Z direction, the dimension of the frame 142 is larger than the dimension (thickness) of the substrate 131, and the dimension between the protruding end faces of the two pillars 143 is the same as the dimension of the frame 142. Then, the frame body 142 and the pillar portion 143 are brought into contact with the frame body 122 and the pillar portion 123 of the bi-plate 120 arranged on the outermost side (negative side), and the frame body 142 and the pillar portion 143 are brought into contact with each other and laminated to form the substrate 121 of the bi-plate 120. Space C is formed between the substrate 141 of the second end plate 140, and the Z-direction dimension of the space C is formed by the pillar portion 123 of the bi-plate 120 and the pillar portion 143 of the second end plate 140 that are in contact with each other. Is retained.

最も外側(負極側)に配置されるセル部材110の負極用鉛箔112aa、負極用活物質層112b、およびセパレータ113には、柱部143を貫通させる貫通穴112c,112d,113aがそれぞれ形成されている。
第二のエンドプレート140の基板141の一面に凹部141bが形成されている。凹部141bのX方向およびY方向の寸法は、負極用鉛箔112aaのX方向およびY方向の寸法に対応させてある。第二のエンドプレート140の基板141の一面に配置された負極用鉛箔112aaのZ方向の寸法は、バイプレート120の基板121の他面に配置された負極用鉛箔112aのZ方向の寸法よりも大きい。
Through holes 112c, 112d, 113a through which the pillar portion 143 is penetrated are formed in the lead foil 112aa for the negative electrode, the active material layer 112b for the negative electrode, and the separator 113 of the cell member 110 arranged on the outermost side (negative electrode side), respectively. ing.
A recess 141b is formed on one surface of the substrate 141 of the second end plate 140. The dimensions of the recess 141b in the X and Y directions correspond to the dimensions of the lead foil 112aa for the negative electrode in the X and Y directions. The Z-direction dimension of the negative electrode lead foil 112aa arranged on one surface of the substrate 141 of the second end plate 140 is the Z-direction dimension of the negative electrode lead foil 112a arranged on the other surface of the substrate 121 of the bi-plate 120. Greater than.

第二のエンドプレート140の基板141の凹部141bに、セル部材110の負極用鉛箔112aaが接着剤層150を介して配置されている。つまり、基板141の負極112の側の面(凹部141bの底面)に接着剤で負極用鉛箔112aaが固定されている。
また、第二のエンドプレート140は、凹部141b内の負極用鉛箔112aaと電気的に接続された負極端子を備えている。
In the recess 141b of the substrate 141 of the second end plate 140, the lead foil 112aa for the negative electrode of the cell member 110 is arranged via the adhesive layer 150. That is, the lead foil 112aa for the negative electrode is fixed to the surface of the substrate 141 on the side of the negative electrode 112 (the bottom surface of the recess 141b) with an adhesive.
Further, the second end plate 140 includes a negative electrode terminal electrically connected to a lead foil 112aa for a negative electrode in the recess 141b.

なお、上記説明から分かるように、バイプレート120は、セル部材110の正極側および負極側の両方を覆う基板121と、セル部材110の側面を囲う枠体122と、を含む空間形成部材である。第一のエンドプレート130は、セル部材110の正極側のみ(正極側および負極側の一方)を覆う基板131と、セル部材110の側面を囲う枠体132と、を含む空間形成部材である。 As can be seen from the above description, the biplate 120 is a space forming member including a substrate 121 that covers both the positive electrode side and the negative electrode side of the cell member 110 and a frame body 122 that surrounds the side surface of the cell member 110. .. The first end plate 130 is a space forming member including a substrate 131 that covers only the positive electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110, and a frame 132 that surrounds the side surface of the cell member 110.

また、第二のエンドプレート140は、セル部材110の負極側のみ(正極側および負極側の一方)を覆う基板141と、セル部材110の側面を囲う枠体142と、を含む空間形成部材である。つまり、基板121,131,141は、セル部材110の正極の側および負極の側の少なくとも一方を覆う基板であり、基板121はセル部材110の正極の側および負極の側の両方を覆う基板である。また、バイプレート120の基板121は、セル部材110同士の間に配置された基板(主基板)である。 Further, the second end plate 140 is a space forming member including a substrate 141 that covers only the negative electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110 and a frame body 142 that surrounds the side surface of the cell member 110. be. That is, the substrates 121, 131, 141 are substrates that cover at least one of the positive electrode side and the negative electrode side of the cell member 110, and the substrate 121 is a substrate that covers both the positive electrode side and the negative electrode side of the cell member 110. be. Further, the substrate 121 of the bi-plate 120 is a substrate (main substrate) arranged between the cell members 110.

〔作用、効果〕
実施形態の双極型鉛蓄電池100では、主基板である基板121の凹部121bの底面(基板121の正極111の側の面)および凹部121cの底面(基板121の負極112の側の面)の両方が、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、この規定による最大高さ粗さ(Rz)が120μm以下になっている。そして、基板121の正極111の側の面(凹部121bの底面)に接着剤で正極用鉛箔111aが固定され、基板121の負極112の側の面(凹部121cの底面)に接着剤で負極用鉛箔112aが固定されている。これにより、双極型鉛蓄電池100は、以下の作用、効果が得られる。
[Action, effect]
In the bipolar lead-acid battery 100 of the embodiment, both the bottom surface of the recess 121b of the substrate 121, which is the main substrate (the surface on the side of the positive electrode 111 of the substrate 121) and the bottom surface of the recess 121c (the surface on the side of the negative electrode 112 of the substrate 121). However, the ten-point average roughness (RzJIS) according to the provisions of "JIS B 0601: 2013 Annex JA" is 30 μm or more and 100 μm or less, and the maximum height roughness (Rz) according to this provision is 120 μm or less. .. Then, the lead foil 111a for the positive electrode is fixed to the surface of the substrate 121 on the side of the positive electrode 111 (bottom surface of the recess 121b) with an adhesive, and the negative electrode is applied to the surface of the substrate 121 on the side of the negative electrode 112 (bottom surface of the recess 121c). The lead foil 112a is fixed. As a result, the bipolar lead-acid battery 100 can obtain the following actions and effects.

正極用鉛箔111aが腐食した場合、正極用活物質層111bに存在する電解液は正極用鉛箔111aの腐食部を通って基板121の側に移動しようとするが、正極用鉛箔111aが基板121の凹部121bの底面に接着剤で固定されているため、接着剤層150の存在により、電解液が基板121の凹部121bの底面に至ることが抑制される。 When the positive electrode lead foil 111a is corroded, the electrolytic solution existing in the positive electrode active material layer 111b tends to move toward the substrate 121 through the corroded portion of the positive electrode lead foil 111a, but the positive electrode lead foil 111a is present. Since it is fixed to the bottom surface of the recess 121b of the substrate 121 with an adhesive, the presence of the adhesive layer 150 suppresses the electrolytic solution from reaching the bottom surface of the recess 121b of the substrate 121.

また、この電解液が基板121の凹部121bの底面に至った場合でも、凹部121bの底面の表面状態が粗い(RZjisおよびRzの値が大きい)方が、滑らかな場合(RZjisおよびRzの値が小さい場合)よりも、底面に至った電解液が基板121の貫通穴121aまで移動する距離が長くなる。よって、底面に至った電解液が貫通穴121aに至りにくくなって、液絡現象の発生が抑制されるため、双極型鉛蓄電池100の短絡防止効果が期待できる。 Further, even when this electrolytic solution reaches the bottom surface of the recess 121b of the substrate 121, the rougher the surface condition of the bottom surface of the recess 121b (the larger the value of RZjis and Rz) is, the smoother the surface is (the value of RZjis and Rz is higher). The distance that the electrolytic solution reaching the bottom surface moves to the through hole 121a of the substrate 121 is longer than that (when it is small). Therefore, the electrolytic solution that has reached the bottom surface is less likely to reach the through hole 121a, and the occurrence of the liquid entanglement phenomenon is suppressed, so that the effect of preventing a short circuit of the bipolar lead-acid battery 100 can be expected.

一方、第一の凹部121bおよび第二の凹部121cの底面の表面状態が粗すぎると、同じ平面積の正極用鉛箔111aおよび負極用鉛箔111bを固定するために必要な接着剤の量が多くなってコストアップ要因になるとともに、決められた量の接着剤で接着しようとすると正極用鉛箔111aおよび負極用鉛箔111bの面内での接着強度が不均一になるという問題点が生じる。双極型鉛蓄電池100では、第一の凹部121bおよび第二の凹部121cの底面の表面状態が「RzJISが30μm以上100μm以下、且つ、Rzが120μm以下」を満たすものとなっているため、このような問題点の解消が期待できる。 On the other hand, if the surface condition of the bottom surfaces of the first recess 121b and the second recess 121c is too rough, the amount of adhesive required to fix the lead foil 111a for the positive electrode and the lead foil 111b for the negative electrode having the same flat area will be increased. In addition to increasing the cost, if an attempt is made to bond with a predetermined amount of adhesive, there arises a problem that the adhesive strength in the planes of the lead foil 111a for the positive electrode and the lead foil 111b for the negative electrode becomes non-uniform. .. In the bipolar lead-acid battery 100, the surface condition of the bottom surface of the first recess 121b and the second recess 121c satisfies "RzJIS is 30 μm or more and 100 μm or less, and Rz is 120 μm or less". It can be expected to solve various problems.

なお、液絡抑制効果と少ない接着剤の使用量で必要な接着強度が得られる効果との両立の点から、第一の凹部121bおよび第二の凹部121cの底面(主基板の正極側の面および/または負極側の面)の表面状態は「RzJISが50μm~75μm、Rzが20μm~90μm」を満たすものになっていることが好ましい。 It should be noted that the bottom surfaces of the first recess 121b and the second recess 121c (the surface on the positive electrode side of the main substrate) are compatible with the effect of suppressing liquid entanglement and the effect of obtaining the required adhesive strength with a small amount of adhesive. And / or the surface state on the negative electrode side) preferably satisfies "RzJIS is 50 μm to 75 μm and Rz is 20 μm to 90 μm".

また、主基板の正極側の面および/または負極側の面の表面状態を「RzJISが30μm以上100μm以下、且つ、Rzが120μm以下」とするための方法としては、合成樹脂で成形された後の主基板の表面を紙やすりで擦る方法、主基板の表面に対してシボ加工を施す方法、主基板の表面に対してサンドブラストやショットブラスト等の表面処理を施す方法が挙げられる。或いは、主基板を合成樹脂で成形する際に、金型表面を粗加工することにより、正極側の面および/または負極側の面の表面状態が「RzJISが30μm以上100μm以下であり、Rzが120μm以下」となるようにする方法も挙げられる。 Further, as a method for setting the surface state of the surface on the positive electrode side and / or the surface on the negative electrode side of the main substrate to "RzJIS of 30 μm or more and 100 μm or less and Rz of 120 μm or less", after molding with synthetic resin. Examples thereof include a method of rubbing the surface of the main substrate with sandpaper, a method of applying grain processing to the surface of the main substrate, and a method of applying a surface treatment such as sandblasting or shot blasting to the surface of the main substrate. Alternatively, when the main substrate is molded from synthetic resin, the surface of the mold is roughened so that the surface state of the positive electrode side surface and / or the negative electrode side surface is "RzJIS is 30 μm or more and 100 μm or less, and Rz is There is also a method of making it 120 μm or less.

また、上記実施形態では、正極用集電板が正極用鉛箔からなり、負極用集電板が負極用鉛箔からなる双極型鉛蓄電池について説明したが、本発明の一態様は、正極用集電板および負極用集電板が鉛以外の金属(例えば、アルミニウム、銅、ニッケル)や合金、導電性樹脂からなる双極型蓄電池にも適用できる。 Further, in the above embodiment, a bipolar lead-acid battery in which the positive electrode collector plate is made of a positive electrode lead foil and the negative electrode current collector plate is made of a negative electrode lead foil has been described. However, one aspect of the present invention is for a positive electrode. It can also be applied to a bipolar storage battery in which the current collector plate and the current collector plate for the negative electrode are made of a metal other than lead (for example, aluminum, copper, nickel), an alloy, or a conductive resin.

[バイプレート、正極用集電板、および負極用集電板の準備]
〔各集電板の切り出し〕
錫(Sn)の含有率が1.0質量%であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.30mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1~No.8のバイプレート120用の正極用集電板111aとした。また、同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1~No.8の第一のエンドプレート130用の正極用集電板111aaとした。
[Preparation of bi-plate, current collector plate for positive electrode, and current collector plate for negative electrode]
[Cut out each current collector plate]
A rolled sheet having a tin (Sn) content of 1.0% by mass, a balance of lead (Pb) and a lead alloy which is an unavoidable impurity, and a thickness of 0.30 mm is 28 cm on a side. It was cut into a square sheet and used as a positive current collector plate 111a for the biplate 120 of samples No. 1 to No. 8. Further, a rolled sheet made of the same lead alloy and having a thickness of 1.50 mm is cut into a square sheet having a side of 28 cm, and the positive electrode for the first end plate 130 of the samples No. 1 to No. 8 is obtained. The current collector plate 111aa was used.

錫(Sn)の含有率が1.0質量%であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.1mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1~No.8のバイプレート120用の負極用集電板112aとした。また、同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1~No.8の第二のエンドプレート140用の負極用集電板112aaとした。 A rolled sheet having a tin (Sn) content of 1.0% by mass, a balance of lead (Pb) and a lead alloy which is an unavoidable impurity, and a thickness of 0.1 mm is 28 cm on a side. It was cut into a square sheet and used as a negative current collector plate 112a for the biplate 120 of samples No. 1 to No. 8. Further, a rolled sheet made of the same lead alloy and having a thickness of 1.50 mm is cut into a square sheet having a side of 28 cm, and the negative electrode for the second end plate 140 of the samples No. 1 to No. 8 is obtained. The current collector plate 112aa was used.

〔バイプレートの作製〕
<サンプルNo.1>
ABS樹脂の射出成形により図1に示す形状のバイプレート120を作製した。バイプレート120の基板121の厚さは2mmである。凹部121bの底面は、一辺が28.5cmの正方形であり、深さは0.32mmである。凹部121cの底面は、一辺が28.5cmの正方形であり、深さは0.12mmである。
「JIS B 0601:2013の付属書JA」の規定に基づいてバイプレート120の基板121の凹部121bの底面の表面状態を計測したところ、十点平均粗さ(RzJIS)は10μmであり、最大高さ粗さ(Rz)は17μmであった。
[Making a bi-plate]
<Sample No.1>
By injection molding of ABS resin, a biplate 120 having the shape shown in FIG. 1 was produced. The thickness of the substrate 121 of the biplate 120 is 2 mm. The bottom surface of the recess 121b is a square with a side of 28.5 cm and a depth of 0.32 mm. The bottom surface of the recess 121c is a square with a side of 28.5 cm and a depth of 0.12 mm.
When the surface condition of the bottom surface of the recess 121b of the substrate 121 of the biplate 120 was measured based on the provisions of "JIS B 0601: 2013 Annex JA", the ten-point average roughness (RzJIS) was 10 μm, which was the maximum height. The roughness (Rz) was 17 μm.

<サンプルNo.2>
サンプルNo.1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、2000番の紙やすりで擦って、十点平均粗さ(RzJIS)が18μmで、最大高さ粗さ(Rz)が23μmとなるようにした。これをサンプルNo.2のバイプレートとした。
<Sample No.2>
The bottom surface of the recess 121b and the recess 121c of the biplate 120 manufactured by the same method as sample No. 1 was rubbed with sandpaper No. 2000, and the ten-point average roughness (RzJIS) was 18 μm, and the maximum height roughness ( Rz) was set to 23 μm. This was used as the sample No. 2 biplate.

<サンプルNo.3>
サンプルNo.1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、800番の紙やすりで擦って、十点平均粗さ(RzJIS)が30μmで、最大高さ粗さ(Rz)が39μmとなるようにした。これをサンプルNo.3のバイプレートとした。
<Sample No.3>
The bottom surface of the recess 121b and the recess 121c of the biplate 120 manufactured by the same method as sample No. 1 was rubbed with sandpaper No. 800, and the ten-point average roughness (RzJIS) was 30 μm, and the maximum height roughness ( Rz) was set to 39 μm. This was used as the sample No. 3 biplate.

<サンプルNo.4>
サンプルNo.1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、800番の紙やすりで擦って、十点平均粗さ(RzJIS)が46μmで、最大高さ粗さ(Rz)が63μmとなるようにした。これをサンプルNo.4のバイプレートとした。
<Sample No.4>
The bottom surface of the recess 121b and the recess 121c of the biplate 120 manufactured by the same method as sample No. 1 was rubbed with sandpaper No. 800, and the ten-point average roughness (RzJIS) was 46 μm, and the maximum height roughness ( Rz) was set to 63 μm. This was used as the sample No. 4 biplate.

<サンプルNo.5>
サンプルNo.1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面にシボ加工を施すことにより、十点平均粗さ(RzJIS)が69μmで、最大高さ粗さ(Rz)が155μmとなるようにした。これをサンプルNo.5のバイプレートとした。
<Sample No.5>
By embossing the bottom surfaces of the recesses 121b and 121c of the biplate 120 manufactured by the same method as sample No. 1, the ten-point average roughness (RzJIS) is 69 μm and the maximum height roughness (Rz) is It was set to 155 μm. This was used as the sample No. 5 biplate.

<サンプルNo.6>
サンプルNo.1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、150番の紙やすりで擦って、十点平均粗さ(RzJIS)が77μmで、最大高さ粗さ(Rz)が92μmとなるようにした。これをサンプルNo.6のバイプレートとした。
<Sample No.6>
The bottom surface of the recess 121b and the recess 121c of the biplate 120 manufactured by the same method as sample No. 1 was rubbed with sandpaper No. 150, and the ten-point average roughness (RzJIS) was 77 μm, and the maximum height roughness ( Rz) was set to 92 μm. This was used as the sample No. 6 biplate.

<サンプルNo.7>
サンプルNo.1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、120番の紙やすりで擦って、十点平均粗さ(RzJIS)が104μmで、最大高さ粗さ(Rz)が123μmとなるようにした。これをサンプルNo.7のバイプレートとした。
<Sample No.7>
The bottom surface of the recess 121b and the recess 121c of the biplate 120 manufactured by the same method as sample No. 1 was rubbed with sandpaper No. 120, and the ten-point average roughness (RzJIS) was 104 μm, and the maximum height roughness ( Rz) was set to 123 μm. This was used as the sample No. 7 biplate.

<サンプルNo.8>
サンプルNo.1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が128μmで、最大高さ粗さ(Rz)が141μmとなるようにした。これをサンプルNo.8のバイプレートとした。
<Sample No.8>
The bottom surface of the recess 121b and the recess 121c of the biplate 120 manufactured by the same method as sample No. 1 was rubbed with sandpaper No. 80, and the ten-point average roughness (RzJIS) was 128 μm, and the maximum height roughness ( Rz) was adjusted to 141 μm. This was used as the sample No. 8 biplate.

[エンドプレートの作製]
<サンプルNo.1~No.8>
ABS樹脂の射出成形により図1に示す形状の第一のエンドプレート130および第二のエンドプレート140を作製した。第一のエンドプレート130の基板131および第二のエンドプレート140の141の厚さは10mmである。凹部131bおよび凹部141bの底面は、一辺が28.5cmの正方形であり、深さは1.52mmである。
[Making end plate]
<Sample No.1 to No.8>
The first end plate 130 and the second end plate 140 having the shapes shown in FIG. 1 were produced by injection molding of ABS resin. The thickness of the substrate 131 of the first end plate 130 and 141 of the second end plate 140 is 10 mm. The bottom surfaces of the recess 131b and the recess 141b are squares with a side of 28.5 cm and a depth of 1.52 mm.

[双極型鉛蓄電池の組み立て]
サンプルNo.1~No.8の各バイプレートを用いたこと以外は全て同じ方法で、図1に示す構造を有し、定格容量が45AhとなるようにNo.1~No.8の双極型鉛蓄電池を組み立てた。つまり、バイプレート120の基板121の凹部121bの底面の表面状態以外は、全てのサンプルで同じ構成とした。
[Assembly of bipolar lead-acid battery]
All of them have the same structure as shown in FIG. 1 except that each of the samples No. 1 to No. 8 biplates is used, and the No. 1 to No. 8 bipolar type has a rated capacity of 45 Ah. I assembled a lead-acid battery. That is, all the samples had the same configuration except for the surface condition of the bottom surface of the recess 121b of the substrate 121 of the biplate 120.

正極用活物質層111bおよび負極用活物質層112bは鉛化合物からなるもの、セパレータ113はガラス繊維からなるものであって、それぞれ定格容量45Ahに対応させた厚さのものを使用した。 The positive electrode active material layer 111b and the negative electrode active material layer 112b were made of a lead compound, and the separator 113 was made of glass fiber, each having a thickness corresponding to a rated capacity of 45 Ah.

[寿命試験]
先ず、No.1~No.8の各双極型鉛蓄電池を、水温が25℃±2℃に制御された水槽内に置き、電池の端子電圧が1.8V/セルに低下するまで、定格容量(45Ah)の10時間率電流(4.5A)で放電し、放電持続時間を記録し、放電電流と放電持続時間から10時間率容量を計算した。
[Life test]
First, each of the No. 1 to No. 8 bipolar lead-acid batteries is placed in a water tank whose water temperature is controlled to 25 ° C ± 2 ° C, and the rated capacity is until the terminal voltage of the battery drops to 1.8 V / cell. The battery was discharged at a 10-hour rate current (4.5 A) of (45 Ah), the discharge duration was recorded, and the 10-hour rate capacity was calculated from the discharge current and the discharge duration.

次に、各双極型鉛蓄電池を満充電状態にした後、端子電圧を常時計測しながら、下記の(1)を400回繰り返した。
(1)定格容量(45Ah)の10時間率電流(4.5A)で7時間放電する。つまり、定格容量に対してDOD70%の放電を行う。
液絡が発生すると端子電圧は急激に降下する。液絡が発生したかどうかは、上記放電を400回繰り返した後の各電池を解体して、正極用鉛箔111aの導通体160との結合部分の周縁部が硫酸によって変色しているか否かを確認することにより行った。そして、この変色度合いから液絡の有り無しを判定した。
Next, after each bipolar lead-acid battery was fully charged, the following (1) was repeated 400 times while constantly measuring the terminal voltage.
(1) Discharge for 7 hours at a 10-hour rate current (4.5 A) with a rated capacity (45 Ah). That is, DOD 70% is discharged with respect to the rated capacity.
When a liquid entanglement occurs, the terminal voltage drops sharply. Whether or not liquid entanglement has occurred is determined by whether or not each battery after repeating the above discharge 400 times is disassembled and the peripheral edge of the joint portion of the lead foil 111a for the positive electrode with the conductor 160 is discolored by sulfuric acid. It was done by confirming. Then, the presence or absence of liquid entanglement was determined from the degree of discoloration.

[接着剤塗布試験]
先ず、サンプルNo.1~No.8の各バイプレート120に対応させた試験板として、ABS樹脂製で、厚さが2mmで一辺が30cmである正方形の板の一面の表面状態を、サンプルNo.1~No.8の各バイプレート120の凹部121bおよび凹部121cの底面の表面状態と同じにしたものを用意した。
[Adhesive application test]
First, as a test plate corresponding to each of the bi-plates 120 of Samples No. 1 to No. 8, the surface condition of one surface of a square plate made of ABS resin, having a thickness of 2 mm and a side of 30 cm, is shown as a sample No. We prepared the ones having the same surface condition as the bottom surface of the recesses 121b and the recesses 121c of each of the biplates 120 of .1 to No. 8.

次に、各サンプル用の試験板の一面に、接着剤を25ml塗布する。その際、基板面を水平に保持する。その後、接着剤を塗布した面に、上述の一辺が28cmである正方形の鉛合金製のシートを載せて、このシートの上面にゴムローラを当てて、端(右端)から端(左端)に向かうように移動することで、接着剤を延ばしながらシートを貼り付ける。
次に、全面に接着剤が隙間なく広がっているかどうかを調べた。接着剤としては、ソマール株式会社製のエポキシ系接着剤「エピフォーム(登録商標)K-9487」を使用した。
Next, 25 ml of the adhesive is applied to one surface of the test plate for each sample. At that time, the substrate surface is held horizontally. After that, a square lead alloy sheet having a side of 28 cm is placed on the surface coated with the adhesive, and a rubber roller is applied to the upper surface of the sheet so as to go from the end (right end) to the end (left end). By moving to, attach the sheet while spreading the adhesive.
Next, it was examined whether the adhesive spreads on the entire surface without any gaps. As the adhesive, an epoxy adhesive "Epiform (registered trademark) K-9487" manufactured by SOMAR Corporation was used.

なお、厚さ2mmのABS樹脂製の板は透過率が高いため、板の他方の面(鉛合金シートを貼り付けていない面)を目視することで、板とシートとの間の接着剤の状態を調べることができる。
全面に接着剤が隙間なく広がっている場合は、接着剤量が十分である(○)と判定し、隙間が存在している場合は接着剤量が不足している(×)と判定した。
これらの結果を、基板(凹部121b,121cの底面および試験板の一面)の表面状態とともに表1に示す。
Since the ABS resin plate with a thickness of 2 mm has a high transmittance, by visually observing the other surface of the plate (the surface to which the lead alloy sheet is not attached), the adhesive between the plates can be obtained. You can check the status.
When the adhesive spreads on the entire surface without gaps, it was determined that the amount of adhesive was sufficient (◯), and when there were gaps, it was determined that the amount of adhesive was insufficient (×).
These results are shown in Table 1 together with the surface condition of the substrate (bottom surface of the recesses 121b and 121c and one surface of the test plate).

Figure 0007057461000002
Figure 0007057461000002

表1の結果から以下のことが分かる。
主基板121の両面(正極側の面および負極側の面)の表面状態が、{JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、この規定による最大高さ粗さ(Rz)が120μm以下}を満たし、各面に接着剤で鉛合金製の正極用集電板111aおよび負極用集電板112aが固定されているNo.3、No.4、No.6、No.7の双極型鉛蓄電池は、液絡抑制効果と少ない接着剤の使用量で必要な接着強度が得られる効果とが両立できるものとなる。
The following can be seen from the results in Table 1.
The surface condition of both sides (the surface on the positive electrode side and the surface on the negative electrode side) of the main substrate 121 is such that the ten-point average roughness (RzJIS) according to the provisions of {JIS B 0601: 2013 Annex JA "is 30 μm or more and 100 μm or less. , The maximum height roughness (Rz) according to this regulation is 120 μm or less}, and the positive electrode current collector plate 111a and the negative electrode current collector plate 112a made of lead alloy are fixed to each surface with an adhesive. , No.4, No.6, and No.7 bipolar lead storage batteries have both the effect of suppressing liquid leakage and the effect of obtaining the required adhesive strength with a small amount of adhesive used.

RzJISが30μm未満であるNo.2、No.3の双極型鉛蓄電池では、少ない接着剤の使用量で必要な接着強度が得られたが、液絡抑制効果は得られなかった。また、RzJISが69μmであるがRzが120μmを超えているNo.5の双極型鉛蓄電池と、RzJISが100μmを超えRzが120μmを超えているNo.8の双極型鉛蓄電池では、液絡抑制効果は得られたが、必要な接着強度を得るための接着剤量が多くなった。 In the No. 2 and No. 3 bipolar lead-acid batteries having an RzJIS of less than 30 μm, the required adhesive strength was obtained with a small amount of adhesive used, but the liquid squeeze suppressing effect was not obtained. In addition, the No. 5 bipolar lead-acid battery with RzJIS of 69 μm but Rz exceeding 120 μm and the No. 8 bipolar lead-acid battery with RzJIS exceeding 100 μm and Rz exceeding 120 μm suppress liquid leakage. The effect was obtained, but the amount of adhesive for obtaining the required adhesive strength was increased.

100 双極(バイポーラ)型鉛蓄電池
110 セル部材
111 正極
112 負極
111a 正極用鉛箔(主基板の正極の側の面に配置された正極用集電板)
111aa 正極用鉛箔(正極用集電板)
111b 正極用活物質層
112a 負極用鉛箔(主基板の負極の側の面に配置された負極用集電板)
112aa 負極用鉛箔(負極用集電板)
112b 負極用活物質層
113 セパレータ
120 バイプレート
121 バイプレートの基板(隣り合うセル部材の間に配置された基板、主基板)
121a 基板の貫通穴
121b 基板の第一の凹部
121c 基板の第二の凹部
122 バイプレートの枠体
130 第一のエンドプレート
131 第一のエンドプレートの基板
132 第一のエンドプレートの枠体
140 第二のエンドプレート
141 第二のエンドプレートの基板
142 第二のエンドプレートの枠体
150 接着剤層
160 導通体
C セル(セル部材を収容する空間)
100 Bipolar lead-acid battery 110 Cell member 111 Positive electrode 112 Negative electrode 111a Lead electrode for positive electrode (collector plate for positive electrode arranged on the surface of the main substrate on the positive electrode side)
111aa Lead foil for positive electrode (current collector plate for positive electrode)
111b Active material layer for positive electrode 112a Lead foil for negative electrode (current collector plate for negative electrode arranged on the surface of the main substrate on the negative electrode side)
112aa Lead foil for negative electrode (current collector plate for negative electrode)
112b Active material layer for negative electrode 113 Separator 120 Bi-plate 121 Bi-plate substrate (substrate arranged between adjacent cell members, main substrate)
121a Through hole of the substrate 121b First recess of the substrate 121c Second recess of the substrate 122 Bi-plate frame 130 First end plate 131 First end plate substrate 132 First end plate frame 140 No. Second end plate 141 Second end plate substrate 142 Second end plate frame 150 Adhesive layer 160 Conductor C cell (space for accommodating cell members)

Claims (3)

正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
を有し、
前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含み、
前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、隣接する前記枠体が接合され、
隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面および前記負極の側の面の少なくとも一方は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、前記規定による最大高さ粗さ(Rz)が120μm以下であり、
前記主基板の前記正極の側の面に、接着剤で金属製の前記正極用集電板が固定され、
前記主基板の前記負極の側の面に、接着剤で金属製の前記負極用集電板が固定され、
前記主基板は板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されている双極型蓄電池。
A positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a separator interposed between the positive electrode and the negative electrode are provided at intervals. Multiple cell members arranged in layers and
A plurality of space forming members that form a plurality of spaces individually accommodating the plurality of cell members, and a plurality of space forming members.
Have,
The space forming member includes a synthetic resin substrate that covers at least one of the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member.
The cell member and the substrate of the space forming member are arranged in a state of being alternately laminated, and the adjacent frames are joined to each other.
At least one of the surface on the positive electrode side and the surface on the negative electrode side of the main substrate, which is the substrate arranged between the adjacent cell members, is in accordance with the provisions of "Appendix JA of JIS B 0601: 2013". The ten-point average roughness (RzJIS) is 30 μm or more and 100 μm or less, and the maximum height roughness (Rz) according to the above specification is 120 μm or less.
The metal current collector plate for the positive electrode is fixed to the surface of the main substrate on the side of the positive electrode with an adhesive.
The metal current collector plate for the negative electrode is fixed to the surface of the main substrate on the negative electrode side with an adhesive.
The main substrate has a through hole extending in a direction intersecting the plate surface, and in the through hole, the positive electrode current collector plate and the negative electrode current collector plate of the adjacent cell member are conducted to conduct electricity. A bipolar storage battery in which the plurality of cell members are electrically connected in series.
前記正極用集電板および前記負極用集電板は鉛または鉛合金からなる請求項1記載の双極型蓄電池。 The bipolar storage battery according to claim 1, wherein the positive electrode current collector plate and the negative electrode current collector plate are made of lead or a lead alloy. 双極型蓄電池の製造方法であって、
当該双極型蓄電池は、
正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
を有し、
前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含み、
前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、隣接する前記枠体が接合され、
隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面に、接着剤で金属製の前記正極用集電板が固定され、
前記主基板の前記負極の側の面に、接着剤で金属製の前記負極用集電板が固定され、
前記主基板は板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されているものであり、
前記主基板として、
当該主基板の前記正極の側の面および前記負極の側の面の少なくとも一方が、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上100μm以下であり、前記規定による最大高さ粗さ(Rz)が120μm以下であるものを使用する双極型蓄電池の製造方法。
It is a manufacturing method of bipolar storage battery.
The bipolar storage battery is
A positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a separator interposed between the positive electrode and the negative electrode are provided at intervals. Multiple cell members arranged in layers and
A plurality of space forming members that form a plurality of spaces individually accommodating the plurality of cell members, and a plurality of space forming members.
Have,
The space forming member includes a synthetic resin substrate that covers at least one of the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member.
The cell member and the substrate of the space forming member are arranged in a state of being alternately laminated, and the adjacent frames are joined to each other.
The metal current collector plate for the positive electrode is fixed to the surface of the main substrate, which is the substrate arranged between the adjacent cell members, on the side of the positive electrode with an adhesive.
The metal current collector plate for the negative electrode is fixed to the surface of the main substrate on the negative electrode side with an adhesive.
The main substrate has a through hole extending in a direction intersecting the plate surface, and in the through hole, the positive electrode current collector plate and the negative electrode current collector plate of the adjacent cell member are conducted to conduct electricity. The plurality of cell members are electrically connected in series, and the plurality of cell members are electrically connected in series.
As the main board
At least one of the surface on the positive electrode side and the surface on the negative electrode side of the main substrate has a ten-point average roughness (RzJIS) of 30 μm or more and 100 μm or less according to the provisions of “JIS B 0601: 2013 Annex JA”. A method for manufacturing a bipolar storage battery using a battery having a maximum height roughness (Rz) of 120 μm or less according to the above specifications.
JP2021065939A 2021-04-08 2021-04-08 Bipolar storage battery, manufacturing method of bipolar storage battery Active JP7057461B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021065939A JP7057461B1 (en) 2021-04-08 2021-04-08 Bipolar storage battery, manufacturing method of bipolar storage battery
PCT/JP2022/003587 WO2022215329A1 (en) 2021-04-08 2022-01-31 Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021065939A JP7057461B1 (en) 2021-04-08 2021-04-08 Bipolar storage battery, manufacturing method of bipolar storage battery

Publications (2)

Publication Number Publication Date
JP7057461B1 true JP7057461B1 (en) 2022-04-19
JP2022161267A JP2022161267A (en) 2022-10-21

Family

ID=81291685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021065939A Active JP7057461B1 (en) 2021-04-08 2021-04-08 Bipolar storage battery, manufacturing method of bipolar storage battery

Country Status (1)

Country Link
JP (1) JP7057461B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008495A1 (en) * 2021-07-28 2023-02-02 古河電池株式会社 Bipolar lead battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800946A (en) 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
JP2001514794A (en) 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー Manufacturing method of bipolar plate
JP2004158433A (en) 2002-10-18 2004-06-03 Furukawa Battery Co Ltd:The Base plate for lead storage battery, and lead storage battery using the same
JP2020510968A (en) 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. Bipolar battery and plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038171B1 (en) * 1971-03-29 1975-12-08

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800946A (en) 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
JP2001514794A (en) 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー Manufacturing method of bipolar plate
JP2004158433A (en) 2002-10-18 2004-06-03 Furukawa Battery Co Ltd:The Base plate for lead storage battery, and lead storage battery using the same
JP2020510968A (en) 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. Bipolar battery and plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008495A1 (en) * 2021-07-28 2023-02-02 古河電池株式会社 Bipolar lead battery

Also Published As

Publication number Publication date
JP2022161267A (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP7057461B1 (en) Bipolar storage battery, manufacturing method of bipolar storage battery
KR101365968B1 (en) Method for Battery Cell of Novel Structure
JP6053817B2 (en) Manufacturing method of battery cell with novel structure
US20100062335A1 (en) Bipolar battery
WO2022215329A1 (en) Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery
WO2023008495A1 (en) Bipolar lead battery
JP7057465B1 (en) Bipolar lead acid battery
WO2022224531A1 (en) Bipolar lead storage battery and method for manufacturing bipolar lead storage battery
US10418637B2 (en) Grid arrangement for plate-shaped battery electrode and accumulator
JP7045505B1 (en) Current collecting sheet for lead-acid batteries, lead-acid batteries, bipolar lead-acid batteries
WO2022201629A1 (en) Bipolar storage battery
JP2023141123A (en) Bipolar lead-acid battery and manufacturing method for bipolar lead-acid battery
EP4318683A1 (en) Bipolar storage battery
WO2022202443A1 (en) Current collection sheet for lead storage battery, lead storage battery, and bipolar lead storage battery
WO2022201630A1 (en) Bipolar storage battery
CN220553568U (en) Battery and battery pack
WO2022201622A1 (en) Bipolar storage battery
CN220106826U (en) Battery cell
CN219643001U (en) Battery cell
JP7136013B2 (en) stacked battery
WO2023181796A1 (en) Bipolar storage battery
JP6893457B2 (en) Current collector plate arrangement structure of bipolar solid-state battery
JP2023001638A (en) bipolar storage battery
JP2024055266A (en) Power storage device
CN116802883A (en) Bipolar accumulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7057461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150